sport-activities-features
Release 0.4.2

Iztok Fister Jr., Luka Lukagé, Alen Rajsp, Luka Peénik, Dusan Fist

Aug 31, 2024

USER DOCUMENTATION

Unleashing the Power of Sports Activity Analysis: A Framework Beyond Ordinary Metrics 3
Detailed insights 5
Historical weather data 7
Overpass API & Open Elevation API integration 9
Documentation 11
5.1 Getting Started L e e e e e e e e e e e e e e e 11
5.1 Installation L . oL e e e e e e e e e e e e e 11
5.1.2 Examples e e 12
5.2 Installation e e e e e e e e e e e e e e e 12
5.2.1 Setup development enViroNMmMent L. .ot e e e e e e e 12
5.3 TeStiNg . . v o o i e e e e e e e e e e e e e e e 13
54 Documentation e e e e e e e e e 13
55 APL . e 13
5.5.1 Activity @enerator L L. e e e e e e e 13
5.52 Arealdentification L. e e e e e e e e e e e 14
553 Classes. . . v v vt i e e 16
554 Data AnalySis o i e e e e e e e e e e e e e e 16
5.55 DataEXtraction e e e e e e e e e e e e e 17
5.5.6 Data Extraction fromcsvfiles e 18
5.577 Dead End Identification e e e e e e 18
5.5.8 File Manipulation o . e e e e e e e e e e e e 21
5.59 GPX Manipulation e e e e e e e e e e e e 21
5510 Hills . . o e e 23
5501 Intervals o L e e e e e e e e e e e 24
5.5.12 Missing Elevation Identification L 26
5.5.13 Overpy Node Manipulation e 28
55.14 Plotdata e e e e e e 29
5.5.15 TCXmanipulation o o v vt e e e e e e e e e e e e 30
5.5.16 Topographic features L e 31
5.5.17 Trainingloads 34
5.5.18 Weather Identification e e e e e 36
5.6 Contributing to sport-activities-features o e e e 37
5.6.1 Codeof Conduct e 37
5.6.2 How CanIContribute? e e e 38
5.7 Contributor Covenant Code of Conduct, 38
57.1 OurPledge e 38

572 OurStandards e e e e
5.7.3 Enforcement Responsibilities e
574 SCOPe . .o e e e e e e
5.77.5 Enforcement e e e
5.7.6 Enforcement Guidelines e e e
577 Attribution e e e e e e e
5.8 Contributors e e e e e e e e e e
5.8.1 CreditS o e e e e e e e
5.9 LICENSE e e e e e
Bibliography
Python Module Index
Index

43

45

47

sport-activities-features, Release 0.4.2

sport-activities-features is a minimalistic toolbox for extracting features from sports activity files written in Python.
* Free software: MIT license
* Github repository: https://github.com/firefly-cpp/sport-activities-features
¢ Python versions: 3.8.x, 3.9.x, 3.10.x, 3.11.x, 3.12.x

USER DOCUMENTATION 1

https://github.com/firefly-cpp/sport-activities-features

sport-activities-features, Release 0.4.2

2 USER DOCUMENTATION

CHAPTER
ONE

UNLEASHING THE POWER OF SPORTS ACTIVITY ANALYSIS: A
FRAMEWORK BEYOND ORDINARY METRICS

Prepare to dive into the thrilling world of sports activity analysis, where hidden geographic, topological, and personalized
data await their grand unveiling. In this captivating journey, we embark on a quest to extract the deepest insights from
the wealth of information generated by monitoring sports activities. Brace yourself for a framework that transcends the
limitations of conventional analysis techniques.

Traditional approaches often rely on integral metrics like total duration, total distance, and average heart rate, but they fall
victim to the dreaded “overall metrics problem.” These metrics fail to capture the essence of sports activities, omitting
crucial components and leading to potentially flawed and misleading conclusions. They lack the ability to recognize
distinct stages and phases of the activity, such as the invigorating warm-up, the endurance-testing main event, and the
heart-pounding intervals. QI21of

Fortunately, our sport-activities-framework rises above these limitations, revealing a comprehensive panorama of your
sports activity files. This framework combines the power of identification and extraction methods to unlock a treasure
trove of valuable data. Picture this [7] : effortlessly identifying the number of hills, extracting average altitudes of these
remarkable formations, measuring the total distance conquered on those inclines, and even deriving climbing ratios for
a true measure of accomplishment (total distance of hills vs. total distance). But that’s just the tip of the iceberg! The
framework seamlessly integrates a multitude of extensions, including historical weather parsing, statistical evaluations,
and ex-post visualizations that bring your data to life.

For those seeking to venture further, we invite you to explore the realms of scientific papers on data mining that delve into
these captivating topics. Discover how our framework complements the world of generating and predicting automated
sport training sessions, creating a harmonious synergy between theory and practice.

sport-activities-features, Release 0.4.2

4 Chapter 1. Unleashing the Power of Sports Activity Analysis: A Framework Beyond Ordinary
Metrics

CHAPTER
TWO

DETAILED INSIGHTS

Prepare to be astounded by the capabilities of the sport-activities-features framework. It effortlessly handles TCX & GPX
activity files and harnesses the power of the Overpass API nodes. Presenting the range of functions at your disposal:

Unleash the integral metrics: From total distance to total duration and even calorie count, witness the extraction
of these vital statistics with a single glance. (Integral Metrics Extraction example)

Conquer the peaks: Ascend to new heights by extracting topographic features like the number of hills, their
average altitudes, the total distance covered on these majestic slopes, and the thrilling climbing ratio. Prepare for
a breathtaking adventure! P??lc" (Hill Data Extraction example)

Embark on a visual journey: Immerse yourself in the beauty of your accomplishments as you plot the identified
hills on a mesmerizing map. Witness the landscape come alive before your eyes. (Draw Map with Identified
Hills example)

Embrace the rhythm of intervals: Explore the intervals within your sports activities, uncovering their numbers,
durations, distances, and heart rates. Unveil the heartbeat of your performance! QPR (Draw Map with Identified
Intervals example)

Calculate the training loads: Dive deep into the intricate world of training loads and discover the Banister TRIMP
and Lucia TRIMP methods. Gain invaluable insights into optimizing your training regimen. P5z?c (Calculate
Training Load example)

Weather the storm: Unlock the power of historical weather data from external services, adding a fascinating layer
of context to your sports activities. #2721

Unveil the secrets within coordinates: Explore the integral metrics of your activities within specific geographical
areas, uncovering valuable data on distance, heart rate, and speed. Peer into the depths of your performance!
(Extract Data Inside Area example)

Embrace randomness: Extract activities from CSV files and indulge in the excitement of randomly selecting
a specific number of activities. Embrace the element of surprise! (Extract Random Activities from CSV
example)

Conquer the dead ends: Unravel the mysteries of your sports activities by identifying the dead ends. Prepare to
navigate the uncharted territories of your performance! (Dead End Extraction example)

Unlock the format: Seamlessly convert TCX files to GPX, opening doors to even more possibilities. Adapt and
conquer! 3%+ (Convert TCX to GPX example)

And that’s just the beginning! The sport-activities-framework holds countless other features, awaiting your exploration.
Brace yourself for an exhilarating journey of discovery, where the ordinary becomes extraordinary, and your sports
activities come alive like never before. I

The framework comes with two (testing) benchmark datasets, which are freely available to download from: DATASETI,
DATASET2.

https://wiki.openstreetmap.org/wiki/Overpass_API
examples/integral_metrics_extraction.py
examples/hill_data_extraction.py
examples/draw_map_with_identified_hills.py
examples/draw_map_with_identified_hills.py
examples/draw_map_with_identified_intervals.py
examples/draw_map_with_identified_intervals.py
examples/calculate_training_load.py
examples/calculate_training_load.py
examples/extract_data_inside_area.py
examples/extract_random_activities_from_csv.py
examples/extract_random_activities_from_csv.py
examples/dead_end_extraction.py
examples/convert_tcx_to_gpx.py
https://github.com/firefly-cpp/sports-activity-dataset-collections
http://iztok-jr-fister.eu/static/publications/Sport5.zip
http://iztok-jr-fister.eu/static/css/datasets/Sport.zip

sport-activities-features, Release 0.4.2

6 Chapter 2. Detailed insights

CHAPTER
THREE

HISTORICAL WEATHER DATA

Weather data parsed is collected from the Visual Crossing Weather API. Please note that this is an external unaffiliated
service, and users must register to use the API. The service has a free tier (1000 Weather reports/day) but is otherwise
operating on a pay-as-you-go model. For pricing and terms of use, please read the official documentation of the API
provider.

https://www.visualcrossing.com/
https://www.visualcrossing.com/weather-data-editions

sport-activities-features, Release 0.4.2

8 Chapter 3. Historical weather data

CHAPTER
FOUR

OVERPASS API & OPEN ELEVATION API INTEGRATION

Without performing activities, we can use the OpenStreetMap for the identification of hills, total ascent, and descent.
This is done using the Overpass API, which is a read-only API that allows querying of OSM map data. In addition to that
altitude, data is retrieved by using the Open-Elevation API, which is an open-source and free alternative to the Google
Elevation API. Both of the solutions can be used by using free publicly accessible APIs (Overpass, Open-Elevation Public
API) or can be self-hosted on a server or as a Docker container (Overpass Self-hosting, Open-Elevation Self-hosting).

https://www.openstreetmap.org/
https://wiki.openstreetmap.org/wiki/Overpass_API
https://open-elevation.com/
https://wiki.openstreetmap.org/wiki/Overpass_API
https://open-elevation.com/#public-api
https://open-elevation.com/#public-api
https://wiki.openstreetmap.org/wiki/Overpass_API/Installation
https://github.com/Jorl17/open-elevation/blob/master/docs/host-your-own.md

sport-activities-features, Release 0.4.2

10 Chapter 4. Overpass APl & Open Elevation API integration

CHAPTER
FIVE

DOCUMENTATION

The main documentation is organized into a couple of sections:
» User Documentation
* Developer Documentation

* About
5.1 Getting Started
This section is going to show you how to use the sport-activities-features toolbox.

5.1.1 Installation

Firstly, install sport-activities-features package using the following command:

pip install sport-activities-features

To install sport-activities-features on Fedora, use:

dnf install python3-sport-activities-features

To install sport-activities-features on Arch Linux, please use an AUR helper:

yay —-Syyu python-sport-activities-features

To install sport-activities-features on Alpine, use:

apk add py3-sport-activities-features

After the successful installation you are ready to run your first example.

11

https://wiki.archlinux.org/title/AUR_helpers

sport-activities-features, Release 0.4.2

5.1.2 Examples

You can find usage examples here.

5.2 Installation

5.2.1 Setup development environment

Requirements

* Poetry: https://python-poetry.org/docs/

After installing Poetry and cloning the project from GitHub, you should run the following command from the root of the
cloned project:

$ poetry install

All of the project’s dependencies should be installed and the project ready for further development. Note that Poetry
creates a separate virtual environment for your project.

Development dependencies

List of sport-activities-features dependencies:

Package Version Platform
matplotlib 73.3.3 All

geopy 72.0.0 All
overpy 0.6 All
geotiler 70.14.5 Al
numpy & All
tcxreader 10.4.4 All
pandas & All

niaaml 71.2.0 All
tex2gpx 0.1.4 All

Zpxpy 1.4.2 All
List of development dependencies:
Package Version Platform
ruff 70.0.292 Any
pytest 22 Any
coveralls 7220 Any
Sphinx 75.0.0 Any

sphinx-rtd-theme 71.0.0 Any
sphinxcontrib-bibtex 72.4.1 Any

12 Chapter 5. Documentation

https://github.com/firefly-cpp/sport-activities-features/tree/main/examples
https://python-poetry.org/docs/

sport-activities-features, Release 0.4.2

5.3 Testing

Before making a pull request, if possible provide tests for added features or bug fixes.
In case any of the test cases fails, those should be fixed before we merge your pull request to master branch.

For the purpose of checking if all test are passing locally you can run following command:

$ poetry run python -m unittest discover

5.4 Documentation

To locally generate and preview documentation run the following command in the project root folder:

$ poetry run sphinx-build ./docs ./docs/_build

If the build of the documentation is successful, you can preview the documentation in the docs/_build folder by clicking
the index.html file.

5.5 API

This is the sport-activities-features API documentation, auto generated from the source code.

5.5.1 Activity generator

class sport_activities_features.activity_generator.SportyDataGen (**kwargs)
Bases: object

Class that contains selected and modified SportyDataGen methods for generation of sports activity collections.

Parameters
**kwargs — various arguments

Reference:
Fister Jr., 1., Vrbanci¢, G., Brezocnik, L., Podgorelec, V., & Fister, 1. (2018). SportyDataGen: An Online
Generator of Endurance

Sports Activity Collections.

In Central European Conference on Information and Intelligent Systems (pp. 171-178). Faculty of Organi-
zation and Informatics Varazdin.

Reference URL:
http://www.iztok- jr-fister.eu/static/publications/225.pdf

Note: [WIP] This class is still under developement, therefore its methods may not work as expected.

5.3. Testing 13

http://www.iztok-jr-fister.eu/static/publications/225.pdf

sport-activities-features, Release 0.4.2

random_generation_without_clustering (activities) — None

Method for the random generation of sport activities (without clustering).

Parameters
activities

Note:

Select n activities randomly without any special preprocessing tasks.

5.5.2 Area ldentification

class sport_activities_features.area_identification.ArealIdentification (positions:
array,
distances:
array,
times-
tamps:
array,
heart_rates:
array,
area_coordinates:
array)

Bases: object
Area identification based by coordinates.
Parameters

* positions (np.array) - coordinates of positions as an array of latitudes and longitudes
* distances (np.array) - cummulative distances as an array of floats
* timestamps (np. array) — information about time as an array of datetimes
* heart_rates (np. array) — heart rates as an array of integers
* area_coordinates (np.array) — coordinates of the area where data is analysed as an

array of latitudes and longitudes

Reference:
L. Luka¢, “Extraction and Analysis of Sport Activity Data Inside Certain Area”, 7th Student Com-
puter Science Research Conference StuCoSReC, 2021, pp. 47-50, doi: https://doi.org/10.18690/
978-961-286-516-0.9.

do_two_line_segments_intersect (pl: array, p2: array, p3: array, p4: array) — bool

Method for checking whether two line segments have an intersection point.
Parameters
* pl (np.array) - first point of the first line as a pair of coordinates
* p2 (np.array) - second point of the first line as a pair of coordinates
e p3 (np.array) - first point of the second line as a pair of coordinates

* p4 (np.array) - second point of the second line as a pair of coordinates

14 Chapter 5. Documentation

https://doi.org/10.18690/978-961-286-516-0.9
https://doi.org/10.18690/978-961-286-516-0.9

sport-activities-features, Release 0.4.2

Returns
True if the two lines have an intersection point, False otherwise.

Return type
bool

static draw_activities_inside_area_on_map (activities: array, area_coordinates: array) —
None

Static method for drawing all the activities inside of an area on the map.
Parameters
e activities (np.array) - array of Arealdentification objects

* area_coordinates (np.array) — border coordinates of an area as an array of lati-
tudes and longitudes.

draw_map () — None

Method for the visualization of the exercise on the map using Geotiler.

extract_data_in_area () — dict

Method for extracting the data of the identified points in area.
Returns: area_data: {

‘distance’: distance, ‘time’: time, ‘average_speed’: average_speed, ‘minimum_heart_rate’: min-
imum_heart_rate, ‘maximum_heart_rate’: maximum_heart_rate, ‘average_heart_rate’: aver-
age_heart_rate

}.
static get_area_coordinates_around_point (point: array, distance: int) — array

Static method to get area coordinates around the point on Earth according to given distance. Area limits
consist of 4 border points.

Parameters
* point (np.array) — a pair of Earth coordinates
* distance (int) — desired distance from given point to area border points

Returns
an array of area coordinates.

Return type
np.array

identify points_in_area () — None
Method for identifying the measure points of the activity inside of the specified area.

is_equal (value_I: float, value_2: float) — bool
Method for checking whether the two float values are equal with certain tolerance (because of round error).

Parameters
e value_1 (float) - first value
¢ value_2 (float) - second value

Returns
True if the two values are equal, false otherwise.

Return type
bool

5.5.

API 15

sport-activities-features, Release 0.4.2

static plot_activities_inside_area_on_map (activities: array, area_coordinates: array) —
None

Static method for plotting the area borders and the activities (or their parts) inside of an area.
Parameters
* activities (np.array) — array of Arealdentification objects

* area_coordinates (np.array) — border coordinates of an area as an array of lati-
tudes and longitudes.

plot_map () — None
Method for plotting the map using Geotiler according to the object variables.

5.5.3 Classes

class sport_activities_features.classes.StoredSegments (segment, ascent,
average_slope=None)

Bases: object
Class for stored segments.
Parameters
¢ () (ascent)
* 0

* average_slope ()

Note:

[WIP] This class is still under developement, therefore its methods may not work as expected.

5.5.4 Data Analysis

class sport_activities_features.data_analysis.DataAnalysis (**kwargs)

Bases: object
Class for data analysis that uses automated machine learning to analyze extracted sport features.

Parameters
**kwargs — various arguments.

analyze_data (src: str, fitness_name: str, population_size: uint64, number_of _evaluations: uint64,
optimization_algorithm: str, classifiers: Iterable, feature_selection_algorithms: Iterable = None,
feature_transform_algorithms: Iterable = None, imputer: str = None) — Pipeline

Method for running AutoML process using NiaAML PipelineOptimizer class instance.
Parameters
e src (str)—pathtoaCSV file
* fitness_name (str)—name of the fitness class to use as a function
* population_size (uint)— number of individuals in the optimization process

* number_of_evaluations (uint) - number of maximum evaluations

16 Chapter 5. Documentation

sport-activities-features, Release 0.4.2

* optimization_algorithm (str)—name of the optimization algorithm to use
e classifiers (Iterable[Classifier])— array of names of possible classifiers

» feature_selection_algorithms (Optional[Iterable[str]]) — array of
names of possible feature selection algorithms

* feature_transform_algorithms (Optional [Iterable[str]]) — array of
names of possible feature transform algorithms

* imputer (Optional [str])—name of the imputer used for features that contain miss-
ing values

Returns
instance of Pipeline object from the NiaAML framework

Return type
Pipeline

Note: See NiaAML’s documentation for more details on possible input parameters’ values and further usage
of the returned Pipeline object.

static load_pipeline (file_name: str) — Pipeline
Method for loading a NiaAML’s pipeline from a binary file.

Parameters
file_name (str) - path to a binary pipeline file

Note: See NiaAML'’s documentation for more details on the use of the Pipeline class.

5.5.5 Data Extraction

class sport_activities_features.data_extraction.DataExtraction (activities: list)

Bases: object
Class for storing activities’ analysed data in CSV files.

Parameters
activities (11ist) - list of activities.
extract_data (path: str) — None

This method is used for extracting the data of the activities into separate CSV files.

Parameters
path (str) — absolute path where the CSV files should be saved.

5.5. API 17

sport-activities-features, Release 0.4.2

5.5.6 Data Extraction from csv files

class sport_activities_features.data_extraction_from_csv.DataExtractionFromCSV (activities:

Bases: object
Class for extracting data from CSV files.

Parameters
activities (1ist) - list of activities.

from_all_files (path: str) — list

Method for extracting data to list of dataframes from all CSV files in the folder.

Parameters
path (str) — absolute path to the folder with CSV files

Returns
list of activities.

Return type
list

from_£file (path: str) — list
Method for extracting data from CSV file to dataframe.

Parameters
path (str) — absolute path to the CSV file

Returns
list of activities.

Return type
list

select_random_activities (number: int) — list
Method for selecting random activities.

Parameters
number (int) — desired number of random activities

Returns
list of random activities.

Return type
list

5.5.7 Dead End Identification

18 Chapter 5. Documentation

list

None)

sport-activities-features, Release 0.4.2

class sport_activities_features.dead_end_identification.DeadEndIdentification (positions:
ar-
ray,
dis-
tances:
ar-
ray,
tol-
er-
ance_degrees:
float

5.0,

tol-

er-
ance_position:
float

5.0,

min-

i-
mum_distance:
int

500,
U_turn_allowed_d
int

50)

Bases: object

Class for identifying and visualising dead ends in an exercise. Dead end is a part of an exercise, where an athlete
suddenly makes a U-turn takes the same path as before the U-turn is conducted in the opposite direction.

Parameters
* positions (np.array) — array of positions as pairs of latitudes and longitudes
e distances (np.array) — array of cuammulative distances

* tolerance_degrees (float) — tolerance of driving the same route in the opposite di-
rection given in degrees

* tolerance_position (float) - tolerance of positions given in meters
* minimum_distance (int)— minimum distance of a dead end

* U_turn_allowed_distance (int) — maximum distance of a U-turn while turning
around and starting a dead end

Note: [WIP] This class is still under developement, therefore its methods may not work as expected.

draw_map () — None
Method for visualisation of the exercise with identified dead ends.

identify_dead_ends () — None
Method for identifying dead ends of the exercise.

5.5. API 19

sport-activities-features, Release 0.4.2

is_dead_end (azimuth_lI: float, azimuth_2: float, tolerance_azimuth: float) — bool

Method for checking whether two azimuths represent a part of a dead end allowing the given tolerance.
Parameters
e azimuth_1 (float) —first azimuth
e azimuth_2 (float) - second azimuth
* tolerance_azimuth (f1loat) — difference tolerance of the two azimuths
Returns

True if given azimuths are within the given tolerance,
False otherwise.

Return type
bool

long_enough_to_be_a_dead_end (start_distance: float, finish_distance: float) — bool
Method for checking whether a dead end is long enough to be a dead end.

Parameters
e start_distance (float) - cummulative distance at the start of the dead end
e finish_distance (float) - cummulative distance at the end of the dead end

Returns
True if dead end is long enough, False otherwise.

Return type
bool

really is_dead_end (positionl: array, position2: array, tolerance_coordinates: float) — bool

Method for checking whether a dead end really is a dead end.
Parameters
* positionl (np.array) — position of the first point
e position2 (np.array) - position of the second point

* tolerance_coordinates (float) — the tolerance between the two positions in me-
ters

Returns

True if a track segment is a part of dead end,
False otherwise.

Return type
bool

reorganize_exercise_data (positions: array, distances: array, interval_distance: int = 1) — None

Method for reorganising the exercise in the way that the trackpoints are organized in a constant interval of
distance.

Parameters
* positions (np.array) — array of positions as pairs of latitudes and longitudes
* distances (np. array) — array of cummulative distances

* interval_distance (int) — desired distance between two neighboring points.

20 Chapter 5. Documentation

sport-activities-features, Release 0.4.2

show_map () — <module 'matplotlib.pyplot' from '/ust/lib64/python3.13/site-packages/matplotlib/pyplot.py'>
Method for plotting the exercise with dead ends.

Return type
plt.

5.5.8 File Manipulation

class sport_activities_features.file_manipulation.FileManipulation

Bases: object

Superclass of GPXFile and TCXFile. Contains common methods of both classes, that have the same implemen-
tation. e.g. (filling missing values).

count_missing_values (list)

Counts the number of elements with value Nona.
Args:

list (list/ndarray): list to check

returns

number of elements with value None in list.
rtype

(int)

linear_fill_missing_values (activity, key, max_seconds=15)

Function that lineary fills missing values, if the successive missing values are up to (max_seconds) apart.

Args:

activity: TCXReader read file key (str): dictionary key (e.g. ‘heartrates’, ‘distances’, ...)
max_seconds (int): maximum time between two valid values, to still fill the missing values.

Returns:

/ Transforms the sent array / list.

5.5.9 GPX Manipulation

class sport_activities_features.gpx_manipulation.GPXFile

Bases: FileManipulation
Class for reading GPX files.

extract_integral_metrics (filename) — dict

Method for parsing one GPX file and extracting integral metrics.

Returns: int_metrics: {

5.5. API 21

sport-activities-features, Release 0.4.2

“activity_type”: activity_type, “distance”: distance, “duration”: duration, “calories”: calories,
“hr_avg”: hr_avg, “hr_max”: hr_max, “hr_min”: hr_min, “altitude_avg”: altitude_avg, “alti-
tude_max”: altitude_max, “altitude_min”: altitude_min, “ascent”: ascent, “descent”: descent,
}.
read_directory (directory_name: str) — list

Method for finding all GPX files in a directory.

Parameters
directory_name (str) - name of the directory in which to identify GPX files

Returns
array of paths to the identified files.

Return type
list

read_one_file (filename, numpy_array=False)
Method for parsing one GPX file.
Parameters
¢ filename (str)—name of the TCX file to be read

* numpy_array (bool) — if set to true dictionary lists are transformed into numpy.arrays

Returns: activity: {

‘activity_type’: activity_type, ‘positions’: positions, ‘altitudes’: altitudes, ‘distances’: distances,
‘total_distance”: total_distance, ‘timestamps’ timestamps, ‘heartrates’: heartrates, ‘speeds’:

speeds

Note:
In the case of missing value in raw data, we assign None.

class sport_activities_features.gpx_manipulation.GPXTrackPoint (longitude: float =
None, latitude: float =

None, elevation: float
= None, time=None,
distance=None,
hr_value: int = None,
cadence=None, watts:
float = None, speed:
float = None)
Bases: object
Class for saving GPX point records.
Parameters
* longitude (f1loat) - longitude in degrees
* latitude (float) - latitude in degrees
e elevation (float) — elevation in meters

* time (datet ime) — datetime of time at the given point

22 Chapter 5. Documentation

sport-activities-features, Release 0.4.2

* distance (float) - total distance travelled until this point
* hr_value (int) - heart beats per minute at given recording.
* cadence (int) - cadence

* watts (f1loat)— watts power rating

* speed (float)—speed in km/h.

from_GPX (gpx: GPXTrackPoint, hr_value: int = None, cadence: int = None, watts: int = None) — None
Helper method for initialising GPXTrackPoint from the gpxpy.gpx.GpxTrackPoint.

Parameters

* gpx (gpxpy.gpx.GPXTrackPoint) — gpxpy.gpx.GPXTrackPoint not to be confused
with class of the same name used in gpx_manipulation

* hr_value (int) - heart beats per minute at given recording
¢ cadence (int) - cadence

e watts (int)— watts power rating.

5.5.10 Hills

class sport_activities_features.hill_identification.GradeUnit (value, names=<not
given>, *values,
module=None,
qualname=None,
type=None, start=1,
boundary=None)

Bases: Enum
Enum for selecting the type of data we want returned in hill slope calculation (degrees / radians or gradient (%))

class sport_activities_features.hill_identification.HillIdentification (altitudes:
List[float],
distances:
List[float]
= None,
as-
cent_threshold:
float =
30)

Bases: object
Class for identification of hills from TCX file.
Parameters
* altitudes (1ist)— an array of altitude values extracted from TCX file
* ascent_threshold (float) - parameter that defines the hill (hill >= ascent_threshold)

* distances (11ist)— optional, allows calculation of hill grades (steepnes)

5.5. API 23

sport-activities-features, Release 0.4.2

identify_hills () — None

Method for identifying hills and extracting total ascent and descent from data.

Note: [WIP] Algorithm is still in its preliminary stage.

return_hill (ascent: float, ascent_threshold: float = 30) — bool
Method for identifying whether the hill is steep enough to be identified as a hill.

Parameters
¢ ascent (float) - actual ascent of the hill
* ascent_threshold (float) - threshold of the ascent that is used for identifying hills

Returns
True if the hill is recognised, False otherwise

Return type
bool

return_hills () — list
Method for returning identified hills.

Returns
array of identified hills

Return type
list

5.5.11 Intervals

class sport_activities_features.interval_identification.IntervalldentificationByHeartRate (

Bases: object
Class for identifying intervals based on heart rate.
Parameters
e distances (11ist) - list of cummulative distances

* timestamps (1ist) - list of timestamps

24 Chapter 5. Documentation

sport-activities-features, Release 0.4.2

e altitudes (11ist) - list of altitudes
* heart_rates (1ist) - list of heart rates
* minimum_time (int)— minimum time of an interval given in seconds

calculate_interval_statistics () — dict

Method for calculating interval statistics.

Returns
data = {
‘number_of _intervals’: number_of _intervals, ‘min_duration_interval’:
min_duration_interval, ‘max_duration_interval’: max_duration_interval,
‘avg_duration_interval’: avg_duration_interval, ‘min_distance_interval’:
min_distance_interval, ‘max_distance_interval’: max_distance_interval,
‘avg_distance_interval’: avg_distance_interval, ‘min_heartrate_interval’:
min_heartrate_interval, ‘max_heartrate_interval’: max_heartrate_interval,

‘avg_heartrate_interval’: avg_heartrate_interval,

}

identify_intervals () — None

Method for identifying intervals from given data.

return_intervals () — list

Method for retrieving identified intervals.

Returns
identified intervals

Return type
list

class sport_activities_features.interval_identification.IntervalIdentificationByPower (distanc
list,
times-
tamps:
list,
al-
ti-
tudes:
list,
mass:
int,

Bases: object
Class for identifying intervals based on power.
Parameters
e distances (11ist) - list of cummulative distances

* timestamps (1ist) - list of timestamps

5.5. API 25

sport-activities-features, Release 0.4.2

e altitudes (11ist) - list of altitudes
* mass (int) — total mass of an athlete given in kilograms
* minimum_time (int)— minimum time of an interval given in seconds

calculate_interval_statistics () — dict

Method for calculating interval statistics.

Returns
data = {
‘number_of _intervals’: number_of _intervals, ‘min_duration’> min_duration_interval,
‘max_duration’: max_duration_interval, ‘avg_duration’: avg_duration_interval,
‘min_distance’: min_distance_interval, ‘max_distance’: max_distance_interval,
‘avg_distance’: avg_distance_interval,
}

identify_intervals () — None

Method for identifying intervals from given data.

return_intervals () — list

Method for retrieving identified intervals.

Returns
identified intervals

Return type
list

5.5.12 Missing Elevation Identification

class sport_activities_features.missing_elevation_identification.ElevationApiType (value,

Bases: Enum

26 Chapter 5. Documentation

names=<not
given>,

*val-

ues,

mod-
ule=None,
qual-
name=None,
type=None,
start=1,
bound-
ary=None)

sport-activities-features, Release 0.4.2

class sport_activities_features.missing_elevation_identification.ElevationIdentification (o

Bases: object
Class for retrieving elevation data using Elevation Api, Open-Elevation API and OpenTopoData API supported.
Parameters

* open_elevation_api (str) — address of the Api, default https://api.open-elevation.
com/api/v1/lookup

e positions (list[(latl, lonl), (lat2, lon2) ...])- listof tuples of
latitudes and longitudes.
fetch_elevation_data (payload_formatting: bool = True) — list
Method for making requests to the Elevation API to retrieve elevation data.
Parameters

payload_formatting (bool) — True -> break into chunks, False -> don’t break
self.positions into chunks

Returns
list of elevations for the given positions.

Return type
List[int]

5.5.

API 27

St

https://api.open-elevation.com/api/v1/lookup
https://api.open-elevation.com/api/v1/lookup

sport-activities-features, Release 0.4.2

fetch_open_elevation_data (payload_formatting: bool = True) — list

Method for making requests to the Open Elevation API to retrieve elevation data.

Parameters
payload_formatting (bool) — True -> break into chunks, False -> don’t break
self.positions into chunks

Returns
list of elevations for the given positions.

Return type
list[int]
fetch_open_topo_data (payload_formatting: bool = True) — list
Method for making requests to the Open Topo Data API to retrieve elevation data.

Parameters
payload_formatting (bool) — True -> break into chunks, False -> don’t break
self.positions into chunks

Returns
list of elevations for the given positions.

Return type
list[int]

5.5.13 Overpy Node Manipulation

class sport_activities_features.overpy_node_manipulation.OverpyNodesReader (open_elevation_api:
Str =
'https://api.open-
elevation.com/api/v1/lo

Bases: object

Class for working with Overpass nodes (Overpy.node). The purpose is to generate a dictionary object similar to
those generated by TCXFile and GPXFile classes.

Parameters
open_elevation_api (str) - location of the Open Elevation Api.

read_nodes (nodes: Node, cumulative_distances: bool = True) — dict

Method for reading overpy.Node nodes and generating a TCXFile/GPXFile like dictionary of objects.
Parameters
* nodes (11ist) - list of overpy.Node objects
¢ cumulative_distances (bool) - If set to True, distance equals previous point dis-

tance + distance between the nodes, else tells actual distance between two points.

Returns: dictionary of nodes.

{

‘activity_type’: str, ‘positions’: [...], ‘altitudes’: [...], ‘distances’: [...], ‘total_distance’: float

28 Chapter 5. Documentation

sport-activities-features, Release 0.4.2

5.5.14 Plot data

class sport_activities_features.plot_data.PlotData
Bases: object

Class for plotting the extracted data.

draw_basic_map () — None

Method for plotting the whole topographic map and rendering the plot.

draw_hills_in_map (altitude: list, distance: list, identified_hills: list) — None
Method for plotting all hills identified in data on topographic map and rendering the plot.

Parameters
e altitude (1ist) - list of altitudes
e distance (1ist) - list of distances
e identified_hills (Iist) - list of identified hills.

draw_intervals_in_map (timestamp: list, distance: list, identified_intervals: list) — None

Method for plotting all intervals identified in data on topographic map and rendering the plot.
Parameters
* timestamp (datet ime) — list of timestamps
e distance (float) - list of distances
¢ identified_intervals (1ist) - list of identified intervals.

get_positions_of_hills (identified_hills: list) — list
Method for retrieving positions of identified hills.

Parameters
identified_hills (1ist) - list of identified hills

Returns
list of hills.

Return type
list

get_positions_of_intervals (identified_intervals: list) — list
Method for retrieving positions of identified intervals.

Parameters
identified_intervals (1ist) - list of identified intervals

Returns
list of intervals.

Return type
list

plot_basic_map (alfitude: list, distance: list) — <module 'matplotlib.pyplot' from
'usr/lib64/python3.13/site-packages/matplotlib/pyplot.py'>

Method for plotting the whole topographic map.
Parameters

e altitude (1ist) - list of altitudes

5.5. API 29

sport-activities-features, Release 0.4.2

e distance (1ist) - list of distances

Returns
plt.

plot_hills_on_map (altitude: list, distance: list, identified_hills: list) — <module 'matplotlib.pyplot’ from
'/usr/lib64/python3.13/site-packages/matplotlib/pyplot.py'>

Method for plotting all hills identified in data on topographic map.
Parameters
e altitude (1ist) - list of altitudes
e distance (1ist) - list of distances
e identified_hills (1ist) - list of identified hills

Returns
plt.

plot_intervals_in_map (timestamp: list, identified_intervals: list) — <module 'matplotlib.pyplot' from
'/usr/lib64/python3.13/site-packages/matplotlib/pyplot.py'>

Method for plotting all intervals identified in data on topographic map.
Parameters
e timestamp (1ist) - list of timestamps
e identified_intervals (1ist) - list of identified intervals

Returns
plt.

5.5.15 TCX manipulation

class sport_activities_features.tcx_manipulation.TCXFile

Bases: F'ileManipulation
Class for reading TCX files.

create_gps_object (path_to_the_file)
Convert TCX file to GPX file.

extract_integral_metrics (filename: str) — dict
Method for parsing one TCX file and extracting integral metrics.

Parameters
filename (str)—name of the TCX file to be read

Returns

int_metrics = {
‘activity_type’: activity_type, ‘distance’: distance, ‘duration” duration, ‘calories’: calories,
‘hr_avg’: hr_avg, ‘hr_max’: hr_max, ‘hr_min’: hr_min, ‘altitude_avg’: altitude_avg, ‘alti-
tude_max’: altitude_max, ‘altitude_min’: altitude_min, ‘ascent’: ascent, ‘descent’: descent,
‘steps’ : steps

30 Chapter 5. Documentation

sport-activities-features, Release 0.4.2

read_directory (directory_name: str) — list
Method for finding all TCX files in a directory.

Parameters
directory_name (str)—name of the directory in which to identify TCX files

Returns
array of paths to the identified files.

Return type
Str

read_one_file (filename: str, numpy_array=False) — dict
Method for parsing one TCX file using the TCXReader.

Parameters
¢ filename (str)—name of the TCX file to be read
* numpy_array (bool) -

if set to true dictionary lists are
transformed into numpy.arrays

Returns

activity = {
‘activity_type’: activity_type, ‘positions’: positions, ‘altitudes’ altitudes, ‘distances’: dis-
tances, ‘total_distance’: total_distance, ‘timestamps’: timestamps, ‘heartrates’: heartrates,
‘speeds’: speeds

Note:
In the case of missing value in raw data, we assign None.

write_gpx (gps_object, output_file_name=None)

Write GPX object to file. if output_file_name is not specified, the output file name will be the same as the
input file name, but with .gpx extension.

5.5.16 Topographic features

class sport_activities_features.topographic_features.TopographicFeatures (identified_hills:
list)

Bases: object
Class for feature extraction from topographic maps.

Parameters
identified_hills (1ist) - identified hills are now passed to this class.

ascent (altitude_data: list) — float

Method for ascent calculation.

Parameters
altitude_data (1ist) - list of altitudes

5.5. API 31

sport-activities-features, Release 0.4.2

Returns
total ascent

Return type
float

Note: [WIP] This method should be improved.

avg_altitude_of_hills (alts: list) — float
Method for calculating the average altitude of all identified hills in sport activity.

Parameters
alts (1ist) - list of altitudes

Returns
average altitude.

Return type
float

avg_ascent_of_hills (alts: list) — float

Method for calculating the average ascent of all hills in sport activity.

Parameters
alts (11ist) - list of altitudes

Returns
average ascent.

Return type
float

calculate_distance (latitude_I: float, latitude_2: float, longitude_1: float, longitude_2: float) — float
Method for calculating the distance between the two pairs of coordinates.

Parameters
e latitude_1 (float) - first latitude
e latitude_2 (float) - second latitude
* longitude_1 (float) —first longitude
* longitude_2 (float) - second longitude

Returns
distance in kilometers.

Return type
float

calculate_hill_gradient (latitude_I: float, latitude_2: float, longitude_1: float, longitude_2: float,
height_I: float, height_2: float) — float

Method for calculation of the hill gradient in percent.
Parameters
e latitude_1 (float) - first latitude
e latitude_2 (float) - second latitude

¢ longitude_1 (float) — first longitude

32 Chapter 5. Documentation

sport-activities-features, Release 0.4.2

* longitude_2 (float) - second longitude
* height_1 (float) - first altitude
* height_2 (float) - second altitude

Returns
gradient in degrees.

Return type
float

descent (altitude_data: list) — float

Method for descent calculation.

Parameters
altitude_data (1ist) - list of altitudes

Returns
total descent

Return type
float

Note: [WIP] This method should be improved.

distance_of_hills (positions: list) — float
Method for calculating the total distance of all identified hills in sport activity.

Parameters
positions (1ist) - list of positions

Returns
distance of hills.

Return type
float

num_of hills () —int

Method for calculating the number of identified hills in sport activity.

Returns
number of hills.

Return type
int

share_of_hills (hills_dist: float, total_dist: float) — float

Method for calculating the share of hills in sport activity (percentage).
Parameters
e hills_dict (float) - distance of all hills
e total_dist (float) - total distance

Returns
share of hills.

Return type
float

5.5.

API

33

sport-activities-features, Release 0.4.2

5.5.17 Training loads

This class is used for calculation of training loads.

class sport_activities_features.training_loads.BanisterTRIMPv1 (duration: float,
average_heart_rate:

float)

Bases: object

Class for calculation of simple Banister’s TRIMP.

Reference paper:
Banister, Eric W. “Modeling elite athletic performance.” Physiological testing of elite athletes 347 (1991):

403-422.

Parameters
e duration (float) — total duration in seconds

* average_heart_rate (float) — average heart rate in beats per minute.

calculate_TRIMP () — float
Method for the calculation of the TRIMP.

Returns
Banister TRIMP value.

Return type
float

class sport_activities_features.training_loads.BanisterTRIMPv2 (duration: float,
average_heart_rate:
float, min_heart_rate:
float, max_heart_rate:
float, gender: Gender
= Gender.male)

Bases: object
Class for calculation of Banister’s TRIMP. .

Reference paper:
Banister, Eric W. “Modeling elite athletic performance.” Physiological testing of elite athletes 347

(1991): 403-422.
Args:

duration (float):
total duration in seconds

average_heart_rate (float):
average heart rate in beats per minute

min_heart_rate (float):
minimum heart rate in beats per minute

max_heart_rate (float):
maximum heart rate in beats per minute

gender (Gender):
gender enum of athlete (default male, female)

34 Chapter 5. Documentation

sport-activities-features, Release 0.4.2

calculate_TRIMP () — float
Calculate TRIMP.

Returns
float

Return type
Banister TRIMP value.

calculate_delta_hr_ratio () — float

Calculate the delta heart rate.
The ratio ranges from a low to a high value (i.e., ~ 0.2 — 1.0) for a low or a high raw heart rate, respectively.

Returns
float

Return type
delta heart rate.

calculate_weighting_factor (delta_hr_ratio: float) — float
Calculate the weighting factor.

Returns
float

Return type
weighting factor (Y).

class sport_activities_features.training_loads.EdwardsTRIMP (heart_rates: list,
timestamps: list,
max_heart_rate: int = 200)

Bases: object
Class for calculation of Edwards TRIMP.
Reference paper:
https://www.frontiersin.org/articles/10.3389/fphys.2020.00480/full
Parameters
* heart_rates (1ist [int]) - list of heart rates in beats per minute
* timestamps (1ist [timestamp]) - list of timestamps

* max_heart_rate (int) - maximum heart rate of an athlete.

calculate_TRIMP () — float
Method for the calculation of the TRIMP.

Returns
Edwards TRIMP value.

Return type
float

class sport_activities_features.training_loads.Gender (value, names=<not given>, *values,
module=None, qualname=None,
type=None, start=1,
boundary=None)

5.5. API 35

https://www.frontiersin.org/articles/10.3389/fphys.2020.00480/full

sport-activities-features, Release 0.4.2

Bases: Enum
Gender Enum.

class sport_activities_features.training_loads.LuciaTRIMP (heart_rates: list, timestamps:
list, VT1: int = 160, VT2: int
= 180)

Bases: object
Class for calculation of Lucia’s TRIMP.
Reference:
https://www.trainingimpulse.com/lucias-trimp-0
Parameters
* heart_rates (1ist [int]) - list of heart rates in beats per minute
* timestamps (1ist [timestamp]) — list of timestamps
* VT1 (int) - ventilatory threshold to divide the low and the moderate zone

* VT2 (int) - ventilatory threshold to divide the moderate and the high zone.

calculate_TRIMP () — float
Method for the calculation of the TRIMP.

Returns
Lucia’s TRIMP value.

Return type
float

5.5.18 Weather Identification

class sport_activities_features.weather_identification.WeatherIdentification (locations:
list,
times-
tamps:
list,
ve_api_key:
str,
unit_group='"metric')

Bases: object

A class used for identification of Weather data from TCX file. For identification of weather an external API is used
(https://www.visualcrossing.com/).

Parameters

* locations (list [(float, float)])- coordinates of exercise recordings, found in
TCXFile/GPXFile generated dictionary under “positions”

* timestamps (list [datetime]) — timestamps of exercise recordings, found in TCX-
File/GPXFile generated dictionary under “timestamps”

* ve_api_key (str)— API key for accessing VisualCrossing weather data

36 Chapter 5. Documentation

https://www.trainingimpulse.com/lucias-trimp-0
https://www.visualcrossing.com/

sport-activities-features, Release 0.4.2

* unit_group (str) — Unit group of data recieved. Possible options ‘metric’ (default), ‘us’,
‘uk’, ‘base’.

Warnings:
vc_api_key: api key is required.

classmethod get_average_weather_data (fimestamps: list, weather: list) — list

Method generates average weather for each of the timestamps in training by averaging the weather before and
after the timestamp, using the __find_nearest_weathers() method.

Parameters
* timestamps (1ist [datetime]) - datetime recordings from the TCXFile parsed data
* weather (list [Weather])-list of weather objects retrieved from VisualCrossing API
Returns

list which is an AverageWeather object
for each of the given timestamps.

Return type
list[AverageWeather]

get_weather (time_delta: int = 30) — list
Method that queries the VisualCrossing weather API for meteorological data at provided (minute) time in-

tervals.
Parameters
time_delta (int) - time between two measurements, default 30 mins
Returns
list of Weather objects from the nearest
meteorological station for every interval (time_delta minutes) of training.
Return type

list Weather]

5.6 Contributing to sport-activities-features
First off, thanks for taking the time to contribute!

5.6.1 Code of Conduct

This project and everyone participating in it is governed by the Contributor Covenant Code of Conduct. By participating,
you are expected to uphold this code. Please report unacceptable behavior to iztok.fister | @um.si.

5.6. Contributing to sport-activities-features 37

mailto:iztok.fister1@um.si

sport-activities-features, Release 0.4.2

5.6.2 How Can | Contribute?
Reporting Bugs

Before creating bug reports, please check existing issues list as you might find out that you don’t need to create one. When
you are creating a bug report, please include as many details as possible in the issue template.

Suggesting Enhancements

Open new issue using the feature request template.

Pull requests

Fill in the pull request template and make sure your code is documented.

5.7 Contributor Covenant Code of Conduct

5.7.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or
sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

5.7.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall community
Examples of unacceptable behavior include:
» The use of sexualized language or imagery, and sexual attention or advances of any kind
¢ Trolling, insulting or derogatory comments, and personal or political attacks
¢ Public or private harassment
* Publishing others’ private information, such as a physical or email address, without their explicit permission

* Other conduct which could reasonably be considered inappropriate in a professional setting

38 Chapter 5. Documentation

sport-activities-features, Release 0.4.2

5.7.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take ap-
propriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or
harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

5.7.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address, posting
via an official social media account, or acting as an appointed representative at an online or offline event.

5.7.5 Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible
for enforcement at iztok.fister] @um.si. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

5.7.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they
deem in violation of this Code of Conduct:

1. Correction
Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including
unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding
interactions in community spaces as well as external channels like social media. Violating these terms may lead to a
temporary or permanent ban.

5.7. Contributor Covenant Code of Conduct 39

mailto:iztok.fister1@um.si

sport-activities-features, Release 0.4.2

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified
period of time. No public or private interaction with the people involved, including unsolicited interaction with those
enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

5.7.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.
contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq.
Translations are available at https://www.contributor-covenant.org/translations.

5.8 Contributors

5.8.1 Credits
Maintainers

e Jztok Fister, Jr.

Contributors (alphabetically)

* Dusan Fister

* Nejc Graj

* Rok Kukovec
 Tadej Lahovnik
e Zala Lahovnik
e Luka Lukac

¢ Luka Pecnik

* Spela Pe¢nik

* Alen Raj$p

40 Chapter 5. Documentation

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

sport-activities-features, Release 0.4.2

5.9 License

MIT License
Copyright (c) 2020-2024 Iztok Fister Jr. et al.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .

5.9. License 41

sport-activities-features, Release 0.4.2

42 Chapter 5. Documentation

BIBLIOGRAPHY

[1] Iztok Fister Jr., Luka Lukac, Alen Rajsp, Iztok Fister, Luka Pec¢nik, and DuSan Fister. A minimalistic toolbox for
extracting features from sport activity files. In 2021 IEEE 25th International Conference on Intelligent Engineering
Systems (INES), 000121-000126. IEEE, 2021.

[2] Iztok Fister Jr., Iztok Fister, DuSan Fister, and Simon Fong. Data mining in sporting activities created by sports
trackers. In 2013 international symposium on computational and business intelligence, 88-91. IEEE, 2013.

[3] Iztok Fister, Iztok Fister Jr, and Dusan Fister. Computational intelligence in sports. Volume 22. Springer, 2019.

[4] Alen Rajs$p and Iztok Fister Jr. A systematic literature review of intelligent data analysis methods for smart sport
training. Applied Sciences, 10(9):3013, 2020.

43

sport-activities-features, Release 0.4.2

44 Bibliography

S

PYTHON MODULE INDEX

sport_activities_features, ??
sport_activities_features.activity_generator,

13

sport_activities_features.area_identification,

sport_activities_features.
sport_activities_features.

sport_activities_features.
sport_activities_features.
sport_activities_features.
sport_activities_features.
sport_activities_features.
sport_activities_features.
sport_activities_features.
sport_activities_features.
sport_activities_features.

sport_activities_features.
sport_activities_features.

sport_activities_features.
sport_activities_features.

sport_activities_features.

14

16

17

18

18

21

21

23

24

26

28

30

31

34

36

classes, 16
data_analysis,

data_extraction,
data_extraction_from_csv,
dead_end_identification,
file_manipulation,
gpx_manipulation,

hill _identification,
interval_identification,
missing_elevation_identification,
overpy_node_manipulation

plot_data, 29
tcx_manipulation,

topographic_features,
training_loads,

weather_identification,

45

sport-activities-features, Release 0.4.2

46 Python Module Index

INDEX

A method), 34
analyze_data () (sport_activities_features.data_analysis. DRtaBnb ks —TRIME ()

method), 16 (sport_activities_features.training_loads. EdwardsTRIMP
Arealdentification (class in method), 35

sport_activities_features.area_identification), calculate TRIMP ()

14 (sport_activities_features.training_loads. LuciaTRIMP
ascent () (sport_activities_features.topographic_features. TopographicPEHHIARS 30

method), 31 calculate_weighting_factor ()
avg_altitude_of_hills () (sport_activities_features.training_loads. Banister TRIMPv2

(sport_activities_features.topographic_features. TopographicFemff/%d)’ 35
method), 32 count_missing_values ()

avg_ascent_of_hills () (sport_activities_features. file_manipulation. FileManipulation

(sport_activities_features.topographic_features. TopographicFelgihgd)- 21

method), 32 create_gps_object ()
(sport_activities_features.tcx_manipulation. TCXFile
B method), 30
BanisterTRIMPv1 (class in D
sport_activities_features.training_loads), 34
BanisterTRIMPv2 (class in Dataknalysis (class in
sport_activities_features.training_loads), 34 sport_activities_features.data_analysis), 16
DataExtraction (class in
C sport_activities_features.data_extraction),
17

calculate_delta_hr_ratio()

L ., . xtractionFromCSV class in
(sport_activities_features.training_loads. BamsterTR%ﬁ\?ZE o (.
method)., 35 sport_activities_features.data_extraction_from_csv),
’ 18
calculate_distance . . .
- . 3 . Dea%E%dIdentlflcatlon (class in
(sport_activities_features.topographic_features. TopographicFeatures

method), 32 sport_activities_features.dead_end_identification),

1
calculate_hill_gradient () 8
. . des %e %t S‘&

(sport_activities_features.topographic_features. Topographic eﬁzn 5 tr

method), 32 distance_of_hills ()

calculate_interval_statistics () sport_gctyities, features.topographic_features. TopographicFeatures
(sport_activities_features. interval_identiﬁcation.Intervalldentif;clgl ofggy@/ artRZ;te -fopograp -roposrap

metho
method), 25 do_two_line_segments_intersect ()
. . . w 1 1
calculate_interval_statistics () - - —s€9 —

. Asport_actiyities_features.area_identification. Arealdentification
(sport_activities _features.mterval_zdentlﬁcatlon.Intervalldentlﬁn%‘léﬁloﬁd%y 2werj - i i

method), 26
calculate_TRIMP ()
(sport_activities_features.training_loads. Banister TRIMPv 1
method), 34
calculate_TRIMP ()
(sport_activities_features.training_loads. Banister TRIMPv2

ssport_activities _features.topographic_features. TopographicFea
od), 33

draw_activities_inside_area_on_map ()
(sport_activities_features.area_identification. Arealdentification
static method), 15

draw_basic_map () (sport_activities_features.plot_data.PlotData
method), 29

47

sport-activities-features, Release 0.4.2

draw_hills_in_map () 35
(sport_activities_features.plot_data. PlotData get_area_coordinates_around_point ()
method), 29 (sport_activities_features.area_identification. Arealdentification
draw_intervals_in_map () static method), 15
(sport_activities_features.plot_data.PlotData get_average_weather_data ()
method), 29 (sport_activities_features.weather_identification. Weatherldentificati
draw_map () (sport_activities_features.area_identification. Arealdentificlatsomethod), 37
method), 15 get_positions_of_hills ()
draw_map () (sport_activities_features.dead_end_identification. Dead Ksplddentifivaties: features.plot_data. PlotData
method), 19 method), 29
get_positions_of_intervals()
E (sport_activities_features.plot_data.PlotData
EdwardsTRIMP (class in method), 29
sport_activities_features.training_loads), 35 get_weather () (sport_activities_features.weather_identification. Weatherl
ElevationApiType (class in method), 37
sport_activities_features.missing_elevation_identific@RwY, 1 1e (class in sport_activities_features.gpx_manipulation),
26 21
ElevationIdentification (class in GPXTrackPoint (class in
sport_activities_features.missing_elevation_identification), ~ Sport_activities_features.gpx_manipulation),
26 22
extract_data () (sport_activities_features.data_extractiofs DRskgFmradtiorlass in sport_activities_features.hill_identification),
method), 17 23

extract_data_in_area()
(sport_activities jeatures.area_identiﬁcation.Arealdtr!tlﬁcation

method), 15 HillIdentification (class in
extract_integral_metrics () sport_activities_features. hill_identification),

(sport_activities_features.gpx_manipulation. GPXFile 23

method), 21

extract_integral_metrics() l
(sport_activities_features.tcx_manipulation. TCXFileident i fy_dead_ends ()

method), 30 (sport_activities_features.dead_end_identification. DeadEndldentific
method), 19
F identify_hills () (sport_activities_features.hill_identification. Hillldent
fetch_elevation_data () method), 23
(sport_activities_features.missing_elevation_identificafiemEletationfdentfivation()
method), 277 (sport_activities_features.interval_identification. Intervalldentificatio
fetch_open_elevation_data () method), 25
(sport_activities_features.missing_elevation_identificatiem Eletationldestification()
method), 27 (sport_activities_features.interval_identification. Intervalldentificatio
fetch_open_topo_data () method), 26
(sport_activities_features.missing_elevation_identificafiem EleSationfilentification_area ()
method), 28 (sport_activities_features.area_identification. Arealdentification
FileManipulation (class in method), 15
sport_activities_features. file_manipulation), IntervalldentificationByHeartRate (class
21 in sport_activities_features.interval_identification),
from_all_files () (sport_activities_features.data_extraction_from2ésv. DataExtractionFromCSV
method), 18 IntervalldentificationByPower (class in
from_£file () (sport_activities_features.data_extraction_from_csv. Dapdituaeivhifyofa@sives.interval_identification),
method), 18 25
from_GPX () (sport_activities_features.gpx_manipulation. GRXTideleRbiend () (spori_activities_features.dead_end_identification. DeadF:
method), 23 method), 20
is_equal () (sport_activities_features.area_identification. Arealdentificatior
G method), 15

Gender (class in sport_activities_features.training_loads),

48 Index

sport-activities-features, Release 0.4.2

L

linear_fill_missing_values()
(sport_activities_features. ﬁle_manipulation.FileManQulation

method), 21

method), 33

OverpyNodesReader (class in

load_pipeline () (sport_activities_features.data_analysis. DataAnaiyeis_activities_features.overpy_node_manipulation),

static method), 17

28

long_enough_to_be_a_dead_end()
(sport_activities jeatures.dead_end_identiﬁcation.DBszndIdentiﬁcation

LuciaTRIMP
sport_activities_features.training_loads), 36

M

method), 20
(class

module

N

sport_activities_features,

sport_activities_features
13

sport_activities_features.

14
sport_activities_features
16

sport_activities_features.

16
sport_activities_features
17
sport_activities_features
18
sport_activities_features
18

sport_activities_features.

21
sport_activities_features
21
sport_activities_features
23
sport_activities_features
24
sport_activities_features
26

sport_activities_features.

28
sport_activities_features
29
sport_activities_features
30
sport_activities_features
31
sport_activities_features
34

sport_activities_features.

36

.plot_data,

.training_loads,

plot_activities_inside_area_on_map ()
in (sport_activities_features.area_identification. Arealdentification
static method), 15
plot_basic_map () (sport_activities_features.plot_data.PlotData
method), 29
plot_hills_on_map ()
1 (sport_activities_features.plot_data.PlotData

.activity_generatomethod), 30

plot_intervals_in_map ()
area_identificatid&sport_activities_features.plot_data.PlotData

method), 30
.classes, plot_map () (sport_activities_features.area_identification. Arealdentificatior
method), 16
data_analydikotData (class in sport_activities_features.plot_data),
29

. data_extracﬁion,

.data_extractardonf rgenersation_without_clustering()

(sport_activities_features.activity_generator.SportyDataGen

.dead_end_identifiwaethodn,13

read_directory () (sport_activities_features.gpx_manipulation. GPXFile
file_manipulation,method), 22
read_directory () (sport_activities_features.tcx_manipulation. TCXFile

.gpx_manipulation, method), 30

read_nodes () (sport_activities_features.overpy_node_manipulation.Over}

.hill_identificatiasrethod), 28

read_one_file () (sport_activities_features.gpx_manipulation. GPXFile

.interval_identifiowethodh,22

read_one_file () (sport_activities_features.tcx_manipulation. TCXFile

.missing_elevationnmethod}, 3iication,

really_is_dead_end()
overpy_node_maniptspattieatyities_features.dead_end_identification. DeadEndldentific
method), 20
reorganize_exercise_data ()
(sport_activities_features.dead_end_identification. DeadEndldentific

.tcx_manipulation, method), 20

return_hill () (sport_activities_features.hill_identification. Hillldentificat

.topographic_featunethod), 24

return_hills () (sport_activities_features.hill_identification. Hillldentificc
method), 24
return_intervals ()
weather_identificdsportngctivities_features.interval_identification. Intervalldentificatio
method), 25
return_intervals ()
(sport_activities_features.interval_identification. Intervalldentificatio

num_of_hills () (sport_activities_features.topographic_features. TopogthphycFéatures

Index

49

sport-activities-features, Release 0.4.2

S 30

select_random activities () TopographicFeatures (class in
(sport_activities_features.data_extraction_from_csv. DataExtrdPRbHIygpiitiss. features.topographic_features),
method), 18 31
share_of_hills () (sport_activities_features. topographiWatures. TopographicFeatures
method), 33
show_map () (sport_activities_features. dead_end_ident{ﬁcamwggﬁ%iﬁg&tﬁﬁit ion (class in
method), 20 sport_activities_features.weather_identification),
sport_activities_features 36
module, 1 write_gpx () (sport_activities_features.tcx_manipulation. TCXFile

sport_activities_features.activity_generator method), 31
module, 13
sport_activities_features.area_identification
module, 14
sport_activities_features.classes
module, 16
sport_activities_features.data_analysis
module, 16
sport_activities_features.data_extraction
module, 17
sport_activities_features.data_extraction_from_csv
module, 18
sport_activities_features.dead_end_identification

module, 18
sport_activities_features.file_manipulation
module, 21
sport_activities_features.gpx_manipulation
module, 21
sport_activities_features.hill_identification
module, 23
sport_activities_features.interval_identification
module, 24
sport_activities_features.missing_elevation_identification
module, 26
sport_activities_features.overpy_node_manipulation
module, 28
sport_activities_features.plot_data
module, 29
sport_activities_features.tcx_manipulation
module, 30
sport_activities_features.topographic_features
module, 31
sport_activities_features.training_loads
module, 34
sport_activities_features.weather_identification
module, 36
SportyDataGen (class in
Sport_activities_features.activity_generator),
13
StoredSegments (class in

sport_activities_features.classes), 16

T

TCXF1ile (classin sport_activities_features.tcx_manipulation),

50 Index

	Unleashing the Power of Sports Activity Analysis: A Framework Beyond Ordinary Metrics 🚀
	Detailed insights 🔍
	Historical weather data
	Overpass API & Open Elevation API integration
	Documentation
	Getting Started
	Installation
	Examples

	Installation
	Setup development environment
	Requirements
	Development dependencies

	Testing
	Documentation
	API
	Activity generator
	Note:

	Area Identification
	Classes
	Note:

	Data Analysis
	Data Extraction
	Data Extraction from csv files
	Dead End Identification
	File Manipulation
	Args:
	Args:
	Returns:

	GPX Manipulation
	Note:

	Hills
	Intervals
	Missing Elevation Identification
	Overpy Node Manipulation
	Plot data
	TCX manipulation
	Note:

	Topographic features
	Training loads
	Weather Identification
	Warnings:

	Contributing to sport-activities-features
	Code of Conduct
	How Can I Contribute?
	Reporting Bugs
	Suggesting Enhancements
	Pull requests

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	Contributors
	Credits
	Maintainers
	Contributors (alphabetically)

	License

	Bibliography
	Python Module Index
	Index

