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Abstract

The HIP package is a collection of gretl scripts to estimate probit models which may
feature endogenous regressors and/or heteroskedasticity. Estimation is done via maximum
likelihood under the assumption of multivariate normality.
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1 Introduction

The HIP package is a collection of gretl scripts to estimate probit models which may feature
endogenous regressors and/or heteroskedasticity. Estimation is done via maximum likelihood
under the assumption of multivariate normality.
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Most other packages provide similar facilities separately. However, the additional computa-
tional complexity of handling, at the same time, endogeneity and the special form of conditional
heteroskedasticity we deal with here is minimal, so we give a command which naturally nests the
two special cases but can just as easily handle the general one.

2 The model

The model which HIP handles can be thought of as the union of the familiar IV-probit model
and the heteroskedastic probit model, that is models that can be written in the following form:

y∗i = Y′
iβ1 +X′

1iβ2 + εi = Z′
iβ + εi (1)

Yi = Π′
1X1i +Π′

2X2i + ui = Π′Xi + ui (2)(
εi

ui

∣∣∣∣∣Xi,Wi

)
∼ N

[(
0

0

)
,

(
σ2
i σiλ

′

σiλ Σ

)]
(3)

σi = exp {W′
iα} (4)

The variable y∗i is assumed to be unobservable; what is observable is yi = I (y∗i > 0), where I() is
the indicator function. Yi is a vector of p endogenous continuous variables and X1i is a k1-vector
of exogenous variables; equation (2) is the reduced form for the endogenous regressors in (1),
and also includes a k2-vector of instruments X2i.

The notable feature of equation (3) (apart from the customary normality assumption) is the
fact that εi is allowed to be conditionally heteroskedastic, with variance given by equation (4),
where Wi is a vector of q exogenous variables. Of course, the elements of Wi may also be
elements of Xi. For identification purposes, though, Wi should not include a constant term or
equivalent variables, such as for example a complete set of dummies.

Note that the familiar IV-probit model arises as a special case of the above under the con-
straint α = 0 whereas, in a parallel fashion, the so-called “heteroskedastic probit model” corre-
sponds to the above model under the constraint λ = 0, in which case obviously the parameters
in the two equations (1) and (2) become independent and can be estimated separately.

3 A few examples

3.1 IV probit — through a script

To begin with, we’ll apply IV probit to a time-honoured problem, that is female labour force
participation.1 We’ll use the immortal dataset used in Mroz (1987), supplied among gretl’s
example datasets. We will exemplify HIP through a script first, and then we’ll take a look at the
GUI hook that HIP provides. Of course, in both examples we’ll assume HIP has correctly been
installed.

The script can be very simple:

include HIP.gfn

open mroz87.gdt --quiet

list X1 = const WE KL6

series other_inc = (FAMINC - WW*WHRS) / 1000

HIP(LFP, X1, other_inc, HE)

1Examples like the one presented here are quite common in several other software packages. Go check.
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which yields:

Probit model with endogenous regressors

ML, using observations 1-753

Dependent Variable: LFP

Instrumented: other_inc

Instruments: const, WE, KL6, HE

Parameter covariance matrix: OPG

coefficient std. error z p-value

--------------------------------------------------------

const -1.20677 0.277614 -4.347 1.38e-05 ***

WE 0.179911 0.0297031 6.057 1.39e-09 ***

KL6 -0.646468 0.102047 -6.335 2.37e-10 ***

other_inc -0.0332341 0.0156644 -2.122 0.0339 **

Log-likelihood -3325.8255 Akaike criterion 6671.6509

Schwarz criterion 6717.8916 Hannan-Quinn 6689.4651

Conditional ll -465.248010 Cragg-Donald stat. 51.707

Overall test (Wald) = 73.9702 (3 df, p-value = 0.0000)

Endogeneity test (Wald) = 0.446846 (1 df, p-value = 0.5038)

In this case we used the function HIP, which takes as arguments

1. the dependent variable

2. the exogenous explanatory variables (normally as a list)

3. the endogenous explanatory variables (a list or, as in this this case, a single variable name)

4. the instruments (a list or, as in this this case, a single variable name)

The function HIP in fact accepts more arguments that this, but we’ll leave that for later. It
should also be said that the function HIP produces a gretl bundle as output, although in this
example the function is called in such a way that the bundle is discarded. To store the estimated
model in a bundle called “Bonham”, you would call the HIP function like this:

Bonham = HIP(LFP, X1, other_inc, HE)

The estimate you get for standard errors uses OPG (Outer Product of Gradients) as the
standard method for computing the covariance matrix of the estimates. This choice was made
for the sake of performance but, as will be shown below, other methods are readily available.

The auxiliary statistics reported by HIP are the usual likelihood-based criteria (besides the
total likelihood, the maximized value for its conditional component only is also reported—see
section A.1 in the appendix for details) and the Cragg–Donald statistic as a way to check for
weak instruments. The endogeneity test is a test for λ = 0, the overall test is a test for β = 0
(apart from the intercept).

3.2 IV probit — through the GUI

After installing HIP by going to Help > Check for addons, you’ll find it among the other function
packages installed on your box (Tools > Function packages > On local machine). Double-click
and edit the window that appears like in Figure 1.
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Figure 1: HIP GUI hook

Figure 2: HIP output
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Figure 3: Icon view with a HIP bundle

Note that in this case we changed the default value of “Verbosity” from 1 to 2 and the default
value of “Covariance matrix estimation” from “OPG” to “Hessian”. This will have the effect of
showing us the first stage equation as well, and of using the Hessian instead of the OPG as the
method for computing standard errors. All this is apparent in Figure 2.

By using the Save menu, you can choose the individual elements of the bundle to store away
for later use if you want. Alternatively, you can save the bundle as a model via the File > Save
to session as icon menu entry. If you do, assuming that you called your bundle “Bonham” again,
then it will show in the “Icon view” gretl window, together with other session elements you want
to keep (see Figure 3).

3.3 Heteroskedastic probit

Here, we’ll replicate the example given in William Greene’s textbook (7th edition), which also
uses Mroz’s dataset. The script goes like this:

include HIP.gfn

open mroz87.gdt --quiet

series WA2 = WA^2

series KIDS = (KL6 + K618)>0

income = FAMINC /10000

list X = const WA WA2 income KIDS WE

list Z = income KIDS

Mitchell = HIP_setup(LFP, X, null, null, Z)

HIP_setoption(&Mitchell, "vcvmeth", 1)

set stopwatch

HIP_estimate(&Mitchell)

printf "Elapsed time = %g seconds\n", $stopwatch

HIP_printout(&Mitchell)

Note that in this case we did not use the HIP function, but instead we split its workload
between four separate functions:
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HIP setup Sets up the model: basically, it has the same parameters as the all-rounder HIP

function seen above. Returns a bundle.

HIP setoption Set some details of the estimation procedure; in this case, we used it to compute
standard errors using the inverse Hessian instead of the OPG matrix, so as to match exactly
the figures reported in Greene’s book.

HIP estimate Estimates the model: takes as argument the bundle address, plus an optional
scalar for the verbosity.

HIP printout Prints out the results contained in the bundle.

This division of tasks may be convenient at times, because it gives you finer control over“what
happens if”. For example, the Cragg–Donald statistic gets computed during the initialization of
the bundle and you may wish to decide whether to proceed with estimation or not depending on
how strong your instruments are.

The output, replicating table 17.7 in Greene’s textbook, should look like this:

Heteroskedastic probit model

ML, using observations 1-753

Dependent Variable: LFP

Parameter covariance matrix: Hessian

coefficient std. error z p-value

------------------------------------------------------

const -6.02985 2.49810 -2.414 0.0158 **

WA 0.264291 0.118159 2.237 0.0253 **

WA2 -0.00362838 0.00143387 -2.530 0.0114 **

income 0.424441 0.221839 1.913 0.0557 *

KIDS -0.879093 0.302753 -2.904 0.0037 ***

WE 0.140149 0.0518536 2.703 0.0069 ***

Variance

coefficient std. error z p-value

-------------------------------------------------------

KIDS -0.140752 0.323745 -0.4348 0.6637

income 0.312918 0.122810 2.548 0.0108 **

Log-likelihood -487.6356 Akaike criterion 991.2712

Schwarz criterion 1028.2637 Hannan-Quinn 1005.5225

Overall test (Wald) = 14.5557 (5 df, p-value = 0.0124)

Heteroskedasticity test (LR) = 6.42453 (2 df, p-value = 0.0403)

Chesher and Irish normality test = 6.23055 (2 df, p-value = 0.0444)

3.4 Let’s get HIP: heteroskedasticity and endogeneity at the same time

The script goes:

set verbose off

include HIP.gfn

open mroz87.gdt -q
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list EXOG = const WA CIT K618

list ENDOG = WE

list ADDIN = WMED WFED

list HETVAR = HW

Paice = HIP(LFP, EXOG, ENDOG, ADDIN, HETVAR, 2)

In this case, the “2” tells HIP to be moderately verbose: don’t print out all the iterations, but
show us the “first stage” coefficients. The output is as follows:

Heteroskedastic probit model with endogenous regressors

ML, using observations 1-753

Dependent Variable: LFP

Instrumented: WE

Instruments: const, WA, CIT, K618, WMED, WFED

Parameter covariance matrix: OPG

coefficient std. error z p-value

-------------------------------------------------------

const -0.551804 1.36344 -0.4047 0.6857

WA -0.0304390 0.0172559 -1.764 0.0777 *

CIT -0.0242784 0.208991 -0.1162 0.9075

K618 -0.0927252 0.0896549 -1.034 0.3010

WE 0.199646 0.101330 1.970 0.0488 **

Variance

coefficient std. error z p-value

-----------------------------------------------------

HW 0.117934 0.0571806 2.062 0.0392 **

"First-stage" regressions

coefficient std. error z p-value

-------------------------------------------------------

const 9.68554 0.586171 16.52 2.49e-61 ***

WA -0.0159435 0.0104384 -1.527 0.1267

CIT 0.495907 0.152627 3.249 0.0012 ***

K618 -0.136765 0.0612498 -2.233 0.0256 **

WMED 0.180089 0.0265972 6.771 1.28e-11 ***

WFED 0.168085 0.0253072 6.642 3.10e-11 ***

Log-likelihood -2069.9119 Akaike criterion 4167.8239

Schwarz criterion 4232.5608 Hannan-Quinn 4192.7637

Conditional ll -494.848818 Cragg-Donald stat. 103.337

Overall test (Wald) = 6.36207 (4 df, p-value = 0.1737)

Endogeneity test (Wald) = 0.509859 (1 df, p-value = 0.4752)

Test for overidentifying restrictions (LM) = 9.15786 (1 df, p-value = 0.0025)

Heteroskedasticity test (Wald) = 4.25379 (1 df, p-value = 0.0392)
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4 Computational details

HIP uses the analytical score and BFGS as the preferred optimization method. The analytical
Hessian is not implemented yet, but may be in the future.

Like other estimators that depend on numerical methods, HIP can sometimes run into nu-
merical problems, leading to non-convergence. If this happens, here are some points to consider.

• Checking exactly what happens during maximization can be very informative; try setting
the verbosity parameter to 3.

• Scaling of the data (especially Yi) can be an issue; we do our best, but hey, give us a hand
(for example, multiply or divide by 1000 depending of the original scale of the data).

• Weak instruments: in some cases, there’s little that can be done; see for example the
artificially-generated dataset contained in the MonteCarlo.inp example script, contained
in the examples directory. We do some heuristics, but we’re not omnipotent.

5 Changelog

1.1 Guard against the inclusion of a constant in the HETVAR list. Fix a typo in an error message.
Modernise internal syntax in a few places.

1.0 Initial release
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A The boring stuff

For computational purposes, we reparametrize the model using the Cholesky decomposition
Σ−1 = CC ′. Moreover, by defining the quantities below it is possible to reparametrize the joint
density in a computationally convenient way:

νi =
1√

1−ψ′ψ

(
Z′

iβ

σi
+ ω′

iψ

)
ψ = C ′λ

ωi = C ′ (Yi −ΠXi)

π = vec (Π)

c = vech(C)

The estimable parameters are θ′ = [β′,α′,π′,ψ′, c′]

A.1 The loglikelihood

As usual in such models, we divide the loglikelihood for each observation into a marginal and a
conditional component:

ℓi = ℓmi + ℓci

ℓci = lnP (yi|Xi,Wi,ui)

ℓmi = ln f(ui|Xi,Wi)

The marginal component is nothing but an ordinary Gaussian loglikelihood:

ℓmi = −p

2
ln(2π) +

p∑
j=1

ln cjj −
1

2
ω′

iωi

The conditional component is itself rather simple:

ℓci = yi lnΦ(νi) + (1− yi) ln [1− Φ (νi)] (5)

The only feature that sets ℓci apart from an ordinary probit loglikelihood is that the index function
depends non-linearly on some of the parameters of the model, unless α and ψ are both zero.

A.2 The score

The analytical score will be derived in steps: first the marginal component, then the conditional
component. Of course, the chain rule will be very useful.

Note first that the marginal component only depends on π (through ωi) and c. Hence,

∂ℓmi
∂π

=
∂ℓmi
∂ωi

∂ωi

∂π
= ω′

i (X
′
i ⊗ C ′) = X′

i ⊗ (Cωi)
′

and
∂ℓmi
∂c

= c̃′ − ω′
i

∂ωi

∂c
= c̃′ − [ω′

i ⊗ (Yi −ΠXi)
′]S

where c̃ is defined as vech
[
(I ⊙ C)−1

]
and S is a selection matrix S = ∂vec(C)

∂vech(C) .
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For the purpose of computing the score for the conditional component, note that ℓci depends

on the parameters only through the index function νi, so
∂ℓci
∂θ can be evaluated as

∂ℓci
∂θ

=
∂ℓci
∂νi

∂νi
∂θ

;

define µ(νi) as

µ(νi) =
∂ℓci
∂νi

= yi
ϕ(νi)

Φ(νi)
− (1− yi)

ϕ(νi)

1− Φ(νi)

which is the customary (signed) inverse Mills ratio. Then,

∂νi
∂β

=
1

σi

√
1−ψ′ψ

Z′
i

∂νi
∂α

=
∂νi
∂σi

∂σi

∂α
=

[
− Z′

iβ

σ2
i

√
1−ψ′ψ

]
σiW

′
i = −

(
Z′

iβ

σi

√
1−ψ′ψ

)
W′

i

∂νi
∂ψ

=
1

σ2
i (1−ψ′ψ)

[
σ2
i

√
1−ψ′ψω′

i −
σ2
i

2
νi(−2 ·ψ′)

]
=

ω′
i√

1−ψ′ψ
+

νiψ
′

1−ψ′ψ

∂νi
∂c

=
ψ′

√
1−ψ′ψ

∂ωi

∂c

∂νi
∂π

=
ψ′

√
1−ψ′ψ

∂ωi

∂π
= − ψ′

√
1−ψ′ψ

(X′
i ⊗ C ′) =

1√
1−ψ′ψ

[X′
i ⊗ (Cψ)′]

As a consequence, the score with respect to c and π may be written as

∂ℓi
∂c

=
∂ℓmi
∂c

+
∂ℓci
∂c

= c̃′ +

(
ψ′

√
1−ψ′ψ

− ω′
i

)
∂ωi

∂c
=

= c̃′ +

(
ψ′

√
1−ψ′ψ

− ω′
i

)
[I ⊗ (Yi −ΠXi)

′] =

= c̃′ +

[(
ψ′

√
1−ψ′ψ

− ω′
i

)
⊗ (Yi −ΠXi)

′
]

B List of functions

B.1 Model setup

HIP_setoption(bundle *b, string opt, scalar value)

Return type : scalar

b : pointer to a bundle containing the model to be estimated, as created by HIP_setup;

opt : string, the option to set;

value : scalar, the option value
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This function sets up an option for estimation of the model, so it is typically used after
HIP_setup and before HIP_estimate. At present, the possible values for the opt field are
“verbose” (possible values: 0 to 3) and “vcvmeth” (possible values: 0 to 2).

For “verbose”, the meaning is: 0 = operate silently, 1 = standard output (default choice), 2
= print the first stage too for IV estimation and 3 = print out ML iterations. For “vcvmethod”,
the meaning is: 0 = OPG (default), 1 = Hessian, 2 = Sandwich-robust.

HIP_setup(series y, list EXOG, list ENDOG[null], list ADDIN[null],

list HETVAR[null])

Return type : bundle

y : a series containing yi, the dependent binary variable; (required)

EXOG : a list containing the exogenous variables X1i in Xi in equation (1); (required)

ENDOG : a list containing the exogenous variables Yi in equations (1)–(2)

ADDIN a list containing the additional instruments X2i in Xi in equation (2)

HETVAR a list containing the variables Wi of the skedastic function in equation (1)

This function sets the model up so that it can be subsequently estimated via HIP_estimate.

B.2 Estimation

HIP_estimate(bundle *b)

Return type : scalar

b : a model bundle in pointer form, as created by HIP_setup.

General estimation function. It fills the bundle with the estimated coefficients and many
other quantities of interest.

B.3 Output

HIP_printout(bundle *b

Return type : none.

b : a model bundle in pointer form, as created by HIP_setup and filled up by HIP_estimate.

Prints out a model. Note: this function assumes that the bundle it refers to contains a model
that has already been estimated. No checks are performed.
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B.4 GUI wrapper

function bundle HIP(series y, list EXOG, list ENDOG[null], list ADDIN[null], list

HETVAR[null], int v[0:3:1], int s[0:2:0])

Using the same argument descriptions as HIP_setup, after checking the rank condition (if
estimating instrumental variables probit), it calls:

1. HIP_setup

2. HIP_setoption

3. HIP_estimate

4. HIP_printout

The parameter v controls the verbosity level: 0 = quiet, 1 = main equation only, 2 = first stages,
3 = mle verbose.
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C Bundle elements

Name Type Purpose

Model descriptors

n scalar number of observations

het scalar acting as a Boolean switch, Heteroskedastic probit

iv scalar acting as a Boolean switch, Instrumental Variables probit

T scalar number of observations used

t1 scalar first observation used

t2 scalar last observation used

Data

depvar series dependent variable

mEXOG matrix exogenous regressors

mk1 matrix number of exogenous regressors

mENDOG matrix endogenous regressors

mp matrix number of endogenous regressors

mADDIN matrix additional instruments

mk2 matrix number of additional instruments

mHETVAR matrix variance regressors

mq matrix number of variance regressors

mZ matrix total regressors

mh matrix number of total regressors

mX matrix total instruments

mk matrix number of total instruments

Strings

depvarname string dependent variable name

mEXOGnames string exogenous regressors names

mENDOGnames string endogenous regressors names

mADDINnames string additional instruments names

mHETVARnames string variance regressors names

mZnames string total regressors names

mXnames string total instruments names

Estimation parameters

vcvtype scalar acting as an integer, method for estimating the covariance matrix: 0 = OPG
(default), 1 = empirical Hessian, 2 = Sandwich
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Estimation results

errcode scalar error code from catch

uhat series first stage residuals (Rivers and Vuong, 1988)

rescale matrix square root of the diagonal elements of first stage residuals covariance matrix

lnl0 scalar second stage log-likelihood (Rivers and Vuong, 1988)

theta matrix coefficients

VCVtheta matrix covariance matrix

lnl1 scalar log-likelihood

lnl1m scalar marginal log-likelihood (if iv)

lnl1c scalar conditional log-likelihood (if iv)

llt series log-likelihood

SCORE matrix score matrix by observation

infocrit matrix information criteria

Diagnostics2

WaldAll matrix Wald overall test

WaldEnd matrix Wald endogeneity test

LMOverid matrix LM test for overidentifying restrictions

HETtest matrix if iv Wald test, else LR test of Heterosckedasticity

CraggDondald scalar Cragg and Donald (1993) statistic for weak instruments

normtest matrix Conditional moment test for normality of εi Chesher and Irish (1987)
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