next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000075265 seconds elapsed
 -- 0.000897351 seconds elapsed
 -- 0.000198605 seconds elapsed
 -- 0.000074943 seconds elapsed
 -- 0.000791081 seconds elapsed
 -- 0.000191631 seconds elapsed
 -- 0.000070627 seconds elapsed
 -- 0.000069931 seconds elapsed
 -- 0.000171804 seconds elapsed
 -- 0.000078636 seconds elapsed
 -- 0.000743713 seconds elapsed
 -- 0.000183974 seconds elapsed
 -- 0.000073127 seconds elapsed
 -- 0.000721036 seconds elapsed
 -- 0.000182739 seconds elapsed
 -- 0.000071773 seconds elapsed
 -- 0.00070512 seconds elapsed
 -- 0.000180409 seconds elapsed
 -- 0.000076586 seconds elapsed
 -- 0.000780666 seconds elapsed
 -- 0.000183365 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000073576 seconds elapsed
 -- 0.000873821 seconds elapsed
 -- 0.00018238 seconds elapsed
 -- 0.000072994 seconds elapsed
 -- 0.000768148 seconds elapsed
 -- 0.000183378 seconds elapsed
 -- 0.000104268 seconds elapsed
 -- 0.000762007 seconds elapsed
 -- 0.000212584 seconds elapsed
 -- 0.000073148 seconds elapsed
 -- 0.000692629 seconds elapsed
 -- 0.000183233 seconds elapsed
 -- 0.000075846 seconds elapsed
 -- 0.0006969 seconds elapsed
 -- 0.000185897 seconds elapsed
 -- 0.000077277 seconds elapsed
 -- 0.000762708 seconds elapsed
 -- 0.000186805 seconds elapsed
 -- 0.000072093 seconds elapsed
 -- 0.000877666 seconds elapsed
 -- 0.000186602 seconds elapsed
 -- 0.000072333 seconds elapsed
 -- 0.000775679 seconds elapsed
 -- 0.000182325 seconds elapsed
 -- 0.000080195 seconds elapsed
 -- 0.000734838 seconds elapsed
 -- 0.000182416 seconds elapsed
 -- 0.000075414 seconds elapsed
 -- 0.000711704 seconds elapsed
 -- 0.000180471 seconds elapsed
 -- 0.000076542 seconds elapsed
 -- 0.000688854 seconds elapsed
 -- 0.000182692 seconds elapsed
 -- 0.000076927 seconds elapsed
 -- 0.000763328 seconds elapsed
 -- 0.000184629 seconds elapsed
 -- 0.000074545 seconds elapsed
 -- 0.00112794 seconds elapsed
 -- 0.000307999 seconds elapsed
 -- 0.00007589 seconds elapsed
 -- 0.00108913 seconds elapsed
 -- 0.000308946 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.