next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000053752 seconds elapsed
 -- 0.000773419 seconds elapsed
 -- 0.000189668 seconds elapsed
 -- 0.000106991 seconds elapsed
 -- 0.000894247 seconds elapsed
 -- 0.000253378 seconds elapsed
 -- 0.000068699 seconds elapsed
 -- 0.000069141 seconds elapsed
 -- 0.000187885 seconds elapsed
 -- 0.000079029 seconds elapsed
 -- 0.000830566 seconds elapsed
 -- 0.000197423 seconds elapsed
 -- 0.00007434 seconds elapsed
 -- 0.000753772 seconds elapsed
 -- 0.000202652 seconds elapsed
 -- 0.000089469 seconds elapsed
 -- 0.000787596 seconds elapsed
 -- 0.000201009 seconds elapsed
 -- 0.000078066 seconds elapsed
 -- 0.000865011 seconds elapsed
 -- 0.000212701 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000073008 seconds elapsed
 -- 0.000815228 seconds elapsed
 -- 0.000140074 seconds elapsed
 -- 0.00005298 seconds elapsed
 -- 0.000697526 seconds elapsed
 -- 0.000169119 seconds elapsed
 -- 0.00007947 seconds elapsed
 -- 0.00055141 seconds elapsed
 -- 0.000143371 seconds elapsed
 -- 0.000056297 seconds elapsed
 -- 0.000523648 seconds elapsed
 -- 0.000130426 seconds elapsed
 -- 0.000055035 seconds elapsed
 -- 0.000490626 seconds elapsed
 -- 0.000136106 seconds elapsed
 -- 0.000053851 seconds elapsed
 -- 0.000558364 seconds elapsed
 -- 0.000153139 seconds elapsed
 -- 0.00006886 seconds elapsed
 -- 0.000641501 seconds elapsed
 -- 0.000132589 seconds elapsed
 -- 0.000052479 seconds elapsed
 -- 0.000599702 seconds elapsed
 -- 0.000135696 seconds elapsed
 -- 0.000057378 seconds elapsed
 -- 0.000526694 seconds elapsed
 -- 0.00013267 seconds elapsed
 -- 0.000056197 seconds elapsed
 -- 0.000544447 seconds elapsed
 -- 0.000138582 seconds elapsed
 -- 0.000057078 seconds elapsed
 -- 0.000522737 seconds elapsed
 -- 0.000130868 seconds elapsed
 -- 0.000086283 seconds elapsed
 -- 0.000573753 seconds elapsed
 -- 0.00015349 seconds elapsed
 -- 0.00009528 seconds elapsed
 -- 0.00129366 seconds elapsed
 -- 0.000432086 seconds elapsed
 -- 0.000061897 seconds elapsed
 -- 0.00106037 seconds elapsed
 -- 0.000245514 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.