C SparseMatrixGeneric< _Field, _Row, VectorCategories::SparseAssociativeVectorTag >::_IndexedIterator< RepIterator, RowIdxIterator, _I_Element > No doc
C BCSR Block CSR
C BitVector Binary constant defined both for 32 and 64 bits
► C BlackboxArchetype Showing the member functions provided by all blackbox matrix classes
C MatrixBlackbox< _Field, _Matrix, _Vector > Matrix black box
► C BlackboxBlockContainerBase< _Field, _Blackbox, _MatrixDomain > A base class for BlackboxBlockContainer
C BlackboxBlockContainerRecord< _Field, _Blackbox, _MatrixDomain > No doc
C BlackboxBlockContainerBase< _Field, _Blackbox, BlasMatrixDomain< _Field > >
C BlackboxBlockContainerBase< _Field, _Blackbox, MatrixDomain< _Field > >
C BlackboxBlockContainerBase< Field, Blackbox, _MatrixDomain >
C BlackboxContainerBase< Field, Blackbox > A base class for BlackboxContainer
► C BlackboxContainerBase< Field, _Blackbox >
C BlackboxContainer< Field, _Blackbox, RandIter > Limited doc so far
C BlackboxContainerSymmetric< Field, _Blackbox, RandIter > See base class for doc
C BlackboxContainerSymmetrize< Field, _Blackbox, RandIter > Symmetrizing iterator (for rank computations)
► C BlackboxContainerBase< Field, Vector >
C DenseContainer< Field, Vector, RandIter > Limited doc so far
C BlackboxFactory< Field, Blackbox > A tool for computations with integer and rational matrices
► C BlasMatrix< _Field, _Storage > Dense matrix representation
C TriangularBlasMatrix< _Field, _Storage > Triangular BLAS matrix
C BlasMatrix< _Field >
C BlasMatrix< Domain >
C BlasMatrix< Field >
C BlasMatrix< Field, typename LinBox::Vector< Field >::Dense >
C BlasMatrix< Givaro::Modular< double > >
C BlasMatrix< Givaro::ZRing< Element > >
C BlasMatrix< MultiModDouble > No Doc
C BlasMatrix< typename_Matrix::Field, typename_Matrix::Rep >
C BlasMatrixDomain< Field_ > Interface for all functionnalities provided for BlasMatrix
C BlasMatrixDomain< _Field >
C BlasMatrixDomain< Field >
C BlasMatrixDomainAddin< Field, Operand1, Operand2 > C += A
C BlasMatrixDomainMulAdd< BlasVector< Field >, BlasMatrix< Field, _Rep >, BlasVector< Field > > What about subvector/submatrices ?
C BlasMatrixDomainSubin< Field, Operand1, Operand2 > C -= A
C BlasPermutation< _UnsignedInt > Lapack-style permutation
C BlasPermutation< size_t >
C BlasSubmatrix< _Matrix > Dense Submatrix representation
► C BlasSubmatrix< BlasMatrix< _Field > >
C Submatrix< BlasMatrix< _Field >, VectorCategories::DenseVectorTag > Specialization for BlasMatrix
C BlockBB< _BB > Converts a black box into a block black box
C BlockCompose< _Blackbox1, _Blackbox2 > Blackbox of a product: , i.e
C BlockCoppersmithDomain< _Domain, _Sequence > Compute the linear generator of a sequence of matrices
C BlockHankelLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _Block > Block Hankel LiftingContianer
C BlockLanczosSolver< Field, Matrix > Block Lanczos iteration
C BlockMasseyDomain< _Field, _Sequence > Compute the linear generator of a sequence of matrices
C BlockMasseyDomain< Field, LinBox::BlackboxBlockContainerRecord >
C BlockWiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix > Block Wiedemann LiftingContianer
C BooleanSwitch Boolean switch object
C Butterfly< _Field, Switch > Switching Network based BlackBox Matrix
C CekstvSwitch< Field > The default butterfly switch object
C CekstvSwitch< _Field >
C ChineseRemainder< CRABase > No doc
C ChineseRemainderSequential< CRABase > No doc
C ClassifyRing< Field > Default ring category
C Commentator Give information to user during runtime
C Companion< Field_ > Companion matrix of a monic polynomial
C Compose< _Blackbox1, _Blackbox2 > Blackbox of a product: , i.e
C Compose< _Blackbox, _Blackbox > Specialization for _Blackbox1 = _Blackbox2
C Compose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > >
C Compose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > >
C ComposeOwner< _Blackbox1, _Blackbox2 > Blackbox of a product: , i.e
C ComposeTraits< IMatrix > Used in ..., for example
C ComposeTraits< BlasMatrix< Field, Rep > > Used in smith-binary, for example
C BlasSubmatrix< _Matrix >::ConstIndexedIterator Raw Indexed Iterator (const version)
C BlasSubmatrix< _Matrix >::ConstIterator Raw Iterators (const version)
C ContainerCategories Used to separate BLAS2 and BLAS3 operations
C ContainerTraits< Container > Trait for the Category
C ContainerTraits< std::vector< _Rep > >
C COO Cordinate
C COO1 Implicit value COO (with only ones, or mones, or..)
► C CRABuilderFullMultip< Domain_Type > Chinese remaindering of a vector of elements without early termination
C CRABuilderEarlyMultip< Domain_Type > NO DOC
C CRABuilderFullMultipFixed< Domain_Type > Chinese Remaindering Algorithm for multiple residues
C CRABuilderFullMultipMatrix< Domain_Type > NO DOC
C CRABuilderFullSingle< Domain_Type > Chinese Remaindering with full precision and no chance of failure
► C CRABuilderSingleBase< Domain_Type > Abstract base class for CRA builders
► C CRABuilderEarlySingle< Domain_Type > Heuristic Chinese Remaindering with early termination
C CRABuilderEarlyMultip< Domain_Type > NO DOC
C CRABuilderProbSingle< Domain_Type > Chinese Remaindering with guaranteed probability bound and early termination
C CRAResidue< ResultType, Function > Type information for the residue in a CRA iteration
C CRAResidue< Integer, Function > Type information for the residue in a CRA iteration
C CRAResidue< std::vector< Integer >, Function > Type information for the residue in a CRA iteration
C CSF< _Field > Space efficient representation of sparse matrices
C CSR Compressed row
C CSR1 Implicit value CSR (with only ones, or mones, or..)
C DataSeries This structure holds a bunch of timings
C DenseMat< _Element > To be used in standard matrix domain
► C DenseMat< SlicedBase< _Domain::Word_T > >
C Sliced< _Domain > The Sliced Matrix class _Domain must be a GF(3) rep, BaseT must be an unsigned int type
C DensePolynomial< Field > Dense Polynomial representation using Givaro
C DeterministicTag Iterator following a deterministic sequence of primes (from the largest one, in decreasing order
C DIA Diagonal
C Diagonal< Field, Trait > Random diagonal matrices are used heavily as preconditioners
C Diagonal< _Field, VectorCategories::DenseVectorTag > Specialization of Diagonal for application to dense vectors
C Diagonal< _Field, VectorCategories::SparseAssociativeVectorTag > Specialization of Diagonal for application to sparse associative vectors
C Diagonal< _Field, VectorCategories::SparseSequenceVectorTag > Specialization of Diagonal for application to sparse sequence vectors
C Dif< _Blackbox1, _Blackbox2 > Blackbox of a difference: C := A - B
, i.e Cx = Ax - Bx
C DiophantineSolver< QSolver > DiophantineSolver<QSolver> creates a diophantine solver using a QSolver to generate rational solutions
C DirectSum< _Blackbox1, _Blackbox2 > If C = DirectSum(A, B) and y = xA and z = wB, then (y,z) = (x,w)C
C DirectSum< Companion< Field_ > >
C DixonLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix > Dixon Lifting Container
C DotProductDomain< Givaro::Modular< uint16_t, Compute_t > > Specialization of DotProductDomain for unsigned short modular field
C DotProductDomain< Givaro::Modular< uint32_t, Compute_t > > Specialization of DotProductDomain for uint32_t modular field
C DotProductDomain< Givaro::Modular< uint64_t, Compute_t > > Specialization of DotProductDomain for uint64_t modular field
C DotProductDomain< Givaro::Modular< uint8_t, Compute_t > > Specialization of DotProductDomain for unsigned short modular field
C DotProductDomain< Givaro::ModularBalanced< double > > Specialization of DotProductDomain
► C ElementAbstract Abstract element base class, a technicality
C ElementEnvelope< Ring >
C ElementEnvelope< Field > Adaptor from archetypical interface to abstract interface, a technicality
C ElementArchetype Field and Ring element interface specification and archetypical instance class
C Eliminator< Field, Matrix > Elimination system
C Eliminator< Field, LinBox::BlasMatrix >
C ELL Ellpack
C ELL_R Ellpack fixed row
► C Exception This is the exception class in LinBox
C BadInputException The input is not as expected
C IrrecuperableException Something bad an unexpected happened
C NotImplementedYetException Not implemented yet
C algoException Algorithmic exception
► C FieldAbstract Field base class
► C FieldEnvelope< Ring >
C RingEnvelope< Ring > Implement the ring archetype to minimize code bloat
C FieldEnvelope< Field > Derived class used to implement the field archetype
► C RingAbstract Abstract ring base class
C RingEnvelope< Ring > Implement the ring archetype to minimize code bloat
C FieldAXPY< Field > FieldAXPY object
C FieldAXPY< Field_ >
C FieldAXPY< GF2 >
C FieldAXPY< Givaro::Modular< double > >
C FieldAXPY< Givaro::Modular< float > >
C FieldAXPY< Givaro::Modular< int16_t > >
C FieldAXPY< Givaro::Modular< int32_t, Compute > >
C FieldAXPY< Givaro::Modular< int64_t, Compute_t > >
C FieldAXPY< Givaro::Modular< int8_t > >
C FieldAXPY< Givaro::Modular< uint16_t, Compute_t > > Specialization of FieldAXPY for uint16_t modular field
C FieldAXPY< Givaro::Modular< uint32_t, Compute_t > > Specialization of FieldAXPY for unsigned short modular field
C FieldAXPY< Givaro::Modular< uint64_t, Compute_t > > Specialization of FieldAXPY for unsigned short modular field
C FieldAXPY< Givaro::Modular< uint8_t, Compute_t > > Specialization of FieldAXPY for uint8_t modular field
C FieldAXPY< Givaro::ModularBalanced< double > > Specialization of FieldAXPY
C FieldAXPY< Givaro::ModularBalanced< float > >
C FieldAXPY< Givaro::ModularBalanced< int32_t > >
C FieldAXPY< Givaro::ModularBalanced< int64_t > >
C FieldAXPY< LinBox::NTL_zz_pX >
C FieldAXPY< LinBox::ParamFuzzy >
C FieldAXPY< PIR_ntl_ZZ_p >
C FieldAXPY< PIRModular< int32_t > >
C FieldAXPY< Ring >
► C FieldDocumentation This field base class exists solely to aid documentation organization
► C FieldArchetype Field specification and archetypical instance
C RingArchetype Specification and archetypic instance for the ring interface
C ParamFuzzy Abstract parameterized field of "fuzzy" doubles
C FieldTraits< Field > FieldTrait
► C GaussDomain< _Field > Repository of functions for rank by elimination on sparse matrices
C PowerGaussDomain< _Field > Repository of functions for rank modulo a prime power by elimination on sparse matrices
C GaussDomain< Field >
C GenericRandIter< Field > Random field base element generator
► C GenericTag Generic ring
C GaloisTag Galois Field GF(p^e)
C IntegerTag If it is isomorphic to Z
C ModularTag If it is isomorphic to Z/mZ, for some m or its extensions
C RationalTag If it is isomorphic to Q
► C VectorCategories::GenericVectorTag Generic vector (no assumption is made)
► C VectorCategories::SparseVectorTag Sparse vectors (general)
C VectorCategories::SparseAssociativeVectorTag Sparse vectors (general)
C VectorCategories::SparseParallelVectorTag Sparse vectors (general)
C VectorCategories::SparseSequenceVectorTag Sparse vectors (general)
► C VectorCategories::SparseZeroOneVectorTag Sparse GF2 vectors
► C VectorCategories::DenseVectorTag Dense vector (GF2 and general)
C VectorCategories::DenseZeroOneVectorTag Sparse vectors (general)
C GetEntryCategory< BB > GetEntryCategory is specialized for BB classes that offer a local getEntry
C GivaroRnsFixedCRA< Domain_Type > NO DOC..
C GmpRandomPrime Generating random prime integers, using the gmp library
C GMPRationalElement Elements of GMP_Rationals
C HeuristicTag Iterator sampling randomly (no distribution guaranteed whatsoever) from all primes of given bitsize
C Hilbert_JIT_Entry< _Field > The object needed to build a Hilbert matrix as a JIT matrix
C Hom< Source, Target, Enabled > Map element of source ring(field) to target ring
C HYB Hybrid
C InconsistentSystem< Vector > Exception thrown when the system to be solved is inconsistent
C indexDomain Class used for permuting indices
C IndexedCategory< BB > Trait to show whether or not the BB class has a Indexed iterator
C IndexedCategory< BlasMatrix< Field, _Rep > >
C BlasMatrix< _Field, _Storage >::IndexedIterator Indexed Iterator
C BlasSubmatrix< _Matrix >::IndexedIterator Raw Indexed Iterator
C SparseMatrix< _Field, SparseMatrixFormat::CSR >::IndexedIterator Forward iterator
C ZeroOne< GF2 >::IndexedIterator IndexedIterator
C ZeroOne< _Field >::IndexIterator IndexIterator
C Inverse< Blackbox > A Blackbox for the inverse
C Inverse< LinBox::Compose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > > >
C Inverse< LinBox::Compose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > > >
C InvertTextbookDomain< Field > Assumes that Field is a field, not a ring
C BlasSubmatrix< _Matrix >::Iterator Raw Iterators
C ZeroOne< _Field >::Iterator Raw iterator
C ZeroOne< GF2 >::Iterator Raw iterator
C JIT_Matrix< _Field, JIT_EntryGenerator > Example of a blackbox that is space efficient, though not time efficient
► C JIT_Matrix< _Field, Hilbert_JIT_Entry< _Field > >
C Hilbert< _Field > Example of a blackbox that is space efficient, though not time efficient
C Point::Labels X
C LABlockLanczosSolver< Field, Matrix > Biorthogonalising block Lanczos iteration
C LanczosSolver< Field, Vector > Solve a linear system using the conjugate Lanczos iteration
C LargeDouble NO DOC
C LastInvariantFactor< _Ring, _Solver > This is used in a Smith Form algorithm
C latticeMethod NTL methods
C LIL Vector of pairs
C LinboxError Base class for execption handling in LinBox
C Local2_32 Fast arithmetic mod 2^32, including gcd
C MasseyDomain< Field, Sequence > Berlekamp/Massey algorithm
C MatrixArchetype< _Element > Directly-represented matrix archetype
C MatrixCategories For specializing matrix arithmetic
C MatrixContainerTrait< Matrix > NODOC
C MatrixDomain< GF2 > Specialization of MatrixDomain for GF2
C MatrixHomTrait< Blackbox, Field > Try to map a blackbox over a homorphic ring The most suitable type
C MatrixPermutation< _UnsignedInt > Permutation classique
C MatrixRank< _Ring, _Field, _RandomPrime > Compute the rank of an integer matrix in place over a finite field by Gaussian elimination
C MatrixStream< Field > MatrixStream
C MatrixStreamReader< Field > An abstract base class to represent readers for specific formats
C MatrixTraits< Matrix > NO DOC
► C MetaData This is the general metadata class
C AlgorithmMetaData Algorithm metadata;
C BenchmarkMetaData Benchmark metadata;
C EnvironmentMetaData Environment metadata;
C FieldMetaData Field metadata
C GeneratorMetaData Generator metadata;
C MatrixMetaData Matrix metadata
C StorageMetaData Storage metadata;
C Method Define which method to use when working on a system
C MethodBase Holds everything a method needs to know about the problem
C MGBlockLanczosSolver< Field, Matrix > Block Lanczos iteration
C ModularCrookedRandIter< Element > Random field base element generator
C MoorePenrose< Blackbox > Generalized inverse of a blackbox
► C MVProductDomain< Field > Helper class to allow specializations of certain matrix-vector products
C MatrixDomain< Field >
C MatrixDomain< LinBox::MatrixDomain >
C MatrixDomain< _Field >
C MatrixDomain< Givaro::Modular< double > >
C MatrixDomain< PolynomialRing >
C MatrixDomain< Ring >
C MVProductDomain< _Field >
► C MVProductDomain< Field_ >
C MatrixDomain< Field_ > Class of matrix arithmetic functions
C MVProductDomain< Givaro::Modular< double > >
C MVProductDomain< Givaro::Modular< uint16_t, Compute_t > > Specialization of MVProductDomain for uint16_t modular field
C MVProductDomain< Givaro::Modular< uint32_t, Compute_t > > Specialization of MVProductDomain for uint32_t modular field
C MVProductDomain< Givaro::Modular< uint64_t, Compute_t > > Specialization of MVProductDomain for uint64_t modular field
C MVProductDomain< Givaro::Modular< uint8_t, Compute_t > > Specialization of MVProductDomain for uint8_t modular field
C MVProductDomain< LinBox::MatrixDomain >
C MVProductDomain< PolynomialRing >
C MVProductDomain< Ring >
C naive Toom-Cook method
C NoHomError Error object for attempt to establish a Hom that cannot exist
C NTL_ZZ Integer ring
► C NTL_zz_p Long ints modulo a positive integer
C NTL_PID_zz_p Extend Wrapper of zz_p from NTL
► C NTL_ZZ_p Wrapper of zz_p from NTL
C PIR_ntl_ZZ_p Extend Wrapper of ZZ_p from NTL
C NTL_ZZ_pE Wrapper of ZZ_pE from NTL Define a parameterized class to handle easily Givaro::ZRing<NTL::ZZ_pE> field
► C NTL_zz_pE_Initialiser Use ZZ_pEBak mechanism too ?
C NTL_zz_pE Zz_pE Define a parameterized class to easily handle Givaro::ZRing<NTL::zz_pE> field
C NTL_zz_pEX Ring (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_zz_p (integers mod a wordsize prime)
C NTL_ZZ_pX Ring (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_ZZ_p (integers mod a wordsize prime)
C NTL_zz_pX Ring (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_zz_p (integers mod a wordsize prime)
C NullMatrix This is a representation of the 0 by 0 empty matrix which does not occupy memory
C OneInvariantFactor< _Ring, _LastInvariantFactor, _Compose, _RandomMatrix > Limited doc so far
C OpenCLEnviron Container for all pertenant information needed to use an OpenCL device, compile kernels for the device, track resource usage, and gain exclusive access to the device
C OpenCLMatrixDomain< Field_ > Interface for all functionnalities provided for BlasMatrix using GPUs
C Pair< I, T > Pair of I and T : struct { column index, value }
C PlainSubmatrix< MatDom > To be used in reference matrix domain (PlainDomain)
C PlainSubmatrix< Domain_ >
C PlotStyle::Plot What style of graphic : histogram ? graph ?
C PlotData The raw data to plot
C PlotGraph The graph (2D)
C PlotStyle Represents a table of values to plot (2D)
C PLUQMatrix< Field > PLUQ factorisation
C Point::Points Numerical value for x
C PolynomialBB< Blackbox, Poly > Represent the matrix P(A) where A is a blackbox and P a polynomial
C PolynomialBBOwner< Blackbox, Poly > Represent the matrix P(A) where A is a blackbox and P a polynomial
C PolynomialRing< BaseRing, StorageTag > Polynomials
C PowerGaussDomainPowerOfTwo< UnsignedIntType > Repository of functions for rank modulo a prime power by elimination on sparse matrices
C PreconditionFailed A precondition failed
► C PrimeIterator< Trait > Prime Iterator
C MaskedPrimeIterator< Trait > Masked Prime Iterator
C PrimeIterator< IteratorCategories::HeuristicTag >
C ChineseRemainderSequential< CRABase >::PrimeSampler< PrimeIterator, is_unique > Helper class to sample unique primes
C ChineseRemainderSequential< CRABase >::PrimeSampler< PrimeIterator, true > Helper class to sample unique primes
C PrimeSequence< IteratorT, UniqueTrait > Adaptor class to make a fixed-length sequence behave like a PrimeIterator
C PrimeStream< Element > Prime number stream
► C RandIterAbstract Random field element generator
C RandIterEnvelope< Field > Random field base element generator
C RandIterArchetype Random field element generator archetype
C RandomDenseMatrix< Randiter, Field > Random Dense Matrix builder
C RankBuilder Random method for constructing rank
C RationalChineseRemainder< RatCRABase > Chinese remainder of rationals
C RationalChineseRemainderVarPrec< RatCRABase, RatRecon > Chinese remainder of vector of rationals
C RationalReconstruction< _LiftingContainer, RatRecon > Limited doc so far
C RationalSolver< Ring, Field, RandomPrime, MethodTraits > Interface for the different specialization of p-adic lifting based solvers
C RationalSolver< Ring, Field, RandomPrime, Method::BlockHankel > Block Hankel
C RationalSolver< Ring, Field, RandomPrime, Method::BlockWiedemann > Partial specialization of p-adic based solver with block Wiedemann algorithm
C RationalSolver< Ring, Field, RandomPrime, Method::Dixon > Partial specialization of p-adic based solver with Dixon algorithm
C RationalSolver< Ring, Field, RandomPrime, Method::SparseElimination > Sparse LU
C RationalSolver< Ring, Field, RandomPrime, Method::SymbolicNumericNorm > Solver using a hybrid Numeric/Symbolic computation
C RationalSolver< Ring, Field, RandomPrime, Method::Wiedemann > Partial specialization of p-adic based solver with Wiedemann algorithm
C RawVector< Element > Canonical vector types
► C RawVector< Ring::Element >
C Vector< Field >
C Vector< Ring > Vector ??
C BlasMatrix< _Field, _Storage >::rebind< _Tp1 > Rebind operator
C Rebind< XXX, U > Used in support of Hom , MatrixHom
C Rebind< std::vector< T >, U > Rebind
C ReverseVector< Vector > Reverse vector class This class wraps an existing vector type and reverses its direction
C RingInterface This ring base class exists solely to aid documentation organization
C RNS< Unsigned > RNS
C ScalarMatrix< Field_ > Blackbox for aI
C SemiDIteration< Matrix, Field > CRA iteration to get a diagonal with the same signature
C showProgression Show progression on the terminal (helper)
C SigmaBasis< _Field > Implementation of -basis (minimal basis)
C SlicedPolynomialMatrixAddin< Field, Operand1, Operand2 > C += A
C SlicedPolynomialMatrixSubin< Field, Operand1, Operand2 > C -= A
C SlicedPolynomialVectorAddin< Field, Operand1, Operand2 > C += A
C SlicedPolynomialVectorSubin< Field, Operand1, Operand2 > C -= A
C SmithFormBinary< _Ring, _oneInvariantFactor, _Rank > Compute Smith form
C SmithFormIliopoulos This is Iliopoulos' algorithm to diagonalize
C SmithFormLocal< LocalPID > Smith normal form (invariant factors) of a matrix over a local ring
C SMM Sparse Map of Maps
C Sparse_Vector< T, I > Vector < Pair<T,I> > and actualsize
C SparseLULiftingContainer< _Ring, _Field, _IMatrix, _FMatrix > SparseLULiftingContainer
C SparseMap Pair of vector/list (Pair of Containers)
C SparseMatrix< _Field, SparseMatrixFormat::COO > Sparse matrix, Coordinate storage
C SparseMatrix< _Field, SparseMatrixFormat::COO::implicit > Sparse matrix, Coordinate storage
C SparseMatrix< _Field, SparseMatrixFormat::CSR > Sparse matrix, Coordinate storage
C SparseMatrix< _Field, SparseMatrixFormat::ELL > Sparse matrix, Coordinate storage
C SparseMatrix< _Field, SparseMatrixFormat::ELL_R > Sparse matrix, Coordinate storage
C SparseMatrix< _Field, SparseMatrixFormat::HYB > Sparse matrix, Coordinate storage
C SparseMatrix< Field_, SparseMatrixFormat::TPL > Sparse Matrix in Triples storage
C SparseMatrix< Field_, SparseMatrixFormat::TPL_omp > Sparse matrix representation which stores nonzero entries by i,j,value triples
C SparseMatrixGeneric< _Field, _Row, Trait > Sparse matrix container This class acts as a generic row-wise container for sparse matrices
C SparseMatrixGeneric< _Field, _Row >
C SparseMatrixGeneric< _Field, Vector< _Field >::SparseMap >
C SparseMatrixGeneric< _Field, Vector< _Field >::SparseMap, VectorCategories::SparseAssociativeVectorTag >
C SparseMatrixGeneric< _Field, Vector< _Field >::SparsePar >
C SparseMatrixGeneric< _Field, Vector< _Field >::SparsePar, VectorCategories::SparseParallelVectorTag >
C SparseMatrixGeneric< _Field, Vector< _Field >::SparseSeq >
C SparseMatrixGeneric< _Field, Vector< _Field >::SparseSeq, VectorCategories::SparseSequenceVectorTag >
C SparseMatrixReadHelper< Matrix > Read helper
C SparseMatrixWriteHelper< Matrix > Write helper
C SparsePar Vector/list of pairs (Container of Maps)
C SparseSeq Vector/list of pairs (Container of Pairs)
C Squarize< Blackbox > Transpose matrix without copying
C Subiterator< Iterator > Subvector iterator class provides striding iterators
C Subiterator< _blasRep::iterator >
C Subiterator< _Vector::Rep::iterator >
C Subiterator< typename Rep::const_iterator >
C Subiterator< typename Rep::iterator >
C Submatrix< Blackbox, Trait > Leading principal minor of existing matrix without copying
► C Submatrix< Blackbox, VectorCategories::DenseVectorTag > Specialization for dense vectors
C Submatrix< Blackbox, VectorCategories::DenseZeroOneVectorTag > Specialization for dense ZeroOne vectors
C SubmatrixAdapter< _Matrix > Generic submatrix view adapter used internally in the OpenCLMatrixDomain
C SubmatrixOwner< Blackbox, VectorCategories::DenseVectorTag > Specialization for dense vectors
C Subvector< Iterator, ConstIterator > Dense subvector
C Subvector< Subiterator< _blasRep::iterator > >
C Subvector< Subiterator< _Vector::Rep::iterator > >
C Subvector< Subiterator< typename Rep::const_iterator > >
C Subvector< Subiterator< typename Rep::iterator > >
C Subvector< typename Rep::const_iterator >
C Subvector< typename Rep::iterator, typename Rep::const_iterator >
C Sum< _Blackbox1, _Blackbox2 > Blackbox of a matrix sum without copying
C SumOwner< _Blackbox1, _Blackbox2 > Blackbox of a matrix sum without copying
C Sylvester< _Field > This is a representation of the Sylvester matrix of two polynomials
C PlotStyle::Term What format the plot should be in?
C TernaryLattice NO DOC
C Point::Times Y time
C TimeWatcher Helper
C Toeplitz< _CField, _PRing > This is the blackbox representation of a Toeplitz matrix
C Toeplitz< _Field >
C Toeplitz< typename _PRing::CoeffField, _PRing > Specialization for when the field of matrix elements is the same as the coefficient field of the polynomial field
C TPL Vector of triples
C TPL_omp Triplesbb for openmp
C TraceCategory< BB > Trait to show whether or not the BB class has a local trace function
C Transpose< Blackbox > Transpose matrix without copying
C Transpose< LinBox::Submatrix< Blackbox > >
C TransposedBlasMatrix< Matrix > TransposedBlasMatrix
C TransposedBlasMatrix< TransposedBlasMatrix< Matrix > > TransposedBlasMatrix
C TransposeMatrix< Matrix, Trait > Matrix transpose
C TransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, _Row > >
C TransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, Vector< _Field >::SparseMap > >
C TransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, Vector< _Field >::SparsePar > >
C TransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, Vector< _Field >::SparseSeq > >
C TransposeOwner< Blackbox > Transpose matrix without copying
C UniformTag Iterator sampling uniformly from all primes of given bitsize
C UniqueSamplingTrait< IteratorTrait > Whether a prime generator generates a sequence with non repeating numbers
C UnparametricRandIter< NTL::ZZ_p > Constructor for random field element generator
C Point::Values Y
C VectorCategories List of vector categories
C VectorFraction< Domain > VectorFraction<Domain> is a vector of rational elements with common reduced denominator
C VectorFraction< LinBox::NTL_zz_pX >
C VectorFraction< Ring >
► C VectorStream< _Vector > Vector factory
C ConstantVectorStream< _Vector > Constant vector factory
C RandomDenseStream< Field, _Vector, RandIter, Trait > Random dense vector stream
C RandomDenseStream< Field, _Vector, RandIter, VectorCategories::DenseVectorTag > Specialization of random dense stream for dense vectors
C RandomSparseStream< Field, _Vector, RandIter, Trait > Random sparse vector stream
C RandomSparseStream< Field, _Vector, RandIter, VectorCategories::DenseVectorTag > Specialization of RandomSparseStream for dense vectors
C RandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseAssociativeVectorTag > Specialization of RandomSparseStream for sparse associative vectors
C RandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseParallelVectorTag > Specialization of RandomSparseStream for sparse parallel vectors
C RandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseSequenceVectorTag > Specialization of RandomSparseStream for sparse sequence vectors
C StandardBasisStream< Field, _Vector, Trait > Stream for
C StandardBasisStream< Field, _Vector, VectorCategories::DenseVectorTag > Specialization of standard basis stream for dense vectors
C StandardBasisStream< Field, _Vector, VectorCategories::SparseAssociativeVectorTag > Specialization of standard basis stream for sparse associative vectors
C StandardBasisStream< Field, _Vector, VectorCategories::SparseParallelVectorTag > Specialization of standard basis stream for sparse parallel vectors
C StandardBasisStream< Field, _Vector, VectorCategories::SparseSequenceVectorTag > Specialization of standard basis stream for sparse sequence vectors
C VectorStream< BitVector >
C VectorStream< BlasVector< Field, typename Vector< Field >::Dense > >
C VectorStream< Sparse_Vector< typename Field::Element > >
C VectorStream< Vector< GF2 >::Sparse >
C VectorTraits< Vector > Vector traits template structure
C WiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _FPolynomial > Wiedemann LiftingContianer
C WiedemannSolver< Field > Linear system solvers based on Wiedemann's method
C ZeroOne< _Field > Time and space efficient representation of sparse {0,1}-matrices
C ZeroOne< GF2 > Time and space efficient representation of sparse matrices over GF2
C ZOQuad< _Field > A class of striped or block-decomposed zero-one matrices