next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
EquivariantGB :: egbToric

egbToric -- computes the kernel of an equivariant monomial map

Synopsis

Description

m should be a monomial map between rings created by buildERing. Such a map can be constructed with buildEMonomialMap but this is not required.

For a map to ring R from ring S, the algorithm infers the entire equivariant map from where m sends the variable orbit generators of S. In particular for each orbit of variables of the form x_{(i_1,...,i_k)}, the image of x_{(0,...,k-1)} is used.

egbToric uses an incremental strategy, computing Gröbner bases for truncations using FourTiTwo. Because of FourTiTwo's efficiency, this strategy tends to be much faster than general equivariant Gröbner basis algorithms such as egb.

In the following example we compute an equivariant Gröbner basis for the vanishing equations of the second Veronese of P^n, i.e. the variety of n x n rank 1 symmetric matrices.

i1 : R = buildERing({symbol x}, {1}, QQ, 2);
i2 : S = buildERing({symbol y}, {2}, QQ, 2);
i3 : m = buildEMonomialMap(R,S,{x_0*x_1})

                  2               2
o3 = map (R, S, {x , x x , x x , x })
                  1   1 0   1 0   0

o3 : RingMap R <--- S
i4 : G = egbToric(m, OutFile=>stdio)
3
     -- used .0013065 seconds
     -- used .000618121 seconds
(9, 9)
new stuff found
4
     -- used .0027749 seconds
     -- used .00483001 seconds
(16, 26)
new stuff found
5
     -- used .0065069 seconds
     -- used .0249012 seconds
(25, 60)
6
     -- used .0150938 seconds
     -- used .143123 seconds
(36, 120)
7
     -- used .0338844 seconds
     -- used .662791 seconds
(49, 217)

                                   2
o4 = {- y    + y   , - y   y    + y   , - y   y    + y   y   , - y   y    +
         1,0    0,1     1,1 0,0    1,0     2,1 0,0    2,0 1,0     2,1 1,0  
     ------------------------------------------------------------------------
     y   y   , - y   y    + y   y   , - y   y    + y   y   , - y   y    +
      2,0 1,1     2,2 1,0    2,1 2,0     3,2 1,0    3,0 2,1     3,2 1,0  
     ------------------------------------------------------------------------
     y   y   }
      3,1 2,0

o4 : List

Caveat

It is not checked if m is equivariant. Only the images of the orbit generators of the source ring are examined and the rest of the map ignored.

See also

Ways to use egbToric :

For the programmer

The object egbToric is a method function with options.