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Yosys is an open source framework for RTL synthesis. To learn more about Yosys, see What is Yosys. For
a quick guide on how to get started using Yosys, check out Getting started with Yosys. For the complete list
of commands available, go to commandindex.

Note: This documentation recently went through a major restructure. If you’re looking for something from
the previous version and can’t find it here, please let us know. Documentation from before the restructure
can still be found by switching to version 0.36 or earlier. Note that the previous theme does not include a
version switcher.
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CHAPTER
ONE

WHAT IS YOSYS

Yosys began as a BSc thesis project by Claire Wolf intended to support synthesis for a CGRA (coarse-grained
reconfigurable architecture). It then expanded into more general infrastructure for research on synthesis.

Modern Yosys has full support for the synthesizable subset of Verilog-2005 and has been described as “the
GCC of hardware synthesis.” Freely available and open source, Yosys finds use across hobbyist and commercial
applications as well as academic.

Note: Yosys is released under the ISC License:

A permissive license lets people do anything with your code with proper attribution and without warranty.
The ISC license is functionally equivalent to the BSD 2-Clause and MIT licenses, removing some language
that is no longer necessary.

Together with the place and route tool nextpnr, Yosys can be used to program some FPGAs with a fully
end-to-end open source flow (Lattice iCE40 and ECP5). It also does the synthesis portion for the OpenLane
flow, targeting the SkyWater 130nm open source PDK for fully open source ASIC design. Yosys can also do
formal verification with backends for solver formats like SMT2.

Yosys, and the accompanying Open Source EDA ecosystem, is currently maintained by Yosys Headquarters,
with many of the core developers employed by YosysHQ GmbH. A commercial extension, Tabby CAD Suite,
includes the Verific frontend for industry-grade SystemVerilog and VHDL support, formal verification with
SVA, and formal apps.
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1.1 What you can do with Yosys

« Read and process (most of) modern Verilog-2005 code
o Perform all kinds of operations on netlist (RTL, Logic, Gate)

e Perform logic optimizations and gate mapping with ABC

1.1.1 Typical applications for Yosys

o Synthesis of final production designs

o Pre-production synthesis (trial runs before investing in other tools)
o Conversion of full-featured Verilog to simple Verilog

o Conversion of Verilog to other formats (BLIF, BTOR, etc)

o Demonstrating synthesis algorithms (e.g. for educational purposes)
o Framework for experimenting with new algorithms

o Framework for building custom flows (Not limited to synthesis but also formal verification, reverse
engineering, .. .)

1.1.2 Things you can’t do

o Process high-level languages such as C/C++/SystemC
 Create physical layouts (place&route)
— Check out nextpnr for that

1.2 The Yosys family

As mentioned above, YosysH(Q) maintains not just Yosys but an entire family of tools built around it. In no
particular order:

SBY for formal verification
Yosys provides input parsing and conversion to the formats used by the solver engines. Yosys also
provides a unified witness framework for providing cover traces and counter examples for engines
which don’t natively support this. SBY source | SBY docs

EQY for equivalence checking
In addition to input parsing and preparation, Yosys provides the plugin support enabling EQY to
operate on designs directly. EQY source | EQY docs

MCY for mutation coverage
Yosys is used to read the source design, generate a list of possible mutations to maximise design
coverage, and then perform selected mutations. MCY source | MCY docs

SCY for deep formal traces
Since SCY generates and runs SBY, Yosys provides the same utility for SCY as it does for SBY. Yosys
additionally provides the trace concatenation needed for outputting the deep traces. SCY source
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1.3 The original thesis abstract

The first version of the Yosys documentation was published as a bachelor thesis at the Vienna University of
Technology [Woll3].

Abstract
Most of today’s digital design is done in HDL code (mostly Verilog or VHDL) and with the
help of HDL synthesis tools.

In special cases such as synthesis for coarse-grain cell libraries or when testing new synthesis
algorithms it might be necessary to write a custom HDL synthesis tool or add new features to
an existing one. In these cases the availability of a Free and Open Source (FOSS) synthesis
tool that can be used as basis for custom tools would be helpful.

In the absence of such a tool, the Yosys Open SYnthesis Suite (Yosys) was developed. This
document covers the design and implementation of this tool. At the moment the main
focus of Yosys lies on the high-level aspects of digital synthesis. The pre-existing FOSS
logic-synthesis tool ABC is used by Yosys to perform advanced gate-level optimizations.

An evaluation of Yosys based on real-world designs is included. It is shown that Yosys can
be used as-is to synthesize such designs. The results produced by Yosys in this tests where
successfully verified using formal verification and are comparable in quality to the results
produced by a commercial synthesis tool.

Yosys is a Verilog HDL synthesis tool. This means that it takes a behavioural design description as input
and generates an RTL, logical gate or physical gate level description of the design as output. Yosys’ main
strengths are behavioural and RTL synthesis. A wide range of commands (synthesis passes) exist within
Yosys that can be used to perform a wide range of synthesis tasks within the domain of behavioural, rtl and
logic synthesis. Yosys is designed to be extensible and therefore is a good basis for implementing custom
synthesis tools for specialised tasks.

System Design

High Level Synthesis (HLS)

Behavioral Synthesis

RTL Synthesis Yosys

Logic Synthesis

Cell Library

Fig. 1.1: Where Yosys exists in the layers of abstraction
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1.3.1 Benefits of open source HDL synthesis

o Cost (also applies to free as in free beer solutions):

Today the cost for a mask set in 180nm technology is far less than the cost for the design tools needed
to design the mask layouts. Open Source ASIC flows are an important enabler for ASIC-level Open
Source Hardware.

o Availability and Reproducibility:

If you are a researcher who is publishing, you want to use tools that everyone else can also use. Even
if most universities have access to all major commercial tools, you usually do not have easy access to
the version that was used in a research project a couple of years ago. With Open Source tools you can
even release the source code of the tool you have used alongside your data.

¢ Framework:

Yosys is not only a tool. It is a framework that can be used as basis for other developments, so
researchers and hackers alike do not need to re-invent the basic functionality. Extensibility was one of
Yosys’ design goals.

o All-in-one:

Because of the framework characteristics of Yosys, an increasing number of features become available
in one tool. Yosys not only can be used for circuit synthesis but also for formal equivalence checking,
SAT solving, and for circuit analysis, to name just a few other application domains. With proprietary
software one needs to learn a new tool for each of these applications.

¢ Educational Tool:

Proprietary synthesis tools are at times very secretive about their inner workings. They often are
black boxes. Yosys is very open about its internals and it is easy to observe the different steps of
synthesis.

1.3.2 History of Yosys

A Hardware Description Language (HDL) is a computer language used to describe circuits. A HDL synthesis
tool is a computer program that takes a formal description of a circuit written in an HDL as input and
generates a netlist that implements the given circuit as output.

Currently the most widely used and supported HDLs for digital circuits are Verilog [A+02, A+06] and VHDL
(VHSIC HDL, where VHSIC is an acronym for Very-High-Speed Integrated Circuits) [A+04, A+09]. Both
HDLs are used for test and verification purposes as well as logic synthesis, resulting in a set of synthesizable
and a set of non-synthesizable language features. In this document we only look at the synthesizable subset
of the language features.

In recent work on heterogeneous coarse-grain reconfigurable logic [WGS+12] the need for a custom
application-specific HDL synthesis tool emerged. It was soon realised that a synthesis tool that under-
stood Verilog or VHDL would be preferred over a synthesis tool for a custom HDL. Given an existing Verilog
or VHDL front end, the work for writing the necessary additional features and integrating them in an existing
tool can be estimated to be about the same as writing a new tool with support for a minimalistic custom
HDL.

The proposed custom HDL synthesis tool should be licensed under a Free and Open Source Software (FOSS)
licence. So an existing FOSS Verilog or VHDL synthesis tool would have been needed as basis to build upon.
The main advantages of choosing Verilog or VHDL is the ability to synthesize existing HDL code and to
mitigate the requirement for circuit-designers to learn a new language. In order to take full advantage of any
existing FOSS Verilog or VHDL tool, such a tool would have to provide a feature-complete implementation
of the synthesizable HDL subset.
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Basic RTL synthesis is a well understood field [HS96]. Lexing, parsing and processing of computer languages
[ASUS86] is a thoroughly researched field. All the information required to write such tools has been openly
available for a long time, and it is therefore likely that a FOSS HDL synthesis tool with a feature-complete
Verilog or VHDL front end must exist which can be used as a basis for a custom RTL synthesis tool.

Due to the author’s preference for Verilog over VHDL it was decided early on to go for Verilog instead
of VHDL'. So the existing FOSS Verilog synthesis tools were evaluated. The results of this evaluation are
utterly devastating. Therefore a completely new Verilog synthesis tool was implemented and is recommended
as basis for custom synthesis tools. This is the tool that is discussed in this document.

L A quick investigation into FOSS VHDL tools yielded similar grim results for FOSS VHDL synthesis tools.
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CHAPTER
TWO

GETTING STARTED WITH YOSYS

This section covers how to get started with Yosys, from installation to a guided walkthrough of synthesizing
a design for hardware, and finishing with an introduction to writing re-usable Yosys scripts.

2.1 Installation

This document will guide you through the process of installing Yosys.

2.1.1 CAD suite(s)

Yosys is part of the Tabby CAD Suite and the OSS CAD Suite! The easiest way to use yosys is to install
the binary software suite, which contains all required dependencies and related tools.

e Contact YosysHQ for a Tabby CAD Suite Evaluation License and download link

e OR go to https://github.com/YosysHQ/oss-cad-suite-build /releases to download the free OSS CAD
Suite

o Follow the Install Instructions on GitHub

Make sure to get a Tabby CAD Suite Evaluation License if you need features such as industry-grade Sys-
temVerilog and VHDL parsers!

For more information about the difference between Tabby CAD Suite and the OSS CAD Suite, please visit
https://www.yosyshq.com/tabby-cad-datasheet

Many Linux distributions also provide Yosys binaries, some more up to date than others. Check with your
package manager!

Targeted architectures

The OSS CAD Suite releases nightly builds for the following architectures:
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2.1.2 Building from source

Refer to the readme for the most up-to-date install instructions.

Supported platforms

The following platforms are supported and regularly tested:
e Linux
e macOS
Other platforms which may work, but instructions may not be up to date and are not regularly tested:
e FreeBSD
« WSL
o Windows with (e.g.) Cygwin

Build prerequisites

A C++ compiler with C+-+17 support is required as well as some standard tools such as GNU Flex, GNU
Bison, Make and Python. Some additional tools: readline, libffi, Tcl and zlib; are optional but enabled by
default (see ENABLE_* settings in Makefile). Graphviz and Xdot are used by the show command to display
schematics.

Installing all prerequisites for Ubuntu 20.04:

sudo sudo apt-get install build-essential clang bison flex \
libreadline-dev gawk tcl-dev libffi-dev git make \
graphviz xdot pkg-config python3 libboost-system-dev \
libboost-python-dev libboost-filesystem-dev zliblg-dev

Installing all prerequisites for macOS 11 (with Homebrew):

brew install bison flex gawk libffi git graphviz \
pkg-config python3 tcl-tk xdot bash boost-python3

Running the build system

From the root yosys directory, call the following commands:

make
sudo make install

This will build and then install Yosys, making it available on the command line as yosys. Note that this also
downloads, builds, and installs ABC (using yosys-abc as the executable name).

The default compiler is clang, to change between clang and gcc, use one of the following:

make config-clang
make config-gcc

To use a compiler different than the default, use:
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make CXX="g++-11"

See also:

Refer to Testing Yosys for details on testing Yosys once compiled.

2.1.3 Source tree and build system

The Yosys source tree is organized into the following top-level directories:

backends/
This directory contains a subdirectory for each of the backend modules.

docs/
Contains the source for this documentation, including images and sample code.

examples/
Contains example code for using Yosys with some other tools including a demo of the Yosys Python
api, and synthesizing for various toolchains such as Intel and Anlogic.

frontends/
This directory contains a subdirectory for each of the frontend modules.

guidelines/
Contains developer guidelines, including the code of conduct and coding style guide.

kernel/
This directory contains all the core functionality of Yosys. This includes the functions and definitions
for working with the RTLIL data structures (rtlil.h/cc), the main() function (driver.cc), the
internal framework for generating log messages (log.h/cc), the internal framework for registering and
calling passes (register.h/cc), some core commands that are not really passes (select.cc, show.cc,
..) and a couple of other small utility libraries.

libs/
Libraries packaged with Yosys builds are contained in this folder. See Auxiliary libraries.

misc/
Other miscellany which doesn’t fit anywhere else.

passes/
This directory contains a subdirectory for each pass or group of passes. For example as of this writ-
ing the directory passes/hierarchy/ contains the code for three passes: hierarchy, submod, and
uniquify.

techlibs/

This directory contains simulation models and standard implementations for the cells from the internal
cell library.

tests/
This directory contains the suite of unit tests and regression tests used by Yosys. See Testing Yosys.

The top-level Makefile includes frontends/*/Makefile.inc, passes/*/Makefile.inc and backends/*/
Makefile.inc. So when extending Yosys it is enough to create a new directory in frontends/, passes/ or
backends/ with your sources and a Makefile.inc. The Yosys kernel automatically detects all commands
linked with Yosys. So it is not needed to add additional commands to a central list of commands.

Good starting points for reading example source code to learn how to write passes are passes/opt/opt_dff.
cc and passes/opt/opt_merge.cc.

2.1. Installation 11
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See the top-level README file for a quick Getting Started guide and build instructions. The Yosys build is
based solely on Makefiles.

Users of the Qt Creator IDE can generate a QT Creator project file using make qtcreator. Users of the
Eclipse IDE can use the “Makefile Project with Existing Code” project type in the Eclipse “New Project”
dialog (only available after the CDT plugin has been installed) to create an Eclipse project in order to
programming extensions to Yosys or just browse the Yosys code base.

2.2 Synthesis starter

This page will be a guided walkthrough of the prepackaged iCE40 FPGA synthesis script - synth_ice40.
We will take a simple design through each step, looking at the commands being called and what they do
to the design. While synth_ice40 is specific to the iCE40 platform, most of the operations we will be
discussing are common across the majority of FPGA synthesis scripts. Thus, this document will provide a
good foundational understanding of how synthesis in Yosys is performed, regardless of the actual architecture
being used.

See also:

Advanced usage docs for Synth commands

2.2.1 Demo design
First, let’s quickly look at the design we’ll be synthesizing:

Listing 2.1: fifo.v

// address generator/counter
module addr_gen
#( parameter MAX_DATA=256,
localparam AWIDTH = $clog2(MAX_DATA)
) ( input en, clk, rst,
output reg [AWIDTH-1:0] addr
)5

initial addr <= 0;

// async reset
// increment address when enabled
always @(posedge clk or posedge rst)
if (rst)
addr <= 0;
else if (en) begin
if (addr == MAX_DATA-1)
addr <= 0;
else
addr <= addr + 1;
end
endmodule //addr_gen

// Define our top level fifo entity
module fifo
#( parameter MAX_DATA=256,

(continues on next page)
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localparam AWIDTH = $clog2(MAX_DATA)
) ( input wen, remn, clk, rst,

input [7:0] wdata,

output reg [7:0] rdata,

output reg [AWIDTH:0] count

);
// fifo storage
// sync read before write
wire [AWIDTH-1:0] waddr, raddr;
reg [7:0] data [MAX_DATA-1:0];
always Q(posedge clk) begin
if (wen)
data[waddr] <= wdata;
rdata <= datalraddr];
end // storage
// addr_gen for both write and read addresses
addr_gen #(.MAX_DATA(MAX_DATA))
fifo_writer (
.en (wen),
.clk (clk),
.rst (rst),
.addr (waddr)
);
addr_gen #(.MAX_DATA(MAX_DATA))
fifo_reader (
.en (ren),
.clk (clk),
.rst (rst),
.addr (raddr)
);
// status signals
initial count <= 0;
always Q(posedge clk or posedge rst) begin
if (rst)
count <= 0;
else if (wen && !ren)
count <= count + 1;
else if (ren && !wen)
count <= count - 1;
end
endmodule

(continued from previous page)
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2.2.2 Loading the design

Let’s load the design into Yosys. From the command line, we can call yosys fifo.v. This will open an
interactive Yosys shell session and immediately parse the code from fifo.v and convert it into an Abstract
Syntax Tree (AST). If you are interested in how this happens, there is more information in the document,
The Verilog and AST frontends. For now, suffice it to say that we do this to simplify further processing of
the design. You should see something like the following:

$ yosys fifo.v
-- Parsing “fifo.v' using frontend ~ -vlog2k' --

1. Executing Verilog-2005 frontend: fifo.v

Parsing Verilog input from “fifo.v' to AST representation.
Storing AST representation for module \$abstract\addr_gen'.
Storing AST representation for module ~$abstract\fifo'.
Successfully finished Verilog frontend.

See also:

Advanced usage docs for Loading a design

2.2.3 Elaboration

Now that we are in the interactive shell, we can call Yosys commands directly. Our overall goal is to call
synth_ice40 -top fifo, but for now we can run each of the commands individually for a better sense of
how each part contributes to the flow. We will also start with just a single module; addr_gen.

At the bottom of the help output for synth_ice40 is the complete list of commands called by this script.
Let’s start with the section labeled begin:

14 Chapter 2. Getting started with Yosys
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Listing 2.2: begin section

read_verilog -D ICE40_HX -1lib -specify +/ice40/cells_sim.v
hierarchy -check -top <top>
proc

read_verilog -D ICE40_HX -1ib -specify +/ice40/cells_sim.v loads the iCE40 cell models which al-
lows us to include platform specific IP blocks in our design. PLLs are a common example of this, where
we might need to reference SB_PLL40_CORE directly rather than being able to rely on mapping passes later.
Since our simple design doesn’t use any of these IP blocks, we can skip this command for now. Because these
cell models will also be needed once we start mapping to hardware we will still need to load them later.

Note: +/ is a dynamic reference to the Yosys share directory. By default, this is /usr/local/share/yosys.
If using a locally built version of Yosys from the source directory, this will be the share folder in the same
directory.

The addr_gen module

Since we’re just getting started, let’s instead begin with hierarchy -top addr_gen. This command declares
that the top level module is addr_gen, and everything else can be discarded.

Listing 2.3: addr_gen module source

module addr_gen
#( parameter MAX_DATA=256,
localparam AWIDTH = $clog2(MAX_DATA)
) ( input en, clk, rst,
output reg [AWIDTH-1:0] addr
)5

initial addr <= 0;

// async reset
// increment address when enabled
always @(posedge clk or posedge rst)
if (rst)
addr <= 0;
else if (en) begin
if (addr == MAX_DATA-1)
addr <= 0;
else
addr <= addr + 1;
end
endmodule //addr_gen

Note: hierarchy should always be the first command after the design has been read. By specifying the
top module, hierarchy will also set the (* top *) attribute on it. This is used by other commands that
need to know which module is the top.

2.2. Synthesis starter 15
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Listing 2.4: hierarchy -top addr_gen output

yosys> hierarchy -top addr_gen
2. Executing HIERARCHY pass (managing design hierarchy) .

3. Executing AST frontend in derive mode using pre-parsed AST for module ~\addr_gen'.
Generating RTLIL representation for module ~\addr_gen'.

3.1. Analyzing design hierarchy..
Top module: \addr_gen

3.2. Analyzing design hierarchy..

Top module: \addr_gen

Removing unused module ~$abstract\fifo'.
Removing unused module ~$abstract\addr_gen'.
Removed 2 unused modules.

Our addr_gen circuit now looks like this:

PROC $4
fifo.v:0.0-0.0

$2
B | $eq

Al s3
©—> B | $add

PROC $1
fifo.v:12.2-20.6

Fig. 2.1: addr_gen module after hierarchy

Simple operations like addr + 1 and addr == MAX_DATA-1 can be extracted from our always @ block in
addr__gen module source. This gives us the highlighted $add and $eq cells we see. But control logic (like
the if .. else) and memory elements (like the addr <= 0) are not so straightforward. These get put into
“processes”, shown in the schematic as PROC. Note how the second line refers to the line numbers of the
start /end of the corresponding always @ block. In the case of an initial block, we instead see the PROC
referring to line 0.
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To handle these, let us now introduce the next command: proc - translate processes to netlists. proc is a
macro command like synth_ice40. Rather than modifying the design directly, it instead calls a series of
other commands. In the case of proc, these sub-commands work to convert the behavioral logic of processes
into multiplexers and registers. Let’s see what happens when we run it. For now, we will call proc -noopt
to prevent some automatic optimizations which would normally happen.

ARST
" $10
/ CLK | gaarr | Q
Al $3 > 7:0- 7 /
@%B $add | ¥ -7 / V > > S0N.addr{7:0]
GH—s

$6 $8

$mux Smux

B {sea | ¥ [ T

Fig. 2.2: addr_gen module after proc -noopt

There are now a few new cells from our always @, which have been highlighted. The if statements are now
modeled with $mux cells, while the register uses an $adff cell. If we look at the terminal output we can
also see all of the different proc_* commands being called. We will look at each of these in more detail in
Converting process blocks.

Notice how in the top left of addr gen module after proc -noopt we have a floating wire, generated from the
initial assignment of 0 to the addr wire. However, this initial assignment is not synthesizable, so this will
need to be cleaned up before we can generate the physical hardware. We can do this now by calling clean.
We're also going to call opt_ezpr now, which would normally be called at the end of proc. We can call
both commands at the same time by separating them with a colon and space: opt_expr; clean.

$10

O C A CLE | Gaatr | Q
addr D
I N
— Y B B °\°
B | Sadd
. “

ARST

$mux $mux

A
B| % |y
s

m|w|>

A | ¢
R

Fig. 2.3: addr_gen module after opt_expr; clean

You may also notice that the highlighted $eq cell input of 255 has changed to 8'11111111. Constant values
are presented in the format <bit_width>'<bits>, with 32-bit values instead using the decimal number.
This indicates that the constant input has been reduced from 32-bit wide to 8-bit wide. This is a side-effect
of running opt_ezpr, which performs constant folding and simple expression rewriting. For more on why
this happens, refer to Optimization passes and the section on opt expr.
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Note: clean - remove unused cells and wires can also be called with two semicolons after any command,
for example we could have called opt_expr;; instead of opt_expr; clean. You may notice some scripts
will end each line with ;;. It is beneficial to run clean before inspecting intermediate products to remove
disconnected parts of the circuit which have been left over, and in some cases can reduce the processing
required in subsequent commands.

See also:
Advanced usage docs for
o Converting process blocks

e Optimization passes

The full example

Let’s now go back and check on our full design by using hierarchy -check -top fifo. By passing the
-check option there we are also telling the hierarchy command that if the design includes any non-blackbox
modules without an implementation it should return an error.

Note that if we tried to run this command now then we would get an error. This is because we already
removed all of the modules other than addr_gen. We could restart our shell session, but instead let’s use
two new commands:

e design - save, restore and reset current design, and
e read_verilog - read modules from Verilog file.

Listing 2.5: reloading fifo.v and running hierarchy -check
-top fifo

yosys> design -reset
yosys> read_verilog fifo.v

11. Executing Verilog-2005 frontend: fifo.v

Parsing Verilog input from “fifo.v' to AST representation.
Generating RTLIL representation for module ~\addr_gen'.
Generating RTLIL representation for module ~\fifo'.
Successfully finished Verilog frontend.

yosys> hierarchy -check -top fifo
12. Executing HIERARCHY pass (managing design hierarchy) .

12.1. Analyzing design hierarchy..
Top module: \fifo

Used module: \addr_gen
Parameter \MAX_DATA = 256

12.2. Executing AST frontend in derive mode using pre-parsed AST for module ~\addr_gen'.
Parameter \MAX_DATA = 256

Generating RTLIL representation for module ~$paramod\addr_gen\MAX_DATA=s32
—'00000000000000000000000100000000" .

(continues on next page)
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(continued from previous page)

Parameter \MAX_DATA = 256
Found cached RTLIL representation for module ~$paramod\addr_gen\MAX DATA=s32
—'00000000000000000000000100000000" .

12.3. Analyzing design hierarchy..
Top module: \fifo
Used module: $paramod\addr_gen\MAX_DATA=s32'00000000000000000000000100000000

12.4. Analyzing design hierarchy..

Top module: \fifo

Used module: $paramod\addr_gen\MAX_DATA=s32'00000000000000000000000100000000
Removing unused module ~\addr_gen'.

Removed 1 unused modules.

Notice how this time we didn’t see any of those $abstract modules? That’s because when we ran yosys
fifo.v, the first command Yosys called was read_verilog -defer fifo.v. The -defer option there
tells read_verilog only read the abstract syntax tree and defer actual compilation to a later hierarchy
command. This is useful in cases where the default parameters of modules yield invalid code which is not
synthesizable. This is why Yosys defers compilation automatically and is one of the reasons why hierarchy
should always be the first command after loading the design. If we know that our design won’t run into this
issue, we can skip the -defer.

Note: The number before a command’s output increments with each command run. Don’t worry if your
numbers don’t match ours! The output you are seeing comes from the same script that was used to generate
the images in this document, included in the source as fifo.ys. There are extra commands being run
which you don’t see, but feel free to try them yourself, or play around with different commands. You can
always start over with a clean slate by calling exit or hitting ctrl+d (i.e. EOF) and re-launching the Yosys
interactive terminal. ctrl+c (i.e. SIGINT) will also end the terminal session but will return an error code
rather than exiting gracefully.

We can also run proc now to finish off the full begin section. Because the design schematic is quite large,
we will be showing just the data path for the rdata output. If you would like to see the entire design for
yourself, you can do so with show - generate schematics using graphviz. Note that the show command only
works with a single module, so you may need to call it with show fifo. Displaying schematics section in
Scripting in Yosys has more on how to use show.

clk

clk
" fifo_reader adds
-S| $paramod \ addr_gen\ MAX_DATA=532'00000000000000000000000100000000 | * ADDR

st

$23
CLK DATA

— EN e
o

B

Fig. 2.4: rdata output after proc

The highlighted fifo_reader block contains an instance of the addr gen module after proc -noopt that we
looked at earlier. Notice how the type is shown as $paramod\\addr_gen\\MAX_DATA=s32'.... This is a
“parametric module”: an instance of the addr_gen module with the MAX_DATA parameter set to the given
value.
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The other highlighted block is a $memrd cell. At this stage of synthesis we don’t yet know what type of
memory is going to be implemented, but we do know that rdata <= datal[raddr]; could be implemented
as a read from memory. Note that the $memrd cell here is asynchronous, with both the clock and enable
signal undefined; shown with the 1'x inputs.

See also:

Advanced usage docs for Converting process blocks

2.2.4 Flattening

At this stage of a synthesis flow there are a few other commands we could run. In synth_ice40 we get
these:

Listing 2.6: flatten section

flatten
tribuf -logic
deminout

First off is flatten. Flattening the design like this can allow for optimizations between modules which
would otherwise be missed. Let’s run flatten;; on our design.

Listing 2.7: output of flatten;;

yosys> flatten

15. Executing FLATTEN pass (flatten design).

Deleting now unused module $paramod\addr_gen\MAX_DATA=s32
—'00000000000000000000000100000000.

<suppressed ~2 debug messages>

yosys> clean
Removed 3 unused cells and 25 unused wires.

®——> ARST
ek | J0 | e fifo_reader.addr \
B | $add \ —
A /
$51 .
Co—0of

$53
$mux

mlw >

ADDR CLK | $56 Q
CLK | 5% | DATA | D | Sdff

$memrd

®/ EN

Fig. 2.5: rdata output after flatten;;

The pieces have moved around a bit, but we can see addr_gen module after proc -noopt from earlier has
replaced the fifo_reader block in rdata output after proc. We can also see that the addr output has been
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renamed to fifo_reader.addr and merged with the raddr wire feeding into the $memrd cell. This wire
merging happened during the call to clean which we can see in the output of flatten;;.

Note: flatten and clean would normally be combined into a single yosys> flatten;; output, but they
appear separately here as a side effect of using echo for generating the terminal style output.

Depending on the target architecture, this stage of synthesis might also see commands such as tribuf with
the -logic option and deminout. These remove tristate and inout constructs respectively, replacing them
with logic suitable for mapping to an FPGA. Since we do not have any such constructs in our example
running these commands does not change our design.

2.2.5 The coarse-grain representation

At this stage, the design is in coarse-grain representation. It still looks recognizable, and cells are word-
level operators with parametrizable width. This is the stage of synthesis where we do things like const
propagation, expression rewriting, and trimming unused parts of wires.

This is also where we convert our FSMs and hard blocks like DSPs or memories. Such elements have to be
inferred from patterns in the design and there are special passes for each. Detection of these patterns can
also be affected by optimizations and other transformations done previously.

Note: While the iCE40 flow had a flatten section and put proc in the begin section, some synthesis scripts
will instead include these in this section.

Part 1
In the iCE40 flow, we start with the following commands:

Listing 2.8: coarse section (part 1)

opt_expr

opt_clean

check

opt —-nodffe -nosdff
fsm

opt

We've already come across opt_ezpr, and opt_clean is the same as clean but with more verbose output.
The check pass identifies a few obvious problems which will cause errors later. Calling it here lets us fail
faster rather than wasting time on something we know is impossible.

Next up is opt -nodffe -nosdff performing a set of simple optimizations on the design. This command
also ensures that only a specific subset of FF types are included, in preparation for the next command: fsm
- extract and optimize finite state machines. Both opt and fsm are macro commands which are explored in
more detail in Optimization passes and FSM handling respectively.

Up until now, the data path for rdata has remained the same since rdata output after flatten;;. However
the next call to opt does cause a change. Specifically, the call to opt_dff without the -nodffe -nosdff
options is able to fold one of the $mux cells into the $adff to form an $adffe cell; highlighted below:
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Listing 2.9: output of opt_dff

yosys> opt_dff

17. Executing OPT_DFF pass (perform DFF optimizations).

Adding EN signal on $procdff$55 ($adff) from module fifo (D = $0\count[8:0], Q = \count).
Adding EN signal on $flatten\fifo_writer.$procdff$60 ($adff) from module fifo (D =
—~$flatten\fifo_writer.$procmux$51_ Y, Q = \fifo_writer.addr).

Adding EN signal on $flatten\fifo_reader.$procdff$60 ($adff) from module fifo (D
—$flatten\fifo_reader.$procmux$51_Y, Q = \fifo_reader.addr).

LA | $34
HB o Y\>o\

Cne o
ARST -
B $51 Y
CLK $68 - —{ $mux
= Sadffe Q fifo_reader.addr 8'00000000 N
ren EN i $33 %
811111111 B | $eq
clk
o~
ADDR o | sair | ©
®\> cik | 32 | pata S
$memrd
o
Fig. 2.6: rdata output after opt_dff
See also:

Advanced usage docs for
e FSM handling
e Optimization passes
Part 2
The next group of commands performs a series of optimizations:

Listing 2.10: coarse section (part 2)

wreduce

peepopt

opt_clean

share

techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr

opt_clean

memory_dff [-no-rw-check]

First up is wreduce - reduce the word size of operations if possible. If we run this we get the following:
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Listing 2.11: output of wreduce

yosys> wreduce

19. Executing WREDUCE pass (reducing word size of cells).

Removed top 31 bits (of 32) from port B of cell fifo.$add$fifo.v:66$27 ($add).

Removed top 23 bits (of 32) from port Y of cell fifo.$add$fifo.v:66$27 ($add).

Removed top 31 bits (of 32) from port B of cell fifo.$sub$fifo.v:68$30 ($sub).

Removed top 23 bits (of 32) from port Y of cell fifo.$sub$fifo.v:68830 ($sub).

Removed top 1 bits (of 2) from port B of cell fifo.$auto$opt_dff.cc:195:make_patterns_
—logic$66 ($ne).

Removed cell fifo.$flatten\fifo_writer.$procmux$s53 ($mux) .

Removed top 31 bits (of 32) from port B of cell fifo.$flatten\fifo_writer.$add$fifo.v:19
—$34 ($add) .

Removed top 24 bits (of 32) from port Y of cell fifo.$flatten\fifo_writer.$add$fifo.v:19
—$34 ($add) .

Removed cell fifo.$flatten\fifo_reader.$procmux$s53 ($mux) .

Removed top 31 bits (of 32) from port B of cell fifo.$flatten\fifo_reader.$add$fifo.v:19
—$34 ($add) .

Removed top 24 bits (of 32) from port Y of cell fifo.$flatten\fifo_reader.$add$fifo.v:19
—$34 ($add) .

Removed top 23 bits (of 32) from wire fifo.$add$fifo.v:66$27_Y.

Removed top 24 bits (of 32) from wire fifo.$flatten\fifo_reader.$add$fifo.v:19$34_Y.

yosys> show -notitle -format dot -prefix rdata_wreduce o:rdata Jcix*

20. Generating Graphviz representation of design.
Writing dot description to “rdata_wreduce.dot'.
Dumping selected parts of module fifo to page 1.

yosys> opt_clean

21. Executing OPT_CLEAN pass (remove unused cells and wires).
Finding unused cells or wires in module \fifo..

Removed O unused cells and 4 unused wires.

<suppressed ~1 debug messages>

yosys> memory_dff
22. Executing MEMORY_DFF pass (merging $dff cells to $memrd) .

Checking read port ~\data'[0] in module “\fifo': merging output FF to cell.
Write port O: non-transparent.

Looking at the data path for rdata, the most relevant of these width reductions are the ones affecting fifo.
$flatten\fifo_reader.$add$fifo.v. That is the $add cell incrementing the fifo_reader address. We can
look at the schematic and see the output of that cell has now changed.

The next two (new) commands are peepopt - collection of peephole optimizers and share - perform sat-based
resource sharing. Neither of these affect our design, and they’re explored in more detail in Optimization
passes, so let’s skip over them. techmap -map +/cmp2lut.v -D LUT_WIDTH=4 optimizes certain comparison
operators by converting them to LUTs instead. The usage of techmap is explored more in Technology
mapping.

Our next command to run is memory_dff - merge input/output DFFs into memory read ports.
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A] s34 |y
@ 1 sadd | ¥ [O———0{ 70-7:0 f———{ 7070 o\

—_— A
C]I;K $§§t§fe Q fifo_reader.addr T o
ren EN i$33
clk
CLK | $56
ADDR D | $dff Q ’
®\> CLK $rfezird DATA 7
o—=
Fig. 2.7: rdata output after wreduce
Listing 2.12: output of memory_dff
yosys> memory_dff
22. Executing MEMORY_DFF pass (merging $dff cells to $memrd) .
Checking read port “\data'[0] in module “\fifo': merging output FF to cell.
Write port O: non-transparent.
G i ] ()
CLK $68
clk D | Sadffe Q A
1 ss1
EN \ 1B | $mux Y
A s

ren |Als33 |y 800000000
B | S \/

@\ ADDR
ARST
. $23 ™

CLE $memrd_v2 DATA

EN

®/

Fig. 2.8: rdata output after memory_dff

As the title suggests, memory_dff has merged the output $dff into the $memrd cell and converted it to a
$memrd_v2 (highlighted). This has also connected the CLK port to the clk input as it is now a synchronous
memory read with appropriate enable (EN=1'1) and reset (ARST=1'0 and SRST=1'0) inputs.

See also:
Advanced usage docs for

e Optlimization passes
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e Technology mapping

e Memory handling
Part 3
The third part of the synth_ice40 flow is a series of commands for mapping to DSPs. By default, the
iCE40 flow will not map to the hardware DSP blocks and will only be performed if called with the -dsp
flag: synth_ice40 -dsp. While our example has nothing that could be mapped to DSPs we can still take

a quick look at the commands here and describe what they do.

Listing 2.13: coarse section (part 3)

wreduce t:$mul

techmap -map +/mul2dsp.v -map +/ice40/dsp_map.v -D DSP_A_MAXWIDTH=16 -D DSP_B_
—MAXWIDTH=16 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_Y_MINWIDTH=11 -D DSP_NAME=$_
—_MUL16X16 (if -dsp)

select a:mul2dsp (if -dsp)
setattr -unset mul2dsp (if -dsp)
opt_expr -fine (if -dsp)
wreduce (if -dsp)
select -clear (if -dsp)
ice40_dsp (if -dsp)

chtype -set $mul t:$__soft_mul (if -dsp)

wreduce t:$mul performs width reduction again, this time targetting only cells of type $mul. techmap -map
+/mul2dsp.v -map +/ice40/dsp_map.v ... -D DSP_NAME=$__MUL16X16 uses techmap to map $mul cells
to $__MUL16X16 which are, in turn, mapped to the iCE40 SB_MAC16. Any multipliers which aren’t compatible
with conversion to $__MUL16X16 are relabelled to $__soft_mul before chtype changes them back to $mul.

During the mul2dsp conversion, some of the intermediate signals are marked with the attribute mul2dsp.
By calling select a:mul2dsp we restrict the following commands to only operate on the cells and wires
used for these signals. setattr removes the now unnecessary mul2dsp attribute. opt_ezpr we’ve already
come across for const folding and simple expression rewriting, the —fine option just enables more fine-grain
optimizations. Then we perform width reduction a final time and clear the selection.

Finally we have ice40_dsp: similar to the memory_dff command we saw in the previous section, this
merges any surrounding registers into the SB_MAC16 cell. This includes not just the input/output registers,
but also pipeline registers and even a post-adder where applicable: turning a multiply + add into a single
multiply-accumulate.

See also:

Advanced usage docs for Technology mapping

Part 4

That brings us to the fourth and final part for the iCE40 synthesis flow:

Listing 2.14: coarse section (part 4)

alumacc

opt

memory -nomap [-no-rw-check]
opt_clean
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Where before each type of arithmetic operation had its own cell, e.g. $add, we now want to extract these
into $alu and $macc cells which can help identify opportunities for reusing logic. We do this by running
alumacc, which we can see produce the following changes in our example design:

Listing 2.15: output of alumacc

yosys> alumacc

24 . Executing ALUMACC pass (create $alu and $macc cells).
Extracting $alu and $macc cells in module fifo:
creating $macc model for $add$fifo.v:66$27 ($add) .
creating $macc model for $flatten\fifo_reader.$add$fifo.v:19$34 ($add).
creating $macc model for $flatten\fifo_writer.$add$fifo.v:19$34 ($add) .
creating $macc model for $sub$fifo.v:68$30 ($sub).
creating $alu model for $macc $sub$fifo.v:68$30.
creating $alu model for $macc $flatten\fifo_writer.$add$fifo.v:19$34.
creating $alu model for $macc $flatten\fifo_reader.$add$fifo.v:19$34.
creating $alu model for $macc $add$fifo.v:66$27.
creating $alu cell for $add$fifo.v:66$27: $auto$alumacc.cc:485:replace_alu$s80
creating $alu cell for $flatten\fifo_reader.$add$fifo.v:19$34: $auto$alumacc.
—cc:485:replace_alu$83
creating $alu cell for $flatten\fifo_writer.$add$fifo.v:19$34: $auto$alumacc.
—cc:485:replace_alu$86
creating $alu cell for $sub$fifo.v:68$30: $auto$alumacc.cc:485:replace_alu$sd9
created 4 $alu and O $macc cells.

co /
$83

$alu X \

Y |
O 7:0-7:0 .

[A]s33 |
Seq \/
$23
CLK $memrd_v2 DATA

EN

D
/

$51
$mux

w|w|>

Fig. 2.9: rdata output after alumacc

Once these cells have been inserted, the call to opt can combine cells which are now identical but may have
been missed due to e.g. the difference between $add and $sub.

The other new command in this part is memory - translate memories to basic cells. memory is another
macro command which we examine in more detail in Memory handling. For this document, let us focus
just on the step most relevant to our example: memory_collect. Up until this point, our memory reads
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and our memory writes have been totally disjoint cells; operating on the same memory only in the abstract.
memory_collect combines all of the reads and writes for a memory block into a single cell.

D
®\’ o—"CD
s L

Y
S 0-70 7:0-7:0

fifo_reader.addr
$33 |y 8'00000000
B | S \_/

RD_ADDR
RD_ARST

@\ RD_CLK
RD_EN
®4> RD_SRST wnﬂ]l]l;'\: RD_DATA
WR_ADDR

_/ WR_CLK

WR_DATA
/ =

olz]=]>

CLK $68 Q
D S$adffe

$51
$mux

VJIUJI>

clk

Fig. 2.10: rdata output after memory_collect

Looking at the schematic after running memory_collect we see that our $memrd_v2 cell has been replaced
with a $mem_v2 cell named data, the same name that we used in fifo.v. Where before we had a single set of
signals for address and enable, we now have one set for reading (RD_*) and one for writing (WR_*), as well
as both WR_DATA input and RD_DATA output.

See also:
Advanced usage docs for
e Optimization passes

e Memory handling

Final note

Having now reached the end of the the coarse-grain representation, we could also have gotten here by running
synth_ice40 -top fifo -run :map_ram after loading the design. The -run <from_label>:<to_label>
option with an empty <from_label> starts from the begin section, while the <to_label> runs up to but
including the map ram section.
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2.2.6 Hardware mapping

The remaining sections each map a different type of hardware and are much more architecture dependent
than the previous sections. As such we will only be looking at each section very briefly.

If you skipped calling read_verilog -D ICE40_HX -lib -specify +/ice40/cells_sim.v earlier, do it
now.

Memory blocks
Mapping to hard memory blocks uses a combination of memory_libmap and techmap.

Listing 2.16: map_ram section

memory_libmap -1lib +/ice40/brams.txt -1ib +/iced40/spram.txt [-no-auto-huge] [-no-auto-
—block] (-no-auto-huge unless -spram, -no-auto-block if -nobram)

techmap -map +/ice40/brams_map.v -map +/ice40/spram_map.v

ice40_braminit

Stechmap581°\ data.0.0.MASK
0> 10:9
0:0-88
0->77
7:1-6:0
IASK
RCLK >
@ RCLKF > 10:1
[ . > ]
R g
DDR | SB_RAM S > 121 (A
StechmapS81°\ data.0.0.WADDR o R T 541 |y
L2 smux
KE > s
$528
St ARST
[ CLK | sso2 ifo_reader.add StechmapS8 1\ data.0.0. WDAT.
5 sue | @ fifo_reader.addr techmaps8 1\ data, ATA
. o
- /
A co
10 B | $508
| - X
Br | Salu | |
10 cl 7:0-7:0 7:0-7:0

$465
$mux

=T

..x’mmm
8403 | y \/
[] 5

Fig. 2.11: rdata output after map ram section

The map__ram section converts the generic $mem_v2 into the iCE40 SB_RAM40_4K (highlighted). We can also
see the memory address has been remapped, and the data bits have been reordered (or swizzled). There is
also now a $mux cell controlling the value of rdata. In fifo.v we wrote our memory as read-before-write,
however the SB_RAM40_4K has undefined behaviour when reading from and writing to the same address in
the same cycle. As a result, extra logic is added so that the generated circuit matches the behaviour of the
verilog. Synchronous SDP with undefined collision behavior describes how we could change our verilog to
match our hardware instead.

If we run memory_libmap under the debug command we can see candidates which were identified for
mapping, along with the costs of each and what logic requires emulation.
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yosys> debug memory_libmap -1ib +/ice4O/brams.txt -1lib +/ice40/spram.txt -no-auto-huge
4. Executing MEMORY_LIBMAP pass (mapping memories to cells).
Memory fifo.data mapping candidates (post-geometry):
- logic fallback
- cost: 2048.000000
- $__ICE40_RAM4K_:
- option HAS_BE O
- emulation score: 7
- replicates (for ports): 1
- replicates (for data): 1
- mux score: O
- demux score: 0O
- cost: 78.000000
- abits 11 dbits 2 4 8 16
- chosen base width 8
- swizzle 0 1 2 34567
- emulate read-first behavior
- write port 0O: port group W
- widths 2 4 8
- read port 0: port group R
- widths 2 4 8 16
- emulate transparency with write port O
- $__ICE40_RAM4K :
option HAS_BE 1
- emulation score: 7
- replicates (for ports): 1
- replicates (for data): 1
- mux score: O
- demux score: 0O
- cost: 78.000000
- abits 11 dbits 2 4 8 16
- byte width 1
- chosen base width 8
- swizzle 0 1 2 34567
- emulate read-first behavior
- write port O: port group W
- widths 16
- read port 0: port group R
- widths 2 4 8 16
- emulate transparency with write port 0O
Memory fifo.data mapping candidates (after post-geometry prune):
- logic fallback
- cost: 2048.000000
- $__ICE40_RAM4K :
- option HAS_BE 0O
- emulation score: 7
- replicates (for ports): 1
- replicates (for data): 1
- mux score: O
- demux score: 0O
- cost: 78.000000
- abits 11 dbits 2 4 8 16

(continues on next page)
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(continued from previous page)

- chosen base width 8
- swizzle 01 234567
- emulate read-first behavior
- write port 0O: port group W

- widths 2 4 8
- read port 0: port group R

- widths 2 4 8 16

- emulate transparency with write port O

mapping memory fifo.data via $__ICE40_RAM4K_

The $__ICE40_RAM4K_ cell is defined in the file techlibs/ice40/brams.txt, with the mapping to
SB_RAM40_4K done by techmap using techlibs/ice40/brams_map.v. Any leftover memory cells are then
converted into flip flops (the logic fallback) with memory_map.

Listing 2.17: map_ffram section

opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

DD
B | $508
LB | [
) mEYE
o Y o\.°
@ 70-70 70-70
GO NE
ARST s
T - (o s [
502 | fifo_reader.addr $403 @ s
D Sadfe S|y
N
16
0> 109

=]
-

MASK 12:12-33 |~ ~_ )

RADDR [IEN T

RCLK 10:10-55 |

\fx,>15_15\ RCLKE 9 - 9:0 N\—

RE 58 -
77 14:14) data 0.0

RDATA

MAC e

31212 WCLK

\ X> 1011 WCLKE

WDATA 4-22 |-

, N
I ' * -1 |
| 0:0 0:0

|
)
EED \

>
g
& - 5:5-10:10 P\
N\ o s L7 Stechmaps81\ data.0.0.RDATA

I

===

Fig. 2.12: rdata output after map ffram section

Note: The visual clutter on the RDATA output port (highlighted) is an unfortunate side effect of opt_clean
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on the swizzled data bits. In connecting the $mux input port directly to RDATA to reduce the number of
wires, the $techmap579\data.0.0.RDATA wire becomes more visually complex.

See also:
Advanced usage docs for
e Technology mapping

e Memory handling
Arithmetic
Uses techmap to map basic arithmetic logic to hardware. This sees somewhat of an explosion in cells as
multi-bit $mux and $adffe are replaced with single-bit $_MUX_ and $_DFFE_PPOP_ cells, while the $alu is

replaced with primitive $_OR_ and $_NOT_ gates and a $1lut cell.

Listing 2.18: map_gates section

ice40_wrapcarry

techmap -map +/techmap.v -map +/ice40/arith_map.v
opt -fast

abc -dff -D 1 (only if -retime)

ice40_opt

See also:

Advanced usage docs for Technology mapping

Flip-flops
Convert FFs to the types supported in hardware with dfflegalize, and then use techmap to map them.
In our example, this converts the $_DFFE_PPOP_ cells to SB_DFFER.

We also run simplemap here to convert any remaining cells which could not be mapped to hardware into
gate-level primitives. This includes optimizing $_MUX_ cells where one of the inputs is a constant 1'0,
replacing it instead with an $_AND_ cell.

Listing 2.19: map_ffs section

dfflegalize -cell $_DFF_7?_ 0 -cell $ DFFE_7?P_ 0 -cell $ DFF_7P?_ 0 -cell $_DFFE_7P7P_ 0 -
—.cell $ SDFF_?P?_ 0 -cell $_SDFFCE_7P?P_ 0 -cell $ DLATCH ?_ x -mince -1

techmap -map +/ice40/ff _map.v

opt_expr -mux_undef

simplemap

ice40_opt -full

See also:

Advanced usage docs for Technology mapping
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Fig. 2.13: rdata output after map gates section
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Fig. 2.14: rdata output after map [fs section
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LUTs
abc and techmap are used to map LUTS; converting primitive cell types to use $1ut and SB_CARRY cells.
Note that the iCE40 flow uses abc9 rather than abc. For more on what these do, and what the difference

between these two commands are, refer to The ABC' toolbozx.

Listing 2.20: map_luts section

abc (only if -abc2)

ice40_opt (only if -abc2)

techmap -map +/ice40/latches_map.v

simplemap (if -noabc or -flowmap)
techmap -map +/gate2lut.v -D LUT_WIDTH=4 (only if -noabc)
flowmap -maxlut 4 (only if -flowmap)

read_verilog -D ICE40_HX -icells -1ib -specify +/ice40/abc9_model.v
abc9 -W 250

ice40_wrapcarry -unwrap

techmap -map +/ice40/ff_map.v

clean

opt_lut -tech ice40

Fig. 2.15: rdata output after map luts section
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Finally we use techmap to map the generic $lut cells to iCE40 SB_LUT4 cells.

Listing 2.21: map_cells section

techmap -map +/ice40/cells_map.v (skip if -vpr)
clean

Fig. 2.16: rdata output after map_ cells section

See also:

Advanced usage docs for
e Technology mapping
e The ABC toolbox

Other cells

The following commands may also be used for mapping other cells:

hilomap
Some architectures require special driver cells for driving a constant hi or lo value. This command
replaces simple constants with instances of such driver cells.

iopadmap
Top-level input/outputs must usually be implemented using special I/O-pad cells. This command
inserts such cells to the design.

These commands tend to either be in the map_ cells section or after the check section depending on the flow.
2.2.7 Final steps
The next section of the iCE40 synth flow performs some sanity checking and final tidy up:

Listing 2.22: check section

autoname

hierarchy -check
stat

check -noinit
blackbox =A:whitebox

The new commands here are:
e autoname - automatically assign names to objects,

e stat - print some statistics, and
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o blackbox - convert modules into blackboxr modules.

The output from stat is useful for checking resource utilization; providing a list of cells used in the design
and the number of each, as well as the number of other resources used such as wires and processes. For this

design, the final call to stat should look something like the following:

yosys> stat -top fifo

17. Printing statistics.

=== fifo

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

of
of
of
of
of
of
of
of
of
of

wires:
wire bits:
public wires:

public wire bits:

ports:

port bits:
memories:
memory bits:
processes:
cells:

$scopeinfo
SB_CARRY

SB_D

FF

SB_DFFER

SB_L

UT4

SB_RAM40_4K

94
260
94
260

29

o

138

26
26
25
58

Note that the -top fifo here is optional. stat will automatically use the module with the top attribute
set, which fifo was when we called hierarchy. If no module is marked top, then stats will be shown for
each module selected.

The stat output is also useful as a kind of sanity-check: Since we have already run proc, we wouldn’t
expect there to be any processes. We also expect data to use hard memory; if instead of an SB_RAM40_4K

saw a high number of flip-flops being used we might suspect something was wrong.

If we instead called stat immediately after read_verilog fifo.v we would see something very different:

yosys> st

at

2. Printing statistics.

=== fifo

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

of
of
of
of
of
of
of
of
of
of

wires:
wire bits:
public wires:

public wire bits:

ports:

port bits:
memories:
memory bits:
processes:
cells:

28
219

45

29

2048

(continues on next page)
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(continued from previous page)

$add 1
$logic_and 2
$logic_not 2
$memrd 1
$sub 1
addr_gen 2
=== addr_gen ===
Number of wires: 8
Number of wire bits: 60
Number of public wires: 4
Number of public wire bits: 11
Number of ports: 4
Number of port bits: 11
Number of memories: 0
Number of memory bits: 0
Number of processes: 2
Number of cells: 2
$add 1
$eq 1

Notice how fifo and addr_gen are listed separately, and the statistics for fifo show 2 addr_gen modules.
Because this is before the memory has been mapped, we also see that there is 1 memory with 2048 memory
bits; matching our 8-bit wide data memory with 256 values (8 x 256 = 2048).

Synthesis output

The iCE40 synthesis flow has the following output modes available:
e write_blif - write design to BLIF file,
e write_edif - write design to EDIF netlist file, and
e write_json - write design to a JSON file.

As an example, if we called synth_ice40 -top fifo -json fifo.json, our synthesized fifo design will
be output as fifo.json. We can then read the design back into Yosys with read_json, but make sure you
use design -reset or open a new interactive terminal first. The JSON output we get can also be loaded
into nextpnr to do place and route; but that is beyond the scope of this documentation.

See also:

synth__ice40 - synthesis for iCE40 FPGAs
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2.3 Scripting in Yosys

On the previous page we went through a synthesis script, running each command in the interactive Yosys
shell. On this page, we will be introducing the script file format and how you can make your own synthesis
scripts.

Yosys script files typically use the .ys extension and contain a set of commands for Yosys to run sequentially.
These commands are the same ones we were using on the previous page like read_verilog and hierarchy.

2.3.1 Script parsing

As with the interactive shell, each command consists of the command name, and an optional whitespace
separated list of arguments. Commands are terminated with the newline character, and anything after a
hash sign # is a comment (i.e. it is ignored).

It is also possible to terminate commands with a semicolon ;. This is particularly useful in conjunction
with the -p <command> command line option, where <command> can be a string with multiple commands
separated by semicolon. In-line comments can also be made with the colon :, where the end of the comment
is a semicolon ; or a new line.

Listing 2.23: Using the -p option

$ yosys -p "read_verilog fifo.v; :this is a comment; prep"

Warning: The space after the semicolon is required for correct parsing. log a;log b; for example will
display a;log b instead of a and b as might be expected.

Another special character that can be used in Yosys scripts is the bang !. Anything after the bang will be
executed as a shell command. This can only be terminated with a new line. Any semicolons, hashes, or other
special characters will be passed to the shell. If an error code is returned from the shell it will be raised by
Yosys. ezec provides a much more flexible way of executing commands, allowing the output to be logged
and more control over when to generate errors.

2.3.2 The synthesis starter script

All of the images and console output used in Synthesis starter were generated by Yosys, using Yosys script
files found in docs/source/code_examples/fifo. If you haven’t already, let’s take a look at some of those
script files now.

Listing 2.24: A section of fifo.ys, generating the images used for
The addr__gen module

echo on
hierarchy -top addr_gen
select -module addr_gen
select -list
select t:x*
select -list
select —-set new_cells %
select -clear
show -format dot -prefix addr_gen_show addr_gen
(continues on next page)
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(continued from previous page)
show -format dot -prefix new_cells_show -notitle @new_cells
show -color maroon3 @new_cells -color cornflowerblue p:* -notitle -format dot -prefix
—addr_gen_hier

# N N
proc -noopt

select -set new_cells t:$mux t:+dff

show -color maroon3 @new_cells -notitle -format dot -prefix addr_gen_proc

# [—

opt_expr; clean

select -set new_cells t:$eq

show -color cornflowerblue @new_cells -notitle -format dot -prefix addr_gen_clean

#

The first command there, echo on, uses echo to enable command echoes on. This is how we generated the
code listing for hierarchy -top addr_gen output. Turning command echoes on prints the yosys> hierarchy
-top addr_gen line, making the output look the same as if it were an interactive terminal. hierarchy -top
addr_gen is of course the command we were demonstrating, including the output text and an image of the
design schematic after running it.

We briefly touched on select when it came up in synth_ice40, but let’s look at it more now.

Selections intro

The select command is used to modify and view the list of selected objects:

yosys> select -module addr_gen

yosys [addr_gen]> select -list
addr_gen
addr_gen/$1\addr [7:0]
addr_gen/$add$fifo.v:19$3_Y
addr_gen/$eq$fifo.v:16$2_Y
addr_gen/$0\addr [7:0]
addr_gen/addr

addr_gen/rst

addr_gen/clk

addr_gen/en
addr_gen/$add$fifo.v:19$3
addr_gen/$eq$fifo.v:163$2
addr_gen/$proc$fifo.v:0$4
addr_gen/$proc$fifo.v:12$1

yosys [addr_gen]> select t:*
yosys [addr_gen]*> select -list
addr_gen/$add$fifo.v:19$3
addr_gen/$eq$fifo.v:16$2

yosys [addr_gen]*> select -set new_cells %

(continues on next page)
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(continued from previous page)

yosys [addr_gen]*> select -clear

When we call select -module addr_gen we are changing the currently active selection from the whole
design, to just the addr_gen module. Notice how this changes the yosys at the start of each command
to yosys [addr_gen]? This indicates that any commands we run at this point will only operate on the
addr_gen module. When we then call select -1list we get a list of all objects in the addr_gen module,
including the module itself, as well as all of the wires, inputs, outputs, processes, and cells.

Next we perform another selection, select t:*. The t: part signifies we are matching on the cell type,
and the * means to match anything. For this (very simple) selection, we are trying to find all of the cells,
regardless of their type. The active selection is now shown as [addr_gen] *, indicating some sub-selection of
the addr_gen module. This gives us the $add and $eq cells, which we want to highlight for the addr_gen
module after hierarchy image.

We can assign a name to a selection with select -set. In our case we are using the name new_cells,
and telling it to use the current selection, indicated by the % symbol. We can then use this named selection
by referring to it as @new_cells, which we will see later. Then we clear the selection so that the following
commands can operate on the full design. While we split that out for this document, we could have done
the same thing in a single line by calling select -set new_cells addr_gen/t:*. If we know we only
have the one module in our design, we can even skip the addr_gen/ part. Looking further down the fifo.ys
code we can see this with select -set new_cells t:$mux t:*dff. We can also see in that command that
selections don’t have to be limited to a single statement.

Many commands also support an optional [selection] argument which can be used to override the currently
selected objects. We could, for example, call clean addr_gen to have clean operate on just the addr_gen
module.

Detailed documentation of the select framework can be found under Selections or in the command reference
at select - modify and view the list of selected objects.

Displaying schematics

While the select command is very useful, sometimes nothing beats being able to see a design for yourself.
This is where show comes in. Note that this document is just an introduction to the show command, only
covering the basics. For more information, including a guide on what the different symbols represent, see A
look at the show command and the Interactive design investigation page.

Note: The show command requires a working installation of GraphViz and xdot for displaying the actual
circuit diagrams.

This is the first show command we called in fifo.ys, as we saw above. If we look at the log output for this
image we see the following:

yosys> show —-format dot -prefix addr_gen_show addr_gen

4. Generating Graphviz representation of design.
Writing dot description to “addr_gen_show.dot'.
Dumping module addr_gen to page 1.

Calling show with ~format dot tells it we want to output a .dot file rather than opening it for display. The
-prefix addr_gen_show option indicates we want the file to be called addr_gen_show. *. Remember, we
do this in fifo.ys because we need to store the image for displaying in the documentation you’re reading.
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PROC $4
fifo.v:0.0-0.0

$2
$eq

$3
©—> B | $add

PROC $1
fifo.v:12.2-20.6

addr_gen

Fig. 2.17: Calling show addr_gen after hierarchy

But if you just want to display the images locally you can skip these two options. The -format option
internally calls the dot command line program from GraphViz to convert to formats other than .dot. Check
GraphViz output docs for more on available formats.

Note: If you are using a POSIX based version of Yosys (such as for Mac or Linux), xdot will be opened in
the background and Yosys can continue to be used. If it it still open, future calls to show will use the same
xdot instance.

The addr_gen at the end tells it we only want the addr_gen module, just like when we called select
-module addr_gen in Selections intro. That last parameter doesn’t have to be a module name, it can be
any valid selection string. Remember when we assigned a name to a selection and called it new_cells? We
saw in the select -list output that it contained two cells, an $add and an $eq. We can call show on that
selection just as easily:

We could have gotten the same output with show -notitle t:$add t:$eq if we didn’t have the named
selection. By adding the -notitle flag there we can also get rid of the addr_gen title that would have been
automatically added. The last two images were both added for this introduction. The next image is the first
one we saw in Synthesis starter: showing the full addr_gen module while also highlighting @new_cells and
the two PROC blocks. To achieve this highlight, we make use of the —~color option:

As described in the the help output for show (or by clicking on the skhow link), colors are specified as
-color <color> <object>. Color names for the <color> portion can be found on the GraphViz color docs.
Unlike the final show parameter which can have be any selection string, the <object> part must be a single
selection expression or named selection. That means while we can use @new_cells, we couldn’t use t:$eq
t:$add. In general, if a command lists [selection] as its final parameter it can be any selection string.
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A
A
B | $add

Ny

Fig. 2.18: Calling show -notitle @new_cells

addr

o0

Fig. 2.19: Calling show -color maroon3 @new_cells -color cornflowerblue p:* -notitle
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Any selections that are not the final parameter, such as those used in options, must be a single expression
instead.

For all of the options available to show, check the command reference at show - generate schematics using
graphviz.

See also:

A look at the show command on the Interactive design investigation page.
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CHAPTER

THREE

USING YOSYS (ADVANCED)

While much of Yosys is focused around synthesis, there are also a number of other useful things that can
be accomplished with Yosys scripts or in an interactive shell. As such this section is broken into two parts:
Synthesis in detail expands on the Synthesis starter and goes into further detail on the major commands
used in synthesis; More scripting covers the ways Yosys can interact with designs for a deeper investigation.

3.1 Synthesis in detail

Synthesis can generally be broken down into coarse-grain synthesis, and fine-grain synthesis. We saw this in
Synthesis starter where a design was loaded and elaborated and then went through a series of coarse-grain
optimizations before being mapped to hard blocks and fine-grain cells. Most commands in Yosys will target
either coarse-grain representation or fine-grain representation, with only a select few compatible with both
states.

Commands such as proc, fsm, and memory rely on the additional information in the coarse-grain repre-
sentation, along with a number of optimizations such as wreduce, share, and alumacc. opt provides
optimizations which are useful in both states, while techmap is used to convert coarse-grain cells to the
corresponding fine-grain representation.

Single-bit cells (logic gates, FFs) as well as LUTs, half-adders, and full-adders make up the bulk of the
fine-grain representation and are necessary for commands such as abc/abc9, simplemap, dfflegalize,
and memory_map .

3.1.1 Synth commands

Packaged synth_* commands

The following is a list of all synth commands included in Yosys for different platforms. Each command runs
a script of sub commands specific to the platform being targeted. Note that not all of these scripts are
actively maintained and may not be up-to-date.

o synth__achroniz - synthesis for Achroniz Speedster22i FPGAs.
e synth__anlogic - synthesis for Anlogic FPGAs

e synth__coolrunner? - synthesis for Xilinz Coolrunner-II CPLDs
e synth__easic - synthesis for eASIC platform

o synth__ecph - synthesis for ECP5 FPGAs

e synth__efiniz - synthesis for Efinicx FPGAs

o synth_fabulous - FABulous synthesis script
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synth__gatemate - synthesis for Cologne Chip GateMate FPGAs
synth__gowin - synthesis for Gowin FPGAs

synth__greenpak/ - synthesis for GreenPAKj FPGAs

synth__ice40 - synthesis for iCE40 FPGAs

synth__intel - synthesis for Intel (Altera) FPGAs. (MAX10, Cyclone IV)

synth_intel _alm - synthesis for ALM-based Intel (Altera) FPGAs. (Cyclone V, Arria V, Cyclone 10
GX)

synth__lattice - synthesis for Lattice FPGAs

synth__nexus - synthesis for Lattice Nexus FPGAs
synth__quicklogic - Synthesis for QuickLogic FPGAs
synth__sf2 - synthesis for SmartFusion2 and IGLOO2 FPGAs
synth__xilinz - synthesis for Xilint FPGAs

General synthesis

In addition to the above hardware-specific synth commands, there is also prep - generic synthesis script.
This command is limited to coarse-grain synthesis, without getting into any architecture-specific mappings
or optimizations. Among other things, this is useful for design verification.

The following commands are executed by the prep command:

begin:

hierarchy -check [-top <top> | -auto-top]

coarse:

proc [-ifx]

flatten (if -flatten)
future

opt_expr -keepdc
opt_clean

check

opt —-noff -keepdc
wreduce -keepdc [-memx]
memory_dff (if -rdff)
memory_memx (if -memx)
opt_clean
memory_collect

opt —noff -keepdc -fast

check:

stat
check

Synthesis starter covers most of these commands and what they do.
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3.1.2 Converting process blocks

The Verilog frontend converts always-blocks to RTL netlists for the expressions and “processess” for the
control- and memory elements. The proc command then transforms these “processess” to netlists of RTL
multiplexer and register cells. It also is a macro command that calls the other proc_* commands in a sensible
order:

Listing 3.1: Passes called by proc

proc_clean # removes empty branches and processes
proc_rmdead # removes unreachable branches

proc_prune

proc_init # special handling of "initial" blocks

proc_arst # identifies modeling of async resets

proc_rom

proc_mux # converts decision trees to multiplexer networks
proc_dlatch

proc_dff # extracts registers from processes

proc_memwr

proc_clean # this should remove all the processes, provided all went fine
opt_expr -keepdc

After all the proc_* commands, opt_ezpr is called. This can be disabled by calling proc -noopt. For more
information about proc, such as disabling certain sub commands, see proc - translate processes to netlists.

Many commands can not operate on modules with “processess” in them. Usually a call to proc is the first
command in the actual synthesis procedure after design elaboration.

Example
docs/source/code_examples/synth_flow.

Listing 3.2: proc_01.v

module test(input D, C, R, output reg Q);
always Q@(posedge C, posedge R)

if (R)
Q <= 0;
else
Q <= D;
endmodule

Listing 3.3: proc_01.ys

read_verilog proc_01.v
hierarchy -check -top test
proc;;

Listing 3.4: proc_02.v

module test(input D, C, R, RV,
output reg Q);
always @(posedge C, posedge R)

(continues on next page)
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(continued from previous page)

if (R)
Q <= RV;
else
Q <= D;
endmodule

Listing 3.5: proc_02.ys

read_verilog proc_02.v
hierarchy -check -top test
proc;;

A

B $2 Y
$mux

S

$mux

e

Listing 3.6: proc_03.ys

read_verilog proc_03.v
hierarchy -check -top test
proc;;

Listing 3.7: proc_03.v

module test(input A, B, C, D, E,
output reg Y);
always @* begin
Y <= A;
if (B)
Y <= C;
if (D)

(continues on next page)
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Y <= E;
end
endmodule

(continued from previous page)

3.1.3 FSM handling

The fsm command identifies, extracts, optimizes (re-encodes), and re-synthesizes finite state machines. It

again is a macro that calls a series of other commands:

Listing 3.8: Passes called by fsm

# Identify and extract FSMs:
fsm_detect
fsm_extract

# Basic optimizations:
fsm_opt

opt_clean

fsm_opt

# Expanding to nearby gate-logic (if called with -expand):
fsm_expand

opt_clean

fsm_opt

# Re-code FSM states (unless called with -norecode):
fsm_recode

# Print information about FSMs:
fsm_info

# Export FSMs in KISS2 file format (if called with -export):

fsm_export

# Map FSMs to RTL cells (unless called with -nomap) :
fsm_map

See also fsm - extract and optimize finite state machines.

The algorithms used for FSM detection and extraction are influenced by a more general reported technique

[STGR10].
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FSM detection
The fsm_detect pass identifies FSM state registers. It sets the \fsm_encoding = "auto" attribute on any
(multi-bit) wire that matches the following description:

e Does not already have the \fsm_encoding attribute.

e Is not an output of the containing module.

e Is driven by single $dff or $adff cell.

e The \D-Input of this $dff or $adff cell is driven by a multiplexer tree that only has constants or the
old state value on its leaves.

e The state value is only used in the said multiplexer tree or by simple relational cells that compare the
state value to a constant (usually $eq cells).

This heuristic has proven to work very well. It is possible to overwrite it by setting \fsm_encoding =
"auto" on registers that should be considered FSM state registers and setting \fsm_encoding = "none" on
registers that match the above criteria but should not be considered FSM state registers.

Note however that marking state registers with \fsm_encoding that are not suitable for FSM recoding can
cause synthesis to fail or produce invalid results.

FSM extraction
The fsm_eztract pass operates on all state signals marked with the (\fsm_encoding '= "none") attribute.
For each state signal the following information is determined:

e The state registers

o The asynchronous reset state if the state registers use asynchronous reset

o All states and the control input signals used in the state transition functions

e The control output signals calculated from the state signals and control inputs

o A table of all state transitions and corresponding control inputs- and outputs

The state registers (and asynchronous reset state, if applicable) is simply determined by identifying the
driver for the state signal.

From there the $mux-tree driving the state register inputs is recursively traversed. All select inputs are
control signals and the leaves of the $mux-tree are the states. The algorithm fails if a non-constant leaf
that is not the state signal itself is found.

The list of control outputs is initialized with the bits from the state signal. It is then extended by adding
all values that are calculated by cells that compare the state signal with a constant value.

In most cases this will cover all uses of the state register, thus rendering the state encoding arbitrary. If
however a design uses e.g. a single bit of the state value to drive a control output directly, this bit of the
state signal will be transformed to a control output of the same value.

Finally, a transition table for the FSM is generated. This is done by using the ConstEval C++ helper class
(defined in kernel/consteval.h) that can be used to evaluate parts of the design. The ConstEval class can be
asked to calculate a given set of result signals using a set of signal-value assignments. It can also be passed
a list of stop-signals that abort the ConstEval algorithm if the value of a stop-signal is needed in order to
calculate the result signals.

The fsm_eztract pass uses the ConstEval class in the following way to create a transition table. For each
state:

1. Create a ConstEval object for the module containing the FSM
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2. Add all control inputs to the list of stop signals
3. Set the state signal to the current state
4. Try to evaluate the next state and control output
5. If step 4 was not successful:
e Recursively goto step 4 with the offending stop-signal set to 0.
¢ Recursively goto step 4 with the offending stop-signal set to 1.
6. If step 4 was successful: Emit transition

Finally a $£sm cell is created with the generated transition table and added to the module. This new cell is
connected to the control signals and the old drivers for the control outputs are disconnected.

FSM optimization
The fsm_opt pass performs basic optimizations on $fsm cells (not including state recoding). The following
optimizations are performed (in this order):

e Unused control outputs are removed from the $£sm cell. The attribute \unused_bits (that is usually
set by the opt_clean pass) is used to determine which control outputs are unused.

e Control inputs that are connected to the same driver are merged.

e When a control input is driven by a control output, the control input is removed and the transition
table altered to give the same performance without the external feedback path.

o Entries in the transition table that yield the same output and only differ in the value of a single control
input bit are merged and the different bit is removed from the sensitivity list (turned into a don’t-care
bit).

o Constant inputs are removed and the transition table is altered to give an unchanged behaviour.

e Unused inputs are removed.

FSM recoding

The fsm_recode pass assigns new bit pattern to the states. Usually this also implies a change in the width
of the state signal. At the moment of this writing only one-hot encoding with all-zero for the reset state is
supported.

The fsm_recode pass can also write a text file with the changes performed by it that can be used when
verifying designs synthesized by Yosys using Synopsys Formality.

3.1.4 Memory handling

The memory command

In the RTL netlist, memory reads and writes are individual cells. This makes consolidating the number of
ports for a memory easier. The memory pass transforms memories to an implementation. Per default that is
logic for address decoders and registers. It also is a macro command that calls the other common memory_*
passes in a sensible order:
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Listing 3.9: Passes called by memory

opt_mem
opt_mem_priority
opt_mem_feedback
memory_bmux2rom
memory_dff
opt_clean
memory_share
opt_mem_widen

memory_memx (when called with -memx)
opt_clean

memory_collect

memory_bram -rules <bram_rules> (when called with -bram)
memory_map (skipped if called with -nomap)

Some quick notes:
o memory_dff merges registers into the memory read- and write cells.

e memory_collect collects all read and write cells for a memory and transforms them into one multi-port
memory cell.

e memory_map takes the multi-port memory cell and transforms it to address decoder logic and registers.

For more information about memory, such as disabling certain sub commands, see memory - translate mem-
ories to basic cells.

Example

docs/source/code_examples/synth_flow.

CLK | $rdreg[0]

D $dff Q

Listing 3.10: memory_01.ys

read_verilog memory_O1l.v
hierarchy -check -top test
proc;; memory; opt
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Listing 3.11: memory_0O1.v

module test(input CLK, ADDR,
input [7:0] DIN,
output reg [7:0] DOUT);
reg [7:0] mem [0:1];
always Q(posedge CLK) begin
mem [ADDR] <= DIN;

DOUT <= mem[ADDR] ;
end
endmodule

RD_ADDR
RD_ARST
RD_CLK
RD_EN
RD_SRST
WR_ADDR
WR_CLK
WR_DATA
WR_EN

memory

$mem._ v2 RD_DATA

RD1_DATA

RD2_DATA

WRI_DATA
WR2_DATA

8x 0:0 - 15:8
8x 0:0 - 7:0

Listing 3.12: memory_02.v

module test(
input
input

WR1_CLK,
WR1_WEN,

WR2_CLK,
WR2_WEN,

(continues on next page)
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(continued from previous page)

input [7:0] WR1_ADDR, WR2_ADDR,
input [7:0] WR1_DATA, WR2_DATA,
input RD1_CLK, RD2_CLK,
input [7:0] RD1_ADDR, RD2_ADDR,

output reg [7:0] RD1_DATA, RD2_DATA
)

reg [7:0] memory [0:255];
always @(posedge WR1_CLK)
if (WR1_WEN)
memory [WR1_ADDR] <= WR1_DATA;
always @(posedge WR2_CLK)
if (WR2_WEN)
memory [WR2_ADDR] <= WR2_DATA;

always Q@(posedge RD1_CLK)
RD1_DATA <= memory[RD1_ADDR];

always @(posedge RD2_CLK)
RD2_DATA <= memory[RD2_ADDR] ;

endmodule

Listing 3.13: memory_02.ys

read_verilog memory_02.v
hierarchy -check -top test
proc;; memory -nomap

opt -mux_undef -mux_bool

Memory mapping

Usually it is preferred to use architecture-specific RAM resources for memory. For example:

memory -—nomap
memory_libmap -1ib my_memory_map.txt
techmap -map my_memory_map.vV
memory_map

memory_libmap attempts to convert memory cells ($mem_v2 etc) into hardware supported memory using a
provided library (my_memory_map.txt in the example above). Where necessary, emulation logic is added to
ensure functional equivalence before and after this conversion. techmap -map my_memory_map.v then uses
techmap to map to hardware primitives. Any leftover memory cells unable to be converted are then picked
up by memory_map and mapped to DFFs and address decoders.

Note: More information about what mapping options are available and associated costs of each can be
found by enabling debug outputs. This can be done with the debug command, or by using the -g flag when
calling Yosys to globally enable debug messages.
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For more on the lib format for memory_1libmap, see passes/memory/memlib.md

Supported memory patterns

Note that not all supported patterns are included in this document, of particular note is that combinations
of multiple patterns should generally work. For example, wbe could be used in conjunction with any of
the simple dual port (SDP) models. In general if a hardware memory definition does not support a given
configuration, additional logic will be instantiated to guarantee behaviour is consistent with simulation.

Notes
Memory kind selection

The memory inference code will automatically pick target memory primitive based on memory geometry
and features used. Depending on the target, there can be up to four memory primitive classes available for
selection:

o FF RAM (aka logic): no hardware primitive used, memory lowered to a bunch of FFs and multiplexers

— Can handle arbitrary number of write ports, as long as all write ports are in the same clock
domain

— Can handle arbitrary number and kind of read ports

o LUT RAM (aka distributed RAM): uses LUT storage as RAM

Supported on most FPGAs (with notable exception of ice40)

Usually has one synchronous write port, one or more asynchronous read ports
— Small
— Will never be used for ROMs (lowering to plain LUTs is always better)

¢ Block RAM: dedicated memory tiles

Supported on basically all FPGAs
— Supports only synchronous reads
— Two ports with separate clocks
— Usually supports true dual port (with notable exception of ice40 that only supports SDP)
— Usually supports asymmetric memories and per-byte write enables
— Several kilobits in size
e Huge RAM:
— Only supported on several targets:
* Some Xilinx UltraScale devices (UltraRAM)
Two ports, both with mutually exclusive synchronous read and write
Single clock
Initial data must be all-0
% Some iced0 devices (SPRAM)

Single port with mutually exclusive synchronous read and write
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Does not support initial data

* Nexus (large RAM)
Two ports, both with mutually exclusive synchronous read and write
Single clock

— WIll not be automatically selected by memory inference code, needs explicit opt-in via ram__style
attribute

In general, you can expect the automatic selection process to work roughly like this:
o If any read port is asynchronous, only LUT RAM (or FF RAM) can be used.

e If there is more than one write port, only block RAM can be used, and this needs to be a hardware-
supported true dual port pattern

— ... unless all write ports are in the same clock domain, in which case FFF RAM can also be used,
but this is generally not what you want for anything but really small memories

e Otherwise, either FF RAM, LUT RAM, or block RAM will be used, depending on memory size
This process can be overridden by attaching a ram_ style attribute to the memory:

o (*ram_style = “logic” *) selects FF RAM

o (*ram_style = “distributed” *) selects LUT RAM

o (* ram_style = “block” *) selects block RAM

o (*ram_style = “huge” *) selects huge RAM
It is an error if this override cannot be realized for the given target.

Many alternate spellings of the attribute are also accepted, for compatibility with other software.

Initial data

Most FPGA targets support initializing all kinds of memory to user-provided values. If explicit initialization
is not used the initial memory value is undefined. Initial data can be provided by either initial statements
writing memory cells one by one of $readmemh or $readmemb system tasks. For an example pattern, see
srinit.

Write port with byte enables

e Byte enables can be used with any supported pattern

e To ensure that multiple writes will be merged into one port, they need to have disjoint bit ranges, have
the same address, and the same clock

e Any write enable granularity will be accepted (down to per-bit write enables), but using smaller
granularity than natively supported by the target is very likely to be inefficient (eg. using 4-bit bytes
on ECP5 will result in either padding the bytes with 5 dummy bits to native 9-bit units or splitting
the RAM into two block RAMs)

reg [31 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable[0])

(continues on next page)
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(continued from previous page)

mem[write_addr] [7:0] <= write_datal[7:0];
if (write_enable[1])

mem[write_addr] [15:8] <= write_data[15:8];
if (write_enable[2])

mem[write_addr] [23:16] <= write_data[23:16];
if (write_enable[3])

mem[write_addr] [31:24] <= write_datal[31:24];
if (read_enable)

read_data <= mem[read_addr];

end

Simple dual port (SDP) memory patterns
Asynchronous-read SDP

e This will result in LUT RAM on supported targets

reg [DATA_WIDTH - 1 : O] mem [2%*ADDR_WIDTH - 1 : 0];
always @(posedge clk)
if (write_enable)
mem[write_addr] <= write_data;
assign read_data = mem[read_addr];

Synchronous SDP with clock domain crossing

e Will result in block RAM or LUT RAM depending on size

e No behavior guarantees in case of simultaneous read and write to the same address

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge write_clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end

always @(posedge read_clk) begin
if (read_enable)
read_data <= mem[read_addr];
end
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Synchronous SDP read first

e The read and write parts can be in the same or different processes.
e Will result in block RAM or LUT RAM depending on size

e As long as the same clock is used for both, yosys will ensure read-first behavior. This may require
extra circuitry on some targets for block RAM. If this is not necessary, use one of the patterns below.

reg [DATA_WIDTH - 1 : O] mem [2%*ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable)
read_data <= mem[read_addr];
end

Synchronous SDP with undefined collision behavior

e Like above, but the read value is undefined when read and write ports target the same address in the
same cycle

reg [DATA_WIDTH - 1 : 0] mem [2%*ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;

if (read_enable) begin
read_data <= mem[read_addr];

if (write_enable && read_addr == write_addr)
// this if block
read_data <= 'x;
end
end

e Or below, using the no_rw_ check attribute

(* no_rw_check *)
reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always Q(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;

if (read_enable)
read_data <= mem[read_addr];
end
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Synchronous SDP with write-first behavior

e Will result in block RAM or LUT RAM depending on size

e May use additional circuitry for block RAM if write-first is not natively supported. Will always use
additional circuitry for LUT RAM.

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;

if (read_enable) begin
read_data <= mem[read_addr];
if (write_enable && read_addr == write_addr)
read_data <= write_data;
end
end

Synchronous SDP with write-first behavior (alternate pattern)

o This pattern is supported for compatibility, but is much less flexible than the above

reg [ADDR_WIDTH - 1 : 0] read_addr_reg;
reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always Q(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
read_addr_reg <= read_addr;
end

assign read_data = mem[read_addr_reg];

Single-port RAM memory patterns
Asynchronous-read single-port RAM

e Will result in single-port LUT RAM on supported targets

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk)
if (write_enable)
mem[addr] <= write_data;
assign read_data = mem[addr];
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Synchronous single-port RAM with mutually exclusive read/write

e Will result in single-port block RAM or LUT RAM depending on size
o This is the correct pattern to infer iced0 SPRAM (with manual ram_ style selection)

o On targets that don’t support read/write block RAM ports (eg. ice40), will result in SDP block RAM
instead

e For block RAM, will use “NO_CHANGE” mode if available

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[addr] <= write_data;
else if (read_enable)
read_data <= mem[addr];
end

Synchronous single-port RAM with read-first behavior

e Will only result in single-port block RAM when read-first behavior is natively supported; otherwise,
SDP RAM with additional circuitry will be used

o Many targets (Xilinx, ECP5, ...) can only natively support read-first /write-first single-port RAM (or
TDP RAM) where the write_enable signal implies the read__enable signal (ie. can never write without
reading). The memory inference code will run a simple SAT solver on the control signals to determine
if this is the case, and insert emulation circuitry if it cannot be easily proven.

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always Q(posedge clk) begin
if (write_enable)
mem[addr] <= write_data;
if (read_enable)
read_data <= mem[addr];
end

Synchronous single-port RAM with write-first behavior

o Will result in single-port block RAM or LUT RAM when supported

e Block RAMs will require extra circuitry if write-first behavior not natively supported

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[addr] <= write_data;
if (read_enable)
if (write_enable)
read_data <= write_data;

(continues on next page)
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else
read_data <= mem[addr];
end

(continued from previous page)

Synchronous read port with initial value

 Initial read port values can be combined with any other supported pattern

e If block RAM is used and initial read port values are not natively supported by the target, small

emulation circuit will be inserted

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];
reg [DATA_WIDTH - 1 : 0] read_data;
initial read_data = 'h1234;

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable)
read_data <= mem[read_addr];
end

Read register reset patterns

Resets can be combined with any other supported pattern (except that synchronous reset and asynchronous
reset cannot both be used on a single read port). If block RAM is used and the selected reset (synchronous
or asynchronous) is used but not natively supported by the target, small emulation circuitry will be inserted.

Synchronous reset, reset priority over enable

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;

if (read_reset)
read_data <= 'h1234;
else if (read_enable)
read_data <= mem[read_addr];
end
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Synchronous reset, enable priority over reset

reg [DATA_WIDTH - 1 : O] mem [2%*ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
if (read_enable)
if (read_reset)
read_data <= 'h1234;
else
read_data <= mem[read_addr];
end

Synchronous read port with asynchronous reset

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end

always @(posedge clk, posedge read_reset) begin
if (read_reset)
read_data <= 'h1234;
else if (read_enable)
read_data <= mem[read_addr];
end

Asymmetric memory patterns

To construct an asymmetric memory (memory with read/write ports of differing widths):

e Declare the memory with the width of the narrowest intended port

e Split all wide ports into multiple narrow ports

e To ensure the wide ports will be correctly merged:

bits

For the address, use a concatenation of actual address in the high bits and a constant in the low

— Ensure the actual address is identical for all ports belonging to the wide port

— Ensure that clock is identical

— For read ports, ensure that enable/reset signals are identical (for write ports, the enable signal
may vary — this will result in using the byte enable functionality)

Asymmetric memory is supported on all targets, but may require emulation circuitry where not natively
supported. Note that when the memory is larger than the underlying block RAM primitive, hardware
asymmetric memory support is likely not to be used even if present as it is more expensive.
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Wide synchronous read port

reg [7:

0] mem [0:255];

wire [7:0] write_addr;
wire [5:0] read_addr;
wire [7:0] write_data;
reg [31:0] read_data;

always

end

@(posedge clk) begin

if (write_enable)
mem[write_addr] <= write_data;

if (read_enable) begin
read_datal[7:0] <= mem[{read_addr, 2'b00}];
read_data[15:8] <= mem[{read_addr, 2'b01}];
read_data[23:16] <= mem[{read_addr, 2'b10}];
read_data[31:24] <= mem[{read_addr, 2'b11}];

end

Wide asynchronous read port

e Note: the only target natively supporting this pattern is Xilinx UltraScale

reg [7:

0] mem [0:511];

wire [8:0] write_addr;
wire [5:0] read_addr;
wire [7:0] write_data;
wire [63:0] read_data;

always

@(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;

end

assign read_data[7:0] = mem[{read_addr, 3'b000}];

assign read_data[15:8] = mem[{read_addr, 3'b001}];

assign read_data[23:16] = mem[{read_addr, 3'b010}];

assign read_data[31:24] = mem[{read_addr, 3'b011}];

assign read_data[39:32] = mem[{read_addr, 3'b100}];

assign read_data[47:40] = mem[{read_addr, 3'b101}];

assign read_data[55:48] = mem[{read_addr, 3'b110}];

assign read_data[63:56] = mem[{read_addr, 3'b111}];
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Wide write port

reg [7:0] mem [0:255];
wire [5:0] write_addr;
wire [7:0] read_addr;
wire [31:0] write_data;
reg [7:0] read_data;

always @(posedge clk) begin
if (write_enable[0])
mem[{write_addr, 2'b00}] <= write_datal[7:0];
if (write_enable[1])
mem[{write_addr, 2'b01}] <= write_data[15:8];
if (write_enable[2])
mem[{write_addr, 2'b10}] <= write_data[23:16];
if (write_enable[3])
mem[{write_addr, 2'b11}] <= write_data[31:24];
if (read_enable)
read_data <= mem[read_addr];
end

True dual port (TDP) patterns

e Many different variations of true dual port memory can be created by combining two single-port RAM
patterns on the same memory

e When TDP memory is used, memory inference code has much less maneuver room to create requested
semantics compared to individual single-port patterns (which can end up lowered to SDP memory
where necessary) — supported patterns depend strongly on the target

e In particular, when both ports have the same clock, it’s likely that “undefined collision” mode needs
to be manually selected to enable TDP memory inference

e The examples below are non-exhaustive — many more combinations of port types are possible

o Note: if two write ports are in the same process, this defines a priority relation between them (if both
ports are active in the same clock, the later one wins). On almost all targets, this will result in a bit
of extra circuitry to ensure the priority semantics. If this is not what you want, put them in separate
processes.

— Priority is not supported when using the verific front end and any priority semantics are ignored.

TDP with different clocks, exclusive read/write

reg [DATA_WIDTH - 1 : O] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk_a) begin
if (write_enable_a)
mem[addr_a] <= write_data_a;
else if (read_enable_a)
read_data_a <= mem[addr_a];
end

(continues on next page)
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(continued from previous page)

always @(posedge clk_b) begin
if (write_enable_b)
mem[addr_b] <= write_data_b;
else if (read_enable_b)
read_data_b <= mem[addr_b];
end

TDP with same clock, read-first behavior

e This requires hardware inter-port read-first behavior, and will only work on some targets (Xilinx,
Nexus)

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable_a)
mem[addr_a] <= write_data_a;
if (read_enable_a)
read_data_a <= mem[addr_a];
end

always @(posedge clk) begin
if (write_enable_b)
mem[addr_b] <= write_data_b;
if (read_enable_b)
read_data_b <= mem[addr_b];
end

TDP with multiple read ports

e The combination of a single write port with an arbitrary amount of read ports is supported on all
targets — if a multi-read port primitive is available (like Xilinx RAM64M), it’ll be used as appropriate.
Otherwise, the memory will be automatically split into multiple primitives.

reg [31:0] mem [0:31];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] <= write_data;
end

assign read_data_a = mem[read_addr_a];
assign read_data_b = mem[read_addr_b];
assign read_data_c = mem[read_addr_c];
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Patterns only supported with Verific

Synchronous SDP with write-first behavior via blocking assignments

e Use sdp_wf for compatibility with Yosys Verilog frontend.

reg [DATA_WIDTH - 1 : O] mem [2%*ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)
mem[write_addr] = write_data;

if (read_enable)
read_data <= mem[read_addr];
end

Asymmetric memories via part selection

o Build wide ports out of narrow ports instead (see wide_sr) for compatibility with Yosys Verilog fron-
tend.

reg [31:0] mem [2+*ADDR_WIDTH - 1 : 0];

wire [1:0] byte_lane;
wire [7:0] write_data;

always @(posedge clk) begin
if (write_enable)
mem[write_addr] [byte_lane * 8 +: 8] <= write_data;

if (read_enable)
read_data <= mem[read_addr];
end

Undesired patterns

Asynchronous writes

e Not supported in modern FPGAs

e Not supported in yosys code anyhow

reg [DATA_WIDTH - 1 : O] mem [2%*ADDR_WIDTH - 1 : 0];

always @* begin
if (write_enable)
mem[write_addr] = write_data;
end

assign read_data = mem[read_addr];
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3.1.5 Optimization passes

Yosys employs a number of optimizations to generate better and cleaner results. This chapter outlines these
optimizations.

The opt macro command
The Yosys pass opt runs a number of simple optimizations. This includes removing unused signals and cells
and const folding. It is recommended to run this pass after each major step in the synthesis script. As listed

in opt - perform simple optimizations, this macro command calls the following opt_* commands:

Listing 3.14: Passes called by opt

opt_expr
opt_merge -nomux

do
opt_muxtree
opt_reduce
opt_merge
opt_share (-full only)
opt_dff (except when called with -noff)
opt_clean
opt_expr
while <changed design>

Constant folding and simple expression rewriting - opt_expr

This pass performs constant folding on the internal combinational cell types described in Internal cell library.
This means a cell with all constant inputs is replaced with the constant value this cell drives. In some cases
this pass can also optimize cells with some constant inputs.

Table 3.1: Const folding rules for $_AND_ cells as used in opt_expr.

A-Input  B-Input Replacement

any 0 0
0 any 0
1 1 1
X/Z X/Z X
1 X/Z X
X/Z 1 X
any X/Z 0
X/Z any 0
a 1 a
1 b b

Table 3.1 shows the replacement rules used for optimizing an $_AND_ gate. The first three rules implement
the obvious const folding rules. Note that ‘any’ might include dynamic values calculated by other parts of
the circuit. The following three lines propagate undef (X) states. These are the only three cases in which it
is allowed to propagate an undef according to Sec. 5.1.10 of IEEE Std. 1364-2005 [A+06].
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The next two lines assume the value 0 for undef states. These two rules are only used if no other substitutions
are possible in the current module. If other substitutions are possible they are performed first, in the hope
that the ‘any’ will change to an undef value or a 1 and therefore the output can be set to undef.

The last two lines simply replace an $_AND_ gate with one constant-1 input with a buffer.

Besides this basic const folding the opt_ezpr pass can replace 1-bit wide $eq and $ne cells with buffers or
not-gates if one input is constant. Equality checks may also be reduced in size if there are redundant bits in
the arguments (i.e. bits which are constant on both inputs). This can, for example, result in a 32-bit wide
constant like 2565 being reduced to the 8-bit value of 8'11111111 if the signal being compared is only 8-bit
as in addr__gen module after opt_expr; clean of Synthesis starter.

The opt_exzpr pass is very conservative regarding optimizing $mux cells, as these cells are often used to
model decision-trees and breaking these trees can interfere with other optimizations.

Listing 3.15: example verilog for demonstrating opt_ezpr

module uut(
input a,
output y, z

);
assign y = a == a;
assign z = a != a;
endmodule

Merging identical cells - opt_merge

This pass performs trivial resource sharing. This means that this pass identifies cells with identical inputs
and replaces them with a single instance of the cell.

The option -nomux can be used to disable resource sharing for multiplexer cells ($mux and $pmux.) This
can be useful as it prevents multiplexer trees to be merged, which might prevent opt_muztree to identify
possible optimizations.

Listing 3.16: example verilog for demonstrating opt_merge

module uut(
input [3:0] a, b,
output [3:0] y, z

);
assign y = a + b;
assign z = b + a;
endmodule

Removing never-active branches from multiplexer tree - opt_muxtree

This pass optimizes trees of multiplexer cells by analyzing the select inputs. Consider the following simple
example:

Listing 3.17: example verilog for demonstrating opt_muztree

module uut (
input a, b, ¢, d,

(continues on next page)
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Fig. 3.1: Before and after opt_ezpr
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Fig. 3.2: Before and after opt_merge

(continued from previous page)

output y
)5

assign y =a ? (2 ?b : c) : d;
endmodule

The output can never be c, as this would require a to be 1 for the outer multiplexer and 0 for the inner
multiplexer. The opt_muztree pass detects this contradiction and replaces the inner multiplexer with a
constant 1, yielding the logic fory = a 2 b : d.

Simplifying large MUXes and AND/OR gates - opt_reduce

This is a simple optimization pass that identifies and consolidates identical input bits to $reduce_and and
$reduce_or cells. It also sorts the input bits to ease identification of shareable $reduce_and and $reduce_or
cells in other passes.

This pass also identifies and consolidates identical inputs to multiplexer cells. In this case the new shared
select bit is driven using a $reduce_or cell that combines the original select bits.

Lastly this pass consolidates trees of $reduce_and cells and trees of $reduce_or cells to single large
$reduce_and or $reduce_or cells.

These three simple optimizations are performed in a loop until a stable result is produced.
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Fig. 3.3: Before and after opt_muztree
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Merging mutually exclusive cells with shared inputs - opt_share

This pass identifies mutually exclusive cells of the same type that:
a. share an input signal, and
b. drive the same $mux, $_MUX_, or $pmux multiplexing cell,
allowing the cell to be merged and the multiplexer to be moved from multiplexing its output to multiplexing

the non-shared input signals.

Listing 3.18: example verilog for demonstrating opt_share

module uut(

input [15:0] a, b,

input sel,

output [15:0] res,
i

assign res = {sel 7 a + b : a - b};
endmodule

o A
a $l Y
o B | $sub \
— A —
Al sl —1 $3
b , Y =9 B Y _>l res
B | $add — | $mux
/,V S
l sel l
$4 \

$mux

A Y
el e
B .Y |y ] | sadd| " \Y
0 8

\
m|w|>

Fig. 3.4: Before and after opt_share

When running opt in full, the original $mux (labeled $3) is optimized away by opt_ezpr.
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Performing DFF optimizations - opt_dff

This pass identifies single-bit d-type flip-flops ($_DFF_, $dff, and $adff cells) with a constant data input and
replaces them with a constant driver. It can also merge clock enables and synchronous reset multiplexers,
removing unused control inputs.

Called with -nodffe and -nosdff, this pass is used to prepare a design for F'SM handling.

Removing unused cells and wires - opt_clean pass

This pass identifies unused signals and cells and removes them from the design. It also creates an \
unused_bits attribute on wires with unused bits. This attribute can be used for debugging or by other
optimization passes.

When to use opt or clean

Usually it does not hurt to call opt after each regular command in the synthesis script. But it increases the
synthesis time, so it is favourable to only call opt when an improvement can be achieved.

It is generally a good idea to call opt before inherently expensive commands such as sat or freduce, as
the possible gain is much higher in these cases as the possible loss.

The clean command, which is an alias for opt_clean with fewer outputs, on the other hand is very fast
and many commands leave a mess (dangling signal wires, etc). For example, most commands do not remove
any wires or cells. They just change the connections and depend on a later call to clean to get rid of the
now unused objects. So the occasional ; ;, which itself is an alias for clean, is a good idea in every synthesis
script, e.g:

hierarchy; proc; opt; memory; opt_expr;; fsm;;

Other optimizations

e wreduce - reduce the word size of operations if possible
e peepopt - collection of peephole optimizers
e share - perform sat-based resource sharing

e abc and abc9, see also: The ABC toolbox.

3.1.6 Technology mapping

Previous chapters outlined how HDL code is transformed into an RTL netlist. The RTL netlist is still based
on abstract coarse-grain cell types like arbitrary width adders and even multipliers. This chapter covers how
an RTL netlist is transformed into a functionally equivalent netlist utilizing the cell types available in the
target architecture.

Technology mapping is often performed in two phases. In the first phase RTL cells are mapped to an internal
library of single-bit cells (see Gates). In the second phase this netlist of internal gate types is transformed
to a netlist of gates from the target technology library.

When the target architecture provides coarse-grain cells (such as block ram or ALUs), these must be mapped
to directly form the RTL netlist, as information on the coarse-grain structure of the design is lost when it is
mapped to bit-width gate types.
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Cell substitution

The simplest form of technology mapping is cell substitution, as performed by the techmap pass. This pass,
when provided with a Verilog file that implements the RTL cell types using simpler cells, simply replaces
the RTL cells with the provided implementation.

When no map file is provided, techmap uses a built-in map file that maps the Yosys RTL cell types to the
internal gate library used by Yosys. The curious reader may find this map file as techlibs/common/techmap.v
in the Yosys source tree.

Additional features have been added to techmap to allow for conditional mapping of cells (see techmap -
generic technology mapper). This can for example be useful if the target architecture supports hardware
multipliers for certain bit-widths but not for others.

A usual synthesis flow would first use the techmap pass to directly map some RTL cells to coarse-grain cells
provided by the target architecture (if any) and then use techmap with the built-in default file to map the
remaining RTL cells to gate logic.

Subcircuit substitution

Sometimes the target architecture provides cells that are more powerful than the RTL cells used by Yosys.
For example a cell in the target architecture that can calculate the absolute-difference of two numbers does
not match any single RTL cell type but only combinations of cells.

For these cases Yosys provides the extract pass that can match a given set of modules against a design and
identify the portions of the design that are identical (i.e. isomorphic subcircuits) to any of the given modules.
These matched subcircuits are then replaced by instances of the given modules.

The extract pass also finds basic variations of the given modules, such as swapped inputs on commutative
cell types.

In addition to this the extract pass also has limited support for frequent subcircuit mining, i.e. the process
of finding recurring subcircuits in the design. This has a few applications, including the design of new
coarse-grain architectures [GW13].

The hard algorithmic work done by the extract pass (solving the isomorphic subcircuit problem and frequent
subcircuit mining) is performed using the SubCircuit library that can also be used stand-alone without Yosys
(see SubCircuit).

Gate-level technology mapping

On the gate-level the target architecture is usually described by a “Liberty file”. The Liberty file format is
an industry standard format that can be used to describe the behaviour and other properties of standard
library cells .

Mapping a design utilizing the Yosys internal gate library (e.g. as a result of mapping it to this representation
using the techmap pass) is performed in two phases.

First the register cells must be mapped to the registers that are available on the target architectures. The
target architecture might not provide all variations of d-type flip-flops with positive and negative clock edge,
high-active and low-active asynchronous set and/or reset, etc. Therefore the process of mapping the registers
might add additional inverters to the design and thus it is important to map the register cells first.

Mapping of the register cells may be performed by using the dfflibmap pass. This pass expects a Liberty file
as argument (using the -liberty option) and only uses the register cells from the Liberty file.
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Secondly the combinational logic must be mapped to the target architecture. This is done using the external
program ABC via the abc pass by using the -liberty option to the pass. Note that in this case only the
combinatorial cells are used from the cell library.

Occasionally Liberty files contain trade secrets (such as sensitive timing information) that cannot be shared
freely. This complicates processes such as reporting bugs in the tools involved. When the information
in the Liberty file used by Yosys and ABC are not part of the sensitive information, the additional tool
yosys-filterlib (see yosys-filterlib) can be used to strip the sensitive information from the Liberty file.

3.1.7 The extract pass

e Like the techmap pass, the eztract pass is called with a map file. It compares the circuits inside the
modules of the map file with the design and looks for sub-circuits in the design that match any of the
modules in the map file.

e If a match is found, the exztract pass will replace the matching subcircuit with an instance of the
module from the map file.

e In a way the eztract pass is the inverse of the techmap pass.

Example code can be found in docs/source/code_examples/macc.

read_verilog macc_simple_test.v
hierarchy -check -top test;;

Y
$mul
B N\l N

B | $add Y\A ;
O = DREC

Fig. 3.5: before extract

o

extract -constports -map macc_simple_xmap.v;;

Listing 3.19: macc_simple_test.v

module test(a, b, c, d, y);
input [15:0] a, b;

input [31:0] c, d;

output [31:0] y;

assign y =a *x b + ¢c + 4;
endmodule
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Fig. 3.6: after eztract

Listing 3.20: macc_simple_xmap.v

module macc_16_16_32(a, b, c, y);
input [15:0] a, b;

input [31:0] c;

output [31:0] y;

assign y = axb + c;

endmodule

Listing 3.21: macc_simple_test_01.v

module test(a, b, ¢, d, x, y);
input [15:0] a, b, c, d;

input [31:0] x;

output [31:0] y;

assign y = axb + c*d + x;
endmodule
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Listing 3.22: macc_simple_test_02.v

module test(a, b, c, d, x, y);
input [15:0] a, b, c, d;

input [31:0] x;

output [31:0] y;

assign y = a*b + (c*d + x);
endmodule

The wrap-extract-unwrap method

Often a coarse-grain element has a constant bit-width, but can be used to implement operations with a smaller
bit-width. For example, a 18x25-bit multiplier can also be used to implement 16x20-bit multiplication.

A way of mapping such elements in coarse grain synthesis is the wrap-extract-unwrap method:

wrap
Identify candidate-cells in the circuit and wrap them in a cell with a constant wider bit-width using
techmap. The wrappers use the same parameters as the original cell, so the information about the
original width of the ports is preserved. Then use the connwrappers command to connect up the
bit-extended in- and outputs of the wrapper cells.

extract
Now all operations are encoded using the same bit-width as the coarse grain element. The eztract
command can be used to replace circuits with cells of the target architecture.

unwrap
The remaining wrapper cell can be unwrapped using techmap .
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Example: DSP48_MACC

This section details an example that shows how to map MACC operations of arbitrary size to MACC cells

with a 18x25-bit multiplier and a 48-bit adder (such as the Xilinx DSP48 cells).
Preconditioning: macc_xilinx_swap_map.v

Make sure A is the smaller port on all multipliers

Listing 3.23: macc_xilinx_swap_map.v

(* techmap_celltype = "$mul" *)
module mul_swap_ports (A, B, Y);
parameter A_SIGNED = O;
parameter B_SIGNED = O;
parameter A_WIDTH = 1;
parameter B_WIDTH ilg
parameter Y_WIDTH = 1;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

wire _TECHMAP FAIL = A_WIDTH <= B_WIDTH;

\$mul #(
.A_SIGNED (B_SIGNED),
.B_SIGNED(A_SIGNED),
.A_WIDTH(B_WIDTH),
.B_WIDTH(A_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

.A(B),
.B(A),
YY)
);
endmodule

Wrapping multipliers: macc_xilinx_wrap_map.v

Listing 3.24: macc_xilinx_wrap_map.v

(* techmap_celltype = "$mul" *)
module mul_wrap (A, B, Y);

)

parameter A_SIGNED
parameter B_SIGNED
parameter A_WIDTH
parameter B_WIDTH
parameter Y_WIDTH

)

=0
=0

1;
1;
1;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;

(continues on next page)
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(continued from previous page)

output [Y_WIDTH-1:0] Y;

wire [17:0] A_18 = A;

wire [24:0] B_25 = B;

wire [47:0] Y_48;

assign Y = Y_48;

wire [1023:0] _TECHMAP_DO_ = "proc; clean";

reg _TECHMAP_FAIL_;
initial begin
_TECHMAP_FAIL_ <= 0;
if (A_SIGNED || B_SIGNED)
_TECHMAP_FAIL <= 1;
if (A_WIDTH < 4 || B_WIDTH < 4)
_TECHMAP_FAIL_ <= 1;
if (A_WIDTH > 18 || B_WIDTH > 25)
_TECHMAP_FAIL_ <= 1;
if (A_WIDTH#*B_WIDTH < 100)
_TECHMAP_FAIL_ <= 1;
end

\$__mul_wrapper #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

.A(A_18),
.B(B_25),
.Y(Y_48)
);
endmodule

Wrapping adders: macc_xilinx_wrap_map.v

Listing 3.25: macc_xilinx_wrap_map.v

(* techmap_celltype = "$add" *)
module add_wrap (A, B, Y);

parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH
parameter B_WIDTH =

parameter Y_WIDTH

] (|
I
= e

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

[os)

(continues on next page)
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(continued from previous page)

wire [47:0] A_48 = A;

wire [47:0] B_48 = B;

wire [47:0] Y_48;

assign Y = Y_48;

wire [1023:0] _TECHMAP_DO_ = "proc; clean";

reg _TECHMAP_FAIL_;
initial begin
_TECHMAP_FAIL_ <= 0;
if (A_SIGNED || B_SIGNED)
_TECHMAP_FAIL_ <= 1;
if (A_WIDTH < 10 && B_WIDTH < 10)
_TECHMAP_FAIL_ <= 1;
end

\$__add_wrapper #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

.A(A_48),
.B(B_48),
.Y(Y_48)
);
endmodule

Extract: macc_xilinx_xmap.v

Listing 3.26: macc_xilinx_xmap.v

module DSP48_MACC (a, b, c, y);
input [17:0] a;
input [24:0] b;
input [47:0] c;
output [47:0] y;

assign y = axb + c;

endmodule

. simply use the same wrapping commands on this module as on the design to create a template for the
extract command.

Unwrapping multipliers: macc_xilinx_unwrap_map.v
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Listing 3.27: $__mul_wrapper
macc_xilinx_unwrap_map.v

module in

module \$__mul_wrapper (A, B, Y);

parameter A_SIGNED = O
0 .

parameter B_SIGNED
parameter A_WIDTH
parameter B_WIDTH =
parameter Y_WIDTH

1N
]
= e

]
[y

input [17:0] A;
input [24:0] B;
output [47:0] Y;

wire [A_WIDTH-1:0] A_ORIG =
wire [B_WIDTH-1:0] B_ORIG =
wire [Y_WIDTH-1:0] Y_ORIG;
assign Y = Y_ORIG;

I |
o =

\$mul #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_WIDTH(A_WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (
.A(A_ORIG),
.B(B_ORIG),
.Y(Y_ORIG)

g

endmodule

Unwrapping adders: macc_xilinx_unwrap_map.v

Listing 3.28: $__add_wrapper
macc_xilinx_unwrap_map.v

module in

module \$__add_wrapper (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O;

parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;

input [47:0] A;
input [47:0] B;
output [47:0] Y;

wire [A_WIDTH-1:0] A_ORIG =
wire [B_WIDTH-1:0] B_ORIG =

| |
o =

(continues on next page)
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(continued from previous page)

wire [Y_WIDTH-1:0] Y_ORIG;
assign Y = Y_ORIG;

\$add #(
.A_SIGNED(A_SIGNED),
.B_SIGNED(B_SIGNED),
.A_ WIDTH(A WIDTH),
.B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (
.A(A_ORIG),
.B(B_ORIG),
.Y(Y_ORIG)

3§

endmodule

Listing 3.29: testl of macc_xilinx_test.v

module testl(a, b, c, d, e, £, y);
input [19:0] a, b, c;
input [15:0] d, e, f;
output [41:0] y;
assign y = a*b + cxd + ex*f;
endmodule

Al $5
A ED

Al sl
[::::::}_'.> B | $mul ‘{'\\&h
Al $3
A Y
©_> - $i2ul Y 9| B | Sadd

$mul

9
N
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Listing 3.30: test2 of macc_xilinx_test.v

module test2(a, b, c, d, e, £, y);
input [19:0] a, b, c;
input [15:0] d, e, f;
output [41:0] y;
assign y = axb + (cxd + ex*f);
endmodule

Wrapping in test1:

techmap -map macc_xilinx_wrap_map.V

connwrappers -unsigned $__mul_wrapper Y Y_WIDTH \
-unsigned $__add_wrapper Y Y_WIDTH;;

Wrapping in test2:

techmap -map macc_xilinx_wrap_map.v

connwrappers -unsigned $__mul_wrapper Y Y_WIDTH \
-unsigned $__add_wrapper Y Y_WIDTH;;

Extract in test1:

design -push

read_verilog macc_xilinx_xmap.v
techmap -map macc_xilinx_swap_map.v
techmap -map macc_xilinx_wrap_map.vV;;

(continues on next page)
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(continued from previous page)
design -save __macc_xilinx_xmap
design -pop

extract -constports -ignore_parameters \
-map %__macc_xilinx_xmap \
-swap $__add_wrapper A,B ;;

"\,
J— 15:0- 15:0 /9 A
CO—lany (), o
o, o $36 \
ONY 35 ¥ ol ¢
J——19:0- 19:0 {—] DSP48_MACC 41:0 - 41:0

0->47:42 | 41:0 - 41:0

Extract in test2:

design -push

read_verilog macc_xilinx_xmap.v
techmap -map macc_xilinx_swap_map.v
techmap -map macc_xilinx_wrap_map.vV;;
design -save __macc_xilinx_xmap
design -pop

extract -constports -ignore_parameters \
-map %__macc_xilinx_xmap \
-swap $__add_wrapper A,B ;;

Unwrap in test2:

techmap -map macc_xilinx_unwrap_map.v;;
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3.1.8 The ABC toolbox

ABC, from the University of California, Berkeley, is a logic toolbox used for fine-grained optimisation and
LUT mapping.

Yosys has two different commands, which both use this logic toolbox, but use it in different ways.

The abc pass can be used for both ASIC (e.g. abc -liberty) and FPGA (abc -lut) mapping, but this
page will focus on FPGA mapping.

The abc9 pass generally provides superior mapping quality due to being aware of combination boxes and
DFF and LUT timings, giving it a more global view of the mapping problem.

ABC: the unit delay model, simple and efficient

The abc pass uses a highly simplified view of an FPGA:

e« An FPGA is made up of a network of inputs that connect through LUTs to a network of outputs.
These inputs may actually be I/O pins, D flip-flops, memory blocks or DSPs, but ABC is unaware of
this.

e Each LUT has 1 unit of delay between an input and its output, and this applies for all inputs of a
LUT, and for all sizes of LUT up to the maximum LUT size allowed; e.g. the delay between the input
of a LUT2 and its output is the same as the delay between the input of a LUT6 and its output.

e A LUT may take up a variable number of area units. This is constant for each size of LUT; e.g. a
LUT4 may take up 1 unit of area, but a LUT5 may take up 2 units of area, but this applies for all
LUT4s and LUT5s.

This is known as the “unit delay model”, because each LUT uses one unit of delay.

From this view, the problem ABC has to solve is finding a mapping of the network to LUTs that has the
lowest delay, and then optimising the mapping for size while maintaining this delay.

This approach has advantages:
e It is simple and easy to implement.
o Working with unit delays is fast to manipulate.

o It reflects some FPGA families, for example, the iCE40HX /LP fits the assumptions of the unit delay
model quite well (almost all synchronous blocks, except for adders).

But this approach has drawbacks, too:

o The network of inputs and outputs with only LUTs means that a lot of combinational cells (multipliers
and LUTRAM) are invisible to the unit delay model, meaning the critical path it optimises for is not
necessarily the actual critical path.

e LUTs are implemented as multiplexer trees, so there is a delay caused by the result propagating
through the remaining multiplexers. This means the assumption of delay being equal isn’t true in
physical hardware, and is proportionally larger for larger LUTs.

« Even synchronous blocks have arrival times (propagation delay between clock edge to output changing)
and setup times (requirement for input to be stable before clock edge) which affect the delay of a path.
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ABC9: the generalised delay model, realistic and flexible

ABC9 uses a more detailed and accurate model of an FPGA:

e An FPGA is made up of a network of inputs that connect through LUTs and combinational boxes to
a network of outputs. These boxes have specified delays between inputs and outputs, and may have
an associated network (“white boxes”) or not (“black boxes”), but must be treated as a whole.

e Each LUT has a specified delay between an input and its output in arbitrary delay units, and this
varies for all inputs of a LUT and for all sizes of LUT, but each size of LUT has the same associated
delay; e.g. the delay between input A and output is different between a LUT2 and a LUT6, but is
constant for all LUT6s.

e A LUT may take up a variable number of area units. This is constant for each size of LUT; e.g. a
LUT4 may take up 1 unit of area, but a LUT5 may take up 2 units of area, but this applies for all
LUT4s and LUT5s.

This is known as the “generalised delay model”, because it has been generalised to arbitrary delay units.
ABC9 doesn’t actually care what units you use here, but the Yosys convention is picoseconds. Note the
introduction of boxes as a concept. While the generalised delay model does not require boxes, they naturally
fit into it to represent combinational delays. Even synchronous delays like arrival and setup can be emulated
with combinational boxes that act as a delay. This is further extended to white boxes, where the mapper is
able to see inside a box, and remove orphan boxes with no outputs, such as adders.

Again, ABC9 finds a mapping of the network to LUTs that has the lowest delay, and then minimises it to
find the lowest area, but it has a lot more information to work with about the network.

The result here is that ABC9 can remove boxes (like adders) to reduce area, optimise better around those
boxes, and also permute inputs to give the critical path the fastest inputs.

3.1.9 Mapping to cell libraries

While much of this documentation focuses on the use of Yosys with FPGAs, it is also possible to map to
cell libraries which can be used in designing ASICs. This section will cover a brief example project, available
in the Yosys source code under docs/source/code_examples/intro/. The project contains a simple ASIC
synthesis script (counter.ys), a digital design written in Verilog (counter.v), and a simple CMOS cell
library (mycells.lib). Many of the early steps here are already covered in more detail in the Synthesis
starter document.

Note: The counter.ys script includes the commands used to generate the images in this document. Code
snippets in this document skip these commands; including line numbers to allow the reader to follow along
with the source.

To learn more about these commands, check out A look at the show command.

3.1. Synthesis in detail 91


https://github.com/YosysHQ/yosys/tree/main/docs/source/code_examples/intro

YosysHQ Yosys, Version 0.43

A simple counter
First, let’s quickly look at the design:

Listing 3.31: counter.v

module counter (clk, rst, en, count);

input clk, rst, en;
output reg [1:0] count;

always @(posedge clk)
if (rst)
count <= 2'd0;
else if (en)
count <= count + 2'dil;

endmodule

This is a simple counter with reset and enable. If the reset signal, rst, is high then the counter will reset to
0. Otherwise, if the enable signal, en, is high then the count register will increment by 1 each rising edge of
the clock, clk.

Loading the design

Listing 3.32: counter.ys - read design

# read design
read_verilog counter.v
hierarchy -check -top counter

Our circuit now looks like this:

Coarse-grain representation
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Fig. 3.7: counter after hierarchy
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Fig. 3.8: Coarse-grain representation of the counter module

3.1. Synthesis in detail 93



YosysHQ Yosys, Version 0.43

Listing 3.33: counter.ys - the high-level stuff

# the high-level stuff
proc; opt

memory; opt

fsm; opt

Logic gate mapping

Listing 3.34: counter.ys - mapping to internal cell library

# mapping to internal cell library
techmap; opt

clk

$91 Q
$_SDFFE_PPOP_ w (Al s |,

B | $_XOR_

= EIEE

$92 Q
$_SDFFE_PPOP_

vy r/v/

e [o]o

Fig. 3.9: counter after techmap

Mapping to hardware

For this example, we are using a Liberty file to describe a cell library which our internal cell library will be
mapped to:

Listing 3.35: mycells.1lib

library(demo) {
cell(BUF) A{
area: 6;
pin(A) { direction: input; }
pin(Y) { direction: output;
function: "A"; }
}
cell(NOT) {
area: 3;
pin(A) { direction: input; }
pin(Y) { direction: output;
function: "A'"; }
}
cell (NAND) {
area: 4;

(continues on next page)
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(continued from previous page)
pin(A) { direction: input; }
pin(B) { direction: input; }
pin(Y) { direction: output;

function: "(A*B)'"; }
}
cell(NOR) {
area: 4;
pin(A) { direction: input; }
pin(B) { direction: input; }
pin(Y) { direction: output;
function: "(A+B)'"; }
}
cell(DFF) {
area: 18;
f£(IQ, IQN) { clocked_on: C;
next_state: D; }
pin(C) { direction: input;
clock: true; }
pin(D) { direction: input; }
pin(Q) { direction: output;
function: "IQ"; }
}

Recall that the Yosys built-in logic gate types are $_NOT_, $_AND_, $_OR_, $_XOR_, and $_MUX_ with an
assortment of dff memory types. mycells.lib defines our target cells as BUF, NOT, NAND, NOR, and DFF. Mapping
between these is performed with the commands df flibmap and abc as follows:

Listing 3.36: counter.ys - mapping to hardware

dfflibmap -liberty mycells.lib

# mapping logic to mycells.lib
abc -liberty mycells.lib

# cleanup
clean

The final version of our counter module looks like this:

Fig. 3.10: counter after hardware cell mapping
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Before finally being output as a verilog file with write_wverilog, which can then be loaded into another
tool:

Listing 3.37: counter.ys - write synthesized design

# write synthesized design
write_verilog synth.v

3.2 More scripting

3.2.1 Loading a design

keyword: Frontends

e read_verilog - read modules from Verilog file

read_verilog filel.v
read_verilog -I include_dir -D enable_foo -D WIDTH=12 file2.v
read_verilog -1lib cell_library.v

verilog_defaults -add -I include_dir
read_verilog file3.v

read_verilog filed.v
verilog_defaults -clear

verilog_defaults -push
verilog_defaults -add -I include_dir
read_verilog fileb5.v

read_verilog file6.v
verilog_defaults -pop

Others:
e read - load HDL designs
e GHDL plugin for VHDL
o read_rtlil - read modules from RTLIL file (direct textual representation of Yosys internal state)
e read__aiger - read AIGER file
e read_blif - read BLIF file
e read_json - read JSON file
e read_liberty - read cells from liberty file
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3.2.2 Selections

The selection framework

The select command can be used to create a selection for subsequent commands. For example:

select foobar # select the module foobar
delete # delete selected objects

Normally the select command overwrites a previous selection. The commands select -add and select
-del can be used to add or remove objects from the current selection.

The command select -clear can be used to reset the selection to the default, which is a complete selection
of everything in the current module.

This selection framework can also be used directly in many other commands. Whenever a command has
[selection] as last argument in its usage help, this means that it will use the engine behind the select
command to evaluate additional arguments and use the resulting selection instead of the selection created
by the last select command.

For example, the command delete will delete everything in the current selection; while delete foobar will
only delete the module foobar. If no select command has been made, then the “current selection” will be
the whole design.

Note: Many of the examples on this page make use of the show command to visually demonstrate the effect
of selections. For a more detailed look at this command, refer to A look at the show command.

How to make a selection

Selection by object name

The easiest way to select objects is by object name. This is usually only done in synthesis scripts that are
hand-tailored for a specific design.

select foobar select module foobar
select foox*
select foo*/bar*

select */clk

select all modules whose names start with foo
select all objects matching bar* from modules matching foox*
select objects named clk from all modules

H H B

Module and design context

Commands can be executed in module/ or design/ context. Until now, all commands have been executed
in design context. The c¢d command can be used to switch to module context.

In module context, all commands only effect the active module. Objects in the module are selected without
the <module_name>/ prefix. For example:

cd foo # switch to module foo
delete bar # delete object foo/bar
cd mycpu # switch to module mycpu

(continues on next page)
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(continued from previous page)

dump reg_x* # print details on all objects whose names start with reg_

CCI. # switch back to design

Note: Most synthesis scripts never switch to module context. But it is a very powerful tool which we explore
more in Interactive design investigation.

Selecting by object property or type

Special patterns can be used to select by object property or type. For example:
o select all wires whose names start with reg_: select w:reg_x
o select all objects with the attribute foobar set: select a:foobar
e select all objects with the attribute foobar set to 42: select a:foobar=42
o select all modules with the attribute blabla set: select A:blabla
o select all $add cells from the module foo: select foo/t:$add

A complete list of pattern expressions can be found in select - modify and view the list of selected objects.

Operations on selections

Combining selections

The select command is actually much more powerful than it might seem at first glance. When it is called
with multiple arguments, each argument is evaluated and pushed separately on a stack. After all arguments
have been processed it simply creates the union of all elements on the stack. So select t:$add a:foo will
select all $add cells and all objects with the foo attribute set:

Listing 3.38: Test module for operations on selections

module foobaraddsub(a, b, c, d, fa, fs, ba, bs);
input [7:0] a, b, c, d;
output [7:0] fa, fs, ba, bs;

assign fa = a + (x foo *) b;
assign fs = a - (*x foo *) b;
assign ba = ¢ + (x bar *) d;
assign bs = ¢ - (x bar *) d;

endmodule

Listing 3.39: Output for command select t:$add a:foo -list
on Listing 3.38

yosys> select t:$add a:foo -list

foobaraddsub/$add$foobaraddsub.v:6$3
foobaraddsub/$sub$foobaraddsub.v:5$2
foobaraddsub/$add$foobaraddsub.v:4$1

In many cases simply adding more and more stuff to the selection is an ineffective way of selecting the
interesting part of the design. Special arguments can be used to combine the elements on the stack. For
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example the %i arguments pops the last two elements from the stack, intersects them, and pushes the result
back on the stack. So select t:$add a:foo %i will select all $add cells that have the foo attribute set:

Listing 3.40: Output for command select t:$add a:foo %i
-list on Listing 3.38

yosys> select t:$add a:foo %i -list
foobaraddsub/$add$foobaraddsub.v:4$1

Some of the special %-codes:
e %u: union of top two elements on stack — pop 2, push 1
e d: difference of top two elements on stack — pop 2, push 1
e %i: intersection of top two elements on stack — pop 2, push 1
e ’n: inverse of top element on stack — pop 1, push 1

See select - modify and view the list of selected objects for the full list.

Expanding selections

Listing 3.41 uses the Yosys non-standard {... *} syntax to set the attribute sumstuff on all cells generated
by the first assign statement. (This works on arbitrary large blocks of Verilog code and can be used to mark
portions of code for analysis.)

Listing 3.41: Another test module for operations on selections

module sumprod(a, b, c, sum, prod);

input [7:0] a, b, c;
output [7:0] sum, prod;

{* sumstuff =*}
assign sum = a + b + c;
{x *}

assign prod = a * b * c;

endmodule

Selecting a:sumstuff in this module will yield the following circuit diagram:

As only the cells themselves are selected, but not the temporary wire $1_Y, the two adders are shown as
two disjunct parts. This can be very useful for global signals like clock and reset signals: just unselect them
using a command such as select -del clk rst and each cell using them will get its own net label.

In this case however we would like to see the cells connected properly. This can be achieved using the %x
action, that broadens the selection, i.e. for each selected wire it selects all cells connected to the wire and
vice versa. So show a:sumstuff %x yields the diagram shown in Fig. 3.12:
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Fig. 3.11: Output of show a:sumstuff on Listing 3.41
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Fig. 3.12: Output of show a:sumstuff %x on Listing 3.41
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Selecting logic cones

Fig. 3.12 shows what is called the input cone of sum, i.e. all cells and signals that are used to generate
the signal sum. The %ci action can be used to select the input cones of all object in the top selection in the
stack maintained by the select command.

As with the %x action, these commands broaden the selection by one “step”. But this time the operation
only works against the direction of data flow. That means, wires only select cells via output ports and cells
only select wires via input ports.

The following sequence of diagrams demonstrates this step-wise expansion:

sumprod

Fig. 3.13: Output of show prod on Listing 3.41

A
$4 |y
/ B $mu1
sumprod

Fig. 3.14: Output of show prod %ci on Listing 3.41

Notice the subtle difference between show prod %ci and show prod %ci %ci. Both images show the $mul
cell driven by some inputs $3_Y and c. However it is not until the second image, having called %ci the
second time, that show is able to distinguish between $3_Y being a wire and ¢ being an input. We can see
this better with the dump command instead:
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! Al ¢4
/B $mul Y @

sumprod

Fig. 3.15: Output of show prod %ci %ci on Listing 3.41

"

B | $mul Y \ N
Y
=D

sumprod

Fig. 3.16: Output of show prod %ci %ci %ci on Listing 3.41
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Listing 3.42: Output of dump prod %ci

attribute \src "sumprod.v:4.21-4.25"
wire width 8 output 5 \prod

attribute \src "sumprod.v:10.17-10.26"
cell $mul $mul$sumprod.v:10$4
parameter \A_SIGNED O
parameter \A_WIDTH 8
parameter \B_SIGNED 0
parameter \B_WIDTH 8
parameter \Y_WIDTH 8
connect \A $mul$sumprod.v:10$3_Y
connect \B \c
connect \Y \prod
end

Listing 3.43: Output of dump prod %ci Y%ci

attribute \src "sumprod.v:10.17-10.22"
wire width 8 $mul$sumprod.v:10$3_Y

attribute \src "sumprod.v:3.21-3.22"
wire width 8 input 3 \c

attribute \src "sumprod.v:4.21-4.25"
wire width 8 output 5 \prod

attribute \src "sumprod.v:10.17-10.26"
cell $mul $mul$sumprod.v:10$4
parameter \A_SIGNED O
parameter \A_WIDTH 8
parameter \B_SIGNED O
parameter \B_WIDTH 8
parameter \Y_WIDTH 8
connect \A $mul$sumprod.v:10$3_Y
connect \B \c
connect \Y \prod
end

When selecting many levels of logic, repeating %ci over and over again can be a bit dull. So there is a
shortcut for that: the number of iterations can be appended to the action. So for example the action %ci3
is identical to performing the %ci action three times.

The action %ci* performs the %ci action over and over again until it has no effect anymore.
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Advanced logic cone selection

In most cases there are certain cell types and/or ports that should not be considered for the %ci action, or
we only want to follow certain cell types and/or ports. This can be achieved using additional patterns that
can be appended to the %ci action.

Lets consider Listing 3.44. It serves no purpose other than being a non-trivial circuit for demonstrating some
of the advanced Yosys features. This code is available in docs/source/code_examples/selections of the
Yosys source repository.

Listing 3.44: memdemo.v

module memdemo(clk, d, y);

input clk;
input [3:0] d;
output reg [3:0] y;

integer i;
reg [1:0] s1, s2;
reg [3:0] mem [0:3];

always @(posedge clk) begin
for (i = 0; i < 4; i = i+1)
mem[i] <= mem[(i+1) % 4] + mem[(i+2) % 4];
{s2,s13}=d7{s1, s2} " d: 4'b0;
mem[s1] <= d;
y <= mem[s2];
end

endmodule

The script memdemo . ys is used to generate the images included here. Let’s look at the first section:

Listing 3.45: Synthesizing memdemo.v

read_verilog memdemo.v
prep -top memdemo; memory; opt

This loads Listing 3.44 and synthesizes the included module. Note that this code can be copied and run
directly in a Yosys command line session, provided memdemo.v is in the same directory. We can now change
to the memdemo module with cd memdemo, and call show to see the diagram in Fig. 3.17.

There’s a lot going on there, but maybe we are only interested in the tree of multiplexers that select the
output value. Let’s start by just showing the output signal, y, and its immediate predecessors. Remember
Selecting logic cones from above, we can use show y %ci2:

From this we would learn that y is driven by a $dff cell, that y is connected to the output port Q, that
the clk signal goes into the CLK input port of the cell, and that the data comes from an auto-generated wire
into the input D of the flip-flop cell (indicated by the $ at the start of the name). Let’s go a bit further now
and try show y %cib:

That’s starting to get a bit messy, so maybe we want to ignore the mux select inputs. To add a pattern we
add a colon followed by the pattern to the %ci action. The pattern itself starts with - or +, indicating if it
is an include or exclude pattern, followed by an optional comma separated list of cell types, followed by an
optional comma separated list of port names in square brackets. In this case, we want to exclude the S port
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Fig. 3.17: Complete circuit diagram for the design shown in Listing 3.44

CLK | $rdreg[0] Q
D $dff

<>

memdemo

Fig. 3.18: Output of show y %ci2

$82
$mux Y
\ CLK | $rdreg[0] 0
A / D $adff
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4'0000 N

$33
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e

memdemo

Fig. 3.19: Output of show y %cib
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of the $mux cell type with show y %cib5:-$mux[S]:
$0N\s2(1:0] [0]

$0\s2[1:0] [0]

$82
$mux

m‘w‘?P

CLK | $rdreg[0] 9
D $dff

$mux

$mux

m‘w‘:D

A
$85 |y >l 5| 579 Y/
S

$0\s2[1:0] [1]

memdemo

Fig. 3.20: Output of show y %cib:-$mux[S]

We could use a command such as show y %ci2:+$dff [Q,D] Jici*:-$mux[S]:-$dff in which the first %ci
jumps over the initial d-type flip-flop and the 2nd action selects the entire input cone without going over
multiplexer select inputs and flip-flop cells:

Or we could use show y %ci*:-[CLK,S]:+$dff:+$mux instead, following the input cone all the way but
only following $dff and $mux cells, and ignoring any ports named CLK or S:

Similar to %ci exists an action %co to select output cones that accepts the same syntax for pattern and
repetition. The %x action mentioned previously also accepts this advanced syntax.

These actions for traversing the circuit graph, combined with the actions for boolean operations such as
intersection (%i) and difference (%d) are powerful tools for extracting the relevant portions of the circuit
under investigation.

Again, see select - modify and view the list of selected objects for full documentation of these expressions.

Incremental selection

Sometimes a selection can most easily be described by a series of add/delete operations. As mentioned
previously, the commands select -add and select -del respectively add or remove objects from the
current selection instead of overwriting it.

select -none # start with an empty selection
select -add reg_x* # select a bunch of objects
select -del reg_42 # but not this one

select -add state Yci # and add more stuff

Within a select expression the token % can be used to push the previous selection on the stack.
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Fig. 3.21: Output of show y %ci2:+$dff [Q,D] %ci*:-$mux[S]:-$dff
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Fig. 3.22: Output of show y %ci*:-[CLK,S]:+$dff, $mux

3.2. More scripting 107



YosysHQ Yosys, Version 0.43

select t:$add t:$sub # select all $add and $sub cells
select % %hci % hd # select only the input wires to those cells

Storing and recalling selections

The current selection can be stored in memory with the command select -set <name>. It can later be
recalled using select @<name>. In fact, the @<name> expression pushes the stored selection on the stack
maintained by the select command. So for example select @foo @bar %i will select the intersection
between the stored selections foo and bar.

In larger investigation efforts it is highly recommended to maintain a script that sets up relevant selections,
so they can easily be recalled, for example when Yosys needs to be re-run after a design or source code
change.

The history command can be used to list all recent interactive commands. This feature can be useful for
creating such a script from the commands used in an interactive session.

Remember that select expressions can also be used directly as arguments to most commands. Some com-
mands also accept a single select argument to some options. In those cases selection variables must be used
to capture more complex selections.

Example code from docs/source/code_examples/selections:

Listing 3.46: select.v

module test(clk, s, a, y);
input clk, s;
input [15:0] a;
output [15:0] y;
reg [15:0] Db, c;

always Q@(posedge clk) begin
b <= a;
c <= b;

end

wire [15:0] state_a = (a ~ b) + c;

wire [15:0] state_b (a ~ b) - c;

assign y = !s 7 state_a : state_b;
endmodule

Listing 3.47: select.ys

read_verilog select.v
prep -top test

cd test

select -set cone_a state_a Jci*:-$dff

select —-set cone_b state_b Y%ci*:-$dff

select -set cone_ab @cone_a @cone_b %i

show -prefix select -format dot -notitle \
-color red @cone_ab -color magenta Qcone_a \
—color blue Qcone_b
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Fig. 3.23: Circuit diagram produced by Listing 3.47

3.2.3 Interactive design investigation
A look at the show command

This section explores the show command and explains the symbols used in the circuit diagrams generated
by it. The code used is included in the Yosys code base under docs/source/code_examples/show.

A simple circuit

example.v below provides the Verilog code for a simple circuit which we will use to demonstrate the usage
of show in a simple setting.

Listing 3.48: example.v

module example(input clk, a, b, c,
output reg [1:0] y);
always @(posedge clk)
if (c)
y<=c?a+b: 2'd0;
endmodule

The Yosys synthesis script we will be running is included as Listing 3.49. Note that show is called with the
-pause option, that halts execution of the Yosys script until the user presses the Enter key. Using show
-pause also allows the user to enter an interactive shell to further investigate the circuit before continuing
synthesis.

Listing 3.49: example_show.ys

read_verilog example.v
show -pause # first
proc

show -pause # second
opt

show -pause # third

This script, when executed, will show the design after each of the three synthesis commands. We will now
look at each of these diagrams and explain what is shown.

Note: The images uses in this document are generated from the example.ys file, rather than example_show.
ys. example.ys outputs the schematics as .dot files rather than displaying them directly. You can view
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these images yourself by running yosys example.ys and then xdot example_first.dot etc.

$3 PROC $1

example.v:3.5—5.35]

B | $add

TS
o

example

Fig. 3.24: Output of the first show command in Listing 3.49

The first output shows the design directly after being read by the Verilog front-end. Input and output ports
are displayed as octagonal shapes. Cells are displayed as rectangles with inputs on the left and outputs on
the right side. The cell labels are two lines long: The first line contains a unique identifier for the cell and
the second line contains the cell type. Internal cell types are prefixed with a dollar sign. For more details
on the internal cell library, see Internal cell library.

Constants are shown as ellipses with the constant value as label. The syntax <bit_width>'<bits> is used
for constants that are not 32-bit wide and/or contain bits that are not 0 or 1 (i.e. x or z). Ordinary 32-bit
constants are written using decimal numbers.

Single-bit signals are shown as thin arrows pointing from the driver to the load. Signals that are multiple
bits wide are shown as think arrows.

Finally processes are shown in boxes with round corners. Processes are Yosys’ internal representation of the
decision-trees and synchronization events modelled in a Verilog always-block. The label reads PROC followed
by a unique identifier in the first line and contains the source code location of the original always-block
in the second line. Note how the multiplexer from the 7:-expression is represented as a $mux cell but the
multiplexer from the if-statement is yet still hidden within the process.

The proc command transforms the process from the first diagram into a multiplexer and a d-type flip-flop,
which brings us to the second diagram:

The Rhombus shape to the right is a dangling wire. (Wire nodes are only shown if they are dangling or
have “public” names, for example names assigned from the Verilog input.) Also note that the design now
contains two instances of a BUF-node. These are artefacts left behind by the proc command. It is quite
usual to see such artefacts after calling commands that perform changes in the design, as most commands
only care about doing the transformation in the least complicated way, not about cleaning up after them.
The next call to clean (or opt, which includes clean as one of its operations) will clean up these artefacts.
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Fig. 3.25: Output of the second show command in Listing 3.49

This operation is so common in Yosys scripts that it can simply be abbreviated with the ;; token, which
doubles as separator for commands. Unless one wants to specifically analyze this artefacts left behind some
operations, it is therefore recommended to always call clean before calling show.

In this script we directly call opt as the next step, which finally leads us to the third diagram:

N CLK
$2 $7
5| sada | Y P12 gaffe | Q
EN
example

Fig. 3.26: Output of the third show command in exzample show.ys

Here we see that the proc command not only has removed the artifacts left behind by proc, but also
determined correctly that it can remove the first $mux cell without changing the behavior of the circuit.
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Break-out boxes for signal vectors

The code listing below shows a simple circuit which uses a lot of spliced signal accesses.

Listing 3.50: splice.v

module splice_demo(a, b, c, d, e, £, x, y);

input [1:0] a, b, ¢, 4, e, f;
output [1:0] x;
assign x = {al0], al1l};

output [11:0] y;
assign {y[11:4], y([1:0], y[3:2]} =
{a, b, {c, d}, ~{e, £}};

endmodule

Notice how the output for this circuit from the show command (Fig. 3.27) appears quite complex. This is
an unfortunate side effect of the way Yosys handles signal vectors (aka. multi-bit wires or buses) as native
objects. While this provides great advantages when analyzing circuits that operate on wide integers, it also
introduces some additional complexity when the individual bits of of a signal vector are accessed.

splice_demo

Fig. 3.27: Output of yosys -p 'prep -top splice_demo; show' splice.v
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The key elements in understanding this circuit diagram are of course the boxes with round corners and rows
labeled <MSB_LEFT>:<LSB_LEFT> - <MSB_RIGHT>:<LSB_RIGHT>. Each of these boxes have one signal per
row on one side and a common signal for all rows on the other side. The <MSB>:<LSB> tuples specify which
bits of the signals are broken out and connected. So the top row of the box connecting the signals a and x
indicates that the bit 0 (i.e. the range 0:0) from signal a is connected to bit 1 (i.e. the range 1:1) of signal x.

Lines connecting such boxes together and lines connecting such boxes to cell ports have a slightly different
look to emphasise that they are not actual signal wires but a necessity of the graphical representation. This
distinction seems like a technicality, until one wants to debug a problem related to the way Yosys internally
represents signal vectors, for example when writing custom Yosys commands.

Gate level netlists

Fig. 3.28 shows two common pitfalls when working with designs mapped to a cell library:

Listing 3.51: Generating Fig. 3.28

read_verilog cmos.v

prep -top cmos_demo

techmap

abc -liberty ../intro/mycells.lib;;
show -format dot -prefix cmos_00

First, Yosys did not have access to the cell library when this diagram was generated, resulting in all cell
ports defaulting to being inputs. This is why all ports are drawn on the left side the cells are awkwardly
arranged in a large column. Secondly the two-bit vector y requires breakout-boxes for its individual bits,
resulting in an unnecessary complex diagram.

Listing 3.52: Generating Fig. 3.29

read_verilog cmos.v

prep -top cmos_demo

techmap

splitnets -ports

abc -liberty ../intro/mycells.lib;;

show -1ib ../intro/mycells.v -format dot -prefix cmos_01

For Fig. 3.29, Yosys has been given a description of the cell library as Verilog file containing blackbox
modules. There are two ways to load cell descriptions into Yosys: First the Verilog file for the cell library
can be passed directly to the show command using the -1ib <filename> option. Secondly it is possible to
load cell libraries into the design with the read_verilog -1ib <filename> command. The second method
has the great advantage that the library only needs to be loaded once and can then be used in all subsequent
calls to the show command.

In addition to that, Fig. 3.29 was generated after splitnet -ports was run on the design. This command
splits all signal vectors into individual signal bits, which is often desirable when looking at gate-level circuits.
The -ports option is required to also split module ports. Per default the command only operates on interior
signals.
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$113
NOR

$112
NOR

$109
NOT

$110
NOT

$111

NOR
1:1-00 [——1 Y

cmos_demo

Fig. 3.28: A half-adder built from simple CMOS gates, demonstrating common pitfalls when using show
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Fig. 3.29: Effects of splitnets command and of providing a cell library on design in Fig. 3.28

Miscellaneous notes

Per default the show command outputs a temporary dot file and launches xdot to display it. The options
-format, -viewer and -prefix can be used to change format, viewer and filename prefix. Note that the
pdf and ps format are the only formats that support plotting multiple modules in one run. The dot format
can be used to output multiple modules, however xdot will raise an error when trying to read them.

In densely connected circuits it is sometimes hard to keep track of the individual signal wires. For these cases
it can be useful to call show with the -colors <integer> argument, which randomly assigns colors to the
nets. The integer (> 0) is used as seed value for the random color assignments. Sometimes it is necessary it
try some values to find an assignment of colors that looks good.

The command help show prints a complete listing of all options supported by the show command.

Navigating the design

Plotting circuit diagrams for entire modules in the design brings us only helps in simple cases. For complex
modules the generated circuit diagrams are just stupidly big and are no help at all. In such cases one first
has to select the relevant portions of the circuit.

In addition to what to display one also needs to carefully decide when to display it, with respect to the
synthesis flow. In general it is a good idea to troubleshoot a circuit in the earliest state in which a problem
can be reproduced. So if, for example, the internal state before calling the techmap command already fails to
verify, it is better to troubleshoot the coarse-grain version of the circuit before techmap than the gate-level
circuit after techmap .

Note: It is generally recommended to verify the internal state of a design by writing it to a Verilog file
using write_verilog -noexpr and using the simulation models from simlib.v and simcells.v from the
Yosys data directory (as printed by yosys-config --datdir).
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Interactive navigation

Once the right state within the synthesis flow for debugging the circuit has been identified, it is recommended
to simply add the shell command to the matching place in the synthesis script. This command will stop the
synthesis at the specified moment and go to shell mode, where the user can interactively enter commands.

For most cases, the shell will start with the whole design selected (i.e. when the synthesis script does
not already narrow the selection). The command 1s can now be used to create a list of all modules. The
command cd can be used to switch to one of the modules (type cd .. to switch back). Now the 1s command
lists the objects within that module. This is demonstrated below using example.v from A simple circuit:

Listing 3.53: Output of 1s and cd after running yosys example.v

yosys> ls

1 modules:
example

yosys> cd example
yosys [examplel> 1s

8 wires:
$0\y[1:0]
$add$example.v:5$2_Y
$ternary$example.v:5$3_Y
a
b
c
clk

y

2 cEIllge
$add$example.v:5$2
$ternary$example.v:5$3

1 processes:
$proc$example.v:3$1

When a module is selected using the cd command, all commands (with a few exceptions, such as the read_
and write_ commands) operate only on the selected module. This can also be useful for synthesis scripts
where different synthesis strategies should be applied to different modules in the design.

We can see that the cell names from Fig. 3.26 are just abbreviations of the actual cell names, namely the
part after the last dollar-sign. Most auto-generated names (the ones starting with a dollar sign) are rather
long and contains some additional information on the origin of the named object. But in most cases those
names can simply be abbreviated using the last part.

Usually all interactive work is done with one module selected using the ¢d command. But it is also possible to
work from the design-context (cd ..). In this case all object names must be prefixed with <module_name>/.
For example a*/bx would refer to all objects whose names start with b from all modules whose names start
with a.

The dump command can be used to print all information about an object. For example, calling dump $2
after the cd example above:
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Listing 3.54: Output of dump $2 after Listing 3.53

attribute \src "example.v:5.22-5.27"
cell $add $add$example.v:5$2
parameter \Y_WIDTH 2
parameter \B_WIDTH 1
parameter \A_WIDTH 1
parameter \B_SIGNED O
parameter \A_SIGNED O
connect \Y $add$example.v:532_Y
connect \B \b
connect \A \a
end

This can for example be useful to determine the names of nets connected to cells, as the net-names are
usually suppressed in the circuit diagram if they are auto-generated. Note that the output is in the RTLIL
representation, described in The RTL Intermediate Language (RTLIL).

Interactive Design Investigation

Yosys can also be used to investigate designs (or netlists created from other tools).

e The selection mechanism, especially patterns such as %ci and %co, can be used to figure out how parts
of the design are connected.

e Commands such as submod, ezpose, and splice can be used to transform the design into an equivalent
design that is easier to analyse.

o Commands such as eval and sat can be used to investigate the behavior of the circuit.
e show - generate schematics using graphviz.
e dump - print parts of the design in RTLIL format.

e add - add objects to the design and delete - delete objects in the design can be used to modify and
reorganize a design dynamically.

The code used is included in the Yosys code base under docs/source/code_examples/scrambler.

Changing design hierarchy

Commands such as flatten and submod can be used to change the design hierarchy, i.e. flatten the hierarchy
or moving parts of a module to a submodule. This has applications in synthesis scripts as well as in reverse
engineering and analysis. An example using submod is shown below for reorganizing a module in Yosys and
checking the resulting circuit.

Listing 3.55: scrambler.v

module scrambler(
input clk, rst, in_bit,
output reg out_bit
)3
reg [31:0] xs;
always Q(posedge clk) begin
if (rst)

(continues on next page)
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(continued from previous page)

xs = xs ~ (xs << 13);
xs = xs = (xs > 17);
xs = xs = (xs << 5);
out_bit <= in_bit ~ xs[0];
end
endmodule

Listing 3.56: scrambler.ys

read_verilog scrambler.v
hierarchy; proc;;

cd scrambler
submod -name xorshift32 xs %c %ci %D %c %ci:+[D] %D %ci*:-$dff xs %co %ci %d

[m:a . 31:15H14:()- I4:(D¢—°[I4:(l : 3|:|7)—>
—> 40-4:0 ~ of 26:0 - 26:0

ST ERN,

$10
$mux

=

C/7|Dﬂ|>

A
© o
18:0-31:13 ) @ B | ¥

Analyzing the resulting circuit with eval - evaluate the circuil given an input:

> cd xorshift32
> rename n2 in
> rename nl out

> eval -set in 1 -show out
Eval result: \out = 270369.

> eval -set in 270369 -show out
Eval result: \out = 67634689.

> sat -set out 632435482
Signal Name Dec Hex Bin

(continues on next page)
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(continued from previous page)

\in 745495504  2c6£5bd0 00101100011011110101101111010000
\out 632435482  25b2331a 00100101101100100011001100011010

Behavioral changes

Commands such as techmap can be used to make behavioral changes to the design, for example changing
asynchronous resets to synchronous resets. This has applications in design space exploration (evaluation of
various architectures for one circuit).

The following techmap map file replaces all positive-edge async reset flip-flops with positive-edge sync reset
flip-flops. The code is taken from the example Yosys script for ASIC synthesis of the Amber ARMv2 CPU.

(* techmap_celltype = "$adff" *)
module adff2dff (CLK, ARST, D, Q);

parameter WIDTH = 1;

parameter CLK_POLARITY = 1;

parameter ARST_POLARITY = 1;

parameter ARST_VALUE = 0;

input CLK, ARST;

input [WIDTH-1:0] D;

output reg [WIDTH-1:0] Q;

wire [1023:0] _TECHMAP_DO_ = "proc";

wire _TECHMAP_FAIL_ = !CLK_POLARITY || !'ARST_POLARITY;

always @(posedge CLK)

if (ARST)
Q <= ARST_VALUE;
else
Q <= D;
endmodule

For more on the techmap command, see the page on Techmap by example.

Advanced investigation techniques

When working with very large modules, it is often not enough to just select the interesting part of the module.
Instead it can be useful to extract the interesting part of the circuit into a separate module. This can for
example be useful if one wants to run a series of synthesis commands on the critical part of the module and
wants to carefully read all the debug output created by the commands in order to spot a problem. This kind
of troubleshooting is much easier if the circuit under investigation is encapsulated in a separate module.

Recall the memdemo design from Advanced logic cone selection:

Because this produces a rather large circuit, it can be useful to split it into smaller parts for viewing and
working with. Listing 3.57 does exactly that, utilising the submod command to split the circuit into three
sections: outstage, selstage, and scramble.
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Fig. 3.30: memdemo

Listing 3.57: Using submod to break up the circuit from memdemo . v

select -set outstage y %ci2:+$dff [Q,D] %ci*:-$mux[S]:-$dff
select -set selstage y %ci2:+$dff [Q,D] Yci*:-$dff Qoutstage ’%d
select -set scramble mem* %ci2 %ci*:-$dff mem* %d @selstage %d
submod -name scramble @scramble

submod -name outstage Qoutstage

submod -name selstage @selstage

The -name option is used to specify the name of the new module and also the name of the new cell in the
current module. The resulting circuits are shown below.

$82
$mux

G
| B ]
et

CLK | $rdreg[0]

D | Sdff Q—>®

$mux $mux

m|w|>

A
385 |y Lol | 579 Y/
S

1:1-0:0

outstage

Fig. 3.31: outstage

120 Chapter 3. Using Yosys (advanced)




YosysHQ Yosys, Version 0.43

4'0000 \

A
A —
| 2] $31 % »| B $33
B | $xor L1 $mux
S
=T/
A $reduce_bool Y
selstage

Fig. 3.32: selstage

Fig. 3.33: scramble
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Evaluation of combinatorial circuits

The eval command can be used to evaluate combinatorial circuits. As an example, we will use the selstage
subnet of memdemo which we found above and is shown in Fig. 3.32.

yosys [selstage]l> eval -set s2,s1 4'b1001 -set d 4'hc -show n2 -show nil

1. Executing EVAL pass (evaluate the circuit given an input).

Full command line: eval -set s2,s1 4'b1001 -set d 4'hc -show n2 -show nil
Eval result: \n2 = 2'10.

Eval result: \nl = 2'10.

So the -set option is used to set input values and the -show option is used to specify the nets to evaluate.
If no -show option is specified, all selected output ports are used per default.

If a necessary input value is not given, an error is produced. The option -set-undef can be used to instead
set all unspecified input nets to undef (x).

The -table option can be used to create a truth table. For example:

yosys [selstage]l> eval -set-undef -set d[3:1] 0 -table s1,d[0]

10. Executing EVAL pass (evaluate the circuit given an input).
Full command line: eval -set-undef -set d[3:1] 0 -table s1,d[0]

\s1 \d [0] | \nl \n2

2'00 1'0 | 2'00 2'00
2'00 1'1 | 2'xx 2'00
2'01 1'0 | 2'00 2'00
2'01 1'1 | 2'xx 2'01
2'10 1'0 | 2'00 2'00
2'10 1'1 | 2'xx 2'10
2'11 1'0 | 2'00 2'00
2'11 1'1 | 2'xx 2'11

Assumed undef (x) value for the following signals: \s2

Note that the eval command (as well as the sat command discussed in the next sections) does only operate
on flattened modules. It can not analyze signals that are passed through design hierarchy levels. So the
flatten command must be used on modules that instantiate other modules before these commands can be
applied.

Solving combinatorial SAT problems

Often the opposite of the eval command is needed, i.e. the circuits output is given and we want to find the
matching input signals. For small circuits with only a few input bits this can be accomplished by trying all
possible input combinations, as it is done by the eval -table command. For larger circuits however, Yosys
provides the sat command that uses a SAT solver, MiniSAT, to solve this kind of problems.

Note: While it is possible to perform model checking directly in Yosys, it is highly recommended to use
SBY or EQY for formal hardware verification.
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The sat command works very similar to the eval command. The main difference is that it is now also
possible to set output values and find the corresponding input values. For Example:

yosys [selstage]l> sat -show sl1,s2,d -set sl s2 -set n2,nl 4'b1001

11. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -show sl1,s2,d -set sl s2 -set n2,nl1 4'b1001

Setting up SAT problem:

Import set-constraint: \sl = \s2

Import set-constraint: { \n2 \nl } = 4'1001

Final constraint equation: { \n2 \nl \s1 } = { 4'1001 \s2 }
Imported 3 cells to SAT database.

Import show expression: { \sl1l \s2 \d }

Solving problem with 81 variables and 207 clauses..
SAT solving finished - model found:

Signal Name Dec Hex Bin
\d 9 9 1001
\s1 0 0 00
\s2 0 0 00

Note that the sat command supports signal names in both arguments to the —set option. In the above
example we used -set sl s2 to constraint s1 and s2 to be equal. When more complex constraints are
needed, a wrapper circuit must be constructed that checks the constraints and signals if the constraint was
met using an extra output port, which then can be forced to a value using the -set option. (Such a circuit
that contains the circuit under test plus additional constraint checking circuitry is called a miter circuit.)

Listing 3.58: primetest.v, a simple miter circuit for testing if a
number is prime. But it has a problem.

module primetest(p, a, b, ok);

input [15:0] p, a, b;

output ok = p != a*b || a == [l b == 1;
endmodule

Listing 3.58 shows a miter circuit that is supposed to be used as a prime number test. If ok is 1 for all input
values a and b for a given p, then p is prime, or at least that is the idea.

Listing 3.59: Experiments with the miter circuit from primetest.
v.

yosys [primetest]> sat -prove ok 1 -set p 31

1. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -prove ok 1 -set p 31

Setting up SAT problem:

Import set-comnstraint: \p = 16'0000000000011111
Final constraint equation: \p = 16'0000000000011111
Imported 6 cells to SAT database.

Import proof-constraint: \ok = 1'1

(continues on next page)
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(continued from previous page)

Final proof equation: \ok = 1'1

Solving problem with 2790 variables and 8241 clauses..
SAT proof finished - model found: FAIL!

(____ \ / _2) / _2) (GDAN I

_____ ) ) ____l1__ ) D O I B B
'/ ) _ N/ _C _2 C __l____ 111l I/ _ 1_1
I O B M (I A I R G G I O
I b N___/ \___/ |_I l_ \_____ I_IND) DN____I_I
Signal Name Dec Hex Bin
\a 15029 3abb 0011101010110101
\b 4099 1003 0001000000000011
\ok 0 0 0
\p 31 1f 0000000000011111

The Yosys shell session shown in Listing 3.59 demonstrates that SAT solvers can even find the unexpected
solutions to a problem: Using integer overflow there actually is a way of “factorizing” 31. The clean solution
would of course be to perform the test in 32 bits, for example by replacing p != a*b in the miter with p !=
{16'd0,al}b, or by using a temporary variable for the 32 bit product axb. But as 31 fits well into 8 bits (and
as the purpose of this document is to show off Yosys features) we can also simply force the upper 8 bits of
a and b to zero for the sat call, as is done below.

Listing 3.60: Miter circuit from primetest.v, with the upper 8
bits of a and b constrained to prevent overflow.

yosys [primetest]> sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0

1. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0O

Setting up SAT problem:

Import set-constraint: \p = 16'0000000000011111

Import set-constraint: { \a [15:8] \b [15:8] } = 16'0000000000000000

Final constraint equation: { \a [15:8] \b [15:8] \p } = { 16'0000000000000000 16
—'0000000000011111 }

Imported 6 cells to SAT database.

Import proof-constraint: \ok = 1'1

Final proof equation: \ok = 1'1

Solving problem with 2790 variables and 8257 clauses..
SAT proof finished - no model found: SUCCESS!

/$833$$ /83333588 /3338888
/88__ $$ | $$_____ / | $$__ 8%
| $8 \ $% | $3 | 33 \ $%
| $8 | $% | $$8$$ | $8 | $3
| $8 | $% | $$__/ | $8 | $3
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(continued from previous page)

| $3/88 $$ | $8 | 88 | $$

| 333333/ /88| $SES888S /88| $333333//8%

N 888l __/ I/ /N__/
\__/

The -prove option used in Listing 3.60 works similar to -set, but tries to find a case in which the two
arguments are not equal. If such a case is not found, the property is proven to hold for all inputs that satisfy
the other constraints.

It might be worth noting, that SAT solvers are not particularly efficient at factorizing large numbers. But
if a small factorization problem occurs as part of a larger circuit problem, the Yosys SAT solver is perfectly
capable of solving it.

Solving sequential SAT problems

The SAT solver functionality in Yosys can not only be used to solve combinatorial problems, but can also
solve sequential problems. Let’s consider the memdemo design from Advanced logic cone selection again, and
suppose we want to know which sequence of input values for d will cause the output y to produce the sequence
1, 2, 3 from any initial state. Let’s use the following command:

sat -seq 6 -show y -show d -set-init-undef \
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

The -seq 6 option instructs the sat command to solve a sequential problem in 6 time steps. (Experiments
with lower number of steps have show that at least 3 cycles are necessary to bring the circuit in a state from
which the sequence 1, 2, 3 can be produced.)

The -set-init-undef option tells the sat command to initialize all registers to the undef (x) state. The
way the x state is treated in Verilog will ensure that the solution will work for any initial state.

The -max_undef option instructs the sat command to find a solution with a maximum number of undefs.
This way we can see clearly which inputs bits are relevant to the solution.

Finally the three -set-at options add constraints for the y signal to play the 1, 2, 3 sequence, starting with
time step 4.

This produces the following output:

Listing 3.61: Solving a sequential SAT problem in the memdemo
module.

yosys [memdemo]> sat -seq 6 -show y -show d -set-init-undef \
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

1. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -seq 6 —-show y -show d -set-init-undef
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

Setting up time step 1:
Final constraint equation: { } = { }
Imported 29 cells to SAT database.

Setting up time step 2:
Final constraint equation: { } = { }

(continues on next page)
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Imported 29 cells to SAT database.
Setting up time step 3:
Final constraint equation: { } = { }

Imported 29 cells to SAT database.

Setting up time step 4:

Import set-constraint for timestep: \y = 4'0001
Final constraint equation: \y = 4'0001

Imported 29 cells to SAT database.

Setting up time step 5:

Import set-constraint for timestep: \y = 4'0010
Final constraint equation: \y = 4'0010

Imported 29 cells to SAT database.

Setting up time step 6:

Import set-constraint for timestep: \y = 4'0011

Final constraint equation: \y = 4'0011
Imported 29 cells to SAT database.

Setting up initial state:
Final constraint equation: { \y \s2 \sl1 \mem[3] \mem[2] \mem[1]
\mem[0] } = 24'XXXXXXXXXXXXXXXXXXXXXXXX

Import show expression: \y
Import show expression: \d

Solving problem with 10322 variables and 27881 clauses..
SAT model found. maximizing number of undefs.
SAT solving finished - model found:

(continued from previous page)

Time Signal Name Dec Hex Bin
init \mem[O] = == XXXX
init \mem[1] = == XXXX
init \mem[2] == == XXXX
init \mem[3] == == XXXX
init \sl1 == = XX
init \s2 = == XX
init \y == == XXXX
1 \d 0 0 0000
1 \y == == XXXX
2 \d 1 1 0001
2 \y == == XXXX
3 \d 2 2 0010
3 \y 0 0 0000
4 \d 3 3 0011
(continues on next page)
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(continued from previous page)

4 \y 1 1 0001
5 \d = == 001x
5 \y 2 2 0010
6 \d - - XXXX
6 \y 3 3 0011

It is not surprising that the solution sets d = 0 in the first step, as this is the only way of setting the s1 and
s2 registers to a known value. The input values for the other steps are a bit harder to work out manually,
but the SAT solver finds the correct solution in an instant.

There is much more to write about the sat command. For example, there is a set of options that can be
used to performs sequential proofs using temporal induction [EenSorensson03]. The command help sat can
be used to print a list of all options with short descriptions of their functions.

3.2.4 Symbolic model checking

Note: While it is possible to perform model checking directly in Yosys, it is highly recommended to use
SBY or EQY for formal hardware verification.

Symbolic Model Checking (SMC) is used to formally prove that a circuit has (or has not) a given property.

One application is Formal Equivalence Checking: Proving that two circuits are identical. For example this
is a very useful feature when debugging custom passes in Yosys.

Other applications include checking if a module conforms to interface standards.

The sat command in Yosys can be used to perform Symbolic Model Checking.

Checking techmap

Let’s take a look at an example included in the Yosys code base under docs/source/code_examples/
synth_flow:

Listing 3.62: techmap_01_map.v

module \$add (A, B, Y);

parameter A_SIGNED = O;
parameter B_SIGNED = O
parameter A_WIDTH =
parameter B_WIDTH
parameter Y_WIDTH

)

>

Il
= e

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

(o]

generate
if ((A_WIDTH == 32) && (B_WIDTH == 32))

(continues on next page)
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begin
wire [16:0] S1 = A[15:0] + B[15:0];
wire [15:0] S2 = A[31:16] + B[31:16] + S1[16];
assign Y = {S2[15:0], S1[15:0]};

end

else
wire _TECHMAP_FAIL_= 1;
endgenerate

endmodule

(continued from previous page)

Listing 3.63: techmap_01.v

module test(input [31:0] a, b,
output [31:0] y);

assign y = a + b;

endmodule

Listing 3.64: techmap_01.ys

read_verilog techmap_ 01.v
hierarchy -check -top test
techmap -map techmap_01_map.v;;

To see if it is correct we can use the following code:

# read test design
read_verilog techmap_01.v
hierarchy -top test

# create two version of the design: test_orig and test_mapped
copy test test_orig
rename test test_mapped

# apply the techmap only to test_mapped
techmap -map techmap_0O1_map.v test_mapped

# create a miter circuit to test equivalence
miter -equiv -make_assert -make_outputs test_orig test_mapped miter
flatten miter

# run equivalence check
sat -verify -prove-asserts -show-inputs -show-outputs miter

Result:

Solving problem with 945 variables and 2505 clauses..
SAT proof finished - no model found: SUCCESS!
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AXI4 Stream Master

The code used in this section is included in the Yosys code base under docs/source/code_examples/axis.

The following AXI4 Stream Master has a bug. But the bug is not exposed if the slave keeps tready asserted
all the time. (Something a test bench might do.)

Symbolic Model Checking can be used to expose the bug and find a sequence of values for tready that yield
the incorrect behavior.

Listing 3.65: axis_master.v

module axis_master(aclk, aresetn, tvalid, tready, tdata) ;
input aclk, aresetn, tready;
output reg tvalid;
output reg [7:0] tdata;

reg [31:0] state;
always @(posedge aclk) begin
if (laresetn) begin
state <= 314159265;
tvalid <= 0;
tdata <= 'bx;
end else begin
if (tvalid && tready)

tvalid <= 0