We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : h=carpetBettiTables(a,b)
-- 0.00313219 seconds elapsed
-- 0.00779463 seconds elapsed
-- 0.0300037 seconds elapsed
-- 0.0117369 seconds elapsed
-- 0.00397906 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o2 = HashTable{0 => total: 1 36 160 315 288 288 315 160 36 1}
0: 1 . . . . . . . . .
1: . 36 160 315 288 . . . . .
2: . . . . . 288 315 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
2 => total: 1 36 167 370 476 476 370 167 36 1
0: 1 . . . . . . . . .
1: . 36 160 322 336 140 48 7 . .
2: . . 7 48 140 336 322 160 36 .
3: . . . . . . . . . 1
0 1 2 3 4 5 6 7 8 9
3 => total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : HashTable
|
i3 : T= carpetBettiTable(h,3)
0 1 2 3 4 5 6 7 8 9
o3 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o3 : BettiTally
|
i4 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o4 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i5 : elapsedTime T'=minimalBetti J
-- 0.168845 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o5 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o5 : BettiTally
|
i6 : T-T'
0 1 2 3 4 5 6 7 8 9
o6 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o6 : BettiTally
|
i7 : elapsedTime h=carpetBettiTables(6,6);
-- 0.0374237 seconds elapsed
-- 0.0224912 seconds elapsed
-- 0.169917 seconds elapsed
-- 1.66473 seconds elapsed
-- 0.606705 seconds elapsed
-- 0.0502007 seconds elapsed
-- 0.00831403 seconds elapsed
-- 5.91482 seconds elapsed
|
i8 : keys h
o8 = {0, 2, 3, 5}
o8 : List
|
i9 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o9 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o9 : BettiTally
|
i10 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o10 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o10 : BettiTally
|