62 const Indices &samples, Eigen::VectorXf &model_coefficients)
const
65 if (samples.size () != sample_size_)
67 PCL_ERROR (
"[pcl::SampleConsensusModelCone::computeModelCoefficients] Invalid set of samples given (%lu)!\n", samples.size ());
73 PCL_ERROR (
"[pcl::SampleConsensusModelCone::computeModelCoefficients] No input dataset containing normals was given!\n");
77 Eigen::Vector4f p1 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z, 0.0f);
78 Eigen::Vector4f p2 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z, 0.0f);
79 Eigen::Vector4f p3 ((*input_)[samples[2]].x, (*input_)[samples[2]].y, (*input_)[samples[2]].z, 0.0f);
81 Eigen::Vector4f n1 ((*normals_)[samples[0]].normal[0], (*normals_)[samples[0]].normal[1], (*normals_)[samples[0]].normal[2], 0.0f);
82 Eigen::Vector4f n2 ((*normals_)[samples[1]].normal[0], (*normals_)[samples[1]].normal[1], (*normals_)[samples[1]].normal[2], 0.0f);
83 Eigen::Vector4f n3 ((*normals_)[samples[2]].normal[0], (*normals_)[samples[2]].normal[1], (*normals_)[samples[2]].normal[2], 0.0f);
86 Eigen::Vector4f ortho12 = n1.cross3(n2);
87 Eigen::Vector4f ortho23 = n2.cross3(n3);
88 Eigen::Vector4f ortho31 = n3.cross3(n1);
90 float denominator = n1.dot(ortho23);
92 float d1 = p1.dot (n1);
93 float d2 = p2.dot (n2);
94 float d3 = p3.dot (n3);
96 Eigen::Vector4f apex = (d1 * ortho23 + d2 * ortho31 + d3 * ortho12) / denominator;
99 Eigen::Vector4f ap1 = p1 - apex;
100 Eigen::Vector4f ap2 = p2 - apex;
101 Eigen::Vector4f ap3 = p3 - apex;
103 Eigen::Vector4f np1 = apex + (ap1/ap1.norm ());
104 Eigen::Vector4f np2 = apex + (ap2/ap2.norm ());
105 Eigen::Vector4f np3 = apex + (ap3/ap3.norm ());
107 Eigen::Vector4f np1np2 = np2 - np1;
108 Eigen::Vector4f np1np3 = np3 - np1;
110 Eigen::Vector4f axis_dir = np1np2.cross3 (np1np3);
111 axis_dir.normalize ();
119 float opening_angle = ( std::acos (ap1.dot (axis_dir)) + std::acos (ap2.dot (axis_dir)) + std::acos (ap3.dot (axis_dir)) ) / 3.0f;
121 model_coefficients.resize (model_size_);
123 model_coefficients[0] = apex[0];
124 model_coefficients[1] = apex[1];
125 model_coefficients[2] = apex[2];
127 model_coefficients[3] = axis_dir[0];
128 model_coefficients[4] = axis_dir[1];
129 model_coefficients[5] = axis_dir[2];
131 model_coefficients[6] = opening_angle;
133 if (model_coefficients[6] != -std::numeric_limits<double>::max() && model_coefficients[6] < min_angle_)
135 if (model_coefficients[6] != std::numeric_limits<double>::max() && model_coefficients[6] > max_angle_)
138 PCL_DEBUG (
"[pcl::SampleConsensusModelCone::computeModelCoefficients] Model is (%g,%g,%g,%g,%g,%g,%g).\n",
139 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
140 model_coefficients[4], model_coefficients[5], model_coefficients[6]);
147 const Eigen::VectorXf &model_coefficients, std::vector<double> &distances)
const
150 if (!isModelValid (model_coefficients))
156 distances.resize (indices_->size ());
158 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
159 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
160 float opening_angle = model_coefficients[6];
162 float apexdotdir = apex.dot (axis_dir);
163 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
165 for (std::size_t i = 0; i < indices_->size (); ++i)
167 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
170 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
171 Eigen::Vector4f pt_proj = apex + k * axis_dir;
174 Eigen::Vector4f height = apex - pt_proj;
175 float actual_cone_radius = tanf (opening_angle) * height.norm ();
179 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
182 Eigen::Vector4f dir = pt - pt_proj;
187 Eigen::Vector4f cone_normal = sinf (opening_angle) * height + std::cos (opening_angle) * dir;
190 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
191 double d_normal = std::abs (
getAngle3D (n, cone_normal));
192 d_normal = (std::min) (d_normal,
M_PI - d_normal);
194 distances[i] = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);