Point Cloud Library (PCL) 1.13.1
Loading...
Searching...
No Matches
intersections.h
Go to the documentation of this file.
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Copyright (c) 2010, Willow Garage, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 * * Neither the name of the copyright holder(s) nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $Id$
35 *
36 */
37
38#pragma once
39
40#include <pcl/ModelCoefficients.h>
41#include <pcl/common/common.h>
43
44/**
45 * \file pcl/common/intersections.h
46 * Define line with line intersection functions
47 * \ingroup common
48 */
49
50/*@{*/
51namespace pcl
52{
53 /** \brief Get the intersection of a two 3D lines in space as a 3D point
54 * \param[in] line_a the coefficients of the first line (point, direction)
55 * \param[in] line_b the coefficients of the second line (point, direction)
56 * \param[out] point holder for the computed 3D point
57 * \param[in] sqr_eps maximum allowable squared distance to the true solution
58 * \ingroup common
59 */
60 PCL_EXPORTS inline bool
61 lineWithLineIntersection (const Eigen::VectorXf &line_a,
62 const Eigen::VectorXf &line_b,
63 Eigen::Vector4f &point,
64 double sqr_eps = 1e-4);
65
66 /** \brief Get the intersection of a two 3D lines in space as a 3D point
67 * \param[in] line_a the coefficients of the first line (point, direction)
68 * \param[in] line_b the coefficients of the second line (point, direction)
69 * \param[out] point holder for the computed 3D point
70 * \param[in] sqr_eps maximum allowable squared distance to the true solution
71 * \ingroup common
72 */
73
74 PCL_EXPORTS inline bool
76 const pcl::ModelCoefficients &line_b,
77 Eigen::Vector4f &point,
78 double sqr_eps = 1e-4);
79
80 /** \brief Determine the line of intersection of two non-parallel planes using lagrange multipliers
81 * \note Described in: "Intersection of Two Planes, John Krumm, Microsoft Research, Redmond, WA, USA"
82 * \param[in] plane_a coefficients of plane A and plane B in the form ax + by + cz + d = 0
83 * \param[in] plane_b coefficients of line where line.tail<3>() = direction vector and
84 * line.head<3>() the point on the line clossest to (0, 0, 0)
85 * \param[out] line the intersected line to be filled
86 * \param[in] angular_tolerance tolerance in radians
87 * \return true if succeeded/planes aren't parallel
88 */
89 PCL_EXPORTS template <typename Scalar> bool
90 planeWithPlaneIntersection (const Eigen::Matrix<Scalar, 4, 1> &plane_a,
91 const Eigen::Matrix<Scalar, 4, 1> &plane_b,
92 Eigen::Matrix<Scalar, Eigen::Dynamic, 1> &line,
93 double angular_tolerance = 0.1);
94
95 PCL_EXPORTS inline bool
96 planeWithPlaneIntersection (const Eigen::Vector4f &plane_a,
97 const Eigen::Vector4f &plane_b,
98 Eigen::VectorXf &line,
99 double angular_tolerance = 0.1)
100 {
101 return (planeWithPlaneIntersection<float> (plane_a, plane_b, line, angular_tolerance));
102 }
103
104 PCL_EXPORTS inline bool
105 planeWithPlaneIntersection (const Eigen::Vector4d &plane_a,
106 const Eigen::Vector4d &plane_b,
107 Eigen::VectorXd &line,
108 double angular_tolerance = 0.1)
109 {
110 return (planeWithPlaneIntersection<double> (plane_a, plane_b, line, angular_tolerance));
111 }
112
113 /** \brief Determine the point of intersection of three non-parallel planes by solving the equations.
114 * \note If using nearly parallel planes you can lower the determinant_tolerance value. This can
115 * lead to inconsistent results.
116 * If the three planes intersects in a line the point will be anywhere on the line.
117 * \param[in] plane_a are the coefficients of the first plane in the form ax + by + cz + d = 0
118 * \param[in] plane_b are the coefficients of the second plane
119 * \param[in] plane_c are the coefficients of the third plane
120 * \param[in] determinant_tolerance is a limit to determine whether planes are parallel or not
121 * \param[out] intersection_point the three coordinates x, y, z of the intersection point
122 * \return true if succeeded/planes aren't parallel
123 */
124 PCL_EXPORTS template <typename Scalar> bool
125 threePlanesIntersection (const Eigen::Matrix<Scalar, 4, 1> &plane_a,
126 const Eigen::Matrix<Scalar, 4, 1> &plane_b,
127 const Eigen::Matrix<Scalar, 4, 1> &plane_c,
128 Eigen::Matrix<Scalar, 3, 1> &intersection_point,
129 double determinant_tolerance = 1e-6);
130
131
132 PCL_EXPORTS inline bool
133 threePlanesIntersection (const Eigen::Vector4f &plane_a,
134 const Eigen::Vector4f &plane_b,
135 const Eigen::Vector4f &plane_c,
136 Eigen::Vector3f &intersection_point,
137 double determinant_tolerance = 1e-6)
138 {
139 return (threePlanesIntersection<float> (plane_a, plane_b, plane_c,
140 intersection_point, determinant_tolerance));
141 }
142
143 PCL_EXPORTS inline bool
144 threePlanesIntersection (const Eigen::Vector4d &plane_a,
145 const Eigen::Vector4d &plane_b,
146 const Eigen::Vector4d &plane_c,
147 Eigen::Vector3d &intersection_point,
148 double determinant_tolerance = 1e-6)
149 {
150 return (threePlanesIntersection<double> (plane_a, plane_b, plane_c,
151 intersection_point, determinant_tolerance));
152 }
153
154}
155/*@}*/
156
157#include <pcl/common/impl/intersections.hpp>
Define standard C methods and C++ classes that are common to all methods.
Define standard C methods to do distance calculations.
bool lineWithLineIntersection(const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, Eigen::Vector4f &point, double sqr_eps)
Get the intersection of a two 3D lines in space as a 3D point.
bool threePlanesIntersection(const Eigen::Matrix< Scalar, 4, 1 > &plane_a, const Eigen::Matrix< Scalar, 4, 1 > &plane_b, const Eigen::Matrix< Scalar, 4, 1 > &plane_c, Eigen::Matrix< Scalar, 3, 1 > &intersection_point, double determinant_tolerance)
Determine the point of intersection of three non-parallel planes by solving the equations.
bool planeWithPlaneIntersection(const Eigen::Matrix< Scalar, 4, 1 > &plane_a, const Eigen::Matrix< Scalar, 4, 1 > &plane_b, Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > &line, double angular_tolerance)
Determine the line of intersection of two non-parallel planes using lagrange multipliers.