next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.00006993 seconds elapsed
 -- 0.000689125 seconds elapsed
 -- 0.000170463 seconds elapsed
 -- 0.000068396 seconds elapsed
 -- 0.000628739 seconds elapsed
 -- 0.000161907 seconds elapsed
 -- 0.000065222 seconds elapsed
 -- 0.000061372 seconds elapsed
 -- 0.00014309 seconds elapsed
 -- 0.000067738 seconds elapsed
 -- 0.000584923 seconds elapsed
 -- 0.000156586 seconds elapsed
 -- 0.000073526 seconds elapsed
 -- 0.000555891 seconds elapsed
 -- 0.000155173 seconds elapsed
 -- 0.000069399 seconds elapsed
 -- 0.000551814 seconds elapsed
 -- 0.0001568 seconds elapsed
 -- 0.000067405 seconds elapsed
 -- 0.000610595 seconds elapsed
 -- 0.000162027 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000082698 seconds elapsed
 -- 0.000703758 seconds elapsed
 -- 0.000165225 seconds elapsed
 -- 0.000068204 seconds elapsed
 -- 0.000625478 seconds elapsed
 -- 0.000162681 seconds elapsed
 -- 0.00007494 seconds elapsed
 -- 0.000591175 seconds elapsed
 -- 0.000160103 seconds elapsed
 -- 0.000077232 seconds elapsed
 -- 0.000596254 seconds elapsed
 -- 0.000171358 seconds elapsed
 -- 0.000073006 seconds elapsed
 -- 0.000585415 seconds elapsed
 -- 0.000161178 seconds elapsed
 -- 0.000067702 seconds elapsed
 -- 0.00059961 seconds elapsed
 -- 0.000160149 seconds elapsed
 -- 0.000070235 seconds elapsed
 -- 0.000681825 seconds elapsed
 -- 0.000164364 seconds elapsed
 -- 0.000072919 seconds elapsed
 -- 0.000623642 seconds elapsed
 -- 0.000163063 seconds elapsed
 -- 0.000070237 seconds elapsed
 -- 0.000584661 seconds elapsed
 -- 0.000160864 seconds elapsed
 -- 0.000068565 seconds elapsed
 -- 0.000564166 seconds elapsed
 -- 0.000161391 seconds elapsed
 -- 0.000070753 seconds elapsed
 -- 0.000569342 seconds elapsed
 -- 0.00016585 seconds elapsed
 -- 0.000070403 seconds elapsed
 -- 0.000620732 seconds elapsed
 -- 0.000163048 seconds elapsed
 -- 0.000073257 seconds elapsed
 -- 0.000870861 seconds elapsed
 -- 0.000252356 seconds elapsed
 -- 0.000073159 seconds elapsed
 -- 0.000891805 seconds elapsed
 -- 0.000269842 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.