regls: regularized least squares for gretl

Allin Cottrell

April 29, 2024

1 Introduction

The regls addon is essentially a front-end for functionality coded in C in the gretl regls plugin; to run
the package you will need gretl version 2020e or higher. The plugin implements LASSO (Tibshirani,
1996)—by default via the Alternating Direction Method of Multipliers (ADMM) algorithm as set out in
Boyd et al. (2010); Ridge regression, by default via Singular Value Decomposition; and the “elastic net”
hybrid of LASSO and Ridge.

The best-known implementation of regularized regression is that provided by the glmnet package for R.
Since we make several references to glmnet below we should state up front what we’re talking about. The
authors of glmnet are Jerome Friedman, Trevor Hastie, Rob Tibshirani, et al. Current information on
glmnet can be found at https://glmnet.stanford.edu/; for further information on the algorithms used
in the package see Friedman et al. (2010).1

This package supports LASSO, Ridge and elastic net via the functions regls() and mregls(). The first
of these requires that a dataset is in place while the second accepts data in matrix form, otherwise they
are essentially the same; see Section 14 for details on mregls(). We begin by discussing LASSO, which
is the default method. Ridge is discussed in Section 10 and elastic net in Section 12.

We use the LASSO parameterization employed by Boyd et al: the objective is

n

k
min LS (- XA A5 (1)
j=1

s =1

where n is the number of observations, & is the number of candidate regressors (the number of columns
of X) and A > 0 is the LASSO regularization hyperparameter. In this context A = 0 gives plain OLS,
and at the other end of the spectrum there exists a data-dependent value of A, namely

Amax = ”X/ylloo (2)

which drives all elements of § to zero. A key control variable for our regls function is the scaled term
$ = A/ Amax, such that 0 <s < 1.

The regls function takes three arguments: a series (the dependent variable), a list (the independent
variables, not including a constant) and a bundle to contain optional parameters; and it returns a bundle,
described below. Its signature is therefore

function bundle regls (series y, list X, bundle parms)

The parms argument may be omitted, in which case all settings assume their default values, described
below.

1We should point out that glmnet supports regularized estimation of generalized linear models. At present regls only
supports least squares.

https://glmnet.stanford.edu/

2 Basic options

One basic element in the parms bundle is a specification for A\, which may take either of two forms, as
follows:

1. under the key 1frac (“lambda fraction”), a scalar (single s value) or vector (sequence of s values);
or

2. under the key nlambda, the number of s values to be used (> 4), in which case the values will be
assigned automatically.

If nlambda is provided instead of lfrac, the automatic s vector is a declining logarithmic sequence
starting at 1 and finishing at 0.0001. For example, given nlambda = 5 the sequence will be s = {1, 0.1,
0.01, 0.001, 0.0001}.

If neither 1frac nor nlambda is specified, the default is as if nlambda were given as 25.

In case you wish to specify a sequence succinctly but with more control, the package contains a util-
ity function lambda_sequence (), which takes up to three arguments. The first and second arguments
(required) give the maximum s and the number of values, while the third (optional) argument can be
used to give the minimum s (by default 0.0001). As with the nlambda option the values are spaced
logarithmically. So if you were to do

parms.lfrac = lambda_sequence(1l, 20, 0.001)

the resulting sequence would be s = {1, 0.69519, 0.48329, ..., 0.00144, 0.001}.

To be clear, if no option pertaining to A is given that’s equivalent to
parms.lfrac = lambda_sequence(1l, 25, 0.0001)

while if nlambda = 100 is given that’s equivalent to
parms.lfrac = lambda_sequence(1, 100, 0.0001)

A second basic member of the parameter bundle is stdize, a boolean switch to toggle standardization of
the data. The default is to perform standardization (corresponding to a non-zero value of this option),
but if the data are already standardized on input stdize may be set to 0. The estimates include an
intercept (which is not subject to regularization) only if stdize is on.

Another basic option is verbosity. This has a default value of 1, meaning that regls prints out a certain
amount of information about its progress and/or results. Setting it to 0 makes regls run (mostly) quietly;
setting it to 2 or 3 produces more output in some cases.

The further optional parameters, as well as the contents of the bundle returned by regls, are best
explained by reference to the various modes of usage of the function, namely estimation with a single
value of A; exploration of a range of A values using a unified training sample; and (probably most relevant
in practice) search for optimal A\ via cross validation. For reference, the script in Listing 1 illustrates
basic usage for each of these modes.

3 Estimation with a single regularization

Suppose we have 1200 observations on some series y and list X (with & = 100 members) and we wish to
train on the first 1000 observations, using s = 0.2, then predict for the remaining 200. And let’s say the
data are not pre-standardized. We might then do:

bundle parms = _(lfrac = 0.2)
smpl 1 1000
bundle b = regls(y, X, parms)

Listing 1: Basic LASSO examples

set verbose off
clear --all
include regls.gfn

Use the supplied data on crime-rates by locality
open murder.gdt --quiet --frompkg=regls

The dependent variable will be the murder rate, and we
select 101 candidate regressors with no missing values
series y = murdPerPop

list X = population..LemasPctOfficDrugln

set training sample range
smpl 1 1000

select a case to run
CASE = 1 # or 2, or 3

if CASE ==
single regularization
bundle b = regls(y, X, _(lfrac = 0.5))
elif CASE ==
multiple lambdas, no cross validation
bundle b = regls(y, X, _(nlambda=50))
else
multiple lambdas with cross validation
bundle parms = _(nlambda=50, xvalidate=1, nfolds=10)
bundle b = regls(y, X, parms)
endif

set testing sample range
smpl 1001 1200

take a look at basic out-of-sample stats
series yhat = regls_pred(b, X)

matrix s = regls_get_stats(y, yhat)

print s

We'll then find the following in b:

e B: The full vector of k + 1 coefficients, including an intercept—unless stdize is set to 0 in which
case B will have k£ elements.

e nzb: A vector holding only the non-zero coefficients.

e nzX: A list identifying the regressors with non-zero coefficients.
e 1Imax: The A\,.x value for the standardized data.

e lambda: The value of A = s Apax, see (2) above.

e crit: The minimized LASSO criterion, see (1) above.

e R2: Coefficient of determination, 1 — > (y — 9)?/ > (y —).

BIC: The Bayesian Information Criterion for the estimated model.

nobs: The number of training observations used.

1frac: The input value of s.

e stdize: Whether regls did standardization or not.

At some points below we refer to the coefficient of determination (under the key R2) as “R*”. But note
that with regularized regression, unlike OLS, this figure is not equal to the squared correlation between
y and g.

4 Exploring a range of regularizations

Suppose we wish to compare results from ten values of A, using all the training data. We might then
revise the prior script as:

bundle parm = _(nlambda = 10)
smpl 1 1000
bundle b = regls(y, X, parms)

In this case b.B will be a matrix holding the full coefficient vector for each s (one column per s value);
and b.crit, R2 and b.BIC will be column vectors of length 10 holding LASSO criterion, R? and BIC for
each s, respectively. In addition the bundle will contain:

e 1fmin: The s value which produces the smallest BIC value.

e idxmin: The 1-based index of 1fmin in the vector of A\ values.

The BIC (Schwarz, 1978) is calculated by regls as —2¢(8) + k*(\) log n, where £(3) is the log-likelihood,
based on the sum of squared residuals, and k*(\) the number of non-zero coefficients for the given A. This
criterion provides a guide (though certainly not an infallible one) to the likely out-of-sample performance
of a model: smaller values of BIC are better. Note that the LASSO criterion itself does not offer such
a guide (it is likely to decrease monotonically along with A), but it can be useful in comparing the
effectiveness of minimization algorithms (see Appendix A).

When multiple A\ values are specified, the vector nzb and list nzX refer to the non-zero coefficients and
associated regressors obtained with s = 1fmin (the BIC minimizer).

5 Optimizing via cross validation

Searching for optimal A over the entire training sample we run the risk of overfitting. The standard
remedy is to divide the training data into “folds” and do cross validation. The algorithm is then (in
pseudo-code):

for each s value, s(j)
MSE(j) = 0
end
for each fold, f(i)
set the estimation sample to the complement of f(i)
for each s value, s(j)
perform regularized estimation using s(j) and predict for £(i)
MSE(j) <- MSE(j) + MSE for f(i)
end
end

We then perform regularized estimation on the full training data using the s value that yields the least
total MSE on the above procedure (or perhaps take an alternative approach—see below).

The options connected with cross validation (to be entered in the parameter bundle passed to regls) are
as follows:

e xvalidate: Boolean, trigger for doing cross validation (required).
e nfolds: Integer, the number of folds (optional, default 10).
e randfolds: Boolean, whether the folds should be assigned randomly (optional, default 0).

e seed: Integer, relevant only when randfolds is selected. By setting a specific seed for the random-
number generator you can get exactly repeatable results.

At present the folds are either assigned at random or (by default) they are sequences of consecutive
observations. It may be worth adding a facility to set the folds via a predefined series. A further point:
at present the folds are by construction all the same size—the result of integer division of the number
of training observations by the number of folds, which means that any “remainder” training observations
are ignored. That could be generalized if it seems worthwhile.

When cross validation is specified regls will print some information on the performance of the values of
s used, a snippet of which is shown below:

s MSE se
1.000000 1.000000 0.063336
0.615848 0.870633 0.057432
0.379269 0.759641 0.048581
0.233572 0.694237 0.043515

The MSE value is the mean across the folds, and se is its standard error, computed as per glmnet. The
crit member of the returned bundle is then a two-column matrix, holding the mean MSE values (in
column 1) and their standard errors (in column 2).

While it would seem most natural to select for prediction the s value that minimizes MSE on cross
validation—call this s*—glmnet suggests an alternative policy: select the largest s that delivers an MSE
within one standard error of the minimum, which we’ll call st. It may be that s* and s’ are the same
value, but if not this policy gives the benefit of the doubt to parsimony.

After cross validation, the bundle returned by regls contains the full coefficient matrix (one column per
value of s), estimated on the full training data, under the key B. It also holds the indices of both s* and
s, under the keys idxmin and idxlse respectively.

6 Obtaining predicted values

Optimization of out-of-sample prediction is of course the name of the game with regularized regression. To
obtain out-of-sample predictions (and/or within-sample fitted values if you want them), the recommended
approach is to use regls_pred(). This function takes two arguments: a bundle produced by regls()
and the list passed to regls as X. By default the return value is a series holding predicted values.

If you use mregls() for estimation, the alternative prediction function mregls_pred() should be called
in place of regls_pred. In that case the second argument should be a matrix of regressors with the same
number of columns as that passed to mregls, and by default the return value is a column vector of length
equal to the row dimension of the matrix argument.

In each case the default predictions are based on either the unique coefficient vector if just one value of A
was used, or the “preferred” coefficient vector in the case of multiple A values—that is, the BIC minimizer
if cross-validation is not performed, or that corresponding to either idxmin or idxlse (see above) after
cross-validation. The idxmin value is used automatically unless use_1se was set in the parameter bundle
passed to regls or mregls.

An example

Suppose, for example, that the available data comprise 1200 observations, the first 1000 of which were
used for training and 200 of which remain for testing. And suppose that a bundle named b has been
obtained via regls using a list of regressors X. Then the following would serve to obtain predictions under
the name yhat for the testing observations:

smpl 1001 1200
series yhat = regls_pred(b, X)

The case of matrix data is similar, except that the smpl command is not relevant. If you have an X matrix
of 1200 rows you might pass X[1:1000,] to mregls, then predict for the remainder of the observations
via

matrix yhat = mregls_pred(b, X[1001:,])

Further options

Beyond the default behavior of the prediction functions, if multiple A values were used in estimation you
can control the output by adding a preference to the bundle b, under the key pred, before passing it to
regls_pred or mregls_pred. The admissible values for pred are as follows:

1. idxmin: use the idxmin column of the B coefficient matrix for prediction (after cross validation
only).

2. idxlse: use the idx1se column of B for prediction (after cross validation only).
3. A scalar value between 1 and the number of A\ values, to select a specific column from B.
4. A row vector to select multiple columns from B.

5. The keyword all to produce predictions from all columns of B.

Note that if alternatives 4 or 5 are used, output takes the form of a matrix, even if estimation was by
regls. The mat21ist () built-in function can create a list of series from such a matrix if you want.

Manual prediction

You can generate predictions yourself using built-in functionality, such as the lincomb() function or
matrix multiplication, applied to elements of the bundle obtained from estimation. But note that if
regls or mregls performs standardization the first row of B will hold an estimated intercept for each
A. This does not match an entry in the regular list or matrix of regressors, X, but must be taken into
account. For example, if you wish to predict manually using an arbitrary column, j, of B after regls you
can do

list All = comnst X
series fitted = lincomb(All, b.B[,jl)

This sort of thing is handled automatically by the specialized prediction functions described above.

7 Execution speed

According to the discussion in Section 3.2.2 of Boyd et al. (2010): the ADMM algorithm is reliable but
is known not to be fast (or not if accurate results are wanted). However, we have been able to accelerate
ADMM to the point where execution time is unlikely to be an issue, by two main means.

e We implemented the suggestion in Section 3.4.1 of Boyd et al. (2010): letting the penalty factor p
vary across ADMM iterations to keep the magnitudes of the primary and dual residuals in rough
balance. This turns out to be highly effective.

e We implemented automatic “farming out” of cross validation to multiple MPI processes (when MPI
is available on the host machine). It’s possible to prevent this by adding no_mpi to the parameter
bundle with a non-zero value.

In one benchmark case we considered—with 1500 training observations, 101 covariates, 50 values of A
and 10 randomized cross validation folds—the execution time was about 13 seconds before making the
changes mentioned above, and about 1.5 seconds thereafter.?

8 Additional ADMM controls

This section describes some additional controls over the ADMM algorithm that can be passed to the
regls function via the parms bundle. Under the key admmctrl you can supply a 3-vector whose elements
are, in order:

e rho: a positive real number, the initial ADMM penalty parameter. It seems that p = 8.0 works
well but higher or lower values might produce faster convergence in some cases.

e reltol: the relative tolerance used in gauging whether the algorithm has converged sufficiently.

e abstol: the absolute convergence tolerance (which will be scaled by the square root of the number
of candidate regressors).

We have found that reltol and abstol values of 104 and 1079, respectively, produce reasonably accurate
results in a manageable number of iterations. Setting smaller values will produce greater accuracy at the
cost of more iterations. Non-positive values of these terms are ignored, so one can, for example, set a
single element by passing a zero vector with just the desired term set to a positive value.

9 LASSO examples

Besides the sample script supplied with the package, more examples can be found in the directories
murder, wine and fat at http://gretl.sourceforge.net/lasso/. Some of these scripts incorporate
comparison with glmnet. The murder-rate and wine quality examples use real-world data; the fat example
is an artificial case with more regressors than observations.

Note that it’s necessary to run the scripts involving randomized cross validation several times to get a
good idea of what’s going on: in each case there seem to be a few “favored solutions” of varying probability.
Sometimes one sees regls finding the better one, sometimes glmnet.

10 Ridge regression

While LASSO involves ¢; regularization, Ridge uses f5: the penalty factor A applies to the sum of squared
coeflicients, giving rise to the following objective:

n k
min > wi— XiB)2+ 1> B2 (3)
=1

=1

In consequence, although a large value of A will shrink Ridge estimates substantially relative to OLS it
will not send any coefficients to exactly zero as does LASSO. If the X matrix exhibits strong collinearity,
LASSO will tend to eliminate most of the collinear terms while Ridge will tend to distribute the predictive
weight across the terms, yielding several small coefficients instead of one relatively substantial coeflicient
and a bunch of zeros.

To get the regls function to perform Ridge regression rather than LASSO, set a value of 1 under the
key ridge in the parms bundle, as in

parms.ridge = 1

20n a desktop machine with 4 Intel i7 processors, running Linux.

http://gretl.sourceforge.net/lasso/

Most of the points made above with respect to LASSO carry over to Ridge. The same three modes of
operation described in Sections 3 to 5 (from estimation using a single value of A to cross-validation with
as many values as you like) are available.

There is an important difference, however, in respect of the calibration of A. In the LASSO case there’s
an easily computed Apax (= ||X'y|loo) which just suffices to force all slope coefficients to zero and so,
as explained above, the user is asked to express the LASSO penalty as a fraction of this maximum. In
the case of Ridge there is generally no finite A that will drive all coefficients to zero and so no “natural”
maximum to serve as a benchmark. We therefore offer the user three options for the specification of
“lfrac,” controlled by the integer-valued parameter lambda_scale:

e lambda_scale = 0: no scaling is performed. The “1frac” values are taken as actual A\ values (and
so do not have to be bounded by 1.0 above).

e lambda_scale = 1 (the default): we emulate glmnet. The largest value of A is set to 9.9 x 1035,
which will drive all coefficients to near-zero. The second-largest A (call it Ag) is then set to 1000
times || X'y||oo, and subsequent values in the sequence are scaled in relation to As.

e lambda_scale = 2: we follow the suggestion of some practitioners, setting Ap.x to the squared
Frobenius norm of X, which will not drive all coefficients to near-zero but will impose substantial
shrinkage in relation to OLS.

To be clear on the action of options 1 and 2 for lambda_scale, suppose our 1frac specification is
1frac = {1, 0.5, 0.25, 0.125}
Then if lambda_scale = 1 this translates to

lam2 = 1000 * infnorm(X’y)
effective_lambda = {9.9e35, lam2, 0.5%lam2, 0.25*%lam2}

while if lambda_scale = 2 it becomes

lamil = tr(X’X) # Frobenius norm squared
effective_lambda = {laml, 0.5*1lami, 0.25%laml, 0.125%1lami}

Note that the relevant matrix norms are computed after standardization.

One further point on the scaling of A: since the key 1frac doesn’t look right when lambda_scale = 0, we
accept lambda as an alternative key. In fact, if lambda rather than 1frac is found in the input bundle,
the default for lambda_scale switches to 0 (but an explicit setting will override this).

In addition to BIC and R2 the return bundle from Ridge regression contains edf (a scalar if a single A
is specified, otherwise a column vector). This is the “effective” degrees of freedom, or number of free
parameters, calculated via the SVD of the matrix of regressors:

2

k
edf=Y" 7 (4)
=1

ol 4\

where the o;s are the singular values. As a measure of the “size” of a model this takes the place of the
number of non-zero coefficients in LASSO.

In the case of a single A, when estimation is performed using the default SVD method, further information
is available: the return bundle contains the covariance matrix of the parameter estimates (other than the
constant) under the key vev. And if the verbosity option is set to 2 you get a printout of the model,
showing standard errors, z statistics and P-values.

11 The CCD option

As stated above, the default algorithms used by regls for LASSO and Ridge are ADMM and SVD,
respectively. However, you have the option—for both LASSO and Ridge—of using the Cyclical Coordinate
Descent (CCD) algorithm, as employed by glmnet. This is governed by two additional keys in the parms
bundle:

e ccd: boolean, default 0. Set this to 1 to use CCD.

e ccd_toler: a positive scalar setting the convergence tolerance for CCD. The default is 10~7 (as in
glmnet); setting a smaller value will give greater accuracy at the expense of more iterations.

Using CCD will give results that are more directly comparable with glmnet. Beyond that, practitioners
are likely to ask, how do the algorithms compare in terms of speed and accuracy? This question is
addressed in detail in Appendix A. The short answer is that CCD at its default tolerance is faster but
somewhat less accurate than ADMM and SVD. By tightening the CCD tolerance one can generally close
the accuracy gap; this may or may not reverse the ranking in terms of speed.

12 Elastic net

As mentioned above, elastic net is a hybrid of LASSO and Ridge. It employs a combination of ¢; and ¢
penalties governed by a hyperparameter 0 < o < 1. The objective is

n

k k
1 A2 1— a5 5
min 2 (i~ Xif) + A | — ;ﬁj+a;|ﬂjl

B i=1

Thus a = 1 gives LASSO, o = 0 gives Ridge, and anything between gives a combination. It has been
argued that better out-of-sample prediction can be obtained in some cases by preserving some highly
collinear regressors a la Ridge, while sending some coefficients to exact zero as in LASSO, and elastic net
allows for this.

In the regls function, elastic net is selected by specifying a fractional value under the key alpha in the
parameters bundle. This automatically switches to the CCD algorithm (Section 11), so the ccd_toler
option becomes applicable.?

When elastic net is used on a sequence of As without cross validation (see Section 4) regls provides a
BIC measure as a possible means of selecting the most promising penalty factor. This requires calculation
of the effective number of parameters (degrees of freedom), for which we use the method specified in Zou
and Hastie (2005).

Note that if cross validation is called for with elastic net, it is only the A value that is optimized. To
assess the efficacy of various « values one would have to perform several cross validation runs.

13 GUI usage

You can access regls in the gretl GUI via the menu item Model/Other linear models/Regularized least
squares. This brings up the dialog box shown on the left in Figure 1. Multiple A values and cross
validation are supported as shown. Clicking the Advanced button gives access to most of the additional
options discussed above (e.g. choice of algorithm, seed for randomized cross-validation folds).

The window that appears on clicking OK in the dialog box (on the right in Figure 1) shows printed
output and offers several options via the toolbar buttons. Most of these are generic and should be self-
explanatory. Here we’ll draw attention to the button circled in red, with tooltip “Graph”. This is active
only when estimation has been performed with multiple A values. In that case it calls up a menu with two
items: “Criterion plot” and “Coefficient paths”. Each of these explores an aspect of the estimates as the
regularization constraint is relaxed. In the first case it’s the optimality criterion (MSE if cross validation

3In principle the ADMM algorithm could handle elastic net, but to date we have not implemented such support.

pacee gretl: specify model » s gretl: regls X

dh Regularized least squares B E & B 9 & =
[x Dependent variable LASSO (ADMM) using observations 1 to 82 (n = 82)
price . Dependent variable: price
hatch 6 price 20 values of lambda
whase Set as default lambda-max = 53.8025
length
width Regressors lambda/n df criterion R"2 BIC
height hatch 0.656128 @ 0.500000 0.0000 232.706
weight whase 0.484075 3 0.466414 0.2886 218.007
oyl length 0.248849 4 ©9.410211 ©.4059 207.637
liters width 0.153253 4 ©.356955 0.4882 195.403
gasmpg & height 0.094381 3 0.314417 0.5194 185.836
weight 0.058124 5 0.284360 0.5406 190.965
trans oyl 0.035796 7 ©.258654 0.5833 191.773
& liters 0.022045 8 0.236307 0.6089 190.969
gasmpg 0.013576 8 0.218822 0.6251 187.500
e 0.008361 8 0.205957 0.6319 186.005
0.005149 9 0.197230 0.6345 189.830
0.003171 9 0.191545 0.6355 189.606
0.001953 10 ©.187927 ©.6359 193.0928
0.001203 10 ©.185635 0.6362 193.862
Estimator | LASSO ¥ | a= | 1.0 0.000741 10 ©.184180 ©0.6363 193.836
0.000456 10 ©.183286 0.6363 193.827
. . - 0.000281 10 ©.182725 ©0.6364 193.823
Single A-fraction | 0.500 0.000173 10 ©0.182377 0.6364 193.822
0.0001087 10 ©.182162 0.6364 193.821
O Multiple A values | 20 - + 0.000066 10 ©.182030 ©0.6364 193.821
Optimize via cross-validation BIC minimized at 185.836 with s = 0.143845
10 contiguous »
- LASSO minimum-BIC coefficients
Advanced... const 34.8602
height -0.861634
weight 0.791177
Help Clear Cancel oK eyl 1.15628

Figure 1: regls dialog and output window (with Graph button circled)

is performed, BIC otherwise); in the second it’s the paths of individual coeflicients. Examples are shown
in Figures 2 and 3.

To the right of the (circled) Graph button in Figure 1 is a Forecast button (binoculars icon). If the
sample was set prior to estimation so as to leave some trailing observations for testing, this can be used
to produce out-of-sample forecast evaluation statistics, accompanied by an actual versus predicted plot.
If no out-of-sample data are available you can still produce the evaluation statistics and plot for the
within-sample fit.

In each case the predicted values (which might be quite numerous) are not shown, but they can be
retrieved via the bundle button in the window showing the statistics, as shown in Figure 4. Note that in
the out-of-sample case saved predictions will not be visible via the main gretl window until you set the
sample range to include them.

10

Mean cross-validation MSE with one-s.e. band

1':I\||||||| T | LI B T | LI B T | LI N B T

0.85 | \
1
0.75 F “’\ -

e

MSE

o
-
e
0.65 | P |
’ T e——g &__—e—-"e'__

1 0.1 0.01
s = A/A_{max}

0.001 0.0001

Figure 2: MSE plot: the triangle indicates the MSE minimizer and the circle the “within one standard error”
value.

LASSO coefficients as a function of s

' T T hatch —e—
\ whase —e—
) length —+—
|] width —+—
i height
weight
cyl —m—
liters —a—o
gasmpg —&—
trans —=—

4 F i
-
-
-5 - %0"‘9—_@_ o—a— .
-6 1 1
1 0.1 0.01 0,001 0.0001
s = Mi_{max}

Figure 3: Coefficient paths

11

gretl: regls forecast »

EEGQ B

Full R2 (scalar: -0.276934) 2)

Currg yhit (series)

stats (matrix, 9 x 1)

Qut-¢ ion statistics for price
R-squared -0.2765934
Mean Error 0.764551
Root Mean Squared Error 4.4444
Mean Absolute Error 4.03795
Mean Percentage Error 1.3643
Mean Absolute Percentage Error 25.26
Theil's U 0.1321666
Bias proportion 0.09255559
Regression proportion 0.340288
Disturbance proportion 0.630116

Figure 4: Saving predictions (yhat) from the forecast output window. The facility for saving selected content from
a bundle of results is also available via the bundle icon in the primary regls output window.

12

14 Reference: public functions

bundle regls (series y, list X, bundle parms)

Performs LASSO, Ridge or Elastic net estimation given the dependent variable y, the regressors X, and
options in parms. Returns a bundle containing the results. Table 1 lists the parameters that can be
passed via the parms argument.

1frac scalar or vector A-fraction(s)

nlambda integer number of automatic As
stdize 0/1, default 1 standardize the data
ridge 0/1, default 0 do Ridge regression
lambda_scale 0, 1 or 2, default 1 see Section 10
verbosity 0, 1, 2 or 3, default 1 printing of output
xvalidate 0/1, default 0 do cross validation
nfolds optional integer > 1, default 10 number of folds
randfolds 0/1, default 0 use random folds
use_1se 0/1, default 0 see Section 5

seed optional integer controls random folds
single_b 0/1, default 0 see Section 5

no_mpi 0/1, default 0 see Section 7
admmctrl optional control vector see Section 8

ccd 0/1, default 0 see section 11
ccd_toler positive scalar, default 107 see Section 11

alpha 0 <a<1 (default 1) see Section 12

Table 1: Summary of parameters for the regls function

matrix lambda_sequence (scalar lmax, int K, scalar eps[0.0001])

Produces a column vector holding a logarithmic sequence of X values running from lmax to eps. It is
required that 0 < 1max < 1 and 0 < eps < lmax. In context such values are interpreted as instances of
$ = A/ Amax-

matrix regls_get_stats (const numeric y, const numeric yhat)

The arguments y and yhat must be either series or vectors (and both of the same type). Returns a
2-vector holding MSE = > (y — §)?/nand R? =1 (y —)%/ >.(y — 9)*.

scalar regls_pc_correct (const numeric y, const numeric yhat)
The arguments y and yhat must be either series or vectors (and both of the same type). Returns

the percentage of cases in which yhat rounded to the nearest integer equals y. Useful only when y is
integer-valued.

13

matrix regls_foldvec (int nobs, int nf)

Returns a column vector of length nobs in which nf successive blocks of length nobs/nf take on the
values 1, 2,..., nf, respectively. Useful only for composing a folds vector than can be passed to glmnet
for comparison with gretl when consecutive folds are used in cross validation.

void regls_multiprint (const bundle b, const numeric y, const numeric X)

The bundle argument b should be obtained via regls or mregls estimation with several 1frac values, as
in Section 4 or 5 above. The arguments y and X should be the same as those passed to regls (y a series,
X a list) or mregls (y an n-vector, X an n X k matrix). This function prints a summary table showing R?,
the sum of absolute values of the coefficients, and df (the number of non-zero coefficients) associated with
each value of A. Usage is illustrated in the example script lambda_sequence.inp, which is reproduced
in part in Listing 2.

void regls_coeff_plot (const bundle b, const list L[null], string fname[null])

Produces a plot showing the paths of coefficient estimates as the regularization constraint is progressively
relaxed. The bundle argument should be obtained via regls estimation with multiple 1frac values, as
in Section 4 or 5 above.

The optional list argument can be used to select for tracking a subset of the X list argument to regls.
This is recommended if the model includes a large number of independent variables; the plot becomes
unreadable if more than 20 or so coefficients are shown.

The optional fname argument can be used to direct output to file, as described in the documentation for
gretl’s gnuplot command. By default the plot is shown on screen.

See also mregls_coeff_plot below.

void regls_criterion_plot (const bundle b, string fname[null])

Produces a plot showing the path of the penalized fit criterion (BIC if cross validation is not performed,
otherwise the MSE obtained via cross validation) as the regularization constraint is progressively relaxed.
The bundle argument should be obtained via regls of mregls estimation with multiple 1frac values, as
in Section 4 or 5 above. The optional fname argument can be used to direct output to file, as described
in the documentation for gretl’s gnuplot command. By default the plot is shown on screen.

numeric regls_pred (const bundle b, const list X)

A convenience function for producing predicted values. The bundle argument should be obtained via
regls. The argument X must be the same list of series that was passed to regls (although of course the
sample range may differ), and the return value is by default a series. This function automatically handles
the presence or absence of an estimated intercept, as well as selection of a specific coefficient vector when
estimation has been performed for multiple values of the regularization parameter. See also mregls_pred
below. See Section 6 for details.

14

bundle mregls (const matrix y, const matrix X, bundle parms)

This function works like regls (), except that y is a column vector of length n and X is an n X k matrix.
The options accepted in parms are as described in Table 1 above. Consistent with the different input
types, one element in the output bundle also differs in type: in regls output nzX is a list of series while
in mregls output it is a selection vector, picking out the columns of the X matrix that have non-zero
coefficients.

matrix mregls_pred (const bundle b, const matrix X)

Companion to regls_pred, for a bundle obtained via mregls. The matrix X must have the same number
of columns as that passed to mregls. The return value is by default a column vector of length equal
to the row dimension of X. This function automatically handles the presence or absence of an estimated
intercept, as well as selection of a specific coefficient vector when estimation has been performed for
multiple values of the regularization parameter. See Section 6 for details.

void mregls_coeff_plot (const bundle b, const matrix sel[null], string fname[null])

Works just like regls_coeff_plot (see above) except that this variant is for use after mregls estimation.
The optional selection of coefficients to be tracked works via a selection (row) vector. The elements of
this vector should be column indices pertaining to the X matrix argument to mregls.

series glmnet_pred (matrix *Rb, list X)

Convenience function for handling results retrieved by gretl from glmnet. On entry Rb should hold the
full coeflicient vector (including any zeros) and X the full list of candidate regressors, and the return value
is the result of lincomb(X, Rb). On exit Rb holds only the non-zero coefficients, with row-names added
based on the X list. This is then comparable with gretl’s nzb.

void glmnet_multiprint (const matrix RB, const matrix Rlam,
const bundle b, const series y, list X)

Convenience function for facilitating comparison of results when the same regularization task has been
performed in gretl using regls and in R using glmnet. The output is like that of regls_multiprint.
The matrices RB and Rlam should be obtained from the object returned by glmnet(); b should be the
bundle returned by regls. Usage is illustrated in Listing 2.

15 Change log

2024-04-29: Add specific prediction and plotting functions for use with mregls; implement fixes for the
unlikely case where none of the candidate regressors are effective predictors of the dependent variable;
make plots more robust; add descriptive labels to the included murder-rates dataset; expand and update
the documentation.

2023-05-20: Add support for matrix input via the mregls function; simplify the signature of regls_multiprint;
add function glmnet_multiprint.

15

2022-10-02: Enhancements for regls plots; document GUI usage; update an internal function signature
to comply with gretl’s new “const inheritance” policy.

2022-08-05: fix breakage for single-lambda case.
2022-06-03: update URL; revise fragile list-saving code; allow “lambda’” as alternative to “lfrac” on input.

2021-04-17: fix bug with Ridge verbose printout, and replace some tables with figures in the doc for ease
of comprehension of comparative experiments.

2021-01-29: support a higher verbosity level for GUI use; improve printout for LASSO coefficients, when
applicable.

2020-10-09: initial release.

References

Boyd, S., N. Parikh, E. Chu, B. Peleato and J. Eckstein (2010) ‘Distributed optimization and statistical
learning via the Alternating Direction Method of Multipliers’, Foundations and Trends in Machine
Learning 3(1): 1-122. URL https://dl.acm.org/doi/10.1561/2200000016.

Friedman, J., T. Hastie and R. Tibshirani (2010) ‘Regularization paths for generalized linear models via
coordinate descent’, Journal of Statistical Software 33(1): 1-22. URL https://wuw. jstatsoft.org/
article/view/v033101/v33i01.pdf.

Schwarz, G. (1978) ‘Estimating the dimension of a model’, Annals of Statistics 6: 461-464.

Tibshirani, R. (1996) ‘Regression shrinkage and selection via the lasso’, Journal of the Royal Statistical
Society, Series B 58(1): 267-288. URL https://www.jstor.org/stable/2346178.

Zou, H. and T. Hastie (2005) ‘Regularization and variable selection via the elastic net’. Department of
Statistics, Stanford University. URL https://web.stanford.edu/ hastie/TALKS/enet_talk.pdf.

16

https://dl.acm.org/doi/10.1561/2200000016
https://www.jstatsoft.org/article/view/v033i01/v33i01.pdf
https://www.jstatsoft.org/article/view/v033i01/v33i01.pdf
https://www.jstor.org/stable/2346178
https://web.stanford.edu/~hastie/TALKS/enet_talk.pdf

Listing 2: LASSO with lambda sequence

set verbose off
include regls.gfn

open murder.gdt --quiet --frompkg=regls

all available predictors w. no missing values
list X = population..LemasPctOfficDrugln

smpl 1 800
printf "Sample range %d to %d\n", $t1, $t2

bundle parms = _(nlambda = 8, verbosity = 0)
bundle bl = regls(murdPerPop, X, parms)

printf "\ngretl (ADMM):\n"
regls_multiprint(bl, murdPerPop, X)

parms.ccd 1

bundle b2 = regls(murdPerPop, X, parms)
printf "\ngretl (CCD):\n"
regls_multiprint (b2, murdPerPop, X)

STOP here if R + glmnet is not available
quit

R::glmnet
list LL = murdPerPop X
foreign language=R --send-data=LL
library(glmnet)
x <- as.matrix(gretldatal,2:ncol(gretldata)])
y <- as.matrix(gretldatal,1])
m <- glmnet(x, y, family = "gaussian", alpha = 1, nlambda = 8,
standardize = T, intercept = T)
Rb <- as.matrix(coef (m))
gretl.export (Rb)
Rlam = as.matrix(m$lambda)
gretl.export (Rlam)
end foreign

matrix Rb = mread("Rb.mat", 1)

matrix Rlam = mread("Rlam.mat", 1)

printf "\nglmnet:\n"

glmnet_multiprint (Rb, Rlam, b2, murdPerPop, X)

17

Appendix A Comparison of algorithms

This appendix reports some experiments designed to gauge the accuracy and speed of the Cyclical Co-
ordinate Descent (CCD) algorithm as compared to the default algorithms in regls—ADMM for LASSO
and SVD for Ridge.

Design of experiments

The general design of our experiments is as follows. For some selected dataset and sample range we
compute the values of the minimized objective function (LASSO or Ridge) for a sequence of A\ values.
In each test we compare two optimization methods—call them A and B—taking A as the baseline and
exploring how the difference in results between the methods behaves as we tighten the convergence
tolerance for method B. We assume that for the iterative methods ADMM and CCD, tightening the
tolerance (within reason) will produce more accurate results, or at least will not produce less accurate
results. Therefore, if the difference diminishes as tolerance is tightened for B we can infer that A was
more accurate at the initial tolerance level.

We measure the difference between sets of results via Euclidean distance.* To gauge the trade-off between
accuracy and speed we also record the execution time for method B divided by that for A.

In the experiments reported below we used the murder rates dataset (murder.gdt) supplied with the
regls package, with murdPerPop as dependent variable and 101 regressors.” The A sequence was of
length 20. In the LASSO tests we used the first 800 observations and in the Ridge tests the first 1500
(to make the test take longer and improve the resolution of the timer). We’re aware that the results we
show are liable to be data- and model-dependent and we offer some comments on this in the concluding
section.

Ridge: SVD and CCD

The Ridge problem has an analytical solution and regls implements this using Singular Value Decom-
position, which is generally regarded as the gold standard for accuracy in digital computation. Results
obtained via SVD can therefore be used as a benchmark against which to assess the accuracy of the
solution provided by CCD.

Figure 5 shows our findings. The distance between the two sets of results declines monotonically as the
CCD tolerance is tightened, as one would expect. At its default tolerance of 10~7 CCD is faster than
SVD (in this example by about 30 percent), but it takes longer than SVD if one wants the extra accuracy
associated with a tolerance of 10~? or less. Note, however, that there seems to be little point in reducing
the CCD tolerance below 10~Y.

LASSO: ADMM and CCD

LASSO is trickier than Ridge in that there’s no analytical solution to serve as a natural benchmark. In
this case we take ADMM (at its default tolerance in regls) as baseline—without assuming its results are
“correct”—and see what happens.

Figure 6 shows monotonic decline in difference of results as the CCD tolerance is tightened from 10~7 to
10719, at which point the results become practically indistinguishable. We interpret this to mean that
ADMM at its default settings produces results that can be taken as “correct” for practical purposes.

Notice that with LASSO the effect of tighter tolerance on the execution time for CCD relative to the
baseline is a good deal more marked than in the Ridge case. When the CCD tolerance is reduced from
10~7 to 1079 Ridge time becomes slightly greater than SVD time, while LASSO time becomes over twice
that of ADMM.

If ADMM is more accurate than CCD at their respective default tolerances, can we find tolerances for
the former that produce similar accuracy to the CCD default? And if so, what happens to the speed

4We also tried Mean Absolute Deviation but this did not seem to contribute additional information.
5This dataset was referenced by Ryan Tibshirani in the LASSO context; see https://www.stat.cmu.edu/ ryantibs/
datamining/lectures/17-modr2.pdf.

18

https://www.stat.cmu.edu/~ryantibs/datamining/lectures/17-modr2.pdf
https://www.stat.cmu.edu/~ryantibs/datamining/lectures/17-modr2.pdf

3.5x107 — T T T T T 1.7

4 1.6
3x107°
4 1.5
2.5x107° 4 14
4 1.3
-5 L
2x10 115
1.5x105 411
41
1x1073 | 4 0.9
4 0.8
5x10°6 -
4 0.7
0 L I - = #—' 0.6
107 108 109 1010 1011 1012

Figure 5: Ridge regression: CCD performance relative to SVD baseline. CCD tolerance on z-axis, Euclidean
distance between estimates in red (left) and relative execution time in blue (right).

0.0003 — . T T T — 5
4 45

.00025
0.00025 1.4
4 35

0.0002 |
43
0.00015 | 4 25
42

0.0001 |
415
41

5x107°
4 05
0 L L - - & 0

107 1078 1079 1010 1011 10712

Figure 6: LASSO estimation: CCD performance relative to ADMM baseline. CCD tolerance on z-axis, Euclidean
distance between estimates in red (left) and relative execution time in blue (right).

comparison?

Figure 7 shows the results of a relevant experiment. The integers, ¢, on the x-axis represent progressively
slacker tolerance pairs, (i x 1072, i x10~%), for ADMM. (Note that the i = 1 already gives values 100 times
greater than the ADMM default.) As expected, greater tolerances correspond to shorter execution times
(blue line, right-hand scale) and increasing distance from the baseline high-accuracy ADMM results (red
line, left-hand scale). CCD, at its default tolerance of 107, enters the picture in two ways: its execution
speed is by construction 1 on the right-hand scale, while its deviation from the baseline estimates is shown
by the dotted red line.

In this example there is a range of the ADMM tolerances, comprising ¢ = 2 and ¢ = 3, over which ADMM
is both faster and more accurate than CCD.

As noted above, such figures are likely to be data- and model-dependent, but we conjecture that ADMM

19

0.00035 [. : 12
0.00030 |- <- CCD, tol 1077 1 1.15

4 11
0.00025 |

4 1.05
0.00020 |

41
0.00015 |

4 0.95
0.00010 | | os
0.00005 L . 0.85

1 2 3 4

Figure 7: LASSO estimation: ADMM performance at slacker tolerances. See text for explanation of z-axis.
Euclidean distance from high-accuracy estimates in red (left) and time relative to CCD in blue (right).

tolerances of (1072,10~%) are conservative relative to CCD at tolerance 10~7 in the sense that they are
likely to deliver results of equal accuracy to CCD or better.

Conclusion

The results shown above, from a single dataset, are obviously illustrative rather than definitive. On the
strength of similar tests on other datasets we’re able to say something about what is generally applicable
and what is variable.

In all of our experiments CCD at its default tolerance is faster but less accurate than SVD for Ridge
regression, and faster but less accurate than ADMM (at its default tolerance) for LASSO. And in all
cases the accuracy of CCD can be increased (up to a point) by reducing its tolerance.

Two things are relatively variable (apparently depending on, among other things, the number of obser-
vations and the number of regressors, though not in any easily predictable way).

e The time taken by CCD relative to the alternatives as a function of the CCD tolerance. In some
cases (unlike the example above) CCD retains its speed advantage as its tolerance is reduced. While
CCD is bound to slow down some at tighter tolerance it may still be the fastest method.

e Convergence of CCD is not guaranteed. In a few LASSO trials we saw failure at, for example, a
tolerance of 1071°, when ADMM had converged OK and the difference statistics seemed to show
room for further improvement of accuracy on the part of CCD. This suggests that CCD is not
always capable of accuracy equal to ADMM. It’s possible that in other cases this could be reversed
(ADMM unable to equal the accuracy of CCD), though we didn’t see any such in our trials.

So here’s our conclusion. (As a warning to the reader we have emphasized the words that signal our
remaining uncertainty!) If you want maximally accurate results you should use SVD for Ridge and
probably use ADMM for LASSO. You can usually get equal accuracy from CCD if you tighten its tolerance
far enough but then CCD may take longer than the alternatives. On the other hand, if you reckon the
accuracy of CCD at its default tolerance is good enough for practical purposes you can save time by using
it. Unless, in the case of LASSO, you'd like to set the ADMM tolerances to (1072,107%), in which case
you may get somewhat more accurate results with little difference in execution time.

To go any further we would have to assess what’s “good enough” accuracy (for example, with out-of-
sample prediction in view). Does the extra accuracy of ADMM and SVD actually help, or is it surplus

20

to requirements? We have something to say about that in Appendix B.

Appendix B Comparison with glmnet

Given the benchmark status of R’s glmnet we have tried to ensure that our results are very close to those
from glmnet unless we can demonstrate a good reason for divergence. We comment below on reasons why
results may differ in certain respects.

Different conventions

It should be noted that regls and glmnet employ different conventions in some respects. This does not
affect the comparison of reported coefficients or predicted values, but it can make comparison of A\ values
a little awkward. The LASSO objective function and definition of Ap.x used by regls were stated in
Section 1, but to be fully explicit we should say that the X and y in equation (2) for the maximum A are
taken to be standardized values.

In glmnet the objective (in the linear Gaussian case) is

n k
min o - X+ AN 1A
B [j=1
This differs from our equation (1) in dividing the sum of squared residuals (SSR) by 2n rather than
2. Since glmnet is not actually using a different relative weighting of the SSR and the sum of absolute
coefficient values, it follows that their “A” must be read as n~! times ours. Moreover, while we take
each \; value to be s; times Apax as defined in equation (2), the A\ values printed by glmnet are (in our
notation)

)\i =S)\max . a'y/n

where &, is the ML estimate of the standard deviation of the dependent variable. To obtain the glmnet
A corresponding to a given s one can do:

Rlam = s * b.lmax * sdc({y}) / b.nobs

where b is a bundle obtained via regls on the same data, y is the dependent series and sdc({y}) gives
Gy. The current sample range must be the same as for b to get ¢, right, but if glmnet was told not to
standardize the data then this term should be omitted as it is assumed to be 1.

Cross validation methodologies

There’s a substantive difference between regls and glmnet in respect of cross validation. This applies
even if the CCD algorithm is selected in regls, which results in near-identical results for LASSO or Ridge
coeflicients when simply processing a sequence of \ values.

In regls cross validation, the entire training dataset is standardized at the outset, then each fold gets its
share of the standardized data. The maximum A is also determined using the full training set and the
same A sequence is used for each fold. In glmnet, by contrast, both standardization and calculation of
the A sequence are done per fold. For example, suppose the training data are divided into 10 folds, each
comprising 10 percent of the observations. Then glmnet both standardizes and computes a A sequence
using the complementary 90 percent of the data.

Extended test of cross validation

The primary point of cross validation is to determine the value of a hyperparameter (for LASSO, \)
that is likely to give best results in genuine out-of-sample prediction. In this section we describe some
experiments designed to probe the impact (if any) of certain differences noted above on the efficacy of
out-of-sample prediction. We are particularly interested in

e the methodological difference between regls and glmnet noted in the previous section, and

21

e the “extra accuracy” of the ADMM algorithm, at its default tolerance, over CCD at its default
tolerance, noted in Appendix A.

As regards the methodological difference, not a great deal can be said about this a priori, though one thing
is clear: the more homogeneous the training data, the less details of method are going to matter. If the
statistical properties of the fold-complement samples are very similar to those of the full training data then
the locus of standardization (training data or fold-complement) won’t make much difference. In addition,
if Amax = || X y||o doesn’t differ much across the samples the locus of calculation of the A sequence won’t
matter much either, and A-matching—if it is required—should be relatively unproblematic.

That said, real-world datasets of interest are not necessarily very homogeneous so the details could matter.
To investigate this we ran experiment on two rather different datasets.

e Dataset 1: murder rates and covariates for US localities (murder.gdt, supplied with the regls
package). Comprises 2215 observations on 102 variables.

e Dataset 2: white wine quality and physico-chemical covariates. Comprises 4898 observations on 12
variables (78 after adding squares and interactions of covariates).®

We “leveraged” the datasets by randomizing the order of the observations at each of 2000 iterations then
taking the first NV observations for training and the next M for testing, with N + M a subset of the full
data available. For Dataset 1 N = 1200 and M = 200, and for Dataset 2 N = 1500, M = 500.

The body of the test involved cross validating with 10 folds (composed of consecutive observations since
the whole dataset was randomized) then predicting for the M holdout observations using the optimal A on
the “one standard error” rule favored by glmnet. This rule selects the larger of (a) the A* which minimizes
mean out-of-sample MSE and (b) the largest A that lies within ¢* of *, where ¢* is the standard error
of the minimized mean MSE.” The figure of merit calculated at each iteration was the R? for the testing
data, 1 —3(y —)%/ X(y — 9)*.

This test was run (with common randomization) using three variants of cross validation, each with its
default settings: the glmnet function cv.glmnet; regls using the CCD algorithm; and regls using the
ADMM algorithm. As mentioned above, there are two distinct differences at play. In comparing glmnet
with regls CCD the coeflicient vectors produced for given data and given A are near-identical, and the
relevant difference lies in the details of the cross validation methodology. In comparing regls CCD and
ADMM the cross validation method is exactly the same and the relevant difference lies in the “excess

precision” afforded by ADMM over CCD, at their respective default tolerances, as discussed in Appendix
A.

Statistics for out-of-sample R? from the Dataset 1 experiment are shown in Table 2. In this experiment
regls CCD gave better out of sample prediction than glmnet, and ADMM did a little better again. The
first difference—due to cross validation methodology—appears to be more substantial than the second.

mean s.d. s.e.(mean) 95% C.IL median min max
glmnet 0.4724 0.1518 0.0034 0.4657 - 0.4790 0.4881 —2.6289 0.7044
CCD 0.4954 0.1545 0.0035 0.4886 - 0.5022 0.5118 —2.7911 0.6900
ADMM 0.4984 0.1608 0.0036 0.4914 - 0.5055 0.5172 —2.7831 0.6925

Table 2: Out of sample R?, 2000 replications, Dataset 1

Figure 8 gives another angle on the comparisons, plotting estimated kernel densities for the three variants.®

Since each method was given the same data at each iteration, paired-difference tests for R? might be
considered appropriate; these are shown in Table 3, along with the correlations across the methods per
iteration.

6See https://archive.ics.uci.edu/ml/datasets/wine+quality.

7"The mean is taken across the folds, weighted if necessary.

8We truncated the plot on the left to focus on the bulk of the distributions; instances of R?2 < 0.2 were rare, and their
frequency did not differ much by method.

22

https://archive.ics.uci.edu/ml/datasets/wine+quality

glmnet
7 CCD
| ADMM —— T

O - Il Il Il
0.2 0.3 0.4 0.5 0.6 0.7

Figure 8: Estimated densities for out of sample R?, Dataset 1

|2 p

glmnet, regls CCD 20.6 0.946
glmnet, regls ADMM 21.6 0.942
regls CCD, regls ADMM 8.4 0.996

Table 3: Paired-difference tests and correlations, out of sample R?

From this point of view all the differences are strongly statistically significant, though the advantage of
ADMM over CCD might not be considered of much practical importance.

Table 4 shows out-of-sample R? statistics for Dataset 2. Again ADMM has the highest mean and median,
and regls CCD does better than glmnet on these criteria, but here the differences are relatively small.
Kernel densities are shown in Figure 9. The displacement of the distribution between methods, in the
same direction as for Dataset 1, is appreciable” but maybe not large enough to be of practical importance.

mean s.d. s.e.(mean) 95% C.I. median min max
glmnet 0.2735 0.0518 0.0012 0.2712 - 0.2758 0.2775 —0.5072 0.3994
CCD 0.2763 0.0523 0.0012 0.2740 - 0.2786 0.2803 —0.5072 0.3994
ADMM 0.2774 0.0558 0.0012 0.2750 - 0.2799 0.2826 —0.5260 0.4029

Table 4: Out of sample R?, 2000 replications, Dataset 2

Dataset heterogeneity

Can we account for the difference in results between Dataset 1 and Dataset 2 by reference to the relative
heterogeneity of the data? It’s not obvious how such heterogeneity can best be measured, but we tried a
rough and ready heuristic with focus on the dependent variable: how much do its sample statistics vary
across the fold-complement samples, relative to the full training data?

We calculated two statistics, H,, and H,, for each dataset, using the randomize-and-subset procedure
described above. At each of 2000 iterations, i, we summed the absolute proportional deviations of the
fold-complement sample means, ¥;;, j = 1,2,...,10, from the sample mean for the training data, ;. We

9 And statistically significant: paired-difference |z| = 19.9 for glmnet vs CCD and 5.8 for CCD vs ADMM.

23

12 T T T T T T
glmnet

CCD
ADMM ——

10

0 _ 1 | 1 1
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Figure 9: Estimated densities for out of sample R?, Dataset 2

then took the mean of these values across the iterations:

2000 10

1
H:—E E Uij — Yil/|Yi
H 2000 7;:1].:1|y] y|/|y|

H, was calculated in an exactly analogous way, with the sample standard deviations in place of the
means. The values of these measures for the datasets were

H, H,
Dataset 1 0.12059 0.15032
Dataset 2 0.01039 0.05089

Thus it appears that—on this crude measure at least—Dataset 2 is a good deal more homogeneous
than Dataset 1. This is consistent with the observation that differences in out-of-sample performance
attributable to differences in the algorithms were much smaller for Dataset 2.

Conclusion

It’s risky to conclude much on the strength of just two datasets—even when leveraged by randomization
and subsetting. But it does seem that standardization at the level of the full training data, and em-
ployment of a single A sequence—derived from the full training data and applied for all folds—may be
conducive to best out-of-sample prediction. It also seems that the extra precision of ADMM at its default
setting is helpful for out-of-sample prediction, though this effect is relatively small and may or may not
be considered worthwhile.

Example script

An example script used with Dataset 1 is shown on the following page. This instance produces results
for regls CCD and glmnet. Results for regls ADMM can be obtained by omitting the ccd setting in the
parms bundle. To explore a different randomization one could comment out the set seed line, in which
case the seed for the random number generator will be set from the clock on start-up.

24

Listing 3: Monte Carlo script for out-of-sample prediction

set verbose off

set R_1ib on

set R_functions on

include regls.gfn

open murder.gdt --quiet --frompkg=regls

obtain results for regls CCD and cv.glmnet

foreign language=R
lasso_R <- function(x,y,f,nl) {
if (! "glmnet" %in’ (.packages())) {
library(glmnet)
}
m <- cv.glmnet(x, y, foldid = f, family = "gaussian", alpha = 1,
nlambda = nl, standardize = T, intercept = T)
Rb <- as.matrix(coef (m$glmnet.fit, s = m$lambda.lse))
}

end foreign

all available predictors without missing values
list X = population..LemasPctOfficDrugln
list X0 = const X # for glmnet prediction

bundle parms _(nlambda=50, verbosity=0, ccd=1, xvalidate=1)
parms.nfolds 10
parms.use_lse = 1

for glmnet
matrix foldvec = regls_foldvec(1200, 10)

set seed 997361
K = 2000
matrix OSR2 = zeros(K,2)

loop i=1..K --quiet
smpl full
series sorter = uniform()
dataset sortby sorter

smpl 1 1200 # training data
bundle b = regls(murdPerPop, X, parms)
matrix Rb = R.lasso_R({X}, {murdPerPop}, foldvec, 50)

smpl 1201 1400 # testing data
series pred = lincomb(b.nzX, b.nzb)
m = regls_get_stats(murdPerPop, pred)
0SR2[i,1] = m[2]
series Rpred = lincomb(X0, Rb)
m = regls_get_stats(murdPerPop, Rpred)
0SR2[1,2] = m[2]
endloop

mwrite (0OSR2, "murder_ccd.mat")

25

	1 Introduction
	2 Basic options
	3 Estimation with a single regularization
	4 Exploring a range of regularizations
	5 Optimizing via cross validation
	6 Obtaining predicted values
	7 Execution speed
	8 Additional ADMM controls
	9 LASSO examples
	10 Ridge regression
	11 The CCD option
	12 Elastic net
	13 GUI usage
	14 Reference: public functions
	15 Change log
	Appendix A Comparison of algorithms
	Appendix B Comparison with glmnet

