Actual source code: tsmon.c

  1: #include <petsc/private/tsimpl.h>
  2: #include <petscdm.h>
  3: #include <petscds.h>
  4: #include <petscdmswarm.h>
  5: #include <petscdraw.h>

  7: /*@C
  8:   TSMonitor - Runs all user-provided monitor routines set using `TSMonitorSet()`

 10:   Collective

 12:   Input Parameters:
 13: + ts    - time stepping context obtained from `TSCreate()`
 14: . step  - step number that has just completed
 15: . ptime - model time of the state
 16: - u     - state at the current model time

 18:   Level: developer

 20:   Notes:
 21:   `TSMonitor()` is typically used automatically within the time stepping implementations.
 22:   Users would almost never call this routine directly.

 24:   A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions

 26: .seealso: `TS`, `TSMonitorSet()`, `TSMonitorSetFromOptions()`
 27: @*/
 28: PetscErrorCode TSMonitor(TS ts, PetscInt step, PetscReal ptime, Vec u)
 29: {
 30:   DM       dm;
 31:   PetscInt i, n = ts->numbermonitors;

 33:   PetscFunctionBegin;

 37:   PetscCall(TSGetDM(ts, &dm));
 38:   PetscCall(DMSetOutputSequenceNumber(dm, step, ptime));

 40:   PetscCall(VecLockReadPush(u));
 41:   for (i = 0; i < n; i++) PetscCall((*ts->monitor[i])(ts, step, ptime, u, ts->monitorcontext[i]));
 42:   PetscCall(VecLockReadPop(u));
 43:   PetscFunctionReturn(PETSC_SUCCESS);
 44: }

 46: /*@C
 47:   TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user

 49:   Collective

 51:   Input Parameters:
 52: + ts           - `TS` object you wish to monitor
 53: . name         - the monitor type one is seeking
 54: . help         - message indicating what monitoring is done
 55: . manual       - manual page for the monitor
 56: . monitor      - the monitor function
 57: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the `TS` or `PetscViewer` objects

 59:   Level: developer

 61: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `PetscOptionsGetViewer()`, `PetscOptionsGetReal()`, `PetscOptionsHasName()`, `PetscOptionsGetString()`,
 62:           `PetscOptionsGetIntArray()`, `PetscOptionsGetRealArray()`, `PetscOptionsBool()`
 63:           `PetscOptionsInt()`, `PetscOptionsString()`, `PetscOptionsReal()`,
 64:           `PetscOptionsName()`, `PetscOptionsBegin()`, `PetscOptionsEnd()`, `PetscOptionsHeadBegin()`,
 65:           `PetscOptionsStringArray()`, `PetscOptionsRealArray()`, `PetscOptionsScalar()`,
 66:           `PetscOptionsBoolGroupBegin()`, `PetscOptionsBoolGroup()`, `PetscOptionsBoolGroupEnd()`,
 67:           `PetscOptionsFList()`, `PetscOptionsEList()`
 68: @*/
 69: PetscErrorCode TSMonitorSetFromOptions(TS ts, const char name[], const char help[], const char manual[], PetscErrorCode (*monitor)(TS, PetscInt, PetscReal, Vec, PetscViewerAndFormat *), PetscErrorCode (*monitorsetup)(TS, PetscViewerAndFormat *))
 70: {
 71:   PetscViewer       viewer;
 72:   PetscViewerFormat format;
 73:   PetscBool         flg;

 75:   PetscFunctionBegin;
 76:   PetscCall(PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts), ((PetscObject)ts)->options, ((PetscObject)ts)->prefix, name, &viewer, &format, &flg));
 77:   if (flg) {
 78:     PetscViewerAndFormat *vf;
 79:     char                  interval_key[1024];
 80:     PetscCall(PetscViewerAndFormatCreate(viewer, format, &vf));
 81:     PetscCall(PetscSNPrintf(interval_key, sizeof interval_key, "%s_interval", name));
 82:     PetscCall(PetscOptionsGetInt(((PetscObject)ts)->options, ((PetscObject)ts)->prefix, interval_key, &vf->view_interval, NULL));
 83:     PetscCall(PetscObjectDereference((PetscObject)viewer));
 84:     if (monitorsetup) PetscCall((*monitorsetup)(ts, vf));
 85:     PetscCall(TSMonitorSet(ts, (PetscErrorCode(*)(TS, PetscInt, PetscReal, Vec, void *))monitor, vf, (PetscErrorCode(*)(void **))PetscViewerAndFormatDestroy));
 86:   }
 87:   PetscFunctionReturn(PETSC_SUCCESS);
 88: }

 90: /*@C
 91:   TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
 92:   timestep to display the iteration's  progress.

 94:   Logically Collective

 96:   Input Parameters:
 97: + ts       - the `TS` context obtained from `TSCreate()`
 98: . monitor  - monitoring routine
 99: . mctx     - [optional] user-defined context for private data for the monitor routine (use `NULL` if no context is desired)
100: - mdestroy - [optional] routine that frees monitor context (may be `NULL`)

102:   Calling sequence of `monitor`:
103: + ts    - the `TS` context
104: . steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
105: . time  - current time
106: . u     - current iterate
107: - ctx   - [optional] monitoring context

109:   Level: intermediate

111:   Note:
112:   This routine adds an additional monitor to the list of monitors that already has been loaded.

114:   Fortran Notes:
115:   Only a single monitor function can be set for each `TS` object

117: .seealso: [](ch_ts), `TSMonitorDefault()`, `TSMonitorCancel()`, `TSDMSwarmMonitorMoments()`, `TSMonitorExtreme()`, `TSMonitorDrawSolution()`,
118:           `TSMonitorDrawSolutionPhase()`, `TSMonitorDrawSolutionFunction()`, `TSMonitorDrawError()`, `TSMonitorSolution()`, `TSMonitorSolutionVTK()`,
119:           `TSMonitorLGSolution()`, `TSMonitorLGError()`, `TSMonitorSPSwarmSolution()`, `TSMonitorError()`, `TSMonitorEnvelope()`
120: @*/
121: PetscErrorCode TSMonitorSet(TS ts, PetscErrorCode (*monitor)(TS ts, PetscInt steps, PetscReal time, Vec u, void *ctx), void *mctx, PetscErrorCode (*mdestroy)(void **))
122: {
123:   PetscInt  i;
124:   PetscBool identical;

126:   PetscFunctionBegin;
128:   for (i = 0; i < ts->numbermonitors; i++) {
129:     PetscCall(PetscMonitorCompare((PetscErrorCode(*)(void))monitor, mctx, mdestroy, (PetscErrorCode(*)(void))ts->monitor[i], ts->monitorcontext[i], ts->monitordestroy[i], &identical));
130:     if (identical) PetscFunctionReturn(PETSC_SUCCESS);
131:   }
132:   PetscCheck(ts->numbermonitors < MAXTSMONITORS, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Too many monitors set");
133:   ts->monitor[ts->numbermonitors]          = monitor;
134:   ts->monitordestroy[ts->numbermonitors]   = mdestroy;
135:   ts->monitorcontext[ts->numbermonitors++] = (void *)mctx;
136:   PetscFunctionReturn(PETSC_SUCCESS);
137: }

139: /*@C
140:   TSMonitorCancel - Clears all the monitors that have been set on a time-step object.

142:   Logically Collective

144:   Input Parameter:
145: . ts - the `TS` context obtained from `TSCreate()`

147:   Level: intermediate

149:   Note:
150:   There is no way to remove a single, specific monitor.

152: .seealso: [](ch_ts), `TS`, `TSMonitorDefault()`, `TSMonitorSet()`
153: @*/
154: PetscErrorCode TSMonitorCancel(TS ts)
155: {
156:   PetscInt i;

158:   PetscFunctionBegin;
160:   for (i = 0; i < ts->numbermonitors; i++) {
161:     if (ts->monitordestroy[i]) PetscCall((*ts->monitordestroy[i])(&ts->monitorcontext[i]));
162:   }
163:   ts->numbermonitors = 0;
164:   PetscFunctionReturn(PETSC_SUCCESS);
165: }

167: /*@C
168:   TSMonitorDefault - The default monitor, prints the timestep and time for each step

170:   Input Parameters:
171: + ts    - the `TS` context
172: . step  - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
173: . ptime - current time
174: . v     - current iterate
175: - vf    - the viewer and format

177:   Options Database Key:
178: . -ts_monitor - monitors the time integration

180:   Level: intermediate

182:   Notes:
183:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
184:   to be used during the `TS` integration.

186: .seealso: [](ch_ts), `TSMonitorSet()`, `TSDMSwarmMonitorMoments()`, `TSMonitorExtreme()`, `TSMonitorDrawSolution()`,
187:           `TSMonitorDrawSolutionPhase()`, `TSMonitorDrawSolutionFunction()`, `TSMonitorDrawError()`, `TSMonitorSolution()`, `TSMonitorSolutionVTK()`,
188:           `TSMonitorLGSolution()`, `TSMonitorLGError()`, `TSMonitorSPSwarmSolution()`, `TSMonitorError()`, `TSMonitorEnvelope()`
189: @*/
190: PetscErrorCode TSMonitorDefault(TS ts, PetscInt step, PetscReal ptime, Vec v, PetscViewerAndFormat *vf)
191: {
192:   PetscViewer viewer = vf->viewer;
193:   PetscBool   iascii, ibinary;

195:   PetscFunctionBegin;
197:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
198:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &ibinary));
199:   PetscCall(PetscViewerPushFormat(viewer, vf->format));
200:   if (iascii) {
201:     PetscCall(PetscViewerASCIIAddTab(viewer, ((PetscObject)ts)->tablevel));
202:     if (step == -1) { /* this indicates it is an interpolated solution */
203:       PetscCall(PetscViewerASCIIPrintf(viewer, "Interpolated solution at time %g between steps %" PetscInt_FMT " and %" PetscInt_FMT "\n", (double)ptime, ts->steps - 1, ts->steps));
204:     } else {
205:       PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " TS dt %g time %g%s", step, (double)ts->time_step, (double)ptime, ts->steprollback ? " (r)\n" : "\n"));
206:     }
207:     PetscCall(PetscViewerASCIISubtractTab(viewer, ((PetscObject)ts)->tablevel));
208:   } else if (ibinary) {
209:     PetscMPIInt rank;
210:     PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)viewer), &rank));
211:     if (rank == 0) {
212:       PetscBool skipHeader;
213:       PetscInt  classid = REAL_FILE_CLASSID;

215:       PetscCall(PetscViewerBinaryGetSkipHeader(viewer, &skipHeader));
216:       if (!skipHeader) PetscCall(PetscViewerBinaryWrite(viewer, &classid, 1, PETSC_INT));
217:       PetscCall(PetscRealView(1, &ptime, viewer));
218:     } else {
219:       PetscCall(PetscRealView(0, &ptime, viewer));
220:     }
221:   }
222:   PetscCall(PetscViewerPopFormat(viewer));
223:   PetscFunctionReturn(PETSC_SUCCESS);
224: }

226: /*@C
227:   TSMonitorExtreme - Prints the extreme values of the solution at each timestep

229:   Input Parameters:
230: + ts    - the `TS` context
231: . step  - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
232: . ptime - current time
233: . v     - current iterate
234: - vf    - the viewer and format

236:   Level: intermediate

238:   Note:
239:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
240:   to be used during the `TS` integration.

242: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`
243: @*/
244: PetscErrorCode TSMonitorExtreme(TS ts, PetscInt step, PetscReal ptime, Vec v, PetscViewerAndFormat *vf)
245: {
246:   PetscViewer viewer = vf->viewer;
247:   PetscBool   iascii;
248:   PetscReal   max, min;

250:   PetscFunctionBegin;
252:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
253:   PetscCall(PetscViewerPushFormat(viewer, vf->format));
254:   if (iascii) {
255:     PetscCall(VecMax(v, NULL, &max));
256:     PetscCall(VecMin(v, NULL, &min));
257:     PetscCall(PetscViewerASCIIAddTab(viewer, ((PetscObject)ts)->tablevel));
258:     PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " TS dt %g time %g%s max %g min %g\n", step, (double)ts->time_step, (double)ptime, ts->steprollback ? " (r)" : "", (double)max, (double)min));
259:     PetscCall(PetscViewerASCIISubtractTab(viewer, ((PetscObject)ts)->tablevel));
260:   }
261:   PetscCall(PetscViewerPopFormat(viewer));
262:   PetscFunctionReturn(PETSC_SUCCESS);
263: }

265: /*@C
266:   TSMonitorLGCtxCreate - Creates a `TSMonitorLGCtx` context for use with
267:   `TS` to monitor the solution process graphically in various ways

269:   Collective

271:   Input Parameters:
272: + comm     - the MPI communicator to use
273: . host     - the X display to open, or `NULL` for the local machine
274: . label    - the title to put in the title bar
275: . x        - the x screen coordinates of the upper left coordinate of the window
276: . y        - the y screen coordinates of the upper left coordinate of the window
277: . m        - the screen width in pixels
278: . n        - the screen height in pixels
279: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time

281:   Output Parameter:
282: . ctx - the context

284:   Options Database Keys:
285: + -ts_monitor_lg_timestep        - automatically sets line graph monitor
286: . -ts_monitor_lg_timestep_log    - automatically sets line graph monitor
287: . -ts_monitor_lg_solution        - monitor the solution (or certain values of the solution by calling `TSMonitorLGSetDisplayVariables()` or `TSMonitorLGCtxSetDisplayVariables()`)
288: . -ts_monitor_lg_error           - monitor the error
289: . -ts_monitor_lg_ksp_iterations  - monitor the number of `KSP` iterations needed for each timestep
290: . -ts_monitor_lg_snes_iterations - monitor the number of `SNES` iterations needed for each timestep
291: - -lg_use_markers <true,false>   - mark the data points (at each time step) on the plot; default is true

293:   Level: intermediate

295:   Notes:
296:   Pass the context and `TSMonitorLGCtxDestroy()` to `TSMonitorSet()` to have the context destroyed when no longer needed.

298:   One can provide a function that transforms the solution before plotting it with `TSMonitorLGCtxSetTransform()` or `TSMonitorLGSetTransform()`

300:   Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a `TS` object as the
301:   first argument (if that `TS` object does not have a `TSMonitorLGCtx` associated with it the function call is ignored) and the second takes a `TSMonitorLGCtx` object
302:   as the first argument.

304:   One can control the names displayed for each solution or error variable with `TSMonitorLGCtxSetVariableNames()` or `TSMonitorLGSetVariableNames()`

306: .seealso: [](ch_ts), `TSMonitorLGTimeStep()`, `TSMonitorSet()`, `TSMonitorLGSolution()`, `TSMonitorLGError()`, `TSMonitorDefault()`, `VecView()`,
307:           `TSMonitorLGCtxSetVariableNames()`, `TSMonitorLGCtxGetVariableNames()`,
308:           `TSMonitorLGSetVariableNames()`, `TSMonitorLGGetVariableNames()`, `TSMonitorLGSetDisplayVariables()`, `TSMonitorLGCtxSetDisplayVariables()`,
309:           `TSMonitorLGCtxSetTransform()`, `TSMonitorLGSetTransform()`, `TSMonitorLGSNESIterations()`, `TSMonitorLGKSPIterations()`,
310:           `TSMonitorEnvelopeCtxCreate()`, `TSMonitorEnvelopeGetBounds()`, `TSMonitorEnvelopeCtxDestroy()`, `TSMonitorEnvelop()`
311: @*/
312: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm, const char host[], const char label[], int x, int y, int m, int n, PetscInt howoften, TSMonitorLGCtx *ctx)
313: {
314:   PetscDraw draw;

316:   PetscFunctionBegin;
317:   PetscCall(PetscNew(ctx));
318:   PetscCall(PetscDrawCreate(comm, host, label, x, y, m, n, &draw));
319:   PetscCall(PetscDrawSetFromOptions(draw));
320:   PetscCall(PetscDrawLGCreate(draw, 1, &(*ctx)->lg));
321:   PetscCall(PetscDrawLGSetFromOptions((*ctx)->lg));
322:   PetscCall(PetscDrawDestroy(&draw));
323:   (*ctx)->howoften = howoften;
324:   PetscFunctionReturn(PETSC_SUCCESS);
325: }

327: PetscErrorCode TSMonitorLGTimeStep(TS ts, PetscInt step, PetscReal ptime, Vec v, void *monctx)
328: {
329:   TSMonitorLGCtx ctx = (TSMonitorLGCtx)monctx;
330:   PetscReal      x   = ptime, y;

332:   PetscFunctionBegin;
333:   if (step < 0) PetscFunctionReturn(PETSC_SUCCESS); /* -1 indicates an interpolated solution */
334:   if (!step) {
335:     PetscDrawAxis axis;
336:     const char   *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
337:     PetscCall(PetscDrawLGGetAxis(ctx->lg, &axis));
338:     PetscCall(PetscDrawAxisSetLabels(axis, "Timestep as function of time", "Time", ylabel));
339:     PetscCall(PetscDrawLGReset(ctx->lg));
340:   }
341:   PetscCall(TSGetTimeStep(ts, &y));
342:   if (ctx->semilogy) y = PetscLog10Real(y);
343:   PetscCall(PetscDrawLGAddPoint(ctx->lg, &x, &y));
344:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
345:     PetscCall(PetscDrawLGDraw(ctx->lg));
346:     PetscCall(PetscDrawLGSave(ctx->lg));
347:   }
348:   PetscFunctionReturn(PETSC_SUCCESS);
349: }

351: /*@C
352:   TSMonitorLGCtxDestroy - Destroys a line graph context that was created with `TSMonitorLGCtxCreate()`.

354:   Collective

356:   Input Parameter:
357: . ctx - the monitor context

359:   Level: intermediate

361:   Note:
362:   Pass to `TSMonitorSet()` along with the context and `TSMonitorLGTimeStep()`

364: .seealso: [](ch_ts), `TS`, `TSMonitorLGCtxCreate()`, `TSMonitorSet()`, `TSMonitorLGTimeStep();`
365: @*/
366: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
367: {
368:   PetscFunctionBegin;
369:   if ((*ctx)->transformdestroy) PetscCall(((*ctx)->transformdestroy)((*ctx)->transformctx));
370:   PetscCall(PetscDrawLGDestroy(&(*ctx)->lg));
371:   PetscCall(PetscStrArrayDestroy(&(*ctx)->names));
372:   PetscCall(PetscStrArrayDestroy(&(*ctx)->displaynames));
373:   PetscCall(PetscFree((*ctx)->displayvariables));
374:   PetscCall(PetscFree((*ctx)->displayvalues));
375:   PetscCall(PetscFree(*ctx));
376:   PetscFunctionReturn(PETSC_SUCCESS);
377: }

379: /* Creates a TSMonitorSPCtx for use with DMSwarm particle visualizations */
380: PetscErrorCode TSMonitorSPCtxCreate(MPI_Comm comm, const char host[], const char label[], int x, int y, int m, int n, PetscInt howoften, PetscInt retain, PetscBool phase, PetscBool multispecies, TSMonitorSPCtx *ctx)
381: {
382:   PetscDraw draw;

384:   PetscFunctionBegin;
385:   PetscCall(PetscNew(ctx));
386:   PetscCall(PetscDrawCreate(comm, host, label, x, y, m, n, &draw));
387:   PetscCall(PetscDrawSetFromOptions(draw));
388:   PetscCall(PetscDrawSPCreate(draw, 1, &(*ctx)->sp));
389:   PetscCall(PetscDrawDestroy(&draw));
390:   (*ctx)->howoften     = howoften;
391:   (*ctx)->retain       = retain;
392:   (*ctx)->phase        = phase;
393:   (*ctx)->multispecies = multispecies;
394:   PetscFunctionReturn(PETSC_SUCCESS);
395: }

397: /* Destroys a TSMonitorSPCtx that was created with TSMonitorSPCtxCreate */
398: PetscErrorCode TSMonitorSPCtxDestroy(TSMonitorSPCtx *ctx)
399: {
400:   PetscFunctionBegin;

402:   PetscCall(PetscDrawSPDestroy(&(*ctx)->sp));
403:   PetscCall(PetscFree(*ctx));
404:   PetscFunctionReturn(PETSC_SUCCESS);
405: }

407: /* Creates a TSMonitorHGCtx for use with DMSwarm particle visualizations */
408: PetscErrorCode TSMonitorHGCtxCreate(MPI_Comm comm, const char host[], const char label[], int x, int y, int m, int n, PetscInt howoften, PetscInt Ns, PetscInt Nb, PetscBool velocity, TSMonitorHGCtx *ctx)
409: {
410:   PetscDraw draw;
411:   PetscInt  s;

413:   PetscFunctionBegin;
414:   PetscCall(PetscNew(ctx));
415:   PetscCall(PetscMalloc1(Ns, &(*ctx)->hg));
416:   for (s = 0; s < Ns; ++s) {
417:     PetscCall(PetscDrawCreate(comm, host, label, x + s * m, y, m, n, &draw));
418:     PetscCall(PetscDrawSetFromOptions(draw));
419:     PetscCall(PetscDrawHGCreate(draw, Nb, &(*ctx)->hg[s]));
420:     PetscCall(PetscDrawHGCalcStats((*ctx)->hg[s], PETSC_TRUE));
421:     PetscCall(PetscDrawDestroy(&draw));
422:   }
423:   (*ctx)->howoften = howoften;
424:   (*ctx)->Ns       = Ns;
425:   (*ctx)->velocity = velocity;
426:   PetscFunctionReturn(PETSC_SUCCESS);
427: }

429: /* Destroys a TSMonitorHGCtx that was created with TSMonitorHGCtxCreate */
430: PetscErrorCode TSMonitorHGCtxDestroy(TSMonitorHGCtx *ctx)
431: {
432:   PetscInt s;

434:   PetscFunctionBegin;
435:   for (s = 0; s < (*ctx)->Ns; ++s) PetscCall(PetscDrawHGDestroy(&(*ctx)->hg[s]));
436:   PetscCall(PetscFree((*ctx)->hg));
437:   PetscCall(PetscFree(*ctx));
438:   PetscFunctionReturn(PETSC_SUCCESS);
439: }

441: /*@C
442:   TSMonitorDrawSolution - Monitors progress of the `TS` solvers by calling
443:   `VecView()` for the solution at each timestep

445:   Collective

447:   Input Parameters:
448: + ts    - the `TS` context
449: . step  - current time-step
450: . ptime - current time
451: . u     - the solution at the current time
452: - dummy - either a viewer or `NULL`

454:   Options Database Keys:
455: + -ts_monitor_draw_solution         - draw the solution at each time-step
456: - -ts_monitor_draw_solution_initial - show initial solution as well as current solution

458:   Level: intermediate

460:   Notes:
461:   The initial solution and current solution are not displayed with a common axis scaling so generally the option `-ts_monitor_draw_solution_initial`
462:   will look bad

464:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, as well as the context created with
465:   `TSMonitorDrawCtxCreate()` and the function `TSMonitorDrawCtxDestroy()` to cause the monitor to be used during the `TS` integration.

467: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorDrawCtxCreate()`, `TSMonitorDrawCtxDestroy()`
468: @*/
469: PetscErrorCode TSMonitorDrawSolution(TS ts, PetscInt step, PetscReal ptime, Vec u, void *dummy)
470: {
471:   TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
472:   PetscDraw        draw;

474:   PetscFunctionBegin;
475:   if (!step && ictx->showinitial) {
476:     if (!ictx->initialsolution) PetscCall(VecDuplicate(u, &ictx->initialsolution));
477:     PetscCall(VecCopy(u, ictx->initialsolution));
478:   }
479:   if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) PetscFunctionReturn(PETSC_SUCCESS);

481:   if (ictx->showinitial) {
482:     PetscReal pause;
483:     PetscCall(PetscViewerDrawGetPause(ictx->viewer, &pause));
484:     PetscCall(PetscViewerDrawSetPause(ictx->viewer, 0.0));
485:     PetscCall(VecView(ictx->initialsolution, ictx->viewer));
486:     PetscCall(PetscViewerDrawSetPause(ictx->viewer, pause));
487:     PetscCall(PetscViewerDrawSetHold(ictx->viewer, PETSC_TRUE));
488:   }
489:   PetscCall(VecView(u, ictx->viewer));
490:   if (ictx->showtimestepandtime) {
491:     PetscReal xl, yl, xr, yr, h;
492:     char      time[32];

494:     PetscCall(PetscViewerDrawGetDraw(ictx->viewer, 0, &draw));
495:     PetscCall(PetscSNPrintf(time, 32, "Timestep %d Time %g", (int)step, (double)ptime));
496:     PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));
497:     h = yl + .95 * (yr - yl);
498:     PetscCall(PetscDrawStringCentered(draw, .5 * (xl + xr), h, PETSC_DRAW_BLACK, time));
499:     PetscCall(PetscDrawFlush(draw));
500:   }

502:   if (ictx->showinitial) PetscCall(PetscViewerDrawSetHold(ictx->viewer, PETSC_FALSE));
503:   PetscFunctionReturn(PETSC_SUCCESS);
504: }

506: /*@C
507:   TSMonitorDrawSolutionPhase - Monitors progress of the `TS` solvers by plotting the solution as a phase diagram

509:   Collective

511:   Input Parameters:
512: + ts    - the `TS` context
513: . step  - current time-step
514: . ptime - current time
515: . u     - the solution at the current time
516: - dummy - either a viewer or `NULL`

518:   Level: intermediate

520:   Notes:
521:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
522:   to be used during the `TS` integration.

524: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`
525: @*/
526: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts, PetscInt step, PetscReal ptime, Vec u, void *dummy)
527: {
528:   TSMonitorDrawCtx   ictx = (TSMonitorDrawCtx)dummy;
529:   PetscDraw          draw;
530:   PetscDrawAxis      axis;
531:   PetscInt           n;
532:   PetscMPIInt        size;
533:   PetscReal          U0, U1, xl, yl, xr, yr, h;
534:   char               time[32];
535:   const PetscScalar *U;

537:   PetscFunctionBegin;
538:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)ts), &size));
539:   PetscCheck(size == 1, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Only allowed for sequential runs");
540:   PetscCall(VecGetSize(u, &n));
541:   PetscCheck(n == 2, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Only for ODEs with two unknowns");

543:   PetscCall(PetscViewerDrawGetDraw(ictx->viewer, 0, &draw));
544:   PetscCall(PetscViewerDrawGetDrawAxis(ictx->viewer, 0, &axis));
545:   PetscCall(PetscDrawAxisGetLimits(axis, &xl, &xr, &yl, &yr));
546:   if (!step) {
547:     PetscCall(PetscDrawClear(draw));
548:     PetscCall(PetscDrawAxisDraw(axis));
549:   }

551:   PetscCall(VecGetArrayRead(u, &U));
552:   U0 = PetscRealPart(U[0]);
553:   U1 = PetscRealPart(U[1]);
554:   PetscCall(VecRestoreArrayRead(u, &U));
555:   if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) PetscFunctionReturn(PETSC_SUCCESS);

557:   PetscDrawCollectiveBegin(draw);
558:   PetscCall(PetscDrawPoint(draw, U0, U1, PETSC_DRAW_BLACK));
559:   if (ictx->showtimestepandtime) {
560:     PetscCall(PetscDrawGetCoordinates(draw, &xl, &yl, &xr, &yr));
561:     PetscCall(PetscSNPrintf(time, 32, "Timestep %d Time %g", (int)step, (double)ptime));
562:     h = yl + .95 * (yr - yl);
563:     PetscCall(PetscDrawStringCentered(draw, .5 * (xl + xr), h, PETSC_DRAW_BLACK, time));
564:   }
565:   PetscDrawCollectiveEnd(draw);
566:   PetscCall(PetscDrawFlush(draw));
567:   PetscCall(PetscDrawPause(draw));
568:   PetscCall(PetscDrawSave(draw));
569:   PetscFunctionReturn(PETSC_SUCCESS);
570: }

572: /*@C
573:   TSMonitorDrawCtxDestroy - Destroys the monitor context for `TSMonitorDrawSolution()`

575:   Collective

577:   Input Parameter:
578: . ictx - the monitor context

580:   Level: intermediate

582: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorDrawSolution()`, `TSMonitorDrawError()`, `TSMonitorDrawCtx`
583: @*/
584: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
585: {
586:   PetscFunctionBegin;
587:   PetscCall(PetscViewerDestroy(&(*ictx)->viewer));
588:   PetscCall(VecDestroy(&(*ictx)->initialsolution));
589:   PetscCall(PetscFree(*ictx));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: /*@C
594:   TSMonitorDrawCtxCreate - Creates the monitor context for `TSMonitorDrawCtx`

596:   Collective

598:   Input Parameters:
599: + comm     - the MPI communicator to use
600: . host     - the X display to open, or `NULL` for the local machine
601: . label    - the title to put in the title bar
602: . x        - the x screen coordinates of the upper left coordinate of the window
603: . y        - the y screen coordinates of the upper left coordinate of the window
604: . m        - the screen width in pixels
605: . n        - the screen height in pixels
606: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time

608:   Output Parameter:
609: . ctx - the monitor context

611:   Options Database Keys:
612: + -ts_monitor_draw_solution         - draw the solution at each time-step
613: - -ts_monitor_draw_solution_initial - show initial solution as well as current solution

615:   Level: intermediate

617:   Note:
618:   The context created by this function, `PetscMonitorDrawSolution()`, and `TSMonitorDrawCtxDestroy()` should be passed together to `TSMonitorSet()`.

620: .seealso: [](ch_ts), `TS`, `TSMonitorDrawCtxDestroy()`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorDrawCtx`, `PetscMonitorDrawSolution()`
621: @*/
622: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm, const char host[], const char label[], int x, int y, int m, int n, PetscInt howoften, TSMonitorDrawCtx *ctx)
623: {
624:   PetscFunctionBegin;
625:   PetscCall(PetscNew(ctx));
626:   PetscCall(PetscViewerDrawOpen(comm, host, label, x, y, m, n, &(*ctx)->viewer));
627:   PetscCall(PetscViewerSetFromOptions((*ctx)->viewer));

629:   (*ctx)->howoften    = howoften;
630:   (*ctx)->showinitial = PETSC_FALSE;
631:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-ts_monitor_draw_solution_initial", &(*ctx)->showinitial, NULL));

633:   (*ctx)->showtimestepandtime = PETSC_FALSE;
634:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-ts_monitor_draw_solution_show_time", &(*ctx)->showtimestepandtime, NULL));
635:   PetscFunctionReturn(PETSC_SUCCESS);
636: }

638: /*@C
639:   TSMonitorDrawSolutionFunction - Monitors progress of the `TS` solvers by calling
640:   `VecView()` for the solution provided by `TSSetSolutionFunction()` at each timestep

642:   Collective

644:   Input Parameters:
645: + ts    - the `TS` context
646: . step  - current time-step
647: . ptime - current time
648: . u     - solution at current time
649: - dummy - either a viewer or `NULL`

651:   Options Database Key:
652: . -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided `TSSetSolutionFunction()`

654:   Level: intermediate

656:   Note:
657:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
658:   to be used during the `TS` integration.

660: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSSetSolutionFunction()`
661: @*/
662: PetscErrorCode TSMonitorDrawSolutionFunction(TS ts, PetscInt step, PetscReal ptime, Vec u, void *dummy)
663: {
664:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
665:   PetscViewer      viewer = ctx->viewer;
666:   Vec              work;

668:   PetscFunctionBegin;
669:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) PetscFunctionReturn(PETSC_SUCCESS);
670:   PetscCall(VecDuplicate(u, &work));
671:   PetscCall(TSComputeSolutionFunction(ts, ptime, work));
672:   PetscCall(VecView(work, viewer));
673:   PetscCall(VecDestroy(&work));
674:   PetscFunctionReturn(PETSC_SUCCESS);
675: }

677: /*@C
678:   TSMonitorDrawError - Monitors progress of the `TS` solvers by calling
679:   `VecView()` for the error at each timestep

681:   Collective

683:   Input Parameters:
684: + ts    - the `TS` context
685: . step  - current time-step
686: . ptime - current time
687: . u     - solution at current time
688: - dummy - either a viewer or `NULL`

690:   Options Database Key:
691: . -ts_monitor_draw_error - Monitor error graphically, requires user to have provided `TSSetSolutionFunction()`

693:   Level: intermediate

695:   Notes:
696:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
697:   to be used during the `TS` integration.

699: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSSetSolutionFunction()`
700: @*/
701: PetscErrorCode TSMonitorDrawError(TS ts, PetscInt step, PetscReal ptime, Vec u, void *dummy)
702: {
703:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
704:   PetscViewer      viewer = ctx->viewer;
705:   Vec              work;

707:   PetscFunctionBegin;
708:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) PetscFunctionReturn(PETSC_SUCCESS);
709:   PetscCall(VecDuplicate(u, &work));
710:   PetscCall(TSComputeSolutionFunction(ts, ptime, work));
711:   PetscCall(VecAXPY(work, -1.0, u));
712:   PetscCall(VecView(work, viewer));
713:   PetscCall(VecDestroy(&work));
714:   PetscFunctionReturn(PETSC_SUCCESS);
715: }

717: /*@C
718:   TSMonitorSolution - Monitors progress of the `TS` solvers by `VecView()` for the solution at each timestep. Normally the viewer is a binary file or a `PetscDraw` object

720:   Collective

722:   Input Parameters:
723: + ts    - the `TS` context
724: . step  - current time-step
725: . ptime - current time
726: . u     - current state
727: - vf    - viewer and its format

729:   Level: intermediate

731:   Notes:
732:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
733:   to be used during the `TS` integration.

735: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`
736: @*/
737: PetscErrorCode TSMonitorSolution(TS ts, PetscInt step, PetscReal ptime, Vec u, PetscViewerAndFormat *vf)
738: {
739:   PetscFunctionBegin;
740:   if (vf->view_interval > 0 && !ts->reason && step % vf->view_interval != 0) PetscFunctionReturn(PETSC_SUCCESS);
741:   PetscCall(PetscViewerPushFormat(vf->viewer, vf->format));
742:   PetscCall(VecView(u, vf->viewer));
743:   PetscCall(PetscViewerPopFormat(vf->viewer));
744:   PetscFunctionReturn(PETSC_SUCCESS);
745: }

747: /*@C
748:   TSMonitorSolutionVTK - Monitors progress of the `TS` solvers by `VecView()` for the solution at each timestep.

750:   Collective

752:   Input Parameters:
753: + ts               - the `TS` context
754: . step             - current time-step
755: . ptime            - current time
756: . u                - current state
757: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03" PetscInt_FMT ")

759:   Level: intermediate

761:   Notes:
762:   The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
763:   These are named according to the file name template.

765:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
766:   to be used during the `TS` integration.

768: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`
769: @*/
770: PetscErrorCode TSMonitorSolutionVTK(TS ts, PetscInt step, PetscReal ptime, Vec u, void *filenametemplate)
771: {
772:   char        filename[PETSC_MAX_PATH_LEN];
773:   PetscViewer viewer;

775:   PetscFunctionBegin;
776:   if (step < 0) PetscFunctionReturn(PETSC_SUCCESS); /* -1 indicates interpolated solution */
777:   PetscCall(PetscSNPrintf(filename, sizeof(filename), (const char *)filenametemplate, step));
778:   PetscCall(PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts), filename, FILE_MODE_WRITE, &viewer));
779:   PetscCall(VecView(u, viewer));
780:   PetscCall(PetscViewerDestroy(&viewer));
781:   PetscFunctionReturn(PETSC_SUCCESS);
782: }

784: /*@C
785:   TSMonitorSolutionVTKDestroy - Destroy filename template string created for use with `TSMonitorSolutionVTK()`

787:   Not Collective

789:   Input Parameter:
790: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03" PetscInt_FMT ")

792:   Level: intermediate

794:   Note:
795:   This function is normally passed to `TSMonitorSet()` along with `TSMonitorSolutionVTK()`.

797: .seealso: [](ch_ts), `TSMonitorSet()`, `TSMonitorSolutionVTK()`
798: @*/
799: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
800: {
801:   PetscFunctionBegin;
802:   PetscCall(PetscFree(*(char **)filenametemplate));
803:   PetscFunctionReturn(PETSC_SUCCESS);
804: }

806: /*@C
807:   TSMonitorLGSolution - Monitors progress of the `TS` solvers by plotting each component of the solution vector
808:   in a time based line graph

810:   Collective

812:   Input Parameters:
813: + ts    - the `TS` context
814: . step  - current time-step
815: . ptime - current time
816: . u     - current solution
817: - dctx  - the `TSMonitorLGCtx` object that contains all the options for the monitoring, this is created with `TSMonitorLGCtxCreate()`

819:   Options Database Key:
820: . -ts_monitor_lg_solution_variables - enable monitor of lg solution variables

822:   Level: intermediate

824:   Notes:
825:   Each process in a parallel run displays its component solutions in a separate window

827:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
828:   to be used during the `TS` integration.

830: .seealso: [](ch_ts), `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorLGCtxCreate()`, `TSMonitorLGCtxSetVariableNames()`, `TSMonitorLGCtxGetVariableNames()`,
831:           `TSMonitorLGSetVariableNames()`, `TSMonitorLGGetVariableNames()`, `TSMonitorLGSetDisplayVariables()`, `TSMonitorLGCtxSetDisplayVariables()`,
832:           `TSMonitorLGCtxSetTransform()`, `TSMonitorLGSetTransform()`, `TSMonitorLGError()`, `TSMonitorLGSNESIterations()`, `TSMonitorLGKSPIterations()`,
833:           `TSMonitorEnvelopeCtxCreate()`, `TSMonitorEnvelopeGetBounds()`, `TSMonitorEnvelopeCtxDestroy()`, `TSMonitorEnvelop()`
834: @*/
835: PetscErrorCode TSMonitorLGSolution(TS ts, PetscInt step, PetscReal ptime, Vec u, void *dctx)
836: {
837:   TSMonitorLGCtx     ctx = (TSMonitorLGCtx)dctx;
838:   const PetscScalar *yy;
839:   Vec                v;

841:   PetscFunctionBegin;
842:   if (step < 0) PetscFunctionReturn(PETSC_SUCCESS); /* -1 indicates interpolated solution */
843:   if (!step) {
844:     PetscDrawAxis axis;
845:     PetscInt      dim;
846:     PetscCall(PetscDrawLGGetAxis(ctx->lg, &axis));
847:     PetscCall(PetscDrawAxisSetLabels(axis, "Solution as function of time", "Time", "Solution"));
848:     if (!ctx->names) {
849:       PetscBool flg;
850:       /* user provides names of variables to plot but no names has been set so assume names are integer values */
851:       PetscCall(PetscOptionsHasName(((PetscObject)ts)->options, ((PetscObject)ts)->prefix, "-ts_monitor_lg_solution_variables", &flg));
852:       if (flg) {
853:         PetscInt i, n;
854:         char   **names;
855:         PetscCall(VecGetSize(u, &n));
856:         PetscCall(PetscMalloc1(n + 1, &names));
857:         for (i = 0; i < n; i++) {
858:           PetscCall(PetscMalloc1(5, &names[i]));
859:           PetscCall(PetscSNPrintf(names[i], 5, "%" PetscInt_FMT, i));
860:         }
861:         names[n]   = NULL;
862:         ctx->names = names;
863:       }
864:     }
865:     if (ctx->names && !ctx->displaynames) {
866:       char    **displaynames;
867:       PetscBool flg;
868:       PetscCall(VecGetLocalSize(u, &dim));
869:       PetscCall(PetscCalloc1(dim + 1, &displaynames));
870:       PetscCall(PetscOptionsGetStringArray(((PetscObject)ts)->options, ((PetscObject)ts)->prefix, "-ts_monitor_lg_solution_variables", displaynames, &dim, &flg));
871:       if (flg) PetscCall(TSMonitorLGCtxSetDisplayVariables(ctx, (const char *const *)displaynames));
872:       PetscCall(PetscStrArrayDestroy(&displaynames));
873:     }
874:     if (ctx->displaynames) {
875:       PetscCall(PetscDrawLGSetDimension(ctx->lg, ctx->ndisplayvariables));
876:       PetscCall(PetscDrawLGSetLegend(ctx->lg, (const char *const *)ctx->displaynames));
877:     } else if (ctx->names) {
878:       PetscCall(VecGetLocalSize(u, &dim));
879:       PetscCall(PetscDrawLGSetDimension(ctx->lg, dim));
880:       PetscCall(PetscDrawLGSetLegend(ctx->lg, (const char *const *)ctx->names));
881:     } else {
882:       PetscCall(VecGetLocalSize(u, &dim));
883:       PetscCall(PetscDrawLGSetDimension(ctx->lg, dim));
884:     }
885:     PetscCall(PetscDrawLGReset(ctx->lg));
886:   }

888:   if (!ctx->transform) v = u;
889:   else PetscCall((*ctx->transform)(ctx->transformctx, u, &v));
890:   PetscCall(VecGetArrayRead(v, &yy));
891:   if (ctx->displaynames) {
892:     PetscInt i;
893:     for (i = 0; i < ctx->ndisplayvariables; i++) ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
894:     PetscCall(PetscDrawLGAddCommonPoint(ctx->lg, ptime, ctx->displayvalues));
895:   } else {
896: #if defined(PETSC_USE_COMPLEX)
897:     PetscInt   i, n;
898:     PetscReal *yreal;
899:     PetscCall(VecGetLocalSize(v, &n));
900:     PetscCall(PetscMalloc1(n, &yreal));
901:     for (i = 0; i < n; i++) yreal[i] = PetscRealPart(yy[i]);
902:     PetscCall(PetscDrawLGAddCommonPoint(ctx->lg, ptime, yreal));
903:     PetscCall(PetscFree(yreal));
904: #else
905:     PetscCall(PetscDrawLGAddCommonPoint(ctx->lg, ptime, yy));
906: #endif
907:   }
908:   PetscCall(VecRestoreArrayRead(v, &yy));
909:   if (ctx->transform) PetscCall(VecDestroy(&v));

911:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
912:     PetscCall(PetscDrawLGDraw(ctx->lg));
913:     PetscCall(PetscDrawLGSave(ctx->lg));
914:   }
915:   PetscFunctionReturn(PETSC_SUCCESS);
916: }

918: /*@C
919:   TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

921:   Collective

923:   Input Parameters:
924: + ts    - the `TS` context
925: - names - the names of the components, final string must be `NULL`

927:   Level: intermediate

929:   Notes:
930:   If the `TS` object does not have a `TSMonitorLGCtx` associated with it then this function is ignored

932: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorLGSetDisplayVariables()`, `TSMonitorLGCtxSetVariableNames()`
933: @*/
934: PetscErrorCode TSMonitorLGSetVariableNames(TS ts, const char *const *names)
935: {
936:   PetscInt i;

938:   PetscFunctionBegin;
939:   for (i = 0; i < ts->numbermonitors; i++) {
940:     if (ts->monitor[i] == TSMonitorLGSolution) {
941:       PetscCall(TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i], names));
942:       break;
943:     }
944:   }
945:   PetscFunctionReturn(PETSC_SUCCESS);
946: }

948: /*@C
949:   TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

951:   Collective

953:   Input Parameters:
954: + ctx   - the `TS` context
955: - names - the names of the components, final string must be `NULL`

957:   Level: intermediate

959: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorLGSetDisplayVariables()`, `TSMonitorLGSetVariableNames()`
960: @*/
961: PetscErrorCode TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx, const char *const *names)
962: {
963:   PetscFunctionBegin;
964:   PetscCall(PetscStrArrayDestroy(&ctx->names));
965:   PetscCall(PetscStrArrayallocpy(names, &ctx->names));
966:   PetscFunctionReturn(PETSC_SUCCESS);
967: }

969: /*@C
970:   TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot

972:   Collective

974:   Input Parameter:
975: . ts - the `TS` context

977:   Output Parameter:
978: . names - the names of the components, final string must be `NULL`

980:   Level: intermediate

982:   Note:
983:   If the `TS` object does not have a `TSMonitorLGCtx` associated with it then this function is ignored

985: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorLGSetDisplayVariables()`
986: @*/
987: PetscErrorCode TSMonitorLGGetVariableNames(TS ts, const char *const **names)
988: {
989:   PetscInt i;

991:   PetscFunctionBegin;
992:   *names = NULL;
993:   for (i = 0; i < ts->numbermonitors; i++) {
994:     if (ts->monitor[i] == TSMonitorLGSolution) {
995:       TSMonitorLGCtx ctx = (TSMonitorLGCtx)ts->monitorcontext[i];
996:       *names             = (const char *const *)ctx->names;
997:       break;
998:     }
999:   }
1000:   PetscFunctionReturn(PETSC_SUCCESS);
1001: }

1003: /*@C
1004:   TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor

1006:   Collective

1008:   Input Parameters:
1009: + ctx          - the `TSMonitorLG` context
1010: - displaynames - the names of the components, final string must be `NULL`

1012:   Level: intermediate

1014: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorLGSetVariableNames()`
1015: @*/
1016: PetscErrorCode TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx, const char *const *displaynames)
1017: {
1018:   PetscInt j = 0, k;

1020:   PetscFunctionBegin;
1021:   if (!ctx->names) PetscFunctionReturn(PETSC_SUCCESS);
1022:   PetscCall(PetscStrArrayDestroy(&ctx->displaynames));
1023:   PetscCall(PetscStrArrayallocpy(displaynames, &ctx->displaynames));
1024:   while (displaynames[j]) j++;
1025:   ctx->ndisplayvariables = j;
1026:   PetscCall(PetscMalloc1(ctx->ndisplayvariables, &ctx->displayvariables));
1027:   PetscCall(PetscMalloc1(ctx->ndisplayvariables, &ctx->displayvalues));
1028:   j = 0;
1029:   while (displaynames[j]) {
1030:     k = 0;
1031:     while (ctx->names[k]) {
1032:       PetscBool flg;
1033:       PetscCall(PetscStrcmp(displaynames[j], ctx->names[k], &flg));
1034:       if (flg) {
1035:         ctx->displayvariables[j] = k;
1036:         break;
1037:       }
1038:       k++;
1039:     }
1040:     j++;
1041:   }
1042:   PetscFunctionReturn(PETSC_SUCCESS);
1043: }

1045: /*@C
1046:   TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor

1048:   Collective

1050:   Input Parameters:
1051: + ts           - the `TS` context
1052: - displaynames - the names of the components, final string must be `NULL`

1054:   Level: intermediate

1056:   Note:
1057:   If the `TS` object does not have a `TSMonitorLGCtx` associated with it then this function is ignored

1059: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorLGSetVariableNames()`
1060: @*/
1061: PetscErrorCode TSMonitorLGSetDisplayVariables(TS ts, const char *const *displaynames)
1062: {
1063:   PetscInt i;

1065:   PetscFunctionBegin;
1066:   for (i = 0; i < ts->numbermonitors; i++) {
1067:     if (ts->monitor[i] == TSMonitorLGSolution) {
1068:       PetscCall(TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i], displaynames));
1069:       break;
1070:     }
1071:   }
1072:   PetscFunctionReturn(PETSC_SUCCESS);
1073: }

1075: /*@C
1076:   TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed

1078:   Collective

1080:   Input Parameters:
1081: + ts        - the `TS` context
1082: . transform - the transform function
1083: . destroy   - function to destroy the optional context
1084: - tctx      - optional context used by transform function

1086:   Level: intermediate

1088:   Note:
1089:   If the `TS` object does not have a `TSMonitorLGCtx` associated with it then this function is ignored

1091: .seealso: [](ch_ts), `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorLGSetVariableNames()`, `TSMonitorLGCtxSetTransform()`
1092: @*/
1093: PetscErrorCode TSMonitorLGSetTransform(TS ts, PetscErrorCode (*transform)(void *, Vec, Vec *), PetscErrorCode (*destroy)(void *), void *tctx)
1094: {
1095:   PetscInt i;

1097:   PetscFunctionBegin;
1098:   for (i = 0; i < ts->numbermonitors; i++) {
1099:     if (ts->monitor[i] == TSMonitorLGSolution) PetscCall(TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i], transform, destroy, tctx));
1100:   }
1101:   PetscFunctionReturn(PETSC_SUCCESS);
1102: }

1104: /*@C
1105:   TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed

1107:   Collective

1109:   Input Parameters:
1110: + tctx      - the `TS` context
1111: . transform - the transform function
1112: . destroy   - function to destroy the optional context
1113: - ctx       - optional context used by transform function

1115:   Level: intermediate

1117: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorLGSetVariableNames()`, `TSMonitorLGSetTransform()`
1118: @*/
1119: PetscErrorCode TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx, PetscErrorCode (*transform)(void *, Vec, Vec *), PetscErrorCode (*destroy)(void *), void *tctx)
1120: {
1121:   PetscFunctionBegin;
1122:   ctx->transform        = transform;
1123:   ctx->transformdestroy = destroy;
1124:   ctx->transformctx     = tctx;
1125:   PetscFunctionReturn(PETSC_SUCCESS);
1126: }

1128: /*@C
1129:   TSMonitorLGError - Monitors progress of the `TS` solvers by plotting each component of the error
1130:   in a time based line graph

1132:   Collective

1134:   Input Parameters:
1135: + ts    - the `TS` context
1136: . step  - current time-step
1137: . ptime - current time
1138: . u     - current solution
1139: - dummy - `TSMonitorLGCtx` object created with `TSMonitorLGCtxCreate()`

1141:   Options Database Key:
1142: . -ts_monitor_lg_error - create a graphical monitor of error history

1144:   Level: intermediate

1146:   Notes:
1147:   Each process in a parallel run displays its component errors in a separate window

1149:   The user must provide the solution using `TSSetSolutionFunction()` to use this monitor.

1151:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
1152:   to be used during the TS integration.

1154: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSSetSolutionFunction()`
1155: @*/
1156: PetscErrorCode TSMonitorLGError(TS ts, PetscInt step, PetscReal ptime, Vec u, void *dummy)
1157: {
1158:   TSMonitorLGCtx     ctx = (TSMonitorLGCtx)dummy;
1159:   const PetscScalar *yy;
1160:   Vec                y;

1162:   PetscFunctionBegin;
1163:   if (!step) {
1164:     PetscDrawAxis axis;
1165:     PetscInt      dim;
1166:     PetscCall(PetscDrawLGGetAxis(ctx->lg, &axis));
1167:     PetscCall(PetscDrawAxisSetLabels(axis, "Error in solution as function of time", "Time", "Error"));
1168:     PetscCall(VecGetLocalSize(u, &dim));
1169:     PetscCall(PetscDrawLGSetDimension(ctx->lg, dim));
1170:     PetscCall(PetscDrawLGReset(ctx->lg));
1171:   }
1172:   PetscCall(VecDuplicate(u, &y));
1173:   PetscCall(TSComputeSolutionFunction(ts, ptime, y));
1174:   PetscCall(VecAXPY(y, -1.0, u));
1175:   PetscCall(VecGetArrayRead(y, &yy));
1176: #if defined(PETSC_USE_COMPLEX)
1177:   {
1178:     PetscReal *yreal;
1179:     PetscInt   i, n;
1180:     PetscCall(VecGetLocalSize(y, &n));
1181:     PetscCall(PetscMalloc1(n, &yreal));
1182:     for (i = 0; i < n; i++) yreal[i] = PetscRealPart(yy[i]);
1183:     PetscCall(PetscDrawLGAddCommonPoint(ctx->lg, ptime, yreal));
1184:     PetscCall(PetscFree(yreal));
1185:   }
1186: #else
1187:   PetscCall(PetscDrawLGAddCommonPoint(ctx->lg, ptime, yy));
1188: #endif
1189:   PetscCall(VecRestoreArrayRead(y, &yy));
1190:   PetscCall(VecDestroy(&y));
1191:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
1192:     PetscCall(PetscDrawLGDraw(ctx->lg));
1193:     PetscCall(PetscDrawLGSave(ctx->lg));
1194:   }
1195:   PetscFunctionReturn(PETSC_SUCCESS);
1196: }

1198: /*@C
1199:   TSMonitorSPSwarmSolution - Graphically displays phase plots of `DMSWARM` particles on a scatter plot

1201:   Input Parameters:
1202: + ts    - the `TS` context
1203: . step  - current time-step
1204: . ptime - current time
1205: . u     - current solution
1206: - dctx  - the `TSMonitorSPCtx` object that contains all the options for the monitoring, this is created with `TSMonitorSPCtxCreate()`

1208:   Options Database Keys:
1209: + -ts_monitor_sp_swarm <n>                  - Monitor the solution every n steps, or -1 for plotting only the final solution
1210: . -ts_monitor_sp_swarm_retain <n>           - Retain n old points so we can see the history, or -1 for all points
1211: . -ts_monitor_sp_swarm_multi_species <bool> - Color each species differently
1212: - -ts_monitor_sp_swarm_phase <bool>         - Plot in phase space, as opposed to coordinate space

1214:   Level: intermediate

1216:   Notes:
1217:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
1218:   to be used during the `TS` integration.

1220: .seealso: [](ch_ts), `TS`, `TSMonitoSet()`, `DMSWARM`, `TSMonitorSPCtxCreate()`
1221: @*/
1222: PetscErrorCode TSMonitorSPSwarmSolution(TS ts, PetscInt step, PetscReal ptime, Vec u, void *dctx)
1223: {
1224:   TSMonitorSPCtx     ctx = (TSMonitorSPCtx)dctx;
1225:   PetscDraw          draw;
1226:   DM                 dm, cdm;
1227:   const PetscScalar *yy;
1228:   PetscInt           Np, p, dim = 2, *species;
1229:   PetscReal          species_color;

1231:   PetscFunctionBegin;
1232:   if (step < 0) PetscFunctionReturn(PETSC_SUCCESS); /* -1 indicates interpolated solution */
1233:   PetscCall(TSGetDM(ts, &dm));
1234:   if (!step) {
1235:     PetscDrawAxis axis;
1236:     PetscReal     dmboxlower[2], dmboxupper[2];

1238:     PetscCall(TSGetDM(ts, &dm));
1239:     PetscCall(DMGetDimension(dm, &dim));
1240:     PetscCheck(dim == 2, PETSC_COMM_SELF, PETSC_ERR_SUP, "Monitor only supports two dimensional fields");
1241:     PetscCall(DMSwarmGetCellDM(dm, &cdm));
1242:     PetscCall(DMGetBoundingBox(cdm, dmboxlower, dmboxupper));
1243:     PetscCall(VecGetLocalSize(u, &Np));
1244:     Np /= dim * 2;
1245:     PetscCall(PetscDrawSPGetAxis(ctx->sp, &axis));
1246:     if (ctx->phase) {
1247:       PetscCall(PetscDrawAxisSetLabels(axis, "Particles", "X", "V"));
1248:       PetscCall(PetscDrawAxisSetLimits(axis, dmboxlower[0], dmboxupper[0], -10, 10));
1249:     } else {
1250:       PetscCall(PetscDrawAxisSetLabels(axis, "Particles", "X", "Y"));
1251:       PetscCall(PetscDrawAxisSetLimits(axis, dmboxlower[0], dmboxupper[0], dmboxlower[1], dmboxupper[1]));
1252:     }
1253:     PetscCall(PetscDrawAxisSetHoldLimits(axis, PETSC_TRUE));
1254:     PetscCall(PetscDrawSPReset(ctx->sp));
1255:   }
1256:   if (ctx->multispecies) PetscCall(DMSwarmGetField(dm, "species", NULL, NULL, (void **)&species));
1257:   PetscCall(VecGetLocalSize(u, &Np));
1258:   Np /= dim * 2;
1259:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
1260:     PetscCall(PetscDrawSPGetDraw(ctx->sp, &draw));
1261:     if ((ctx->retain == 0) || (ctx->retain > 0 && !(step % ctx->retain))) PetscCall(PetscDrawClear(draw));
1262:     PetscCall(PetscDrawFlush(draw));
1263:     PetscCall(PetscDrawSPReset(ctx->sp));
1264:     PetscCall(VecGetArrayRead(u, &yy));
1265:     for (p = 0; p < Np; ++p) {
1266:       PetscReal x, y;

1268:       if (ctx->phase) {
1269:         x = PetscRealPart(yy[p * dim * 2]);
1270:         y = PetscRealPart(yy[p * dim * 2 + dim]);
1271:       } else {
1272:         x = PetscRealPart(yy[p * dim * 2]);
1273:         y = PetscRealPart(yy[p * dim * 2 + 1]);
1274:       }
1275:       if (ctx->multispecies) {
1276:         species_color = species[p] + 2;
1277:         PetscCall(PetscDrawSPAddPointColorized(ctx->sp, &x, &y, &species_color));
1278:       } else {
1279:         PetscCall(PetscDrawSPAddPoint(ctx->sp, &x, &y));
1280:       }
1281:       PetscCall(PetscDrawSPAddPoint(ctx->sp, &x, &y));
1282:     }
1283:     PetscCall(VecRestoreArrayRead(u, &yy));
1284:     PetscCall(PetscDrawSPDraw(ctx->sp, PETSC_FALSE));
1285:     PetscCall(PetscDrawSPSave(ctx->sp));
1286:     if (ctx->multispecies) PetscCall(DMSwarmRestoreField(dm, "species", NULL, NULL, (void **)&species));
1287:   }
1288:   PetscFunctionReturn(PETSC_SUCCESS);
1289: }

1291: /*@C
1292:   TSMonitorHGSwarmSolution - Graphically displays histograms of `DMSWARM` particles

1294:   Input Parameters:
1295: + ts    - the `TS` context
1296: . step  - current time-step
1297: . ptime - current time
1298: . u     - current solution
1299: - dctx  - the `TSMonitorSPCtx` object that contains all the options for the monitoring, this is created with `TSMonitorHGCtxCreate()`

1301:   Options Database Keys:
1302: + -ts_monitor_hg_swarm <n>             - Monitor the solution every n steps, or -1 for plotting only the final solution
1303: . -ts_monitor_hg_swarm_species <num>   - Number of species to histogram
1304: . -ts_monitor_hg_swarm_bins <num>      - Number of histogram bins
1305: - -ts_monitor_hg_swarm_velocity <bool> - Plot in velocity space, as opposed to coordinate space

1307:   Level: intermediate

1309:   Note:
1310:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
1311:   to be used during the `TS` integration.

1313: .seealso: `TSMonitoSet()`
1314: @*/
1315: PetscErrorCode TSMonitorHGSwarmSolution(TS ts, PetscInt step, PetscReal ptime, Vec u, void *dctx)
1316: {
1317:   TSMonitorHGCtx     ctx = (TSMonitorHGCtx)dctx;
1318:   PetscDraw          draw;
1319:   DM                 sw;
1320:   const PetscScalar *yy;
1321:   PetscInt          *species;
1322:   PetscInt           dim, d = 0, Np, p, Ns, s;

1324:   PetscFunctionBegin;
1325:   if (step < 0) PetscFunctionReturn(PETSC_SUCCESS); /* -1 indicates interpolated solution */
1326:   PetscCall(TSGetDM(ts, &sw));
1327:   PetscCall(DMGetDimension(sw, &dim));
1328:   PetscCall(DMSwarmGetNumSpecies(sw, &Ns));
1329:   Ns = PetscMin(Ns, ctx->Ns);
1330:   PetscCall(VecGetLocalSize(u, &Np));
1331:   Np /= dim * 2;
1332:   if (!step) {
1333:     PetscDrawAxis axis;
1334:     char          title[PETSC_MAX_PATH_LEN];

1336:     for (s = 0; s < Ns; ++s) {
1337:       PetscCall(PetscDrawHGGetAxis(ctx->hg[s], &axis));
1338:       PetscCall(PetscSNPrintf(title, PETSC_MAX_PATH_LEN, "Species %" PetscInt_FMT, s));
1339:       if (ctx->velocity) PetscCall(PetscDrawAxisSetLabels(axis, title, "V", "N"));
1340:       else PetscCall(PetscDrawAxisSetLabels(axis, title, "X", "N"));
1341:     }
1342:   }
1343:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
1344:     PetscCall(DMSwarmGetField(sw, "species", NULL, NULL, (void **)&species));
1345:     for (s = 0; s < Ns; ++s) {
1346:       PetscCall(PetscDrawHGReset(ctx->hg[s]));
1347:       PetscCall(PetscDrawHGGetDraw(ctx->hg[s], &draw));
1348:       PetscCall(PetscDrawClear(draw));
1349:       PetscCall(PetscDrawFlush(draw));
1350:     }
1351:     PetscCall(VecGetArrayRead(u, &yy));
1352:     for (p = 0; p < Np; ++p) {
1353:       const PetscInt s = species[p] < Ns ? species[p] : 0;
1354:       PetscReal      v;

1356:       if (ctx->velocity) v = PetscRealPart(yy[p * dim * 2 + d + dim]);
1357:       else v = PetscRealPart(yy[p * dim * 2 + d]);
1358:       PetscCall(PetscDrawHGAddValue(ctx->hg[s], v));
1359:     }
1360:     PetscCall(VecRestoreArrayRead(u, &yy));
1361:     for (s = 0; s < Ns; ++s) {
1362:       PetscCall(PetscDrawHGDraw(ctx->hg[s]));
1363:       PetscCall(PetscDrawHGSave(ctx->hg[s]));
1364:     }
1365:     PetscCall(DMSwarmRestoreField(sw, "species", NULL, NULL, (void **)&species));
1366:   }
1367:   PetscFunctionReturn(PETSC_SUCCESS);
1368: }

1370: /*@C
1371:   TSMonitorError - Monitors progress of the `TS` solvers by printing the 2 norm of the error at each timestep

1373:   Collective

1375:   Input Parameters:
1376: + ts    - the `TS` context
1377: . step  - current time-step
1378: . ptime - current time
1379: . u     - current solution
1380: - vf    - unused context

1382:   Options Database Key:
1383: . -ts_monitor_error - create a graphical monitor of error history

1385:   Level: intermediate

1387:   Notes:
1388:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
1389:   to be used during the `TS` integration.

1391:   The user must provide the solution using `TSSetSolutionFunction()` to use this monitor.

1393: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSSetSolutionFunction()`
1394: @*/
1395: PetscErrorCode TSMonitorError(TS ts, PetscInt step, PetscReal ptime, Vec u, PetscViewerAndFormat *vf)
1396: {
1397:   DM        dm;
1398:   PetscDS   ds = NULL;
1399:   PetscInt  Nf = -1, f;
1400:   PetscBool flg;

1402:   PetscFunctionBegin;
1403:   PetscCall(TSGetDM(ts, &dm));
1404:   if (dm) PetscCall(DMGetDS(dm, &ds));
1405:   if (ds) PetscCall(PetscDSGetNumFields(ds, &Nf));
1406:   if (Nf <= 0) {
1407:     Vec       y;
1408:     PetscReal nrm;

1410:     PetscCall(VecDuplicate(u, &y));
1411:     PetscCall(TSComputeSolutionFunction(ts, ptime, y));
1412:     PetscCall(VecAXPY(y, -1.0, u));
1413:     PetscCall(PetscObjectTypeCompare((PetscObject)vf->viewer, PETSCVIEWERASCII, &flg));
1414:     if (flg) {
1415:       PetscCall(VecNorm(y, NORM_2, &nrm));
1416:       PetscCall(PetscViewerASCIIPrintf(vf->viewer, "2-norm of error %g\n", (double)nrm));
1417:     }
1418:     PetscCall(PetscObjectTypeCompare((PetscObject)vf->viewer, PETSCVIEWERDRAW, &flg));
1419:     if (flg) PetscCall(VecView(y, vf->viewer));
1420:     PetscCall(VecDestroy(&y));
1421:   } else {
1422:     PetscErrorCode (**exactFuncs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nf, PetscScalar *u, void *ctx);
1423:     void    **ctxs;
1424:     Vec       v;
1425:     PetscReal ferrors[1];

1427:     PetscCall(PetscMalloc2(Nf, &exactFuncs, Nf, &ctxs));
1428:     for (f = 0; f < Nf; ++f) PetscCall(PetscDSGetExactSolution(ds, f, &exactFuncs[f], &ctxs[f]));
1429:     PetscCall(DMComputeL2FieldDiff(dm, ptime, exactFuncs, ctxs, u, ferrors));
1430:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Timestep: %04d time = %-8.4g \t L_2 Error: [", (int)step, (double)ptime));
1431:     for (f = 0; f < Nf; ++f) {
1432:       if (f > 0) PetscCall(PetscPrintf(PETSC_COMM_WORLD, ", "));
1433:       PetscCall(PetscPrintf(PETSC_COMM_WORLD, "%2.3g", (double)ferrors[f]));
1434:     }
1435:     PetscCall(PetscPrintf(PETSC_COMM_WORLD, "]\n"));

1437:     PetscCall(VecViewFromOptions(u, NULL, "-sol_vec_view"));

1439:     PetscCall(PetscOptionsHasName(NULL, NULL, "-exact_vec_view", &flg));
1440:     if (flg) {
1441:       PetscCall(DMGetGlobalVector(dm, &v));
1442:       PetscCall(DMProjectFunction(dm, ptime, exactFuncs, ctxs, INSERT_ALL_VALUES, v));
1443:       PetscCall(PetscObjectSetName((PetscObject)v, "Exact Solution"));
1444:       PetscCall(VecViewFromOptions(v, NULL, "-exact_vec_view"));
1445:       PetscCall(DMRestoreGlobalVector(dm, &v));
1446:     }
1447:     PetscCall(PetscFree2(exactFuncs, ctxs));
1448:   }
1449:   PetscFunctionReturn(PETSC_SUCCESS);
1450: }

1452: PetscErrorCode TSMonitorLGSNESIterations(TS ts, PetscInt n, PetscReal ptime, Vec v, void *monctx)
1453: {
1454:   TSMonitorLGCtx ctx = (TSMonitorLGCtx)monctx;
1455:   PetscReal      x   = ptime, y;
1456:   PetscInt       its;

1458:   PetscFunctionBegin;
1459:   if (n < 0) PetscFunctionReturn(PETSC_SUCCESS); /* -1 indicates interpolated solution */
1460:   if (!n) {
1461:     PetscDrawAxis axis;
1462:     PetscCall(PetscDrawLGGetAxis(ctx->lg, &axis));
1463:     PetscCall(PetscDrawAxisSetLabels(axis, "Nonlinear iterations as function of time", "Time", "SNES Iterations"));
1464:     PetscCall(PetscDrawLGReset(ctx->lg));
1465:     ctx->snes_its = 0;
1466:   }
1467:   PetscCall(TSGetSNESIterations(ts, &its));
1468:   y = its - ctx->snes_its;
1469:   PetscCall(PetscDrawLGAddPoint(ctx->lg, &x, &y));
1470:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
1471:     PetscCall(PetscDrawLGDraw(ctx->lg));
1472:     PetscCall(PetscDrawLGSave(ctx->lg));
1473:   }
1474:   ctx->snes_its = its;
1475:   PetscFunctionReturn(PETSC_SUCCESS);
1476: }

1478: PetscErrorCode TSMonitorLGKSPIterations(TS ts, PetscInt n, PetscReal ptime, Vec v, void *monctx)
1479: {
1480:   TSMonitorLGCtx ctx = (TSMonitorLGCtx)monctx;
1481:   PetscReal      x   = ptime, y;
1482:   PetscInt       its;

1484:   PetscFunctionBegin;
1485:   if (n < 0) PetscFunctionReturn(PETSC_SUCCESS); /* -1 indicates interpolated solution */
1486:   if (!n) {
1487:     PetscDrawAxis axis;
1488:     PetscCall(PetscDrawLGGetAxis(ctx->lg, &axis));
1489:     PetscCall(PetscDrawAxisSetLabels(axis, "Linear iterations as function of time", "Time", "KSP Iterations"));
1490:     PetscCall(PetscDrawLGReset(ctx->lg));
1491:     ctx->ksp_its = 0;
1492:   }
1493:   PetscCall(TSGetKSPIterations(ts, &its));
1494:   y = its - ctx->ksp_its;
1495:   PetscCall(PetscDrawLGAddPoint(ctx->lg, &x, &y));
1496:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
1497:     PetscCall(PetscDrawLGDraw(ctx->lg));
1498:     PetscCall(PetscDrawLGSave(ctx->lg));
1499:   }
1500:   ctx->ksp_its = its;
1501:   PetscFunctionReturn(PETSC_SUCCESS);
1502: }

1504: /*@C
1505:   TSMonitorEnvelopeCtxCreate - Creates a context for use with `TSMonitorEnvelope()`

1507:   Collective

1509:   Input Parameter:
1510: . ts - the `TS` solver object

1512:   Output Parameter:
1513: . ctx - the context

1515:   Level: intermediate

1517: .seealso: [](ch_ts), `TS`, `TSMonitorLGTimeStep()`, `TSMonitorSet()`, `TSMonitorLGSolution()`, `TSMonitorLGError()`
1518: @*/
1519: PetscErrorCode TSMonitorEnvelopeCtxCreate(TS ts, TSMonitorEnvelopeCtx *ctx)
1520: {
1521:   PetscFunctionBegin;
1522:   PetscCall(PetscNew(ctx));
1523:   PetscFunctionReturn(PETSC_SUCCESS);
1524: }

1526: /*@C
1527:   TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution

1529:   Collective

1531:   Input Parameters:
1532: + ts    - the `TS` context
1533: . step  - current time-step
1534: . ptime - current time
1535: . u     - current solution
1536: - dctx  - the envelope context

1538:   Options Database Key:
1539: . -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time

1541:   Level: intermediate

1543:   Notes:
1544:   After a solve you can use `TSMonitorEnvelopeGetBounds()` to access the envelope

1546:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
1547:   to be used during the `TS` integration.

1549: .seealso: [](ch_ts), `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorEnvelopeGetBounds()`, `TSMonitorEnvelopeCtxCreate()`
1550: @*/
1551: PetscErrorCode TSMonitorEnvelope(TS ts, PetscInt step, PetscReal ptime, Vec u, void *dctx)
1552: {
1553:   TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;

1555:   PetscFunctionBegin;
1556:   if (!ctx->max) {
1557:     PetscCall(VecDuplicate(u, &ctx->max));
1558:     PetscCall(VecDuplicate(u, &ctx->min));
1559:     PetscCall(VecCopy(u, ctx->max));
1560:     PetscCall(VecCopy(u, ctx->min));
1561:   } else {
1562:     PetscCall(VecPointwiseMax(ctx->max, u, ctx->max));
1563:     PetscCall(VecPointwiseMin(ctx->min, u, ctx->min));
1564:   }
1565:   PetscFunctionReturn(PETSC_SUCCESS);
1566: }

1568: /*@C
1569:   TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution

1571:   Collective

1573:   Input Parameter:
1574: . ts - the `TS` context

1576:   Output Parameters:
1577: + max - the maximum values
1578: - min - the minimum values

1580:   Level: intermediate

1582:   Notes:
1583:   If the `TS` does not have a `TSMonitorEnvelopeCtx` associated with it then this function is ignored

1585: .seealso: [](ch_ts), `TSMonitorEnvelopeCtx`, `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `VecView()`, `TSMonitorLGSetDisplayVariables()`
1586: @*/
1587: PetscErrorCode TSMonitorEnvelopeGetBounds(TS ts, Vec *max, Vec *min)
1588: {
1589:   PetscInt i;

1591:   PetscFunctionBegin;
1592:   if (max) *max = NULL;
1593:   if (min) *min = NULL;
1594:   for (i = 0; i < ts->numbermonitors; i++) {
1595:     if (ts->monitor[i] == TSMonitorEnvelope) {
1596:       TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)ts->monitorcontext[i];
1597:       if (max) *max = ctx->max;
1598:       if (min) *min = ctx->min;
1599:       break;
1600:     }
1601:   }
1602:   PetscFunctionReturn(PETSC_SUCCESS);
1603: }

1605: /*@C
1606:   TSMonitorEnvelopeCtxDestroy - Destroys a context that was created  with `TSMonitorEnvelopeCtxCreate()`.

1608:   Collective

1610:   Input Parameter:
1611: . ctx - the monitor context

1613:   Level: intermediate

1615: .seealso: [](ch_ts), `TS`, `TSMonitorLGCtxCreate()`, `TSMonitorSet()`, `TSMonitorLGTimeStep()`
1616: @*/
1617: PetscErrorCode TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
1618: {
1619:   PetscFunctionBegin;
1620:   PetscCall(VecDestroy(&(*ctx)->min));
1621:   PetscCall(VecDestroy(&(*ctx)->max));
1622:   PetscCall(PetscFree(*ctx));
1623:   PetscFunctionReturn(PETSC_SUCCESS);
1624: }

1626: /*@C
1627:   TSDMSwarmMonitorMoments - Monitors the first three moments of a `DMSWARM` being evolved by the `TS`

1629:   Not Collective

1631:   Input Parameters:
1632: + ts   - the `TS` context
1633: . step - current timestep
1634: . t    - current time
1635: . U    - current solution
1636: - vf   - not used

1638:   Options Database Key:
1639: . -ts_dmswarm_monitor_moments - Monitor moments of particle distribution

1641:   Level: intermediate

1643:   Notes:
1644:   This requires a `DMSWARM` be attached to the `TS`.

1646:   This is not called directly by users, rather one calls `TSMonitorSet()`, with this function as an argument, to cause the monitor
1647:   to be used during the TS integration.

1649: .seealso: [](ch_ts), `TS`, `TSMonitorSet()`, `TSMonitorDefault()`, `DMSWARM`
1650: @*/
1651: PetscErrorCode TSDMSwarmMonitorMoments(TS ts, PetscInt step, PetscReal t, Vec U, PetscViewerAndFormat *vf)
1652: {
1653:   DM                 sw;
1654:   const PetscScalar *u;
1655:   PetscReal          m = 1.0, totE = 0., totMom[3] = {0., 0., 0.};
1656:   PetscInt           dim, d, Np, p;
1657:   MPI_Comm           comm;

1659:   PetscFunctionBeginUser;
1660:   (void)t;
1661:   (void)vf;
1662:   PetscCall(TSGetDM(ts, &sw));
1663:   if (!sw || step % ts->monitorFrequency != 0) PetscFunctionReturn(PETSC_SUCCESS);
1664:   PetscCall(PetscObjectGetComm((PetscObject)ts, &comm));
1665:   PetscCall(DMGetDimension(sw, &dim));
1666:   PetscCall(VecGetLocalSize(U, &Np));
1667:   Np /= dim;
1668:   PetscCall(VecGetArrayRead(U, &u));
1669:   for (p = 0; p < Np; ++p) {
1670:     for (d = 0; d < dim; ++d) {
1671:       totE += PetscRealPart(u[p * dim + d] * u[p * dim + d]);
1672:       totMom[d] += PetscRealPart(u[p * dim + d]);
1673:     }
1674:   }
1675:   PetscCall(VecRestoreArrayRead(U, &u));
1676:   for (d = 0; d < dim; ++d) totMom[d] *= m;
1677:   totE *= 0.5 * m;
1678:   PetscCall(PetscPrintf(comm, "Step %4" PetscInt_FMT " Total Energy: %10.8lf", step, (double)totE));
1679:   for (d = 0; d < dim; ++d) PetscCall(PetscPrintf(comm, "    Total Momentum %c: %10.8lf", (char)('x' + d), (double)totMom[d]));
1680:   PetscCall(PetscPrintf(comm, "\n"));
1681:   PetscFunctionReturn(PETSC_SUCCESS);
1682: }