
Snakemake Documentation
Release 8.2.1

Johannes Koester

Jan 19, 2024

GETTING STARTED

1 Getting started 3

2 Support 5

3 Citation 7

4 Resources 9

i

ii

Snakemake Documentation, Release 8.2.1

The Snakemake workflow management system is a tool to create reproducible and scalable data analyses. Workflows
are described via a human readable, Python based language. They can be seamlessly scaled to server, cluster, grid and
cloud environments, without the need to modify the workflow definition. Finally, Snakemake workflows can entail a
description of required software, which will be automatically deployed to any execution environment.
Snakemake is highly popular, with >10 new citations per week. For an introduction, please visit https://snakemake.
github.io.

GETTING STARTED 1

https://badge.dimensions.ai/details/id/pub.1018944052
https://snakemake.github.io
https://snakemake.github.io

Snakemake Documentation, Release 8.2.1

2 GETTING STARTED

CHAPTER

ONE

GETTING STARTED

• To get a first impression, please visit https://snakemake.github.io.
• To properly understand what Snakemake can do for you please read our “rolling” paper.
• News about Snakemake are published via Twitter.
• To learn Snakemake, please do the Snakemake Tutorial, and see the FAQ.
• Best practices for writing Snakemake workflows can be found here.

3

https://snakemake.github.io
https://doi.org/10.12688/f1000research.29032.1
https://twitter.com/search?l=&q=%23snakemake%20from%3Ajohanneskoester

Snakemake Documentation, Release 8.2.1

4 Chapter 1. Getting started

CHAPTER

TWO

SUPPORT

• For releases, see Changelog.
• Check frequently asked questions (FAQ).
• In case of questions, please post on stack overflow.
• To discuss with other Snakemake users, use the discord server. Please do not post questions there. Use stack
overflow for questions.

• For bugs and feature requests, please use the issue tracker.
• For contributions, visit Snakemake on Github and read the guidelines.

5

https://stackoverflow.com/questions/tagged/snakemake
https://discord.gg/kHvtG6N
https://github.com/snakemake/snakemake/issues
https://github.com/snakemake/snakemake

Snakemake Documentation, Release 8.2.1

6 Chapter 2. Support

CHAPTER

THREE

CITATION

When using Snakemake, please cite our “rolling” paper
Mölder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster, J., Lee, S., Twardziok,
S.O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., Köster, J., 2021. Sustainable data analysis with
Snakemake. F1000Res 10, 33.
This paper will also be regularly updated when Snakemake receives new features. See Citations for more information.

7

https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.12688/f1000research.29032.1

Snakemake Documentation, Release 8.2.1

8 Chapter 3. Citation

CHAPTER

FOUR

RESOURCES

Snakemake Wrappers Repository
The Snakemake Wrapper Repository is a collection of reusable wrappers that allow to quickly use popular tools
from Snakemake rules and workflows.

Snakemake Workflow Catalog
An automatically scraped catalog of publicly available Snakemake workflows for any kind of data analysis.

Snakemake Workflows Project
This project provides a collection of high quality modularized and re-usable workflows. The provided code should
also serve as a best-practices of how to build production ready workflows with Snakemake. Everybody is invited
to contribute.

Snakemake Profiles Project
This project provides Snakemake configuration profiles for various execution environments. Please consider con-
tributing your own if it is still missing.

Snakemake API documentation
The documentation of the Snakemake API for programmatic access and developement on Snakemake.

Conda-Forge
Conda-Forge is a community driven distribution of Conda packages that can be used from Snakemake for creating
completely reproducible workflows by defining the used software versions and providing binaries.

Bioconda
Bioconda, a partner project of conda-forge, is a community driven distribution of bioinformatics-related Conda
packages that can be used from Snakemake for creating completely reproducible workflows by defining the used
software versions and providing binaries.

4.1 Installation

Snakemake is available on PyPi as well as through Bioconda and also from source code. You can use one of the following
ways for installing Snakemake.

9

https://snakemake-wrappers.readthedocs.org
https://snakemake.github.io/snakemake-workflow-catalog
https://github.com/snakemake-workflows/docs
https://github.com/snakemake-profiles/doc
https://snakemake-api.readthedocs.io
https://conda-forge.org
https://bioconda.github.io/

Snakemake Documentation, Release 8.2.1

4.1.1 Installation via Conda/Mamba

This is the recommended way to install Snakemake, because it also enables Snakemake to handle software dependencies
of your workflow.
First, you need to install a Conda-based Python3 distribution. The recommended choice is Mambaforge which not only
provides the required Python and Conda commands, but also includes Mamba an extremely fast and robust replacement
for the Conda package manager which is highly recommended. The default conda solver is a bit slow and sometimes has
issues with selecting the latest package releases. Therefore, we recommend to in any case use Mamba.
In case you don’t use Mambaforge you can always install Mamba into any other Conda-based Python distribution with

$ conda install -n base -c conda-forge mamba

Full installation

Snakemake can be installed with all goodies needed to run in any environment and for creating interactive reports via

$ mamba create -c conda-forge -c bioconda -n snakemake snakemake

from the Bioconda channel. This will install snakemake into an isolated software environment, that has to be activated
with

$ mamba activate snakemake
$ snakemake --help

Installing into isolated environments is best practice in order to avoid side effects with other packages.

Notes on Bioconda as a package source

Note that Snakemake is available via Bioconda for historical, reproducibility, and continuity reasons (although it is not
limited to biology applications at all). However, it is easy to combine Snakemake installation with other channels, e.g., by
prefixing the package name with ::bioconda, i.e.,

$ mamba activate base
$ mamba create -n some-env -c conda-forge bioconda::snakemake ...

4.1.2 Installation via pip

Instead of conda, snakemake can be installed with pip. However, note that snakemake has non-python dependencies, such
that the pip based installation has a limited functionality if those dependencies are not manually installed in addition.
A list of Snakemake’s dependencies can be found within its meta.yaml conda recipe.

10 Chapter 4. Resources

https://github.com/conda-forge/miniforge#mambaforge
https://github.com/mamba-org/mamba
https://conda.pydata.org
https://github.com/conda/conda/issues/9905
https://github.com/mamba-org/mamba
https://github.com/conda-forge/miniforge#mambaforge
https://github.com/mamba-org/mamba
https://bioconda.github.io
https://bioconda.github.io/recipes/snakemake/README.html

Snakemake Documentation, Release 8.2.1

4.1.3 Installation of a development version via pip

If you want to quickly try out an unreleased version from the snakemake repository (which you cannot get via bioconda,
yet), for example to check whether a bug fix works for you workflow, you can get the current state of the main branch
with:

$ mamba create --only-deps -n snakemake-dev snakemake
$ mamba activate snakemake-dev
$ pip install git+https://github.com/snakemake/snakemake

You can also install the current state of another branch or the repository state at a particular commit. For information on
the syntax for this, see the pip documentation on git support.

4.2 Migration between Snakemake versions

Snakemake is meant to remain backwards compatible as much as possible. However, sometimes, very rarely, we remove
old almost unused features that have since then been replaced by new ones (so far, this happened only once, for Snakemake
8). Sometimes, new features are added that do not require, but make it strongly advisable to adapt workflows (e.g. because
the new features provide a better user or recipient experience).
Below are migration hints for particular Snakemake versions.

4.2.1 Migrating to Snakemake 8

Workflow definitions

Snakemake 8 removes the support for three syntactical elements, which are all officially deprecated since multiple major
releases:

• Support for marking output files as dynamic has been removed. You should instead use checkpoints.
• Support for the version directive has been removed. You should use the conda or container integration instead.
• Support for the subworkflow directive has been removed. You should use the module directive instead, which
provides the same functionality in a more general way.

In addition, we have moved the former remote provider functionality into so called storage plugins. Most of the old
remote providers have been migrated into the new storage plugins (see the Snakemake plugin catalog.). Two former
remote providers have been migrated into Snakemake wrappers instead, namely the NCBI and EGA remote providers,
which are now replaced by the entrez/efetch and the ega wrappers. As of writing, the Snakemake storage plugin for xrootd
(see here) does not yet pass the CI tests. Any help would be greatly appreciated.

Command line interface

The command line interface of Snakemake 8 has a lot of new options which are best explored using:

snakemake --help

Morever, some options have been renamed:
• All the execution backends have been moved into plugins. When you used e.g. --kubernetes and correspond-
ing options before, you should now use --executor kubernetes and check the Snakemake plugin catalog
for the new options. The same holds for all other execution backends, see here.

4.2. Migration between Snakemake versions 11

https://pip.pypa.io/en/stable/topics/vcs-support/#git
https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake-wrappers.readthedocs.io/en/stable/wrappers/entrez/efetch.html
https://snakemake-wrappers.readthedocs.io/en/stable/wrappers/ega/fetch.html
https://github.com/snakemake/snakemake-storage-plugin-xrootd
https://snakemake.github.io/snakemake-plugin-catalog/plugins/executor/kubernetes.html
https://snakemake.github.io/snakemake-plugin-catalog/index.html

Snakemake Documentation, Release 8.2.1

• The --use-conda and --use-singularity options are deprecated. Instead you should now use
--software-deployment-method conda or --software-deployment-method apptainer
or --software-deployment-method conda apptainer if you need both.

• There is a new executor plugin for Google Cloud Batch. This is meant as a replacement for the old Google Life
Sciences executor. The new executor is called googlebatch and can be used with --executor google-
batch. Please check out the documentation of the plugin in the Snakemake plugin catalog. Note that in principle
it is fine to re-add google-lifesciences support as a plugin as well. We even have skeleton code for this here. Any
help with getting this tested and released despite the fact that google lifesciences will be shut down this year would
still be valued.

Table 1: Interface comparison
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

preemptible
–preemption-
default
PREEMP-
TION_DEFAULT

Apreemptible instance can be re-
quested when using the Google
Life Sciences API. If you set a –
preemption- default, all rules will
be subject to the default. Specif-
ically, this integer is the num-
ber of restart attempts that will
be made given that the instance
is killed unexpectedly. Note
that preemptible instances have
a maximum running time of 24
hours. If you want to set pre-
emptible instances for only a sub-
set of rules, use –preemptible-
rules instead. (default: None)

–preemptible-
retries PRE-
EMPTIBLE_RETRIES

Number of retries that shall
be made in order to finish a
job from of rule that has been
marked as preemptible via the –
preemptible-rules setting. (de-
fault: None)

Re-
named

continues on next page

12 Chapter 4. Resources

https://cloud.google.com/batch/docs/get-started
https://snakemake.github.io/snakemake-plugin-catalog/plugins/executor/googlebatch.html
https://github.com/snakemake/snakemake-executor-plugin-google-lifesciences

Snakemake Documentation, Release 8.2.1

Table 1 – continued from previous page
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

–preemptible-
rules PRE-
EMPTIBLE_RULES
[PRE-
EMPTIBLE_RULES
…]

A preemptible instance can be re-
quested when using the Google
Life Sciences API. If you want
to use these instances for a sub-
set of your rules, you can use –
preemptible-rules and then spec-
ify a list of rule and integer
pairs, where each integer in-
dicates the number of restarts
to use for the rule’s instance
in the case that the instance
is terminated unexpectedly. –
preemptible-rules can be used in
combination with –preemption-
default, and will take priority.
Note that preemptible instances
have a maximum running time of
24. If you want to apply a con-
sistent number of retries across
all your rules, use –preemption-
default instead. Example: snake-
make –preemption- default 10 –
preemptible-rules map_reads=3
call_variants=0 (default: None)

–preemptible-
rules [PRE-
EMPTIBLE_RULES
…]

Define which rules shall use a
preemptible machine which can
be prematurely killed by e.g. a
cloud provider (also called spot
instances). This is currently only
supported by the Google Life
Sciences executor and ignored
by all other executors. If no
rule names are provided, all rules
are considered to be preemptible.
The (default: None)

Re-
named

list-rules
–list, -l Show available rules in given

Snakefile. (default: False)
–list-rules, –
list, -l

Show available rules in given
Snakefile. (default: False)

New
alias: –
list-rules

list-changes
–list-version-
changes,
–lv

List all output files that have been
created with a different version
(as determined by the version
keyword). (default: False)

Depre-
cated: It
seems
due to
the dep-
recation
of ver-
sion
directive

continues on next page

4.2. Migration between Snakemake versions 13

Snakemake Documentation, Release 8.2.1

Table 1 – continued from previous page
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

–list-code-
changes,
–lc

List all output files for which
the rule body (run or shell) have
changed in the Snakefile. (de-
fault: False)

–list-changes
{params,input,code},
–lc
{params,input,code}

List all output files for which
the rule body (run or shell) have
changed in the Snakefile. (de-
fault: None)

Re-
designed:
Please
use
params
such as
--list-changes
params,
input,
code
in-
stead of
--list-code-changes,
--list-input-changes,
or
--list-params-changes

bash-
completion
–bash-
completion

Output code to register bash
completion for snakemake. Put
the following in your .bashrc (in-
cluding the accents): snakemake
–bash-completion or issue it in an
open terminal session. (default:
False)

Unsup-
ported?

deploy-sources
–deploy-
sources
QUERY
CHECKSUM

Deploy sources archive from
given storage provider query to
the current working sdirectory
and control for archive checksum
to proceed. Meant for internal
use only. (default: None)

reason
–reason, -r Print the reason for each exe-

cuted rule (deprecated, always
true now). (default: False)

Depre-
cated:
Drop
it and
don’t
worry
about
anything

gui
continues on next page

14 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

Table 1 – continued from previous page
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

–gui [PORT] Serve an HTML based user inter-
face to the given network and port
e.g. 168.129.10.15:8000. By de-
fault Snakemake is only available
in the local network (default port:
8000). To make Snakemake lis-
ten to all ip addresses add the spe-
cial host address 0.0.0.0 to the url
(0.0.0.0:8000). This is important
if Snakemake is used in a virtu-
alised environment like Docker.
If possible, a browser window is
opened. (default: None)

Unsup-
ported?

stats
–stats FILE Write stats about Snakefile ex-

ecution in JSON format to the
given file. (default: None)

Unsup-
ported?

file storage
–unneeded-
temp-files
FILE [FILE
…]

Given files will not be uploaded
to storage and immediately
deleted after job or group
job completion. (default:
frozenset())

–keep-remote Keep local copies of remote input
files. (default: False)

–keep-storage-
local-copies

Keep local copies of remote input
files. (default: False)

Re-
named

–keep-target-
files

Do not adjust the paths of given
target files relative to the working
directory. (default: False)

–target-files-
omit-workdir-
adjustment

Do not adjust the paths of given
target files relative to the working
directory. (default: False)

Re-
named

seconds-
between-
status-checks

–seconds-
between-
status-
checks SEC-
ONDS_BETWEEN_STATUS_CHECKS

Number of seconds to wait
between two rounds of status
checks. (default: 10)

remote storage
continues on next page

4.2. Migration between Snakemake versions 15

Snakemake Documentation, Release 8.2.1

Table 1 – continued from previous page
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

–default-
remote-
provider
{S3,GS,FTP,SFTP,S3Mocked,gfal,gridftp,iRODS,AzBlob,XRootD}

Specify default remote provider
to be used for all input and out-
put files that don’t yet specify one.
(default: None)

–default-
storage-
provider DE-
FAULT_STORAGE_PROVIDER

Specify default storage provider
to be used for all input and
output files that don’t yet
specify one (e.g. ‘s3’). See
https://snakemake.github.io/
snakemake-plugin-catalog
for available storage provider
plugins. (default: None)

Renamed:
See
https:
//
snakemake.
github.
io/
snakemake-plugin-catalog
for
avail-
able
stor-
age
provider
plu-
g-
ins.

–default-
remote-
prefix DE-
FAULT_REMOTE_PREFIX

Specify prefix for default remote
provider. E.g. a bucket name.
(default:)

–default-
storage-
prefix DE-
FAULT_STORAGE_PREFIX

Specify prefix for default storage
provider. E.g. a bucket name.
(default:)

Re-
named

–local-storage-
prefix LO-
CAL_STORAGE_PREFIX

Specify prefix for storing local
copies of storage files and fold-
ers. By default, this is a hidden
subfolder in the workdir. It can
however be freely chosen, e.g. in
order to store those files on a lo-
cal scratch disk. (default: .snake-
make/storage)

shared-fs
continues on next page

16 Chapter 4. Resources

https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake.github.io/snakemake-plugin-catalog

Snakemake Documentation, Release 8.2.1

Table 1 – continued from previous page
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

–no-shared-fs Do not assume that jobs share
a common file system. When
this flag is activated, Snakemake
will assume that the filesystem
on a cluster node is not shared
with other nodes. For exam-
ple, this will lead to download-
ing remote files on each cluster
node separately. Further, it won’t
take special measures to deal with
filesystem latency issues. This
option will in most cases only
make sense in combination with
–default-remote-provider. Fur-
ther, when using –cluster you will
have to also provide –cluster- sta-
tus. Only activate this if you
know what you are doing. (de-
fault: False)

–shared-fs-
usage {input-
output,persistence,software-
deployment,source-
cache,sources,storage-
local-
copies,none}
[{input-
output,persistence,software-
deployment,source-
cache,sources,storage-
local-
copies,none}
…]

Set assumptions on shared
filesystem for non-local work-
flow execution. To disable any
sharing via the filesystem, spec-
ify ‘none’. Usually, the executor
plugin sets this to a correct
default. However, sometimes
it is worth tuning this setting,
e.g. for optimizing cluster per-
formance. For example, when
using ‘–default-storage-provider
fs’ together with a cluster ex-
ecutor like slurm, you might
want to set ‘– shared-fs-usage
persistence software-deployment
sources source-cache’, such that
software deployment and data
provenance will be handled by
NFS but input and output files
will be handled exclusively by
the storage provider. (default:
frozenset({<SharedFSUsage.SOFTWARE_DEPLOYMENT:
2>, <SharedF-
SUsage.INPUT_OUTPUT:
1>, <SharedF-
SUsage.PERSISTENCE: 0>,
<SharedFSUsage.SOURCES:
3>, <SharedF-
SUsage.SOURCE_CACHE:
5>, <SharedF-
SUsage.STORAGE_LOCAL_COPIES:
4>}))

Re-
designed:
Please
change
--no-shared-fs
to
--shared-fs-usage
none

–job-deploy-
sources

Whether the workflow sources
shall be deployed before a remote
job is started. Only applies if –
no-shared- fs is set or executors
are used that imply no shared FS
(e.g. the kubernetes executor).
(default: False)

(Clearer
descrip-
tion
needed)

greediness
–greediness
GREEDI-
NESS

Set the greediness of schedul-
ing. This value between 0
and 1 determines how careful
jobs are selected for execution.
The default value (1.0) provides
the best speed and still accept-
able scheduling quality. (default:
None)

–scheduler-
greediness
SCHED-
ULER_GREEDINESS,
–greediness
SCHED-
ULER_GREEDINESS

Set the greediness of schedul-
ing. This value between 0
and 1 determines how careful
jobs are selected for execution.
The default value (1.0) provides
the best speed and still accept-
able scheduling quality. (default:
None)

Re-
named

continues on next page

4.2. Migration between Snakemake versions 17

Snakemake Documentation, Release 8.2.1

Table 1 – continued from previous page
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

debug
–overwrite-
shellcmd
OVER-
WRITE_SHELLCMD

Provide a shell command that
shall be executed instead of those
given in the workflow. This is for
debugging purposes only. (de-
fault: None)

Depre-
cated

–mode {0,1,2} Set execution mode of Snake-
make (internal use only). (de-
fault: 0)

–mode {de-
fault,remote,subprocess}

Set execution mode of Snake-
make (internal use only). (de-
fault: default)

Re-
designed:
use
string
instead
of
integer

APP-
TAINER/SINGULARITY
–use-
singularity

If defined in the rule, run job
within a singularity container. If
this flag is not set, the singular-
ity directive is ignored. (default:
False)

–use-
apptainer, –
use-singularity

If defined in the rule, run job
within a apptainer/singularity
container. If this flag is not
set, the singularity directive is
ignored. (default: False)

New
alias
(more
general
useage)

–singularity-
prefix DIR

Specify a directory in which
singularity images will be stored.
If not supplied, the value is
set to the ‘.snakemake’ direc-
tory relative to the invocation
directory. If supplied, the
--use-singularity flag
must also be set. The value
may be given as a relative path,
which will be extrapolated to the
invocation directory, or as an
absolute path. (default: None)

–apptainer-
prefix DIR,
–singularity-
prefix DIR

Specify a directory in which app-
tainer/singularity images will be
stored.If not supplied, the value is
set to the ‘.snakemake’ directory
relative to the invocation direc-
tory. If supplied, the --use-
apptainer flag must also be
set. The value may be given as
a relative path, which will be ex-
trapolated to the invocation di-
rectory, or as an absolute path.
(default: None)

New
alias
(more
general
useage)

–singularity-
args ARGS

Pass additional args to singular-
ity. (default:)

–apptainer-
args ARGS,
–singularity-
args ARGS

Pass additional args to app-
tainer/singularity. (default:)

New
alias
(more
general
useage)

–cleanup-
containers

Remove unused (singularity)
containers (default: False)

–container-
cleanup-
images

Remove unused containers (de-
fault: False)

New
alias
(more
general
useage)

precommand
continues on next page

18 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

Table 1 – continued from previous page
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

–precommand
PRECOM-
MAND

Any command to execute be-
fore snakemake command on
AWS cloud such as wget, git
clone, unzip, etc. This is used
with –tibanna.Do not include
input/output download/upload
commands - file transfer between
S3 bucket and the run environ-
ment (container) is automatically
handled by Tibanna. (default:
None)

–precommand
PRECOM-
MAND

Only used in case of remote exe-
cution. Command to be executed
before Snakemake executes each
job on the remote compute node.
(default: None)

Re-
designed:
more
general
useage

software-
deployment-
method

–software-
deployment-
method
{apptainer,conda,env-
modules}
[{apptainer,conda,env-
modules} …],
–deployment-
method
{apptainer,conda,env-
modules}
[{apptainer,conda,env-
modules} …],
–deployment
{apptainer,conda,env-
modules}
[{apptainer,conda,env-
modules} …]

Specify software environment
deployment method. (default:
set())

New de-
signed

executor
continues on next page

4.2. Migration between Snakemake versions 19

Snakemake Documentation, Release 8.2.1

Table 1 – continued from previous page
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

–cluster
CMD, (may
be –touch,
–dryrun, …,
?)

–executor
{cluster-
generic,local,dryrun,touch},
-e {cluster-
generic,local,dryrun,touch}

Specify a custom executor,
available via an executor plugin:
snakemake_executor_<name>
(default: None)

New de-
signed:
Now if
you
want to
use
--cluster
CMD,
please
use
--executor
cluster-generic
--cluster-generic-submit-cmd
CMD
instead.

Note
you
should
in-
stall
cluster-generic
us-
ing
com-
mand
pip
in-
stall
snakemake-executor-cluster-generic

–cluster CMD Execute snakemake rules with
the given submit command, e.g.
qsub. Snakemake compiles jobs
into scripts that are submitted to
the cluster with the given com-
mand, once all input files for a
particular job are present. The
submit command can be deco-
rated to make it aware of certain
job properties (name, rulename,
input, output, params, wildcards,
log, threads and dependencies
(see the argument below)), e.g.:
$ snakemake –cluster ‘qsub -pe
threaded {threads}’. (default:
None)

–cluster-
generic-
submit-cmd
VALUE

Command for submit-
ting jobs (default: <data-
classes._MISSING_TYPE
object at 0x7fc423088680>)

Re-
named

continues on next page

20 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

Table 1 – continued from previous page
Interface in
7.32

Interface description in 7.32 Interface in
8.0.1

Interface description in 8.0.1 Change
intro-
duction

–cluster-
status CLUS-
TER_STATUS

Status command for cluster exe-
cution. This is only considered
in combination with the –cluster
flag. If provided, Snakemake will
use the status command to deter-
mine if a job has finished suc-
cessfully or failed. For this it is
necessary that the submit com-
mand provided to –cluster re-
turns the cluster job id. Then, the
status command will be invoked
with the job id. Snakemake ex-
pects it to return ‘success’ if the
job was successful, ‘failed’ if the
job failed and ‘running’ if the job
still runs. (default: None)

–cluster-
generic-status-
cmd VALUE

Command for retrieving
job status (default: <data-
classes._MISSING_TYPE
object at 0x7fc423088680>)

Re-
named

–cluster-
cancel CLUS-
TER_CANCEL

Specify a command that allows to
stop currently running jobs. The
command will be passed a single
argument, the job id. (default:
None)

–cluster-
generic-
cancel-cmd
VALUE

Command for cancelling jobs.
Expected to take one or more
jobids as arguments. (default:
<dataclasses._MISSING_TYPE
object at 0x7fc423088680>)

Re-
named

–cluster-
cancel-nargs
CLUS-
TER_CANCEL_NARGS

Specify maximal number of job
ids to pass to –cluster-cancel
command, defaults to 1000. (de-
fault: 1000)

–cluster-
generic-
cancel-nargs
VALUE

Number of jobids to pass to can-
cel_cmd. If more are given,
cancel_cmd will be called mul-
tiple times. (default: <dat-
aclasses._MISSING_TYPE ob-
ject at 0x7fc423088680>)

Re-
named

–cluster-
sidecar CLUS-
TER_SIDECAR

Optional command to start a
sidecar process during cluster ex-
ecution. Only active when –
cluster is given as well. (default:
None)

–cluster-
generic-
sidecar-cmd
VALUE

Command for sidecar pro-
cess. (default: <data-
classes._MISSING_TYPE
object at 0x7fc423088680>)

Re-
named

Profiles

Profiles can now be versioned. If your profile makes use of settings that are available in version 8 or later, use the filename
config.v8+.yaml for the profile configuration (see profiles).

4.2. Migration between Snakemake versions 21

Snakemake Documentation, Release 8.2.1

API

The Snakemake API has been completely rewritten into a modern dataclass based approach. The traditional central
snakemake() function is gone. For an example how to use the newAPI, check out the Snakemake CLI implementation
here.

4.3 Best practices

• Snakemake (>=5.11) comes with a code quality checker (a so called linter), that analyzes your workflow and high-
lights issues that should be solved in order to follow best practices, achieve maximum readability, and reproducibil-
ity. The linter can be invoked with

snakemake --lint

given that a Snakefile or workflow/Snakefile is accessible from your working directory. It is highly
recommended to run the linter before publishing any workflow, asking questions on Stack Overflow or filing issues
on Github.

• There is an automatic formatter for Snakemake workflows, called Snakefmt, which should be applied to any Snake-
make workflow before publishing it.

• When publishing your workflow in a Github repository, it is a good idea to add someminimal test data and configure
Github Actions for continuously testing the workflow on each new commit. For this purpose, we provide predefined
Github actions for both running tests and linting here, as well as formatting here.

• For publishing and distributing a Snakemake workflow, it is a good idea to stick to a standardized structure that
is expected by frequent users of Snakemake. The Snakemake workflow catalog automatically lists Snakemake
workflows hosted on Github if they follow certain rules. By complying to these rules you can make your workflow
more discoverable and even automate its usage documentation (see “Standardized usage”).

• Configuration of a workflow should be handled via config files and, if needed, tabular configuration like sam-
ple sheets (either via Pandas or PEPs). Use such configuration for metadata and experiement information, not
for runtime specific configuration like threads, resources and output folders. For those, just rely on Snake-
make’s CLI arguments like --set-threads, --set-resources, --set-default-resources, and
--directory. This makes workflows more readable, scalable, and portable.

• Try to keep filenames short (thus easier on the eye), but informative. Avoid mixing of too many special characters
(e.g. decide whether to use _ or - as a separator and do that consistently throughout the workflow).

• Try to keep Python code like helper functions separate from rules (e.g. in a workflow/rules/common.smk
file). This way, you help non-experts to read the workflow without needing to parse internals that are irrelevant
for them. The helper function names should be chosen in a way that makes them sufficiently informative without
looking at their content. Also avoid lambda expressions inside of rules.

• Make use of Snakemake wrappers whenever possible. Consider contributing to the wrapper repo whenever you
have a rule that reoccurs in at least two of your workflows.

22 Chapter 4. Resources

https://docs.python.org/3/library/dataclasses.html
https://github.com/snakemake/snakemake/blob/04ec2c0262b2cb96cbcd7edbbb2596979c1703ae/snakemake/cli.py#L1767
https://github.com/snakemake/snakefmt
https://github.com
https://github.com/features/actions
https://github.com/snakemake/snakemake-github-action
https://github.com/snakemake/snakefmt#github-actions
https://snakemake.github.io/snakemake-workflow-catalog
https://github.com
https://snakemake.github.io/snakemake-workflow-catalog/?rules=true
https://snakemake.github.io/snakemake-workflow-catalog/?rules=true
https://snakemake.github.io/snakemake-workflow-catalog/?rules=true
https://snakemake-wrappers.readthedocs.io

Snakemake Documentation, Release 8.2.1

4.4 Snakemake Tutorial

This tutorial introduces the text-based workflow system Snakemake. Snakemake follows the GNU Make paradigm:
workflows are defined in terms of rules that define how to create output files from input files. Dependencies between the
rules are determined automatically, creating a DAG (directed acyclic graph) of jobs that can be automatically parallelized.
Snakemake sets itself apart from other text-based workflow systems in the following way. Hooking into the Python in-
terpreter, Snakemake offers a definition language that is an extension of Python with syntax to define rules and workflow
specific properties. This allows Snakemake to combine the flexibility of a plain scripting language with a pythonic work-
flow definition. The Python language is known to be concise yet readable and can appear almost like pseudo-code. The
syntactic extensions provided by Snakemake maintain this property for the definition of the workflow. Further, Snake-
make’s scheduling algorithm can be constrained by priorities, provided cores and customizable resources and it provides
a generic support for distributed computing (e.g., cluster or batch systems). Hence, a Snakemake workflow scales with-
out modification from single core workstations and multi-core servers to cluster or batch systems. Finally, Snakemake
integrates with the package manager Conda and the container engine Singularity such that defining the software stack
becomes part of the workflow itself.
The examples presented in this tutorial come from Bioinformatics. However, Snakemake is a general-purpose workflow
management system for any discipline. We ensured that no bioinformatics knowledge is needed to understand the tutorial.
Also have a look at the corresponding slides.

4.4.1 Setup

Requirements

To go through this tutorial, you need the following software installed:
• Python ≥3.5
• Snakemake ≥5.24.1
• BWA 0.7
• SAMtools 1.9
• Pysam 0.15
• BCFtools 1.9
• Graphviz 2.42
• Jinja2 2.11
• NetworkX 2.5
• Matplotlib 3.3

However, don’t install any of these this manually now, we guide you through better ways below.

4.4. Snakemake Tutorial 23

https://snakemake.readthedocs.io
https://www.gnu.org/software/make
https://www.python.org
https://conda.io
https://www.sylabs.io
https://slides.com/johanneskoester/snakemake-tutorial
https://www.python.org
https://snakemake.readthedocs.io
http://bio-bwa.sourceforge.net
https://www.htslib.org
https://pysam.readthedocs.io
https://www.htslib.org
https://www.graphviz.org
https://jinja.palletsprojects.com
https://networkx.github.io
https://matplotlib.org

Snakemake Documentation, Release 8.2.1

Run tutorial for free in the cloud via Gitpod

Note

A common thing to happen while using the development environment in GitPod is to hit Ctrl-swhile in the terminal
window, because you wanted to save a file in the editor window. This will freeze up you terminal. To get it back, make
sure you selected the terminal window by clicking on it and then hit Ctrl-q.

The easiest way to run this tutorial is to use Gitpod, which enables performing the excercises via your browser—including
all required software, for free and in the cloud. In order to do this, simply open the predefined snakemake-tutorial GitPod
workspace in your browser. GitPod provides you with a Theia development environment, which you can learn about in
the linked documentation. Once you have a basic understanding of this environment, you can go on directy with Basics:
An example workflow.

Running the tutorial on your local machine

If you prefer to run the tutorial on your local machine, please follow the steps below.
The easiest way to set these prerequisites up, is to use the Mambaforge Python 3 distribution (Mambaforge is a Conda
based distribution like Miniconda, which however uses Mamba a fast and more robust replacement for the Conda package
manager). The tutorial assumes that you are using either Linux or MacOS X. Both Snakemake and Mambaforge work
also under Windows, but the Windows shell is too different to be able to provide generic examples.
Currently, the setup currently only works for Intel based machines (x86_64), not ARM based machines like the
new Apple M1/2/3 architecture. This will change in the coming months. In the meantime, if you are on an ARM based
Mac, you can use Rosetta to emulate an intel architecture. Otherwise, you can simply use the Gitpod approach outlined
above.

Setup on Windows

If you already use Linux or MacOS X, go on with Step 1.

Windows Subsystem for Linux

If you useWindows 10, you can set up theWindows Subsystem for Linux (WSL) to natively run linux applications. Install
the WSL following the instructions in the WSL Documentation. You can chose any Linux distribution available for the
WSL, but the most popular and accessible one is Ubuntu. Start the WSL and set up your account; now, you can follow
the steps of our tutorial from within your Linux environment in the WSL.

Vagrant virtual machine

If you are using a version of Windows older than 10 or if you do not wish to install the WSL, you can instead setup
a Linux virtual machine (VM) with Vagrant. First, install Vagrant following the installation instructions in the Vagrant
Documentation. Then, create a new directory you want to share with your Linux VM, for example, create a folder named
vagrant-linux somewhere. Open a command line prompt, and change into that directory. Here, you create a 64-bit
Ubuntu Linux environment with

> vagrant init hashicorp/precise64
> vagrant up

24 Chapter 4. Resources

https://gitpod.io/#https://github.com/snakemake/snakemake-tutorial-data
https://gitpod.io/#https://github.com/snakemake/snakemake-tutorial-data
https://theia-ide.org/docs
https://github.com/conda-forge/miniforge#mambaforge
https://github.com/conda-forge/miniforge#mambaforge
https://conda.pydata.org/miniconda.html
https://github.com/mamba-org/mamba
https://conda.pydata.org
https://github.com/conda-forge/miniforge#mambaforge
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.vagrantup.com
https://docs.vagrantup.com
https://docs.vagrantup.com

Snakemake Documentation, Release 8.2.1

If you decide to use a 32-bit image, you will need to download the 32-bit version of Miniconda in the next step. The
contents of the vagrant-linux folder will be shared with the virtual machine that is set up by vagrant. You can log
into the virtual machine via

> vagrant ssh

If this command tells you to install an SSH client, you can follow the instructions in this Blogpost. Now, you can follow
the steps of our tutorial from within your Linux VM.

Step 1: Installing Mambaforge

First, please open a terminal or make sure you are logged into your Vagrant Linux VM. Assuming that you have a 64-bit
system, on Linux, download and install Miniconda 3 with

$ curl -L https://github.com/conda-forge/miniforge/releases/latest/download/
↪→Mambaforge-Linux-x86_64.sh -o Mambaforge-Linux-x86_64.sh
$ bash Mambaforge-Linux-x86_64.sh

On MacOS with x86_64 architecture, download and install with

$ curl -L https://github.com/conda-forge/miniforge/releases/latest/download/
↪→Mambaforge-MacOSX-x86_64.sh -o Mambaforge-MacOSX-x86_64.sh
$ bash Mambaforge-MacOSX-x86_64.sh

On MacOS with ARM/M1 architecture, download and install with

$ curl -L https://github.com/conda-forge/miniforge/releases/latest/download/
↪→Mambaforge-MacOSX-arm64.sh -o Mambaforge-MacOSX-arm64.sh
$ bash Mambaforge-MacOSX-arm64.sh

When you are asked the question

Do you wish the installer to prepend the install location to PATH ...? [yes|no]

answer with yes. Along with a minimal Python 3 environment, Mambaforge contains the package manager Mamba. After
closing your current terminal and opening a new terminal, you can use the new conda command to install software
packages and create isolated environments to, for example, use different versions of the same package. We will later use
Conda to create an isolated environment with all the required software for this tutorial.

Step 2: Preparing a working directory

First, create a new directory snakemake-tutorial at a place you can easily remember and change into that
directory in your terminal:

$ mkdir snakemake-tutorial
$ cd snakemake-tutorial

If you use a Vagrant Linux VM from Windows as described above, create that directory under /vagrant/, so that the
contents are shared with your host system (you can then edit all files from within Windows with an editor that supports
Unix line breaks). Then, change to the newly created directory. In this directory, we will later create an example
workflow that illustrates the Snakemake syntax and execution environment. First, we download some example data on
which the workflow shall be executed:

$ curl -L https://api.github.com/repos/snakemake/snakemake-tutorial-data/tarball -o␣
↪→snakemake-tutorial-data.tar.gz

4.4. Snakemake Tutorial 25

https://blog.osteel.me/posts/2015/01/25/how-to-use-vagrant-on-windows.html
https://github.com/mamba-org/mamba
https://conda.pydata.org

Snakemake Documentation, Release 8.2.1

Next we extract the data. On Linux, run

$ tar --wildcards -xf snakemake-tutorial-data.tar.gz --strip 1 "*/data" "*/
↪→environment.yaml"

On MacOS, run

$ tar -xf snakemake-tutorial-data.tar.gz --strip 1 "*/data" "*/environment.yaml"

This will create a folder data and a file environment.yaml in the working directory.

Step 3: Creating an environment with the required software

First, make sure to activate the conda base environment with

$ conda activate base

The environment.yaml file that you have obtained with the previous step (Step 2) can be used to install all required
software into an isolated Conda environment with the name snakemake-tutorial via

$ mamba env create --name snakemake-tutorial --file environment.yaml

If you don’t have the Mamba command because you used a different conda distribution than Mambaforge, you can also
first install Mamba (which is a faster and more robust replacement for Conda) in your base environment with

$ conda install -n base -c conda-forge mamba

and then run the mamba env create command shown above.

Step 4: Activating the environment

To activate the snakemake-tutorial environment, execute

$ conda activate snakemake-tutorial

Now you can use the installed tools. Execute

$ snakemake --help

to test this and get information about the command-line interface of Snakemake. To exit the environment, you can execute

$ conda deactivate

but don’t do that now, since we finally want to start working with Snakemake :-).

26 Chapter 4. Resources

https://github.com/mamba-org/mamba
https://github.com/conda-forge/miniforge#mambaforge
https://github.com/mamba-org/mamba
https://conda.pydata.org

Snakemake Documentation, Release 8.2.1

4.4.2 Basics: An example workflow

Please make sure that you have activated the environment we created before, and that you have an open terminal in the
working directory you have created.
A Snakemake workflow is defined by specifying rules in a Snakefile. Rules decompose the workflow into small
steps (for example, the application of a single tool) by specifying how to create sets of output files from sets of input
files. Snakemake automatically determines the dependencies between the rules by matching file names.
The Snakemake language extends the Python language, adding syntactic structures for rule definition and additional con-
trols. All added syntactic structures begin with a keyword followed by a code block that is either in the same line or
indented and consisting of multiple lines. The resulting syntax resembles that of original Python constructs.
In the following, we will introduce the Snakemake syntax by creating an example workflow. The workflow comes from
the domain of genome analysis. It maps sequencing reads to a reference genome and calls variants on the mapped reads.
The tutorial does not require you to know what this is about. Nevertheless, we provide some background in the following
paragraph.

Background

The genome of a living organism encodes its hereditary information. It serves as a blueprint for proteins, which form
living cells, carry information and drive chemical reactions. Differences between species, populations or individuals can
be reflected by differences in the genome. Certain variants can cause syndromes or predisposition for certain diseases,
or cause cancerous growth in the case of tumour cells that have accumulated changes with respect to healthy cells. This
makes the genome a major target of biological and medical research. Today, it is often analyzed with DNA sequencing,
producing gigabytes of data from a single biological sample (for example a biopsy of some tissue). For technical reasons,
DNA sequencing cuts the DNA of a sample into millions of small pieces, called reads. In order to recover the genome
of the sample, one has to map these reads against a known reference genome (for example, the human one obtained
during the famous human genome project). This task is called read mapping. Often, it is of interest where an individual
genome is different from the species-wide consensus represented with the reference genome. Such differences are called
variants. They are responsible for harmless individual differences (like eye color), but can also cause diseases like cancer.
By investigating the differences between the mapped reads and the reference sequence at a particular genome position,
variants can be detected. This is a statistical challenge, because they have to be distinguished from artifacts generated by
the sequencing process.

Step 1: Mapping reads

Our first Snakemake rule maps reads of a given sample to a given reference genome (see Background). For this, we will
use the tool bwa, specifically the subcommand bwa mem. In the working directory, create a new file called Snakefile
with an editor of your choice. We propose to use the integrated development environment (IDE) tool Visual Studio Code,
since it provides a good syntax highlighting Snakemake extension and a remote extension for directly using the IDE on a
remote server. In the Snakefile, define the following rule:

rule bwa_map:
input:

"data/genome.fa",
"data/samples/A.fastq"

output:
"mapped_reads/A.bam"

shell:
"bwa mem {input} | samtools view -Sb - > {output}"

4.4. Snakemake Tutorial 27

https://en.wikipedia.org/wiki/Human_Genome_Project
http://bio-bwa.sourceforge.net
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Snakemake.snakemake-lang
https://marketplace.visualstudio.com/items?itemName=ms-vscode.remote-explorer

Snakemake Documentation, Release 8.2.1

Note

A common error is to forget the comma between the input or output items. Since Python concatenates subsequent
strings, this can lead to unexpected behavior.

A Snakemake rule has a name (here bwa_map) and a number of directives, here input, output and shell. The
input and output directives are followed by lists of files that are expected to be used or created by the rule. In the
simplest case, these are just explicit Python strings. The shell directive is followed by a Python string containing the
shell command to execute. In the shell command string, we can refer to elements of the rule via braces notation (similar to
the Python format function). Here, we refer to the output file by specifying {output} and to the input files by specifying
{input}. Since the rule has multiple input files, Snakemake will concatenate them, separated by a whitespace. In other
words, Snakemake will replace {input} with data/genome.fa data/samples/A.fastq before executing
the command. The shell command invokes bwa mem with reference genome and reads, and pipes the output into
samtools which creates a compressed BAM file containing the alignments. The output of samtools is redirected
into the output file defined by the rule with >.

Note

It is best practice to have subsequent steps of a workflow in separate, unique, output folders. This keeps the working
directory structured. Further, such unique prefixes allow Snakemake to quickly discard most rules in its search for rules
that can provide the requested input. This accelerates the resolution of the rule dependencies in a workflow.

When a workflow is executed, Snakemake tries to generate given target files. Target files can be specified via the command
line. By executing

$ snakemake -np mapped_reads/A.bam

in the working directory containing the Snakefile, we tell Snakemake to generate the target file mapped_reads/A.
bam. Since we used the -n (or --dry-run) flag, Snakemake will only show the execution plan instead of actually
performing the steps. The -p flag instructs Snakemake to also print the resulting shell command for illustration. To
generate the target files, Snakemake applies the rules given in the Snakefile in a top-down way. The application
of a rule to generate a set of output files is called job. For each input file of a job, Snakemake again (i.e. recursively)
determines rules that can be applied to generate it. This yields a directed acyclic graph (DAG) of jobs where the edges
represent dependencies. So far, we only have a single rule, and the DAG of jobs consists of a single node. Nevertheless,
we can execute our workflow with

$ snakemake --cores 1 mapped_reads/A.bam

Whenever executing a workflow, you need to specify the number of cores to use. For this tutorial, we will use a single
core for now. Later you will see how parallelization works. Note that, after completion of above command, Snakemake
will not try to create mapped_reads/A.bam again, because it is already present in the file system. Snakemake only
re-runs jobs if one of the input files is newer than one of the output files or one of the input files will be updated
by another job.

28 Chapter 4. Resources

https://en.wikipedia.org/wiki/Binary_Alignment_Map
https://en.wikipedia.org/wiki/Directed_acyclic_graph

Snakemake Documentation, Release 8.2.1

Step 2: Generalizing the read mapping rule

Obviously, the rule will only work for a single sample with reads in the file data/samples/A.fastq. However,
Snakemake allows generalizing rules by using named wildcards. Simply replace the A in the second input file and in
the output file with the wildcard {sample}, leading to

rule bwa_map:
input:

"data/genome.fa",
"data/samples/{sample}.fastq"

output:
"mapped_reads/{sample}.bam"

shell:
"bwa mem {input} | samtools view -Sb - > {output}"

Note

Note that if a rule has multiple output files, Snakemake requires them to all have exactly the same wildcards. Otherwise,
it could happen that two jobs running the same rule in parallel want to write to the same file.

When Snakemake determines that this rule can be applied to generate a target file by replacing the wildcard {sample}
in the output file with an appropriate value, it will propagate that value to all occurrences of {sample} in the input files
and thereby determine the necessary input for the resulting job. Note that you can have multiple wildcards in your file
paths, however, to avoid conflicts with other jobs of the same rule, all output files of a rule have to contain exactly the
same wildcards.
When executing

$ snakemake -np mapped_reads/B.bam

Snakemake will determine that the rule bwa_map can be applied to generate the target file by replacing the wildcard
{sample} with the value B. In the output of the dry-run, you will see how the wildcard value is propagated to the input
files and all filenames in the shell command. You can also specify multiple targets, for example:

$ snakemake -np mapped_reads/A.bam mapped_reads/B.bam

Some Bash magic can make this particularly handy. For example, you can alternatively compose our multiple targets in
a single pass via

$ snakemake -np mapped_reads/{A,B}.bam

Note that this is not a special Snakemake syntax. Bash is just applying its brace expansion to the set {A,B}, creating the
given path for each element and separating the resulting paths by a whitespace.
In both cases, you will see that Snakemake only proposes to create the output file mapped_reads/B.bam. This is
because you already executed the workflow before (see the previous step) and no input file is newer than the output file
mapped_reads/A.bam. You can update the file modification date of the input file data/samples/A.fastq via

$ touch data/samples/A.fastq

and see how Snakemake wants to re-run the job to create the file mapped_reads/A.bam by executing

$ snakemake -np mapped_reads/A.bam mapped_reads/B.bam

4.4. Snakemake Tutorial 29

https://www.tldp.org/LDP/Bash-Beginners-Guide/html
https://www.tldp.org/LDP/Bash-Beginners-Guide/html
https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_03_04.html

Snakemake Documentation, Release 8.2.1

Step 3: Sorting read alignments

For later steps, we need the read alignments in the BAM files to be sorted. This can be achieved with the samtools sort
command. We add the following rule beneath the bwa_map rule:

rule samtools_sort:
input:

"mapped_reads/{sample}.bam"
output:

"sorted_reads/{sample}.bam"
shell:

"samtools sort -T sorted_reads/{wildcards.sample} "
"-O bam {input} > {output}"

Note

In the shell command above we split the string into two lines, which are however automatically concatenated into one
by Python. This is a handy pattern to avoid too long shell command lines. When using this, make sure to have a trailing
whitespace in each line but the last, in order to avoid arguments to become not properly separated.

This rule will take the input file from the mapped_reads directory and store a sorted version in the sorted_reads
directory. Note that Snakemake automatically creates missing directories before jobs are executed. For sorting,
samtools requires a prefix specified with the flag -T. Here, we need the value of the wildcard sample. Snakemake
allows to access wildcards in the shell command via the wildcards object that has an attribute with the value for each
wildcard.
When issuing

$ snakemake -np sorted_reads/B.bam

you will see how Snakemake wants to run first the rule bwa_map and then the rule samtools_sort to create the
desired target file: as mentioned before, the dependencies are resolved automatically by matching file names.

Step 4: Indexing read alignments and visualizing the DAG of jobs

Note

Snakemake uses the Python format mini language to format shell commands. Sometimes you have to use braces ({})
for something else in a shell command. In that case, you have to escape them by doubling, for example when relying
on the bash brace expansion we mentioned above: ls {{A,B}}.txt.

Next, we need to use samtools again to index the sorted read alignments so that we can quickly access reads by the genomic
location they were mapped to. This can be done with the following rule:

rule samtools_index:
input:

"sorted_reads/{sample}.bam"
output:

"sorted_reads/{sample}.bam.bai"
shell:

"samtools index {input}"

30 Chapter 4. Resources

https://www.htslib.org
https://docs.python.org/3/library/string.html#formatexamples
https://www.htslib.org

Snakemake Documentation, Release 8.2.1

Having three steps already, it is a good time to take a closer look at the resulting directed acyclic graph (DAG) of jobs.
By executing

$ snakemake --dag sorted_reads/{A,B}.bam.bai | dot -Tsvg > dag.svg

Note

If you went with: Run tutorial for free in the cloud via Gitpod, you can easily view the resulting dag.svg by right-
clicking on the file in the explorer panel on the left and selecting Open With -> Preview.

we create a visualization of the DAG using the dot command provided by Graphviz. For the given target files, Snake-
make specifies the DAG in the dot language and pipes it into the dot command, which renders the definition into SVG
format. The rendered DAG is piped into the file dag.svg and will look similar to this:

The DAG contains a node for each job with the edges connecting them representing the dependencies. The frames of
jobs that don’t need to be run (because their output is up-to-date) are dashed. For rules with wildcards, the value of the
wildcard for the particular job is displayed in the job node.

4.4. Snakemake Tutorial 31

https://www.graphviz.org
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

Snakemake Documentation, Release 8.2.1

Exercise

• Run parts of the workflow using different targets. Recreate the DAG and see how different rules’ frames become
dashed because their output is present and up-to-date.

Step 5: Calling genomic variants

The next step in our workflow will aggregate the mapped reads from all samples and jointly call genomic variants on them
(see Background). For the variant calling, we will combine the two utilities samtools and bcftools. Snakemake provides
a helper function for collecting input files that helps us to describe the aggregation in this step. With

expand("sorted_reads/{sample}.bam", sample=SAMPLES)

we obtain a list of files where the given pattern "sorted_reads/{sample}.bam" was formatted with the values
in a given list of samples SAMPLES, i.e.

["sorted_reads/A.bam", "sorted_reads/B.bam"]

The function is particularly useful when the pattern contains multiple wildcards. For example,

expand("sorted_reads/{sample}.{replicate}.bam", sample=SAMPLES, replicate=[0, 1])

would create the product of all elements of SAMPLES and the list [0, 1], yielding

["sorted_reads/A.0.bam", "sorted_reads/A.1.bam", "sorted_reads/B.0.bam", "sorted_
↪→reads/B.1.bam"]

Here, we use only the simple case of expand. We first let Snakemake know which samples we want to consider.
Remember that Snakemake works backwards from requested output, and not from available input. Thus, it does not
automatically infer all possible output from, for example, the fastq files in the data folder. Also remember that Snakefiles
are in principle Python code enhanced by some declarative statements to define workflows. Hence, we can define the list
of samples ad-hoc in plain Python at the top of the Snakefile:

SAMPLES = ["A", "B"]

Note

If you name input or output files like above, their order won’t be preserved when referring to them as {input}.
Further, note that named and unnamed (i.e., positional) input and output files can be combined, but the positional ones
must come first, equivalent to Python functions with keyword arguments.

Later, we will learn about more sophisticated ways like config files. But for now, this is enough so that we can add the
following rule to our Snakefile:

rule bcftools_call:
input:

fa="data/genome.fa",
bam=expand("sorted_reads/{sample}.bam", sample=SAMPLES),
bai=expand("sorted_reads/{sample}.bam.bai", sample=SAMPLES)

output:
"calls/all.vcf"

shell:
"bcftools mpileup -f {input.fa} {input.bam} | "
"bcftools call -mv - > {output}"

32 Chapter 4. Resources

https://www.htslib.org
https://www.htslib.org

Snakemake Documentation, Release 8.2.1

With multiple input or output files, it is sometimes handy to refer to them separately in the shell command. This can be
done by specifying names for input or output files, for example with fa=.... The files can then be referred to in
the shell command by name, for example with {input.fa}. For long shell commands like this one, it is advisable to
split the string over multiple indented lines. Python will automatically merge it into one. Further, you will notice that
the input or output file lists can contain arbitrary Python statements, as long as it returns a string, or a list of strings.
Here, we invoke our expand function to aggregate over the aligned reads of all samples.

Exercise

• obtain the updated DAG of jobs for the target file calls/all.vcf, it should look like this:

Step 6: Using custom scripts

Usually, a workflow not only consists of invoking various tools, but also contains custom code to for example calculate
summary statistics or create plots. While Snakemake also allows you to directly write Python code inside a rule, it is
usually reasonable to move such logic into separate scripts. For this purpose, Snakemake offers the script directive.
Add the following rule to your Snakefile:

rule plot_quals:
input:

"calls/all.vcf"
output:

(continues on next page)

4.4. Snakemake Tutorial 33

Snakemake Documentation, Release 8.2.1

(continued from previous page)
"plots/quals.svg"

script:
"scripts/plot-quals.py"

Note

snakemake.input and snakemake.output always contain a list of file names, even if the lists each contain
only one file name. Therefore, to refer to a particular file name, you have to index into that list. snakemake.
output[0] will give you the first element of the output file name list, something that always has to be there.

With this rule, we will eventually generate a histogram of the quality scores that have been assigned to the variant
calls in the file calls/all.vcf. The actual Python code to generate the plot is hidden in the script scripts/
plot-quals.py. Script paths are always relative to the referring Snakefile. In the script, all properties of the rule
like input, output, wildcards, etc. are available as attributes of a global snakemake object. Create the file
scripts/plot-quals.py, with the following content:

import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from pysam import VariantFile

quals = [record.qual for record in VariantFile(snakemake.input[0])]
plt.hist(quals)

plt.savefig(snakemake.output[0])

Note

It is best practice to use the script directive whenever an inline code block would have more than a few lines of code.

Although there are other strategies to invoke separate scripts from your workflow (for example, invoking them via shell
commands), the benefit of this is obvious: the script logic is separated from the workflow logic (and can even be shared
between workflows), but boilerplate code like the parsing of command line arguments is unnecessary.
Apart from Python scripts, it is also possible to use R scripts. In R scripts, an S4 object named snakemake analogous
to the Python case above is available and allows access to input and output files and other parameters. Here, the syntax
follows that of S4 classes with attributes that are R lists, for example we can access the first input file with snake-
make@input[[1]] (note that the first file does not have index 0 here, because R starts counting from 1). Named
input and output files can be accessed in the same way, by just providing the name instead of an index, for example
snakemake@input[["myfile"]].
For details and examples, see the External scripts section in the Documentation.

34 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

Step 7: Adding a target rule

So far, we always executed the workflow by specifying a target file at the command line. Apart from filenames, Snakemake
also accepts rule names as targets if the requested rule does not have wildcards. Hence, it is possible to write target
rules collecting particular subsets of the desired results or all results. Moreover, if no target is given at the command line,
Snakemake will define the first rule of the Snakefile as the target. Hence, it is best practice to have a rule all at the top
of the workflow which has all typically desired target files as input files.
Here, this means that we add a rule

rule all:
input:

"plots/quals.svg"

to the top of our workflow. When executing Snakemake with

$ snakemake -n

Note

In case you have mutliple reasonable sets of target files, you can add multiple target rules at the top of the Snakefile.
While Snakemake will execute the first per default, you can target any of them via the command line (for example,
snakemake -n mytarget).

the execution plan for creating the file plots/quals.svg, which contains and summarizes all our results, will be
shown. Note that, apart from Snakemake considering the first rule of the workflow as the default target, the order of
rules in the Snakefile is arbitrary and does not influence the DAG of jobs.

Exercise

• Create the DAG of jobs for the complete workflow.
• Execute the complete workflow and have a look at the resulting plots/quals.svg.
• Snakemake provides handy flags for forcing re-execution of parts of the workflow. Have a look at the command
line help with snakemake --help and search for the flag --forcerun. Then, use this flag to re-execute the
rule samtools_sort and see what happens.

• Snakemake displays the reason for each job (under reason:). Perform a dry-run that forces some rules to be
reexecuted (using the --forcerun flag in combination with some rulename) to understand the decisions of
Snakemake.

Summary

In total, the resulting workflow looks like this:

SAMPLES = ["A", "B"]

rule all:
input:

"plots/quals.svg"

(continues on next page)

4.4. Snakemake Tutorial 35

Snakemake Documentation, Release 8.2.1

(continued from previous page)

rule bwa_map:
input:

"data/genome.fa",
"data/samples/{sample}.fastq"

output:
"mapped_reads/{sample}.bam"

shell:
"bwa mem {input} | samtools view -Sb - > {output}"

rule samtools_sort:
input:

"mapped_reads/{sample}.bam"
output:

"sorted_reads/{sample}.bam"
shell:

"samtools sort -T sorted_reads/{wildcards.sample} "
"-O bam {input} > {output}"

rule samtools_index:
input:

"sorted_reads/{sample}.bam"
output:

"sorted_reads/{sample}.bam.bai"
shell:

"samtools index {input}"

rule bcftools_call:
input:

fa="data/genome.fa",
bam=expand("sorted_reads/{sample}.bam", sample=SAMPLES),
bai=expand("sorted_reads/{sample}.bam.bai", sample=SAMPLES)

output:
"calls/all.vcf"

shell:
"bcftools mpileup -f {input.fa} {input.bam} | "
"bcftools call -mv - > {output}"

rule plot_quals:
input:

"calls/all.vcf"
output:

"plots/quals.svg"
script:

"scripts/plot-quals.py"

36 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

4.4.3 Advanced: Decorating the example workflow

Now that the basic concepts of Snakemake have been illustrated, we can introduce some advanced functionality.

Step 1: Specifying the number of used threads

For some tools, it is advisable to use more than one thread in order to speed up the computation. Snakemake can be
made aware of the threads a rule needs with the threads directive. In our example workflow, it makes sense to use
multiple threads for the rule bwa_map:

rule bwa_map:
input:

"data/genome.fa",
"data/samples/{sample}.fastq"

output:
"mapped_reads/{sample}.bam"

threads: 8
shell:

"bwa mem -t {threads} {input} | samtools view -Sb - > {output}"

The number of threads can be propagated to the shell command with the familiar braces notation (i.e. {threads}). If
no threads directive is given, a rule is assumed to need 1 thread.
When a workflow is executed, the number of threads the jobs need is considered by the Snakemake scheduler. In
particular, the scheduler ensures that the sum of the threads of all jobs running at the same time does not exceed a given
number of available CPU cores. This number is given with the --cores command line argument, which is mandatory
for snakemake calls that actually run the workflow. For example

$ snakemake --cores 10

Note

Apart from the very common thread resource, Snakemake provides a resources directive that can be used to
specify arbitrary resources, e.g., memory usage or auxiliary computing devices like GPUs. Similar to threads, these
can be considered by the scheduler when an available amount of that resource is given with the command line argument
--resources (see Resources).

would execute the workflow with 10 cores. Since the rule bwa_map needs 8 threads, only one job of the rule can run at a
time, and the Snakemake scheduler will try to saturate the remaining cores with other jobs like, e.g., samtools_sort.
The threads directive in a rule is interpreted as a maximum: when less cores than threads are provided, the number of
threads a rule uses will be reduced to the number of given cores.
If --cores is given without a number, all available cores are used.

4.4. Snakemake Tutorial 37

Snakemake Documentation, Release 8.2.1

Exercise

• With the flag --forceall you can enforce a complete re-execution of the workflow. Combine this flag with
different values for --cores and examine how the scheduler selects jobs to run in parallel.

Step 2: Config files

So far, we specified which samples to consider by providing a Python list in the Snakefile. However, often you want your
workflow to be customizable, so that it can easily be adapted to new data. For this purpose, Snakemake provides a config
file mechanism. Config files can be written in JSON or YAML, and are used with the configfile directive. In our
example workflow, we add the line

configfile: "config.yaml"

to the top of the Snakefile. Snakemake will load the config file and store its contents into a globally available dictionary
named config. In our case, it makes sense to specify the samples in config.yaml as

samples:
A: data/samples/A.fastq
B: data/samples/B.fastq

Now, we can remove the statement defining SAMPLES from the Snakefile and change the rule bcftools_call to

rule bcftools_call:
input:

fa="data/genome.fa",
bam=expand("sorted_reads/{sample}.bam", sample=config["samples"]),
bai=expand("sorted_reads/{sample}.bam.bai", sample=config["samples"])

output:
"calls/all.vcf"

shell:
"bcftools mpileup -f {input.fa} {input.bam} | "
"bcftools call -mv - > {output}"

Step 3: Input functions

Since we have stored the path to the FASTQ files in the config file, we can also generalize the rule bwa_map to use these
paths. This case is different to the rule bcftools_call we modified above. To understand this, it is important to
know that Snakemake workflows are executed in three phases.

1. In the initialization phase, the files defining the workflow are parsed and all rules are instantiated.
2. In theDAG phase, the directed acyclic dependency graph of all jobs is built by filling wildcards and matching input

files to output files.
3. In the scheduling phase, the DAG of jobs is executed, with jobs started according to the available resources.

The expand functions in the list of input files of the rule bcftools_call are executed during the initialization phase.
In this phase, we don’t know about jobs, wildcard values and rule dependencies. Hence, we cannot determine the FASTQ
paths for rule bwa_map from the config file in this phase, because we don’t even know which jobs will be generated from
that rule. Instead, we need to defer the determination of input files to the DAG phase. This can be achieved by specifying
an input function instead of a string as inside of the input directive. For the rule bwa_map this works as follows:

38 Chapter 4. Resources

https://snakemake.readthedocs.io/en/latest/snakefiles/configuration.html
https://snakemake.readthedocs.io/en/latest/snakefiles/configuration.html
https://json.org
https://yaml.org
https://docs.python.org/3/tutorial/datastructures.html#dictionaries

Snakemake Documentation, Release 8.2.1

def get_bwa_map_input_fastqs(wildcards):
return config["samples"][wildcards.sample]

rule bwa_map:
input:

"data/genome.fa",
get_bwa_map_input_fastqs

output:
"mapped_reads/{sample}.bam"

threads: 8
shell:

"bwa mem -t {threads} {input} | samtools view -Sb - > {output}"

Note

Snakemake does not automatically rerun jobs when new input files are added as in the excercise below. However, you
can get a list of output files that are affected by such changes with snakemake --list-input-changes. To
trigger a rerun, this bit of bash magic helps:
snakemake -n --forcerun $(snakemake --list-input-changes)

Any normal function would work as well. Input functions take as single argument a wildcards object, that allows
to access the wildcards values via attributes (here wildcards.sample). They have to return a string or a list of
strings, that are interpreted as paths to input files (here, we return the path that is stored for the sample in the config file).
Input functions are evaluated once the wildcard values of a job are determined.

Exercise

• In the data/samples folder, there is an additional sample C.fastq. Add that sample to the config file and
see how Snakemake wants to recompute the part of the workflow belonging to the new sample, when invoking with
snakemake -n --forcerun bcftools_call.

Step 4: Rule parameters

Sometimes, shell commands are not only composed of input and output files and some static flags. In particular, it can
happen that additional parameters need to be set depending on the wildcard values of the job. For this, Snakemake allows
to define arbitrary parameters for rules with the params directive. In our workflow, it is reasonable to annotate aligned
reads with so-called read groups, that contain metadata like the sample name. Wemodify the rule bwa_map accordingly:

rule bwa_map:
input:

"data/genome.fa",
get_bwa_map_input_fastqs

output:
"mapped_reads/{sample}.bam"

params:
rg=r"@RG\tID:{sample}\tSM:{sample}"

threads: 8
shell:

"bwa mem -R '{params.rg}' -t {threads} {input} | samtools view -Sb - >
↪→{output}"

4.4. Snakemake Tutorial 39

Snakemake Documentation, Release 8.2.1

Note

The params directive can also take functions like in Step 3 to defer initialization to the DAG phase. In contrast to
input functions, these can optionally take additional arguments input, output, threads, and resources.

Similar to input and output files, params can be accessed from the shell command, the Python based run block, or the
script directive (see Step 6: Using custom scripts).

Exercise

• Variant calling can consider a lot of parameters. A particularly important one is the prior mutation rate (1e-3 per
default). It is set via the flag -P of the bcftools call command. Consider making this flag configurable via
adding a new key to the config file and using the params directive in the rule bcftools_call to propagate it
to the shell command.

Step 5: Logging

When executing a large workflow, it is usually desirable to store the logging output of each job into a separate file, instead
of just printing all logging output to the terminal—when multiple jobs are run in parallel, this would result in chaotic
output. For this purpose, Snakemake allows to specify log files for rules. Log files are defined via the log directive and
handled similarly to output files, but they are not subject of rule matching and are not cleaned up when a job fails. We
modify our rule bwa_map as follows:

rule bwa_map:
input:

"data/genome.fa",
get_bwa_map_input_fastqs

output:
"mapped_reads/{sample}.bam"

params:
rg=r"@RG\tID:{sample}\tSM:{sample}"

log:
"logs/bwa_mem/{sample}.log"

threads: 8
shell:

"(bwa mem -R '{params.rg}' -t {threads} {input} | "
"samtools view -Sb - > {output}) 2> {log}"

Note

It is best practice to store all log files in a subdirectory logs/, prefixed by the rule or tool name.

The shell command is modified to collect STDERR output of both bwa and samtools and pipe it into the file referred
to by {log}. Log files must contain exactly the same wildcards as the output files to avoid file name clashes between
different jobs of the same rule.

40 Chapter 4. Resources

https://tldp.org/LDP/abs/html/io-redirection.html

Snakemake Documentation, Release 8.2.1

Exercise

• Add a log directive to the bcftools_call rule as well.
• Time to re-run the whole workflow (remember the command line flags to force re-execution). See how log files are
created for variant calling and read mapping.

• The ability to track the provenance of each generated result is an important step towards reproducible analyses.
Apart from thereport functionality discussed before, Snakemake can summarize various provenance information
for all output files of the workflow. The flag --summary prints a table associating each output file with the rule
used to generate it, the creation date and optionally the version of the tool used for creation is provided. Further,
the table informs about updated input files and changes to the source code of the rule after creation of the output
file. Invoke Snakemake with --summary to examine the information for our example.

Step 6: Temporary and protected files

In our workflow, we create two BAM files for each sample, namely the output of the rules bwa_map and sam-
tools_sort. When not dealing with examples, the underlying data is usually huge. Hence, the resulting BAM files
need a lot of disk space and their creation takes some time. To save disk space, you canmark output files as temporary.
Snakemake will delete the marked files for you, once all the consuming jobs (that need it as input) have been executed.
We use this mechanism for the output file of the rule bwa_map:

rule bwa_map:
input:

"data/genome.fa",
get_bwa_map_input_fastqs

output:
temp("mapped_reads/{sample}.bam")

params:
rg=r"@RG\tID:{sample}\tSM:{sample}"

log:
"logs/bwa_mem/{sample}.log"

threads: 8
shell:

"(bwa mem -R '{params.rg}' -t {threads} {input} | "
"samtools view -Sb - > {output}) 2> {log}"

This results in the deletion of the BAM file once the corresponding samtools_sort job has been executed. Since
the creation of BAM files via read mapping and sorting is computationally expensive, it is reasonable to protect the final
BAM file from accidental deletion or modification. We modify the rule samtools_sort to mark its output file as
protected:

rule samtools_sort:
input:

"mapped_reads/{sample}.bam"
output:

protected("sorted_reads/{sample}.bam")
shell:

"samtools sort -T sorted_reads/{wildcards.sample} "
"-O bam {input} > {output}"

After successful execution of the job, Snakemake will write-protect the output file in the filesystem, so that it can’t be
overwritten or deleted by accident.

4.4. Snakemake Tutorial 41

Snakemake Documentation, Release 8.2.1

Exercise

• Re-execute the whole workflow and observe how Snakemake handles the temporary and protected files.
• Run Snakemake with the target mapped_reads/A.bam. Although the file is marked as temporary, you will
see that Snakemake does not delete it because it is specified as a target file.

• Try to re-execute the whole workflow again with the dry-run option. You will see that it fails (as intended) because
Snakemake cannot overwrite the protected output files.

Summary

For this advanced part of the tutorial, we have now created a config.yaml configuration file:

samples:
A: data/samples/A.fastq
B: data/samples/B.fastq

prior_mutation_rate: 0.001

With this, the final version of our workflow in the Snakefile looks like this:

configfile: "config.yaml"

rule all:
input:

"plots/quals.svg"

def get_bwa_map_input_fastqs(wildcards):
return config["samples"][wildcards.sample]

rule bwa_map:
input:

"data/genome.fa",
get_bwa_map_input_fastqs

output:
temp("mapped_reads/{sample}.bam")

params:
rg=r"@RG\tID:{sample}\tSM:{sample}"

log:
"logs/bwa_mem/{sample}.log"

threads: 8
shell:

"(bwa mem -R '{params.rg}' -t {threads} {input} | "
"samtools view -Sb - > {output}) 2> {log}"

rule samtools_sort:
input:

"mapped_reads/{sample}.bam"
output:

protected("sorted_reads/{sample}.bam")
shell:

"samtools sort -T sorted_reads/{wildcards.sample} "

(continues on next page)

42 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

(continued from previous page)
"-O bam {input} > {output}"

rule samtools_index:
input:

"sorted_reads/{sample}.bam"
output:

"sorted_reads/{sample}.bam.bai"
shell:

"samtools index {input}"

rule bcftools_call:
input:

fa="data/genome.fa",
bam=expand("sorted_reads/{sample}.bam", sample=config["samples"]),
bai=expand("sorted_reads/{sample}.bam.bai", sample=config["samples"])

output:
"calls/all.vcf"

params:
rate=config["prior_mutation_rate"]

log:
"logs/bcftools_call/all.log"

shell:
"(bcftools mpileup -f {input.fa} {input.bam} | "
"bcftools call -mv -P {params.rate} - > {output}) 2> {log}"

rule plot_quals:
input:

"calls/all.vcf"
output:

"plots/quals.svg"
script:

"scripts/plot-quals.py"

4.4.4 Additional features

In the following, we introduce some features that are beyond the scope of above example workflow. For details and even
more features, seeWriting Workflows, Frequently Asked Questions and the command line help (snakemake --help).

Benchmarking

With the benchmark directive, Snakemake can be instructed to measure the wall clock time of a job. We activate
benchmarking for the rule bwa_map:

rule bwa_map:
input:

"data/genome.fa",
lambda wildcards: config["samples"][wildcards.sample]

output:
temp("mapped_reads/{sample}.bam")

params:

(continues on next page)

4.4. Snakemake Tutorial 43

Snakemake Documentation, Release 8.2.1

(continued from previous page)
rg="@RG\tID:{sample}\tSM:{sample}"

log:
"logs/bwa_mem/{sample}.log"

benchmark:
"benchmarks/{sample}.bwa.benchmark.txt"

threads: 8
shell:

"(bwa mem -R '{params.rg}' -t {threads} {input} | "
"samtools view -Sb - > {output}) 2> {log}"

The benchmark directive takes a string that points to the file where benchmarking results shall be stored. Similar to
output files, the path can contain wildcards (it must be the same wildcards as in the output files). When a job derived from
the rule is executed, Snakemake will measure the wall clock time and memory usage (in MiB) and store it in the file in
tab-delimited format. It is possible to repeat a benchmark multiple times in order to get a sense for the variability of the
measurements. This can be done by annotating the benchmark file, e.g., with repeat("benchmarks/{sample}.
bwa.benchmark.txt", 3) Snakemake can be told to run the job three times. The repeated measurements occur
as subsequent lines in the tab-delimited benchmark file.

Modularization

In order to re-use building blocks or simply to structure large workflows, it is sometimes reasonable to split a workflow
into modules. For this, Snakemake provides the include directive to include another Snakefile into the current one,
e.g.:

include: "path/to/other.smk"

As can be seen, the default file extensions for snakefiles other than the main snakefile is .smk. Alternatively, Snakemake
allows to define sub-workflows. A sub-workflow refers to a working directory with a complete Snakemake workflow.
Output files of that sub-workflow can be used in the current Snakefile. When executing, Snakemake ensures that the output
files of the sub-workflow are up-to-date before executing the current workflow. This mechanism is particularly useful when
you want to extend a previous analysis without modifying it. For details about sub-workflows, see the documentation.

Exercise

• Put the read mapping related rules into a separate Snakefile and use the include directive to make them available
in our example workflow again.

Automatic deployment of software dependencies

In order to get a fully reproducible data analysis, it is not sufficient to be able to execute each step and document all used
parameters. The used software tools and libraries have to be documented as well. In this tutorial, you have already seen
how Conda can be used to specify an isolated software environment for a whole workflow. With Snakemake, you can
go one step further and specify Conda environments per rule. This way, you can even make use of conflicting software
versions (e.g. combine Python 2 with Python 3).
In our example, instead of using an external environment we can specify environments per rule, e.g.:

rule samtools_index:
input:

"sorted_reads/{sample}.bam"
output:

(continues on next page)

44 Chapter 4. Resources

https://conda.pydata.org

Snakemake Documentation, Release 8.2.1

(continued from previous page)
"sorted_reads/{sample}.bam.bai"

conda:
"envs/samtools.yaml"

shell:
"samtools index {input}"

with envs/samtools.yaml defined as

channels:
- bioconda
- conda-forge

dependencies:
- samtools =1.9

Note

The conda directive does not work in combination with run blocks, because they have to share their Python environ-
ment with the surrounding snakefile.

When Snakemake is executed with

snakemake --software-deployment-method conda --cores 1
or the short form

snakemake --sdm conda -c 1

it will automatically create required environments and activate them before a job is executed. It is best practice to specify
at least the major and minor version of any packages in the environment definition. Specifying environments per rule in
this way has two advantages. First, the workflow definition also documents all used software versions. Second, a workflow
can be re-executed (without admin rights) on a vanilla system, without installing any prerequisites apart from Snakemake
and Miniconda.

Tool wrappers

In order to simplify the utilization of popular tools, Snakemake provides a repository of so-called wrappers (the Snake-
make wrapper repository). A wrapper is a short script that wraps (typically) a command line application and makes it
directly addressable from within Snakemake. For this, Snakemake provides the wrapper directive that can be used
instead of shell, script, or run. For example, the rule bwa_map could alternatively look like this:

rule bwa_mem:
input:

ref="data/genome.fa",
sample=lambda wildcards: config["samples"][wildcards.sample]

output:
temp("mapped_reads/{sample}.bam")

log:
"logs/bwa_mem/{sample}.log"

params:
"-R '@RG\tID:{sample}\tSM:{sample}'"

threads: 8
wrapper:

"0.15.3/bio/bwa/mem"

4.4. Snakemake Tutorial 45

https://semver.org/
https://conda.pydata.org/miniconda.html
https://snakemake-wrappers.readthedocs.io
https://snakemake-wrappers.readthedocs.io

Snakemake Documentation, Release 8.2.1

Note

Updates to the Snakemake wrapper repository are automatically tested via continuous integration.

The wrapper directive expects a (partial) URL that points to a wrapper in the repository. These can be looked up in the cor-
responding database. The first part of the URL is a Git version tag. Upon invocation, Snakemake will automatically down-
load the requested version of the wrapper. Furthermore, in combination with --software-deployment-method
conda (seeAutomatic deployment of software dependencies), the required software will be automatically deployed before
execution.

Cluster execution

By default, Snakemake executes jobs on the localmachine it is invoked on. Alternatively, it can execute jobs in distributed
environments, e.g., compute clusters or batch systems. If the nodes share a common file system, Snakemake supports
three alternative execution modes.
In cluster environments, compute jobs are usually submitted as shell scripts via commands like qsub. Snakemake pro-
vides a generic mode to execute on such clusters. By invoking Snakemake with

$ snakemake --cluster qsub --jobs 100

each job will be compiled into a shell script that is submitted with the given command (here qsub). The --jobs flag
limits the number of concurrently submitted jobs to 100. This basic mode assumes that the submission command returns
immediately after submitting the job. Some clusters allow to run the submission command in synchronous mode, such
that it waits until the job has been executed. In such cases, we can invoke e.g.

$ snakemake --cluster-sync "qsub -sync yes" --jobs 100

The specified submission command can also be decorated with additional parameters taken from the submitted job.
For example, the number of used threads can be accessed in braces similarly to the formatting of shell commands, e.g.

$ snakemake --cluster "qsub -pe threaded {threads}" --jobs 100

Alternatively, Snakemake can use the Distributed Resource Management Application API (DRMAA). This API provides
a common interface to control various resourcemanagement systems. TheDRMAA support can be activated by invoking
Snakemake as follows:

$ snakemake --drmaa --jobs 100

If available,DRMAA is preferable over the generic clustermodes because it provides better control and error handling.
To support additional cluster specific parametrization, a Snakefile can be complemented by a workflow specific profile
(see Profiles).

Using –cluster-status

Sometimes you need specific detection to determine if a cluster job completed successfully, failed or is still running.
Error detection with --cluster can be improved for edge cases such as timeouts and jobs exceeding memory that are
silently terminated by the queueing system. This can be achieved with the --cluster-status option. The value
of this option should be a executable script which takes a job id as the first argument and prints to stdout only one of
[running|success|failed]. Importantly, the job id snakemake passes on is captured from the stdout of the cluster submit
tool. This string will often include more than the job id, but snakemake does not modify this string and will pass this
string to the status script unchanged. In the situation where snakemake has received more than the job id these are 3
potential solutions to consider: parse the string received by the script and extract the job id within the script, wrap the

46 Chapter 4. Resources

https://en.wikipedia.org/wiki/Continuous_integration
https://snakemake-wrappers.readthedocs.io
https://www.drmaa.org

Snakemake Documentation, Release 8.2.1

submission tool to intercept its stdout and return just the job code, or ideally, the cluster may offer an option to only return
the job id upon submission and you can instruct snakemake to use that option. For sge this would look like snakemake
--cluster "qsub -terse".
The following (simplified) script detects the job status on a given SLURM cluster (>= 14.03.0rc1 is required for
--parsable).

#!/usr/bin/env python
import subprocess
import sys

jobid = sys.argv[1]

output = str(subprocess.check_output("sacct -j %s --format State --noheader | head -1␣
↪→| awk '{print $1}'" % jobid, shell=True).strip())

running_status=["PENDING", "CONFIGURING", "COMPLETING", "RUNNING", "SUSPENDED"]
if "COMPLETED" in output:

print("success")
elif any(r in output for r in running_status):

print("running")
else:

print("failed")

To use this script call snakemake similar to below, where status.py is the script above.

$ snakemake all --jobs 100 --cluster "sbatch --cpus-per-task=1 --parsable" --cluster-
↪→status ./status.py

Using –cluster-cancel

When snakemake is terminated by pressing Ctrl-C, it will cancel all currently running node when using --drmaa.
You can get the same behaviour with --cluster by adding --cluster-cancel and passing a command to use
for canceling jobs by their jobid (e.g., scancel for SLURM or qdel for SGE). Most job schedulers can be passed
multiple jobids and you can use --cluster-cancel-nargs to limit the number of arguments (default is 1000
which is reasonable for most schedulers).

Using –cluster-sidecar

In certain situations, it is necessary to not perform calls to cluster commands directly and instead have a “sidecar” process,
e.g., providing a RESTAPI. One example is when using SLURMwhere regular calls to scontrol show job JOBID
or sacct -j JOBID puts a high load on the controller. Rather, it is better to use the squeue command with the
-i/--iterate option.
When using --cluster, you can use --cluster-sidecar to pass in a command that starts a sidecar server.
The command should print one line to stdout and then block and accept connections. The line will subsequently be
available in the calls to --cluster, --cluster-status, and --cluster-cancel in the environment variable
SNAKEMAKE_CLUSTER_SIDECAR_VARS. In the case of a REST server, you can use this to return the port that the
server is listening on and credentials. When the Snakemake process terminates, the sidecar process will be terminated as
well.

4.4. Snakemake Tutorial 47

Snakemake Documentation, Release 8.2.1

Constraining wildcards

Snakemake uses regular expressions to match output files to input files and determine dependencies between the jobs.
Sometimes it is useful to constrain the values a wildcard can have. This can be achieved by adding a regular expression that
describes the set of allowed wildcard values. For example, the wildcard sample in the output file "sorted_reads/
{sample}.bam" can be constrained to only allow alphanumeric sample names as "sorted_reads/{sample,
[A-Za-z0-9]+}.bam". Constraints may be defined per rule or globally using the wildcard_constraints
keyword, as demonstrated inWildcards. This mechanism helps to solve two kinds of ambiguity.

• It can help to avoid ambiguous rules, i.e. two or more rules that can be applied to generate the same output file.
Other ways of handling ambiguous rules are described in the Section Handling Ambiguous Rules.

• It can help to guide the regular expression based matching so that wildcards are assigned to the right parts of a file
name. Consider the output file {sample}.{group}.txt and assume that the target file is A.1.normal.
txt. It is not clear whether dataset="A.1" and group="normal" or dataset="A" and group="1.
normal" is the right assignment. Here, constraining the dataset wildcard by {sample,[A-Z]+}.{group}
solves the problem.

When dealing with ambiguous rules, it is best practice to first try to solve the ambiguity by using a proper file structure,
for example, by separating the output files of different steps in different directories.

4.5 Command line interface

This part of the documentation describes the snakemake executable. Snakemake is primarily a command-line tool, so
the snakemake executable is the primary way to execute, debug, and visualize workflows.

4.5.1 Important environment variables

Snakemake caches source files for performance and reproducibility. The location of this cache is determined by the
appdirs package. If you want to change the location on a unix/linux system, you can define an override path via the
environment variable XDG_CACHE_HOME.

4.5.2 Useful Command Line Arguments

If called with the number of cores to use, i.e.

$ snakemake --cores 1

Snakemake tries to execute the workflow specified in a file called Snakefile in the same directory (the Snakefile can
be given via the parameter -s).
By issuing

$ snakemake -n

a dry-run can be performed. This is useful to test if the workflow is defined properly and to estimate the amount of needed
computation.
Importantly, Snakemake can automatically determine which parts of the workflow can be run in parallel. By specifying
more than one available core, i.e.

$ snakemake --cores 4

48 Chapter 4. Resources

https://github.com/ActiveState/appdirs

Snakemake Documentation, Release 8.2.1

one can tell Snakemake to use up to 4 cores and solve a binary knapsack problem to optimize the scheduling of jobs. If
the number is omitted (i.e., only --cores is given), the number of used cores is determined as the number of available
CPU cores in the machine.
Snakemake workflows usually define the number of used threads of certain rules. Sometimes, it makes sense to overwrite
the defaults given in the workflow definition. This can be done by using the --set-threads argument, e.g.,

$ snakemake --cores 4 --set-threads myrule=2

would overwrite whatever number of threads has been defined for the rule myrule and use 2 instead. Similarly, it is
possible to overwrite other resource definitions in rules, via

$ snakemake --cores 4 --set-resources myrule:partition="foo"

Both mechanisms can be particularly handy when used in combination with non-local execution.

Non-local execution

Non-local execution on cluster or cloud infrastructure is implemented via plugins. The Snakemake plugin catalog lists
available plugins and their documentation.

Dealing with very large workflows

If your workflow has a lot of jobs, Snakemake might need some time to infer the dependencies (the job DAG) and which
jobs are actually required to run. The major bottleneck involved is the filesystem, which has to be queried for existence
and modification dates of files. To overcome this issue, Snakemake allows to run large workflows in batches. This way,
fewer files have to be evaluated at once, and therefore the job DAG can be inferred faster. By running

$ snakemake --cores 4 --batch myrule=1/3

you instruct to only compute the first of three batches of the inputs of the rule myrule. To generate the second batch,
run

$ snakemake --cores 4 --batch myrule=2/3

Finally, when running

$ snakemake --cores 4 --batch myrule=3/3

Snakemake will process beyond the rule myrule, because all of its input files have been generated, and complete the
workflow. Obviously, a good choice of the rule to perform the batching is a rule that has a lot of input files and upstream
jobs, for example a central aggregation step within your workflow. We advice all workflow developers to inform potential
users of the best suited batching rule.

4.5. Command line interface 49

https://snakemake.github.io/snakemake-plugin-catalog

Snakemake Documentation, Release 8.2.1

4.5.3 Profiles

Adapting Snakemake to a particular environment can entail many flags and options. Therefore, since Snakemake 4.1,
it is possible to specify configuration profiles to be used to obtain default options. Since Snakemake 7.29, two kinds of
profiles are supported:

• A global profile that is defined in a system-wide or user-specific configuration directory (on Linux, this will be
$HOME/.config/snakemake and /etc/xdg/snakemake, you can find the answer for your system via
snakemake --help).

• Aworkflow specific profile (introduced in Snakemake 7.29) that is defined via a flag (--workflow-profile)
or searched in a default location (profile/default) in the working directory or next to the Snakefile.

The workflow specific profile is meant to be used to define default options for a particular workflow, like providing
constraints for certain custom resources the workflow uses (e.g. api_calls) or overwriting the threads and resource
definitions of individual rules without modifying the workflow code itself. In contrast, the global profile is meant to be
used to define default options for a particular environment, like the default cluster submission command or the default
number of jobs to run in parallel.
For example, the command

$ snakemake --profile myprofile

would expect a folder myprofile in per-user and global configuration directories (on Linux, this will be $HOME/
.config/snakemake and /etc/xdg/snakemake, you can find the answer for your system via snakemake
--help). Alternatively, an absolute or relative path to the profile folder can be given. The default profile to use when
no --profile argument is specified can also be set via the environment variable SNAKEMAKE_PROFILE, e.g. by
specifying export SNAKEMAKE_PROFILE=myprofile in your ~/.bashrc or the system wide shell defaults
means that the --profile flag can be omitted. In order unset the profile defined by this environment variable for
individual runs without specifying and alternative profile you can provide the special value none, i.e. --profile
none.
The profile folder is expected to contain a configuration file that file that defines default values for the Snakemake command
line arguments. The file has to be named config.vX+.yaml with X denoting the minimum supported Snakemake
major version (e.g. config.v8+.yaml). As fallback, it is also possible to provide a version agnostic config.yaml
that matches any Snakemake version. For example, the file

executor: slurm
jobs: 100

would setup Snakemake to always submit to the SLURM cluster middleware and never use more than 100 parallel jobs
in total. The profile can be used to set a default for each option of the Snakemake command line interface. For this,
option --someoption becomes someoption: in the profile. The profile folder can additionally contain auxilliary
files, e.g., jobscripts, or any kind of wrappers. See https://github.com/snakemake-profiles/doc for examples. If options
accept multiple arguments these must be given as YAML list in the profile. If options expect structured arguments (like
--default-resources RESOURCE=VALUE, --set-threads RULE=VALUE, or --set-resources
RULE:RESOURCE=VALUE), those can be given as strings in the expected forms, i.e.

default-resources: mem_mb=200
set-threads: myrule=5
set-resources: myrule:mem=500MB

or as YAML maps, which is easier to read:

default-resources:
mem_mb: 200

set-threads:

(continues on next page)

50 Chapter 4. Resources

https://github.com/snakemake-profiles/doc

Snakemake Documentation, Release 8.2.1

(continued from previous page)
myrule: 5

set-resources:
myrule:

mem: 500MB

All of these resource specifications can also be made dynamic, by using expressions and certain variables that are avail-
able. For details of the variables you can use, refer to the callable signatures given in the documentation sections on the
specification of threads and dynamic resources. These enable config.yaml entries like:

default-resources:
mem_mb: max(1.5 * input.size_mb, 100)

set-threads:
myrule: max(input.size_mb / 5, 2)

set-resources:
myrule:

mem_mb: attempt * 200

Setting resources or threads via the profile is of course rather a job for the workflow profile instead of the global profile
(as such settings are likely workflow specific).
Values in profiles can make use of globally available environment variables, e.g. the $USER variable. For example, the
following would set the default prefix for storing local copies of remote storage files to a user specific directory

local-storage-prefix: /local/work/$USER/snakemake-scratch

Any such environment variables are automatically expanded when evaluating the profile.
Under https://github.com/snakemake-profiles/doc, you can find publicly available global profiles (e.g. for cluster sys-
tems). Feel free to contribute your own. Workflow specific profiles are either not shared at all, or can be distributed
along with the workflow itself where it makes sense. For example, when the workflow has its Snakefile at workflow/
Snakefile, the profile config should be placed at workflow/profiles/default/config.yaml.
In Snakemake 7.30 or newer, when the profile starts with

__use_yte__: true

It will be treated as a YTE template and parsed accordingly. This can be handy to e.g. define values inside of the profile
that are based on environment variables. For example, admins could use this to define user-specific settings. Another
application would be the uniform redefinition of resource requirements for a larger set of rules in a workflow profile (see
above). However, it should be noted that templated profiles are harder to keep free of errors and the profile author has to
make sure that they always work correctly for the user.

4.5.4 Visualization

To visualize the workflow, one can use the option --dag. This creates a representation of the DAG in the graphviz dot
language which has to be postprocessed by the graphviz tool dot. E.g. to visualize the DAG that would be executed,
you can issue:

$ snakemake --dag | dot | display

For saving this to a file, you can specify the desired format:

$ snakemake --dag | dot -Tpdf > dag.pdf

To visualize the whole DAG regardless of the eventual presence of files, the forceall option can be used:

4.5. Command line interface 51

https://github.com/snakemake-profiles/doc
https://yte-template-engine.github.io

Snakemake Documentation, Release 8.2.1

$ snakemake --forceall --dag | dot -Tpdf > dag.pdf

Of course the visual appearance can be modified by providing further command line arguments to dot.
Note: The DAG is printed in DOT format straight to the standard output, along with other print statements you may
have in your Snakefile. Make sure to comment these other print statements so that dot can build a visual representation
of your DAG.

4.5.5 All Options

All command line options can be printed by calling snakemake -h.

Snakemake is a Python based language and execution environment for GNU Make-like workflows.

usage: snakemake [-h] [--dry-run] [--profile PROFILE]
[--workflow-profile WORKFLOW_PROFILE] [--cache [RULE ...]]
[--snakefile FILE] [--cores N] [--jobs N] [--local-cores N]
[--resources NAME=INT [NAME=INT ...]]
[--set-threads RULE=THREADS [RULE=THREADS ...]]
[--max-threads MAX_THREADS]
[--set-resources RULE:RESOURCE=VALUE [RULE:RESOURCE=VALUE ...]]
[--set-scatter NAME=SCATTERITEMS [NAME=SCATTERITEMS ...]]
[--set-resource-scopes RESOURCE=[global|local]
[RESOURCE=[global|local] ...]]
[--default-resources [NAME=INT ...]]
[--preemptible-rules [PREEMPTIBLE_RULES ...]]
[--preemptible-retries PREEMPTIBLE_RETRIES]
[--config [KEY=VALUE ...]] [--configfile FILE [FILE ...]]
[--envvars VARNAME [VARNAME ...]] [--directory DIR] [--touch]
[--keep-going]
[--rerun-triggers {code,input,mtime,params,software-env} [{code,

↪→input,mtime,params,software-env} ...]]
[--force] [--executor {cluster-generic,local,dryrun,touch}]
[--forceall] [--forcerun [TARGET ...]]
[--prioritize TARGET [TARGET ...]]
[--batch RULE=BATCH/BATCHES] [--until TARGET [TARGET ...]]
[--omit-from TARGET [TARGET ...]] [--rerun-incomplete]
[--shadow-prefix DIR] [--scheduler [{ilp,greedy}]]
[--wms-monitor [WMS_MONITOR]]
[--wms-monitor-arg [NAME=VALUE ...]]
[--scheduler-ilp-solver {}]
[--scheduler-solver-path SCHEDULER_SOLVER_PATH]
[--conda-base-path CONDA_BASE_PATH] [--no-subworkflows]
[--precommand PRECOMMAND] [--groups GROUPS [GROUPS ...]]
[--group-components GROUP_COMPONENTS [GROUP_COMPONENTS ...]]
[--report [FILE]] [--report-stylesheet CSSFILE]
[--draft-notebook TARGET] [--edit-notebook TARGET]
[--notebook-listen IP:PORT] [--lint [{text,json}]]
[--generate-unit-tests [TESTPATH]] [--containerize]
[--export-cwl FILE] [--list-rules] [--list-target-rules]
[--dag] [--rulegraph] [--filegraph] [--d3dag] [--summary]
[--detailed-summary] [--archive FILE]
[--cleanup-metadata FILE [FILE ...]] [--cleanup-shadow]
[--skip-script-cleanup] [--unlock]
[--list-changes {code,input,params}] [--list-input-changes]

(continues on next page)

52 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

(continued from previous page)
[--list-params-changes] [--list-untracked]
[--delete-all-output | --delete-temp-output]
[--keep-incomplete] [--drop-metadata]
[--deploy-sources QUERY CHECKSUM] [--version]
[--printshellcmds] [--debug-dag] [--nocolor]
[--quiet [{all,progress,rules} ...]] [--print-compilation]
[--verbose] [--force-use-threads] [--allow-ambiguity]
[--nolock] [--ignore-incomplete]
[--max-inventory-time SECONDS] [--latency-wait SECONDS]
[--wait-for-files [FILE ...]] [--wait-for-files-file FILE]
[--notemp] [--all-temp]
[--unneeded-temp-files FILE [FILE ...]]
[--keep-storage-local-copies]
[--target-files-omit-workdir-adjustment]
[--allowed-rules ALLOWED_RULES [ALLOWED_RULES ...]]
[--target-jobs TARGET_JOBS [TARGET_JOBS ...]]
[--local-groupid LOCAL_GROUPID]
[--max-jobs-per-second MAX_JOBS_PER_SECOND]
[--max-status-checks-per-second MAX_STATUS_CHECKS_PER_SECOND]
[--seconds-between-status-checks SECONDS_BETWEEN_STATUS_CHECKS]
[--retries RETRIES] [--attempt ATTEMPT]
[--wrapper-prefix WRAPPER_PREFIX]
[--default-storage-provider DEFAULT_STORAGE_PROVIDER]
[--default-storage-prefix DEFAULT_STORAGE_PREFIX]
[--local-storage-prefix LOCAL_STORAGE_PREFIX]
[--shared-fs-usage {input-output,persistence,software-deployment,

↪→source-cache,sources,storage-local-copies,none} [{input-output,persistence,software-
↪→deployment,source-cache,sources,storage-local-copies,none} ...]]

[--scheduler-greediness SCHEDULER_GREEDINESS] [--no-hooks]
[--debug] [--runtime-profile FILE]
[--mode {default,remote,subprocess}] [--show-failed-logs]
[--log-handler-script FILE] [--log-service {none,slack,wms}]
[--job-deploy-sources] [--container-image IMAGE]
[--immediate-submit] [--jobscript SCRIPT] [--jobname NAME]
[--flux]
[--software-deployment-method {apptainer,conda,env-modules} [

↪→{apptainer,conda,env-modules} ...]]
[--container-cleanup-images] [--use-conda]
[--conda-not-block-search-path-envvars] [--list-conda-envs]
[--conda-prefix DIR] [--conda-cleanup-envs]
[--conda-cleanup-pkgs [{tarballs,cache}]]
[--conda-create-envs-only] [--conda-frontend {conda,mamba}]
[--use-apptainer] [--apptainer-prefix DIR]
[--apptainer-args ARGS] [--use-envmodules]
[--cluster-generic-submit-cmd VALUE]
[--cluster-generic-status-cmd VALUE]
[--cluster-generic-cancel-cmd VALUE]
[--cluster-generic-cancel-nargs VALUE]
[--cluster-generic-sidecar-cmd VALUE]
[--storage-s3-max-requests-per-second [TAG::]VALUE [[TAG::]VALUE ...

↪→]]
[--storage-s3-endpoint-url [TAG::]VALUE [[TAG::]VALUE ...]]
[--storage-s3-access-key [TAG::]VALUE [[TAG::]VALUE ...]]
[--storage-s3-secret-key [TAG::]VALUE [[TAG::]VALUE ...]]
[--storage-s3-token [TAG::]VALUE [[TAG::]VALUE ...]]
[--storage-s3-signature-version [TAG::]VALUE [[TAG::]VALUE ...]]
[--storage-s3-retries [TAG::]VALUE [[TAG::]VALUE ...]]

(continues on next page)

4.5. Command line interface 53

Snakemake Documentation, Release 8.2.1

(continued from previous page)
[targets ...]

EXECUTION

targets Targets to build. May be rules or files.
Default: set()

--dry-run, --dryrun, -n Do not execute anything, and display what would be done. If you have a very
large workflow, use –dry-run –quiet to just print a summary of the DAG of jobs.
Default: False

--profile Name of profile to use for configuring Snakemake. Snakemake will
search for a corresponding folder in /etc/xdg/snakemake and /build-
dir/.config/snakemake. Alternatively, this can be an absolute or relative
path. The profile folder has to contain a file ‘config.yaml’. This file can
be used to set default values for command line options in YAML format.
For example, ‘–cluster qsub’ becomes ‘cluster: qsub’ in the YAML file.
Profiles can be obtained from https://github.com/snakemake-profiles.
The profile can also be set via the environment variable $SNAKE-
MAKE_PROFILE. To override this variable and use no profile at all,
provide the value ‘none’ to this argument.

--workflow-profile Path (relative to current directory) to workflow specific profile folder to
use for configuring Snakemake with parameters specific for this work-
flow (like resources). If this flag is not used, Snakemake will by default
use ‘profiles/default’ if present (searched both relative to current direc-
tory and relative to Snakefile, in this order). For skipping any workflow
specific profile provide the special value ‘none’. Settings made in the
workflow profile will override settings made in the general profile (see
–profile). The profile folder has to contain a file ‘config.yaml’. This file
can be used to set default values for command line options in YAML for-
mat. For example, ‘–executor slurm’ becomes ‘executor: slurm’ in the
YAML file. It is advisable to use the workflow profile to set or overwrite
e.g. workflow specific resources like the amount of threads of a partic-
ular rule or the amount of memory needed. Note that in such cases, the
arguments may be given as nested YAML mappings in the profile, e.g.
‘set-threads: myrule: 4’ instead of ‘set-threads: myrule=4’.

--cache Store output files of given rules in a central cache given by the environment variable
$SNAKEMAKE_OUTPUT_CACHE. Likewise, retrieve output files of the given
rules from this cache if they have been created before (by anybody writing to the
same cache), instead of actually executing the rules. Output files are identified by
hashing all steps, parameters and software stack (conda envs or containers) needed
to create them.

--snakefile, -s The workflow definition in form of a snakefile.Usually, you should not need to
specify this. By default, Snakemake will search for ‘Snakefile’, ‘snakefile’, ‘work-
flow/Snakefile’, ‘workflow/snakefile’ beneath the current working directory, in this
order. Only if you definitely want a different layout, you need to use this parameter.

--cores, -c Use at most N CPU cores/jobs in parallel. If N is omitted or ‘all’, the limit is
set to the number of available CPU cores. In case of cluster/cloud execution,
this argument sets the maximum number of cores requested from the cluster or

54 Chapter 4. Resources

https://github.com/snakemake-profiles

Snakemake Documentation, Release 8.2.1

cloud scheduler. (See https://snakemake.readthedocs.io/en/stable/snakefiles/rules.
html#resources-remote-execution for more info)This number is available to rules
via workflow.cores.

--jobs, -j Use at most N CPU cluster/cloud jobs in parallel. For local execution this is an
alias for –cores (it is though recommended to use –cores in that case). Note: Set to
‘unlimited’ to allow any number of parallel jobs.

--local-cores In cluster/cloud mode, use at most N cores of the host machine in parallel (default:
number of CPU cores of the host). The cores are used to execute local rules. This
option is ignored when not in cluster/cloud mode.
Default: 2

--resources, --res Define additional resources that shall constrain the scheduling analogously to –
cores (see above). A resource is defined as a name and an integer value. E.g.
–resources mem_mb=1000. Rules can use resources by defining the resource
keyword, e.g. resources: mem_mb=600. If now two rules require 600 of the
resource ‘mem_mb’ they won’t be run in parallel by the scheduler. In clus-
ter/cloud mode, this argument will also constrain the amount of resources requested
from the server. (See https://snakemake.readthedocs.io/en/stable/snakefiles/rules.
html#resources-remote-execution for more info)
Default: {}

--set-threads Overwrite thread usage of rules. This allows to fine-tune workflow parallelization.
In particular, this is helpful to target certain cluster nodes by e.g. shifting a rule to
use more, or less threads than defined in the workflow. Thereby, THREADS has to
be a positive integer, and RULE has to be the name of the rule.
Default: {}

--max-threads Define a global maximum number of threads available to any rule. Rules request-
ing more threads (via the threads keyword) will have their values reduced to the
maximum. This can be useful when you want to restrict the maximum number of
threads without modifying the workflow definition or overwriting rules individually
with –set-threads.

--set-resources Overwrite resource usage of rules. This allows to fine-tune workflow resources.
In particular, this is helpful to target certain cluster nodes by e.g. defining a certain
partition for a rule, or overriding a temporary directory. Thereby, VALUE has to be
a positive integer or a string, RULE has to be the name of the rule, and RESOURCE
has to be the name of the resource.
Default: {}

--set-scatter Overwrite number of scatter items of scattergather processes. This allows to fine-
tune workflow parallelization. Thereby, SCATTERITEMS has to be a positive in-
teger, and NAME has to be the name of the scattergather process defined via a
scattergather directive in the workflow.
Default: {}

--set-resource-scopes Overwrite resource scopes. A scope determines how a constraint is reckoned in
cluster execution. With RESOURCE=local, a constraint applied to RESOURCE
using –resources will be considered the limit for each group submission. With
RESOURCE=global, the constraint will apply across all groups cumulatively.
By default, only mem_mb and disk_mb are considered local, all other resources
are global. This may be modified in the snakefile using the resource_scopes:

4.5. Command line interface 55

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#resources-remote-execution
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#resources-remote-execution
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#resources-remote-execution
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#resources-remote-execution

Snakemake Documentation, Release 8.2.1

directive. Note that number of threads, specified via –cores, is always con-
sidered local. (See https://snakemake.readthedocs.io/en/stable/snakefiles/rules.
html#resources-remote-execution for more info)
Default: {}

--default-resources, --default-res Define default values of resources for rules that do not define their
own values. In addition to plain integers, python expressions over inputsize
are allowed (e.g. ‘2*input.size_mb’). The inputsize is the sum of the sizes
of all input files of a rule. By default, Snakemake assumes a default for
mem_mb, disk_mb, and tmpdir (see below). This option allows to add fur-
ther defaults (e.g. account and partition for slurm) or to overwrite these default
values. The defaults are ‘mem_mb=min(max(2*input.size_mb, 1000), 8000)’,
‘disk_mb=max(2*input.size_mb, 1000)’ (i.e., default disk and mem usage is twice
the input file size but at least 1GB), and the system temporary directory (as given
by $TMPDIR, $TEMP, or $TMP) is used for the tmpdir resource. The tmpdir
resource is automatically used by shell commands, scripts and wrappers to store
temporary data (as it is mirrored into $TMPDIR, $TEMP, and $TMP for the ex-
ecuted subprocesses). If this argument is not specified at all, Snakemake just uses
the tmpdir resource as outlined above.

--preemptible-rules Define which rules shall use a preemptible machine which can be prematurely killed
by e.g. a cloud provider (also called spot instances). This is currently only supported
by the Google Life Sciences executor and ignored by all other executors. If no rule
names are provided, all rules are considered to be preemptible.

--preemptible-retries Number of retries that shall be made in order to finish a job from of rule that has
been marked as preemptible via the –preemptible-rules setting.

--config, -C Set or overwrite values in the workflow config object. The workflow config object
is accessible as variable config inside the workflow. Default values can be set by
providing a JSON file (see Documentation).
Default: {}

--configfile, --configfiles Specify or overwrite the config file of the workflow (see the docs). Values spec-
ified in JSON or YAML format are available in the global config dictionary inside
the workflow. Multiple files overwrite each other in the given order. Thereby miss-
ing keys in previous config files are extended by following configfiles. Note that this
order also includes a config file defined in the workflow definition itself (which will
come first).
Default: []

--envvars Environment variables to pass to cloud jobs.
Default: set()

--directory, -d Specify working directory (relative paths in the snakefile will use this as their origin).
--touch, -t Touch output files (mark them up to date without really changing them) instead

of running their commands. This is used to pretend that the rules were executed,
in order to fool future invocations of snakemake. Fails if a file does not yet exist.
Note that this will only touch files that would otherwise be recreated by Snakemake
(e.g. because their input files are newer). For enforcing a touch, combine this
with –force, –forceall, or –forcerun. Note however that you lose the provenance
information when the files have been created in reality. Hence, this should be used
only as a last resort.
Default: False

56 Chapter 4. Resources

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#resources-remote-execution
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#resources-remote-execution

Snakemake Documentation, Release 8.2.1

--keep-going, -k Go on with independent jobs if a job fails.
Default: False

--rerun-triggers Possible choices: code, input, mtime, params, software-env
Define what triggers the rerunning of a job. By default, all triggers are used, which
guarantees that results are consistent with the workflow code and configuration. If
you rather prefer the traditional way of just considering file modification dates, use
‘–rerun-trigger mtime’.
Default: frozenset({<RerunTrigger.CODE: 4>, <RerunTrigger.MTIME: 0>, <Re-
runTrigger.PARAMS: 1>, <RerunTrigger.SOFTWARE_ENV: 3>, <RerunTrig-
ger.INPUT: 2>})

--force, -f Force the execution of the selected target or the first rule regardless of already cre-
ated output.
Default: False

--executor, -e Possible choices: cluster-generic, local, dryrun, touch
Specify a custom executor, available via an executor plugin: snake-
make_executor_<name>

--forceall, -F Force the execution of the selected (or the first) rule and all rules it is dependent on
regardless of already created output.
Default: False

--forcerun, -R Force the re-execution or creation of the given rules or files. Use this option if you
changed a rule and want to have all its output in your workflow updated.
Default: set()

--prioritize, -P Tell the scheduler to assign creation of given targets (and all their dependencies)
highest priority.
Default: set()

--batch Only create the given BATCH of the input files of the given RULE. This can be
used to iteratively run parts of very large workflows. Only the execution plan of
the relevant part of the workflow has to be calculated, thereby speeding up DAG
computation. It is recommended to provide the most suitable rule for batching when
documenting a workflow. It should be some aggregating rule that would be executed
only once, and has a large number of input files. For example, it can be a rule that
aggregates over samples.

--until, -U Runs the pipeline until it reaches the specified rules or files. Only runs jobs that are
dependencies of the specified rule or files, does not run sibling DAGs.
Default: set()

--omit-from, -O Prevent the execution or creation of the given rules or files as well as any rules or
files that are downstream of these targets in the DAG. Also runs jobs in sibling
DAGs that are independent of the rules or files specified here.
Default: set()

--rerun-incomplete, --ri Re-run all jobs the output of which is recognized as incomplete.
Default: False

--shadow-prefix Specify a directory in which the ‘shadow’ directory is created. If not supplied, the
value is set to the ‘.snakemake’ directory relative to the working directory.

4.5. Command line interface 57

Snakemake Documentation, Release 8.2.1

--scheduler Possible choices: ilp, greedy
Specifies if jobs are selected by a greedy algorithm or by solving an ilp. The ilp
scheduler aims to reduce runtime and hdd usage by best possible use of resources.
Default: “greedy”

--wms-monitor IP and port of workflowmanagement system tomonitor the execution of snakemake
(e.g. http://127.0.0.1:5000) Note that if your service requires an authorization to-
ken, you must export WMS_MONITOR_TOKEN in the environment.

--wms-monitor-arg If the workflow management service accepts extra arguments, provide. them in
key value pairs with –wms-monitor-arg. For example, to run an existing workflow
using a wms monitor, you can provide the pair id=12345 and the arguments will be
provided to the endpoint to first interact with the workflow

--scheduler-ilp-solver Specifies solver to be utilized when selecting ilp-scheduler.
Default: “COIN_CMD”

--scheduler-solver-path Set the PATH to search for scheduler solver binaries (internal use only).
--conda-base-path Path of conda base installation (home of conda, mamba, activate) (internal use

only).
--no-subworkflows, --nosw Do not evaluate or execute subworkflows.

Default: False
--precommand Only used in case of remote execution. Command to be executed before Snakemake

executes each job on the remote compute node.

GROUPING

--groups Assign rules to groups (this overwrites any group definitions from the workflow).
Default: {}

--group-components Set the number of connected components a group is allowed to span. By default,
this is 1, but this flag allows to extend this. This can be used to run e.g. 3 jobs of
the same rule in the same group, although they are not connected. It can be helpful
for putting together many small jobs or benefitting of shared memory setups.
Default: {}

REPORTS

--report Create an HTML report with results and statistics. This can be either a .html file or a
.zip file. In the former case, all results are embedded into the .html (this only works
for small data). In the latter case, results are stored along with a file report.html in
the zip archive. If no filename is given, an embedded report.html is the default.

--report-stylesheet Custom stylesheet to use for report. In particular, this can be used for branding the
report with e.g. a custom logo, see docs.

58 Chapter 4. Resources

http://127.0.0.1:5000

Snakemake Documentation, Release 8.2.1

NOTEBOOKS

--draft-notebook Draft a skeleton notebook for the rule used to generate the given target file. This
notebook can then be opened in a jupyter server, executed and implemented un-
til ready. After saving, it will automatically be reused in non-interactive mode by
Snakemake for subsequent jobs.

--edit-notebook Interactively edit the notebook associated with the rule used to generate the given
target file. This will start a local jupyter notebook server. Any changes to the
notebook should be saved, and the server has to be stopped by closing the notebook
and hitting the ‘Quit’ button on the jupyter dashboard. Afterwards, the updated
notebook will be automatically stored in the path defined in the rule. If the notebook
is not yet present, this will create an empty draft.

--notebook-listen The IP address and PORT the notebook server used for editing the notebook (–
edit-notebook) will listen on.
Default: “localhost:8888”

UTILITIES

--lint Possible choices: text, json
Perform linting on the given workflow. This will print snakemake specific sugges-
tions to improve code quality (work in progress, more lints to be added in the future).
If no argument is provided, plain text output is used.

--generate-unit-tests Automatically generate unit tests for eachworkflow rule. This assumes that all input
files of each job are already present. Rules without a job with present input files will
be skipped (a warning will be issued). For each rule, one test case will be created
in the specified test folder (.tests/unit by default). After successful execution, tests
can be run with ‘pytest TESTPATH’.

--containerize Print a Dockerfile that provides an execution environment for the workflow, includ-
ing all conda environments.
Default: False

--export-cwl Compile workflow to CWL and store it in given FILE.
--list-rules, --list, -l Show available rules in given Snakefile.

Default: False
--list-target-rules, --lt Show available target rules in given Snakefile.

Default: False
--dag Do not execute anything and print the directed acyclic graph of jobs in the dot

language. Recommended use on Unix systems: snakemake –dag | dot | display.
Note print statements in your Snakefile may interfere with visualization.
Default: False

--rulegraph Do not execute anything and print the dependency graph of rules in the dot language.
This will be less crowded than above DAG of jobs, but also show less information.
Note that each rule is displayed once, hence the displayed graph will be cyclic if a
rule appears in several steps of the workflow. Use this if above option leads to a
DAG that is too large. Recommended use on Unix systems: snakemake –rulegraph
| dot | display. Note print statements in your Snakefile may interfere with visualiza-
tion.

4.5. Command line interface 59

Snakemake Documentation, Release 8.2.1

Default: False
--filegraph Do not execute anything and print the dependency graph of rules with their input

and output files in the dot language. This is an intermediate solution between above
DAG of jobs and the rule graph. Note that each rule is displayed once, hence the
displayed graph will be cyclic if a rule appears in several steps of the workflow.
Use this if above option leads to a DAG that is too large. Recommended use on
Unix systems: snakemake –filegraph | dot | display. Note print statements in your
Snakefile may interfere with visualization.
Default: False

--d3dag Print the DAG in D3.js compatible JSON format.
Default: False

--summary, -S Print a summary of all files created by the workflow. The has the following columns:
filename, modification time, rule version, status, plan. Thereby rule version contains
the versionthe file was created with (see the version keyword of rules), and status
denotes whether the file is missing, its input files are newer or if version or imple-
mentation of the rule changed since file creation. Finally the last column denotes
whether the file will be updated or created during the next workflow execution.
Default: False

--detailed-summary, -D Print a summary of all files created by the workflow. The has the following
columns: filename, modification time, rule version, input file(s), shell command,
status, plan. Thereby rule version contains the version the file was created with (see
the version keyword of rules), and status denotes whether the file is missing, its
input files are newer or if version or implementation of the rule changed since file
creation. The input file and shell command columns are self explanatory. Finally
the last column denotes whether the file will be updated or created during the next
workflow execution.
Default: False

--archive Archive the workflow into the given tar archive FILE. The archive will be created
such that the workflow can be re-executed on a vanilla system. The function needs
conda and git to be installed. It will archive every file that is under git version control.
Note that it is best practice to have the Snakefile, config files, and scripts under
version control. Hence, they will be included in the archive. Further, it will add
input files that are not generated by by the workflow itself and conda environments.
Note that symlinks are dereferenced. Supported formats are .tar, .tar.gz, .tar.bz2
and .tar.xz.

--cleanup-metadata, --cm Cleanup the metadata of given files. That means that snakemake removes any
tracked version info, and any marks that files are incomplete.

--cleanup-shadow Cleanup old shadow directories which have not been deleted due to failures or power
loss.
Default: False

--skip-script-cleanup Don’t delete wrapper scripts used for execution
Default: False

--unlock Remove a lock on the working directory.
Default: False

--list-changes, --lc Possible choices: code, input, params

60 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

List all output files for which the rule body (run or shell) have changed in the Snake-
file.

--list-input-changes, --li List all output files for which the defined input files have changed in the Snake-
file (e.g. new input files were added in the rule definition or files were renamed).
For listing input file modification in the filesystem, use –summary.
Default: False

--list-params-changes, --lp List all output files for which the defined params have changed in the Snake-
file.
Default: False

--list-untracked, --lu List all files in the working directory that are not used in the workflow. This can
be used e.g. for identifying leftover files. Hidden files and directories are ignored.
Default: False

--delete-all-output Remove all files generated by the workflow. Use together with –dry-run to list files
without actually deleting anything. Note that this will not recurse into subworkflows.
Write-protected files are not removed. Nevertheless, use with care!
Default: False

--delete-temp-output Remove all temporary files generated by the workflow. Use together with –dry-run
to list files without actually deleting anything. Note that this will not recurse into
subworkflows.
Default: False

--keep-incomplete Do not remove incomplete output files by failed jobs.
Default: False

--drop-metadata Drop metadata file tracking information after job finishes. Provenance-information
based reports (e.g. –report and the –list_x_changes functions) will be empty or
incomplete.
Default: False

--deploy-sources Deploy sources archive from given storage provider query to the current working
sdirectory and control for archive checksum to proceed. Meant for internal use
only.

--version, -v show program’s version number and exit

OUTPUT

--printshellcmds, -p Print out the shell commands that will be executed.
Default: False

--debug-dag Print candidate and selected jobs (including their wildcards) while inferring DAG.
This can help to debug unexpected DAG topology or errors.
Default: False

--nocolor Do not use a colored output.
Default: False

4.5. Command line interface 61

Snakemake Documentation, Release 8.2.1

--quiet, -q Possible choices: all, progress, rules
Do not output certain information. If used without arguments, do not output any
progress or rule information. Defining ‘all’ results in no information being printed
at all.

--print-compilation Print the python representation of the workflow.
Default: False

--verbose Print debugging output.
Default: False

BEHAVIOR

--force-use-threads Force threads rather than processes. Helpful if shared memory (/dev/shm) is full or
unavailable.
Default: False

--allow-ambiguity, -a Don’t check for ambiguous rules and simply use the first if several can produce the
same file. This allows the user to prioritize rules by their order in the snakefile.
Default: False

--nolock Do not lock the working directory
Default: False

--ignore-incomplete, --ii Do not check for incomplete output files.
Default: False

--max-inventory-time Spend at most SECONDS seconds to create a file inventory for the working di-
rectory. The inventory vastly speeds up file modification and existence checks when
computing which jobs need to be executed. However, creating the inventory itself
can be slow, e.g. on network file systems. Hence, we do not spend more than a
given amount of time and fall back to individual checks for the rest.
Default: 20

--latency-wait, --output-wait, -w Wait given seconds if an output file of a job is not present after the job
finished. This helps if your filesystem suffers from latency (default 5).
Default: 5

--wait-for-files Wait –latency-wait seconds for these files to be present before executing the work-
flow. This option is used internally to handle filesystem latency in cluster environ-
ments.

--wait-for-files-file Same behaviour as –wait-for-files, but file list is stored in file instead of being passed
on the commandline. This is useful when the list of files is too long to be passed on
the commandline.

--notemp, --nt Ignore temp() declarations. This is useful when running only a part of the workflow,
since temp() would lead to deletion of probably needed files by other parts of the
workflow.
Default: False

--all-temp Mark all output files as temp files. This can be useful for CI testing, in order to save
space.

62 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

Default: False
--unneeded-temp-files Given files will not be uploaded to storage and immediately deleted after job or

group job completion.
Default: frozenset()

--keep-storage-local-copies Keep local copies of remote input files.
Default: False

--target-files-omit-workdir-adjustment Do not adjust the paths of given target files relative to the work-
ing directory.
Default: False

--allowed-rules Only consider given rules. If omitted, all rules in Snakefile are used. Note that this
is intended primarily for internal use and may lead to unexpected results otherwise.

--target-jobs Target particular jobs byRULE:WILDCARD1=VALUE,WILDCARD2=VALUE,…
This is meant for internal use by Snakemake itself only.
Default: set()

--local-groupid Name for local groupid, meant for internal use only.
Default: “local”

--max-jobs-per-second Maximal number of cluster/drmaa jobs per second, default is 10, fractions al-
lowed.
Default: 10

--max-status-checks-per-second Maximal number of job status checks per second, default is 10, frac-
tions allowed.
Default: 10

--seconds-between-status-checks Number of seconds to wait between two rounds of status checks.
Default: 10

--retries, --restart-times, -T Number of times to restart failing jobs (defaults to 0).
Default: 0

--attempt Internal use only: define the initial value of the attempt parameter (default: 1).
Default: 1

--wrapper-prefix Prefix for URL created from wrapper directive (default: https://github.com/
snakemake/snakemake-wrappers/raw/). Set this to a different URL to use
your fork or a local clone of the repository, e.g., use a git URL like
‘git+file://path/to/your/local/clone@’.
Default: “https://github.com/snakemake/snakemake-wrappers/raw/”

--default-storage-provider Specify default storage provider to be used for all input and output
files that don’t yet specify one (e.g. ‘s3’). See https://snakemake.github.io/
snakemake-plugin-catalog for available storage provider plugins.

--default-storage-prefix Specify prefix for default storage provider. E.g. a bucket name.
Default: “”

4.5. Command line interface 63

https://github.com/snakemake/snakemake-wrappers/raw/
https://github.com/snakemake/snakemake-wrappers/raw/
https://github.com/snakemake/snakemake-wrappers/raw/
https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake.github.io/snakemake-plugin-catalog

Snakemake Documentation, Release 8.2.1

--local-storage-prefix Specify prefix for storing local copies of storage files and folders. By default, this
is a hidden subfolder in the workdir. It can however be freely chosen, e.g. in order
to store those files on a local scratch disk.
Default: .snakemake/storage

--shared-fs-usage Possible choices: input-output, persistence, software-deployment, source-cache,
sources, storage-local-copies, none
Set assumptions on shared filesystem for non-local workflow execution. To disable
any sharing via the filesystem, specify ‘none’. Usually, the executor plugin sets this
to a correct default. However, sometimes it is worth tuning this setting, e.g. for op-
timizing cluster performance. For example, when using ‘–default-storage-provider
fs’ together with a cluster executor like slurm, you might want to set ‘–shared-fs-
usage persistence software-deployment sources source-cache’, such that software
deployment and data provenance will be handled by NFS but input and output files
will be handled exclusively by the storage provider.
Default: frozenset({<SharedFSUsage.SOURCE_CACHE: 5>, <SharedF-
SUsage.SOURCES: 3>, <SharedFSUsage.SOFTWARE_DEPLOYMENT:
2>, <SharedFSUsage.STORAGE_LOCAL_COPIES: 4>, <SharedF-
SUsage.INPUT_OUTPUT: 1>, <SharedFSUsage.PERSISTENCE: 0>})

--scheduler-greediness, --greediness Set the greediness of scheduling. This value between 0 and 1 de-
termines how careful jobs are selected for execution. The default value (1.0) pro-
vides the best speed and still acceptable scheduling quality.

--no-hooks Do not invoke onstart, onsuccess or onerror hooks after execution.
Default: False

--debug Allow to debug rules with e.g. PDB. This flag allows to set breakpoints in run blocks.
Default: False

--runtime-profile Profile Snakemake and write the output to FILE. This requires yappi to be installed.
--mode Possible choices: default, remote, subprocess

Set execution mode of Snakemake (internal use only).
Default: default

--show-failed-logs Automatically display logs of failed jobs.
Default: False

--log-handler-script Provide a custom script containing a function ‘def log_handler(msg):’. Snakemake
will call this function for every logging output (given as a dictionary msg)allowing
to e.g. send notifications in the form of e.g. slack messages or emails.

--log-service Possible choices: none, slack, wms
Set a specific messaging service for logging output.Snakemake will notify the ser-
vice on errors and completed execution.Currently slack and workflow management
system (wms) are supported.

--job-deploy-sources Whether the workflow sources shall be deployed before a remote job is started.
Only applies if –no-shared-fs is set or executors are used that imply no shared FS
(e.g. the kubernetes executor).
Default: False

64 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

REMOTE EXECUTION

--container-image Docker image to use, e.g., when submitting jobs to kubernetes. Defaults to ‘https:
//hub.docker.com/r/snakemake/snakemake’, tagged with the same version as the
currently running Snakemake instance. Note that overwriting this value is up to your
responsibility. Any used image has to contain a working snakemake installation that
is compatible with (or ideally the same as) the currently running version.

--immediate-submit, --is Immediately submit all jobs to the cluster instead of waiting for present input
files. This will fail, unless you make the cluster aware of job dependencies, e.g.
via: $ snakemake –cluster ‘sbatch –dependency {dependencies}. Assuming that
your submit script (here sbatch) outputs the generated job id to the first stdout line,
{dependencies} will be filled with space separated job ids this job depends on. Does
not work for workflows that contain checkpoint rules.
Default: False

--jobscript, --js Provide a custom job script for submission to the cluster. The default script resides
as ‘jobscript.sh’ in the installation directory.

--jobname, --jn Provide a custom name for the jobscript that is submitted to the cluster (see –
cluster). NAME is “snakejob.{name}.{jobid}.sh” per default. The wildcard {jo-
bid} has to be present in the name.
Default: “snakejob.{name}.{jobid}.sh”

FLUX

--flux Execute your workflow on a flux cluster. Flux can work with both a shared network
filesystem (like NFS) or without. If you don’t have a shared filesystem, additionally
specify –no-shared-fs.
Default: False

SOFTWARE DEPLOYMENT

--software-deployment-method, --deployment-method, --deployment, --sdm Possible choices: app-
tainer, conda, env-modules
Specify software environment deployment method.
Default: set()

--container-cleanup-images Remove unused containers
Default: False

4.5. Command line interface 65

https://hub.docker.com/r/snakemake/snakemake
https://hub.docker.com/r/snakemake/snakemake

Snakemake Documentation, Release 8.2.1

CONDA

--use-conda If defined in the rule, run job in a conda environment. If this flag is not set, the
conda directive is ignored.
Default: False

--conda-not-block-search-path-envvars Do not block environment variables that modify the search
path (R_LIBS, PYTHONPATH, PERL5LIB, PERLLIB) when using conda envi-
ronments.
Default: False

--list-conda-envs List all conda environments and their location on disk.
Default: False

--conda-prefix Specify a directory in which the ‘conda’ and ‘conda-archive’ directories are created.
These are used to store conda environments and their archives, respectively. If not
supplied, the value is set to the ‘.snakemake’ directory relative to the invocation
directory. If supplied, the –use-conda flag must also be set. The value may be
given as a relative path, which will be extrapolated to the invocation directory, or
as an absolute path. The value can also be provided via the environment variable
$SNAKEMAKE_CONDA_PREFIX.

--conda-cleanup-envs Cleanup unused conda environments.
Default: False

--conda-cleanup-pkgs Possible choices: tarballs, cache
Cleanup conda packages after creating environments. In case of ‘tarballs’ mode, will
clean up all downloaded package tarballs. In case of ‘cache’ mode, will additionally
clean up unused package caches. If mode is omitted, will default to only cleaning
up the tarballs.

--conda-create-envs-only If specified, only creates the job-specific conda environments then exits. The
–use-conda flag must also be set.
Default: False

--conda-frontend Possible choices: conda, mamba
Choose the conda frontend for installing environments. Mamba is much faster and
highly recommended.
Default: “mamba”

APPTAINER/SINGULARITY

--use-apptainer, --use-singularity If defined in the rule, run jobwithin a apptainer/singularity container.
If this flag is not set, the singularity directive is ignored.
Default: False

--apptainer-prefix, --singularity-prefix Specify a directory in which apptainer/singularity images will
be stored.If not supplied, the value is set to the ‘.snakemake’ directory relative to
the invocation directory. If supplied, the –use-apptainer flag must also be set. The
value may be given as a relative path, which will be extrapolated to the invocation
directory, or as an absolute path.

66 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

--apptainer-args, --singularity-args Pass additional args to apptainer/singularity.
Default: “”

ENVIRONMENT MODULES

--use-envmodules If defined in the rule, run job within the given environment modules, loaded in the
given order. This can be combinedwith –use-conda and –use-singularity, whichwill
then be only used as a fallback for rules which don’t define environment modules.
Default: False

cluster-generic executor settings

--cluster-generic-submit-cmd Command for submitting jobs
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

--cluster-generic-status-cmd Command for retrieving job status
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

--cluster-generic-cancel-cmd Command for cancelling jobs. Expected to take one or more jobids as
arguments.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

--cluster-generic-cancel-nargs Number of jobids to pass to cancel_cmd. If more are given, cancel_cmd
will be called multiple times.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

--cluster-generic-sidecar-cmd Command for sidecar process.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

s3 executor settings

--storage-s3-max-requests-per-second Maximum number of requests per second for this storage
provider. If nothing is specified, the default implemented by the storage plugin
is used.Can be specified multiple times to set different values for different tags.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

--storage-s3-endpoint-url S3 endpoint URL (if omitted, AWS S3 is used)Can be specified multiple
times to set different values for different tags.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

--storage-s3-access-key S3 access key (if omitted, credentials are taken from .aws/credentials as e.g.
created by aws configure)Can be specified multiple times to set different values for
different tags.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

--storage-s3-secret-key S3 secret key (if omitted, credentials are taken from .aws/credentials as e.g. cre-
ated by aws configure)Can be specified multiple times to set different values for
different tags.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

4.5. Command line interface 67

Snakemake Documentation, Release 8.2.1

--storage-s3-token S3 token (usually not required)Can be specifiedmultiple times to set different values
for different tags.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

--storage-s3-signature-version S3 signature versionCan be specified multiple times to set different val-
ues for different tags.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

--storage-s3-retries S3 API retriesCan be specified multiple times to set different values for different
tags.
Default: <dataclasses._MISSING_TYPE object at 0x7fff956b37a0>

4.6 Job Grouping

The graph of jobs that Snakemake determines before execution can be partitioned into groups. Such groups will be
executed together in cluster or cloud mode, as a so-called group job, i.e., all jobs of a particular group will be submitted
at once, to the same computing node. When executing locally, group definitions are ignored.
Groups can be defined along with the workflow definition via the group keyword, see Defining groups for execution.
This way, queueing and execution time can be saved, in particular by attaching short-running downstream jobs to long
running upstream jobs.
From Snakemake 7.11 on, Snakemake will request resources for groups by summing across jobs that can be run in parallel,
and taking the max of jobs run in series. The only exception is runtime, where the max will be taken over parallel jobs,
and the sum over series. If resource contraints are provided (via --resources or --cores), parallel job layers that
exceed the constraints will be stacked in series. For example, if 6 instances of somerule are being run, each instance
requires 1000MB of memory and 30 min runtime, and only 3000MB are available, Snakemake will request 3000MB
and 60 min runtime, enough to run 3 instances of somerule, then another 3 instances of somerule in series.
Often, the ideal group will be dependent on the specifics of the underlying computing platform. Hence, it is possible to
assign groups via the command line. For example, with

snakemake --groups somerule=group0 someotherrule=group0

we assign the two rules somerule and someotherrule to the same group group0.
By default, groups do not span disconnected parts of the DAG. This means that, for example, jobs of somerule and
someotherrule only end in the same group if they are directly connected. It is, however, possible to configure the
number of connected DAG components that are spanned by a group via the flag --group-components. This makes
it possible to define batches of jobs of the same kind that shall be executed within one group. For instance:

snakemake --groups somerule=group0 --group-components group0=5

means that given n jobs spawned from rule somerule, Snakemake will create n / 5 groups which each execute 5
jobs of somerule together. For example, with 10 jobs from somerule you would end up with 2 groups of 5 jobs
that are submitted as one piece each.
Furthermore, it is possible to use wildcards in group names. This way, you can e.g. have a group per sample, e.g.:

snakemake --groups somerule=group_{sample} --group-components group_{sample}=5

68 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

4.7 Between workflow caching

Within certain data analysis fields, there are certain intermediate results that reoccur in exactly the same way in many
analysis. For example, in bioinformatics, reference genomes or annotations are downloaded, and read mapping indexes
are built. Since such steps are independent of the actual data or measurements that are analyzed, but still computationally
or timely expensive to conduct, it has been common practice to externalize their computation and assume the presence of
the resulting files before execution of a workflow.
From version 5.8.0 on, Snakemake offers a way to keep those steps inside the actual analysis without requiring from
redundant computations. By hashing all steps, parameters, software stacks (in terms of conda environments or containers),
and raw input required up to a certain step in a blockchain, Snakemake is able to recognize before the computation
whether a certain result is already available in a central cache on the same system. Note that this is explicitly intended
for caching results between workflows! There is no need to use this feature to avoid redundant computations
within a workflow. Snakemake does this already out of the box.
Such caching has to be explicitly activated per rule, which can be done via the command line interface. For example,

$ export SNAKEMAKE_OUTPUT_CACHE=/mnt/snakemake-cache/
$ snakemake --cache download_data create_index

would instruct Snakemake to cache and reuse the results of the rules download_data and create_index. The
environment variable definition that happens in the first line (defining the location of the cache) should of course be done
only once and system wide in reality. When Snakemake is executed without a shared filesystem (e.g., in the cloud, see
cloud), the environment variable has to point to a location compatible with the given remote provider (e.g. an S3 or Google
Storage bucket). In any case, the provided location should be shared between all workflows of your group, institute or
computing environment, in order to benefit from the reuse of previously obtained intermediate results.
Alternatively, rules can be marked as eligible for caching via the cache directive:

rule download_data:
output:

"results/data/worldcitiespop.csv"
cache: True # allowed values: "all", "omit-software", True
shell:

"curl -L https://burntsushi.net/stuff/worldcitiespop.csv > {output}"

Here, the given value defines what information shall be considered for calculating the hash value. With "all" or True,
all relevant rule information is used as outlined above (this is the recommended default). With "omit-software",
the software stack is not considered, which is useful if the software stack is not relevant for the result (e.g., if the rule is
only a data download).
For workflows defining cache rules like this, it is enough to invoke Snakemake with

$ snakemake --cache

without explicit rulenames listed.
Note that only rules with just a single output file (or directory) or with multiext output files are eligible for caching. The
reason is that for other rules it would be impossible to unambiguously assign the output files to cache entries while being
agnostic of the actual file names. Also note that the rules need to retrieve all their parameters via the params directive
(except input files). It is not allowed to directly use wildcards, config or any global variable in the shell command
or script, because these are not captured in the hash (otherwise, reuse would be unnecessarily limited).
Also note that Snakemake will store everything in the cache as readable and writeable for all users on the system (except
in the remote case, where permissions are not enforced and depend on your storage configuration). Hence, caching is not
intended for private data, just for steps that deal with publicly available resources.
Finally, be aware that the implementation should be considered experimental until this note is removed.

4.7. Between workflow caching 69

https://en.wikipedia.org/wiki/Blockchain

Snakemake Documentation, Release 8.2.1

4.8 Interoperability

4.8.1 CWL export

Snakemake workflows can be exported to CWL, such that they can be executed in any CWL-enabled workflow engine.
Since, CWL is less powerful for expressing workflows than Snakemake (most importantly Snakemake offers more flexible
scatter-gather patterns, since full Python can be used), export works such that every Snakemake job is encoded into a
single step in the CWL workflow. Moreover, every step of that workflow calls Snakemake again to execute the job. The
latter enables advanced Snakemake features like scripts, benchmarks and remote files to work inside CWL. So, when
exporting keep in mind that the resulting CWL file can become huge, depending on the number of jobs in your workflow.
To export a Snakemake workflow to CWL, simply run

$ snakemake --export-cwl workflow.cwl

The resulting workflowwill by default use the Snakemake docker image for every step, but this behavior can be overwritten
via the CWL execution environment. Then, the workflow can be executed in the same working directory with, e.g.,

$ cwltool workflow.cwl

Note that due to limitations in CWL, it seems currently impossible to avoid that all target files (output files of target jobs),
are written directly to the workdir, regardless of their relative paths in the Snakefile.
Note that export is impossible in case the workflow contains checkpoints or output files with absolute paths.

4.9 Monitoring

Snakemake supports panoptes a server (under development) that lets you monitor the execution of snakemake work-
flows. Snakemake communicates with panoptes via the --wms-monitor flag. The flag specifies the ip and port where
panoptes is running (e.g. --wms-monitor http://127.0.0.1:5000).
For panoptes versions 0.1.1 and lower, Snakemake sends the following requests to wms monitor:

API Method Data Description
/api/service-info GET json Snakemake gets the status of panoptes.

Snakemake continues to run if the status
(json['status']) is 'running'. In
all other cases snakemake exits with an error
message.

/create_workflow GET json Snakemake gets a unique id/name str(uuid.
uuid4()) for each workflow triggered.

/
update_workflow_status

POST dictionary Snakemake posts updates for workflows/jobs.
The dictionary sent contains the log message dic-
tionary , the current timestamp and the unique
id/name of the workflow.

{
'msg': repr(msg),
'timestamp': time.

↪→asctime(),
'id': id

}

70 Chapter 4. Resources

https://www.commonwl.org/
https://www.commonwl.org/#Implementations
https://hub.docker.com/r/snakemake/snakemake
https://github.com/panoptes-organization/panoptes

Snakemake Documentation, Release 8.2.1

For future versions, Panoptes will implement`a more structured schema <https://github.com/panoptes-organization/
monitor-schema>`_ to interact with the server. This means that for Snakemake 3.30.1 and lower, you should use Panoptes
0.1.1 and lower. The documentation here will be updated when a new version of Panoptes with the Monitor Schema is
released.

4.10 Writing Workflows

In Snakemake, workflows are specified as Snakefiles. Inspired by GNU Make, a Snakefile contains rules that denote how
to create output files from input files. Dependencies between rules are handled implicitly, by matching filenames of input
files against output files. Thereby wildcards can be used to write general rules.

4.10.1 Grammar

The Snakefile syntax obeys the following grammar, given in extended Backus-Naur form (EBNF).

snakemake = statement | rule | include | workdir | module | configfile | container
rule = "rule" (identifier | "") ":" ruleparams
include = "include:" stringliteral
workdir = "workdir:" stringliteral
module = "module" identifier ":" moduleparams
configfile = "configfile" ":" stringliteral
userule = "use" "rule" (identifier | "*") "from" identifier ["as" identifier] [
↪→"with" ":" norunparams]
ni = NEWLINE INDENT
norunparams = [ni input] [ni output] [ni params] [ni message] [ni threads] [ni␣
↪→resources] [ni log] [ni conda] [ni container] [ni benchmark] [ni cache] [ni␣
↪→priority]
ruleparams = norunparams [ni (run | shell | script | notebook)] NEWLINE snakemake
input = "input" ":" parameter_list
output = "output" ":" parameter_list
params = "params" ":" parameter_list
log = "log" ":" parameter_list
benchmark = "benchmark" ":" statement
cache = "cache" ":" bool
message = "message" ":" stringliteral
threads = "threads" ":" integer
priority = "priority" ":" integer
resources = "resources" ":" parameter_list
version = "version" ":" statement
conda = "conda" ":" stringliteral
container = "container" ":" stringliteral
run = "run" ":" ni statement
shell = "shell" ":" stringliteral
script = "script" ":" stringliteral
notebook = "notebook" ":" stringliteral
moduleparams = [ni snakefile] [ni metawrapper] [ni config] [ni skipval]
snakefile = "snakefile" ":" stringliteral
metawrapper = "meta_wrapper" ":" stringliteral
config = "config" ":" stringliteral
skipval = "skip_validation" ":" stringliteral

while all not defined non-terminals map to their Python equivalents.

4.10. Writing Workflows 71

https://github.com/panoptes-organization/monitor-schema
https://github.com/panoptes-organization/monitor-schema
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

Snakemake Documentation, Release 8.2.1

Depend on a Minimum Snakemake Version

From Snakemake 3.2 on, if your workflow depends on a minimum Snakemake version, you can easily ensure that at least
this version is installed via

from snakemake.utils import min_version

min_version("3.2")

given that your minimum required version of Snakemake is 3.2. The statement will raise a WorkflowError (and therefore
abort the workflow execution) if the version is not met.

4.11 Snakefiles and Rules

A Snakemake workflow defines a data analysis in terms of rules that are specified in the Snakefile. Most commonly, rules
consist of a name, input files, output files, and a shell command to generate the output from the input:

rule NAME:
input: "path/to/inputfile", "path/to/other/inputfile"
output: "path/to/outputfile", "path/to/another/outputfile"
shell: "somecommand {input} {output}"

The name is optional and can be left out, creating an anonymous rule. It can also be overridden by setting a rule’s name
attribute.

for tool in ["bcftools", "freebayes"]:
rule:

name: f"call_variants_{tool}"
input: f"path/to/{tool}/inputfile"
output: f"path/to/{tool}/outputfile"
shell: f"{tool} {{input}} > {{output}}"

Note

Note that any placeholders in the shell command (like {input}) are always evaluated and replaced when the corre-
sponding job is executed, even if they are occuring inside a comment. To avoid evaluation and replacement, you have
to mask the braces by doubling them, i.e. {{input}}.

Inside the shell command, all local and global variables, especially input and output files can be accessed via their names
in the python format minilanguage. Here, input and output (and in general any list or tuple) automatically evaluate to
a space-separated list of files (i.e. path/to/inputfile path/to/other/inputfile). From Snakemake
3.8.0 on, adding the special formatting instruction :q (e.g. "somecommand {input:q} {output:q}")) will
let Snakemake quote each of the list or tuple elements that contains whitespace.
By default shell commands will be invoked with bash shell (unless the workflow specifies a different default shell via
shell.executable(...)).
Instead of a shell command, a rule can run some python code to generate the output:

rule NAME:
input: "path/to/inputfile", "path/to/other/inputfile"
output: "path/to/outputfile", somename = "path/to/another/outputfile"
run:

(continues on next page)

72 Chapter 4. Resources

https://docs.python.org/py3k/library/string.html#formatspec

Snakemake Documentation, Release 8.2.1

(continued from previous page)
for f in input:

...
with open(output[0], "w") as out:

out.write(...)
with open(output.somename, "w") as out:

out.write(...)

As can be seen, instead of accessing input and output as a whole, we can also access by index (output[0]) or by
keyword (output.somename). Note that, when adding keywords or names for input or output files, their order won’t
be preserved when accessing them as a whole via e.g. {output} in a shell command.
Shell commands like above can also be invoked inside a python based rule, via the function shell that takes a string
with the command and allows the same formatting like in the rule above, e.g.:

shell("somecommand {output.somename}")

Further, this combination of python and shell commands allows us to iterate over the output of the shell command, e.g.:

for line in shell("somecommand {output.somename}", iterable=True):
... # do something in python

Note that shell commands in Snakemake use the bash shell in strict mode by default.

4.11.1 Wildcards

Usually, it is useful to generalize a rule to be applicable to a number of e.g. datasets. For this purpose, wildcards can be
used. Automatically resolved multiple named wildcards are a key feature and strength of Snakemake in comparison to
other systems. Consider the following example.

rule complex_conversion:
input:

"{dataset}/inputfile"
output:

"{dataset}/file.{group}.txt"
shell:

"somecommand --group {wildcards.group} < {input} > {output}"

Here, we define two wildcards, dataset and group. By this, the rule can produce all files that follow the regular
expression pattern .+/file\..+\.txt, i.e. the wildcards are replaced by the regular expression .+. If the rule’s
output matches a requested file, the substrings matched by the wildcards are propagated to the input files and to the
variable wildcards, that is here also used in the shell command. The wildcards object can be accessed in the same way as
input and output, which is described above.
For example, if another rule in the workflow requires the file 101/file.A.txt, Snakemake recognizes that this rule
is able to produce it by setting dataset=101 and group=A. Thus, it requests file 101/inputfile as input and
executes the command somecommand --group A < 101/inputfile > 101/file.A.txt. Of course,
the input file might have to be generated by another rule with different wildcards.
Importantly, the wildcard names in input and output must be named identically. Most typically, the same wildcard is
present in both input and output, but it is of course also possible to have wildcards only in the output but not the input
section.
Multiple wildcards in one filename can cause ambiguity. Consider the pattern{dataset}.{group}.txt and assume
that a file 101.B.normal.txt is available. It is not clear whether dataset=101.B and group=normal or
dataset=101 and group=B.normal in this case.

4.11. Snakefiles and Rules 73

http://redsymbol.net/articles/unofficial-bash-strict-mode/

Snakemake Documentation, Release 8.2.1

Hence wildcards can be constrained to given regular expressions. Here we could restrict the wildcard dataset to consist
of digits only using \d+ as the corresponding regular expression. With Snakemake 3.8.0, there are three ways to constrain
wildcards. First, a wildcard can be constrained within the file pattern, by appending a regular expression separated by a
comma:

output: "{dataset,\d+}.{group}.txt"

Second, a wildcard can be constrained within the rule via the keyword wildcard_constraints:

rule complex_conversion:
input:

"{dataset}/inputfile"
output:

"{dataset}/file.{group}.txt"
wildcard_constraints:

dataset="\d+"
shell:

"somecommand --group {wildcards.group} < {input} > {output}"

Finally, you can also define global wildcard constraints that apply for all rules:

wildcard_constraints:
dataset="\d+"

rule a:
...

rule b:
...

See the Python documentation on regular expressions for detailed information on regular expression syntax.

4.11.2 Aggregation

Input files can be Python lists, allowing to easily aggregate over parameters or samples:

rule aggregate:
input:

["{dataset}/a.txt".format(dataset=dataset) for dataset in DATASETS]
output:

"aggregated.txt"
shell:

...

The above expression can be simplified in two ways.

74 Chapter 4. Resources

https://docs.python.org/py3k/library/re.html

Snakemake Documentation, Release 8.2.1

The expand function

rule aggregate:
input:

expand("{dataset}/a.txt", dataset=DATASETS)
output:

"aggregated.txt"
shell:

...

Note that dataset is NOT a wildcard here because it is resolved by Snakemake due to the expand statement. The
expand function also allows us to combine different variables, e.g.

rule aggregate:
input:

expand("{dataset}/a.{ext}", dataset=DATASETS, ext=FORMATS)
output:

"aggregated.txt"
shell:

...

If FORMATS=["txt", "csv"] contains a list of desired output formats then expand will automatically combine any
dataset with any of these extensions.
Furthermore, the first argument can also be a list of strings. In that case, the transformation is applied to all elements of
the list. E.g.

expand(["{dataset}/a.{ext}", "{dataset}/b.{ext}"], dataset=DATASETS, ext=FORMATS)

leads to

["ds1/a.txt", "ds1/b.txt", "ds2/a.txt", "ds2/b.txt", "ds1/a.csv", "ds1/b.csv", "ds2/a.
↪→csv", "ds2/b.csv"]

Per default, expand uses the python itertools function product that yields all combinations of the provided wildcard
values. However by inserting a second positional argument this can be replaced by any combinatoric function, e.g. zip:

expand(["{dataset}/a.{ext}", "{dataset}/b.{ext}"], zip, dataset=DATASETS, ext=FORMATS)

leads to

["ds1/a.txt", "ds1/b.txt", "ds2/a.csv", "ds2/b.csv"]

You can also mask a wildcard expression in expand such that it will be kept, e.g.

expand("{{dataset}}/a.{ext}", ext=FORMATS)

will create strings with all values for ext but starting with the wildcard "{dataset}".

4.11. Snakefiles and Rules 75

Snakemake Documentation, Release 8.2.1

The multiext function

multiext provides a simplified variant of expand that allows us to define a set of output or input files that just differ
by their extension:

rule plot:
input:

...
output:

multiext("some/plot", ".pdf", ".svg", ".png")
shell:

...

The effect is the same as if you would write expand("some/plot{ext}", ext=[".pdf", ".svg", ".
png"]), however, using a simpler syntax. Moreover, defining output with multiext is the only way to use between
workflow caching for rules with multiple output files.

4.11.3 Targets and aggregation

By default snakemake executes the first rule in the snakefile. This gives rise to pseudo-rules at the beginning of the file
that can be used to define build-targets similar to GNU Make:

rule all:
input:
expand("{dataset}/file.A.txt", dataset=DATASETS)

Here, for each dataset in a python list DATASETS defined before, the file {dataset}/file.A.txt is requested. In
this example, Snakemake recognizes automatically that these can be created by multiple applications of the rule com-
plex_conversion shown above.
It is possible to overwrite this behavior to use the first rule as a default target, by explicitly marking a rule as being the
default target via the default_target directive:

rule xy:
input:

expand("{dataset}/file.A.txt", dataset=DATASETS)
default_target: True

Regardless of where this rule appears in the Snakefile, it will be the default target. Usually, it is still recommended to
keep the default target rule (and in fact all other rules that could act as optional targets) at the top of the file, such that it
can be easily found. The default_target directive becomes particularly useful when combining several pre-existing
workflows.

4.11.4 Threads

Further, a rule can be given a number of threads to use, i.e.

rule NAME:
input: "path/to/inputfile", "path/to/other/inputfile"
output: "path/to/outputfile", "path/to/another/outputfile"
threads: 8
shell: "somecommand --threads {threads} {input} {output}"

76 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

Note

On a cluster node, Snakemake uses as many cores as available on that node. Hence, the number of threads used by
a rule never exceeds the number of physically available cores on the node. Note: This behavior is not affected by
--local-cores, which only applies to jobs running on the main node.

Snakemake can alter the number of cores available based on command line options. Therefore it is useful to propagate
it via the built in variable threads rather than hardcoding it into the shell command. In particular, it should be noted
that the specified threads have to be seen as a maximum. When Snakemake is executed with fewer cores, the number
of threads will be adjusted, i.e. threads = min(threads, cores) with cores being the number of cores
specified at the command line (option --cores).
Hardcoding a particular maximum number of threads like above is useful when a certain tool has a natural maxi-
mum beyond which parallelization won’t help to further speed it up. This is often the case, and should be evalu-
ated carefully for production workflows. Also, setting a threads: maximum is required to achieve parallelism
in tools that (often implicitly and without the user knowing) rely on an environment variable for the maximum of
cores to use. For example, this is the case for many linear algebra libraries and for OpenMP. Snakemake limits
the respective environment variables to one core by default, to avoid unexpected and unlimited core-grabbing, but
will override this with the threads: you specify in a rule (the parameters set to threads:, or defaulting to
1, are: OMP_NUM_THREADS, GOTO_NUM_THREADS, OPENBLAS_NUM_THREADS, MKL_NUM_THREADS, VE-
CLIB_MAXIMUM_THREADS, NUMEXPR_NUM_THREADS).
If it is certain that no maximum for efficient parallelism exists for a tool, one can instead define threads as a function of
the number of cores given to Snakemake:

rule NAME:
input: "path/to/inputfile", "path/to/other/inputfile"
output: "path/to/outputfile", "path/to/another/outputfile"
threads: workflow.cores * 0.75
shell: "somecommand --threads {threads} {input} {output}"

The number of given cores is globally available in the Snakefile as an attribute of the workflow object: workflow.
cores. Any arithmetic operation can be performed to derive a number of threads from this. E.g., in the above example,
we reserve 75% of the given cores for the rule. Snakemake will always round the calculated value down (while enforcing
a minimum of 1 thread).
Starting from version 3.7, threads can also be a callable that returns an int value. The signature of the callable should
be callable(wildcards[, input]) (input is an optional parameter). It is also possible to refer to a predefined
variable (e.g, threads: threads_max) so that the number of cores for a set of rules can be changed with one
change only by altering the value of the variable threads_max.
Both threads can be defined (or overwritten) upon invocation (without modifying the workflow code) via –set-threads
see All Options and via workflow profiles, see Profiles. To quickly exemplify the latter, you could provide the follow-
ing workflow profile in a file profiles/default/config.yaml relative to the Snakefile or the current working
directory:

set-threads:
b: 16

to set the (maximum) number of threads rule b uses to 16.

4.11. Snakefiles and Rules 77

Snakemake Documentation, Release 8.2.1

4.11.5 Resources

In addition to threads, a rule can use arbitrary user-defined resources by specifying them with the resources-keyword:

rule a:
input: ...
output: ...
resources:

mem_mb=100
shell:

"..."

If workflow-wide limits for the resources are given via the command line, e.g.

$ snakemake --resources mem_mb=200

the scheduler will ensure that the given resources are not exceeded by running jobs. Resources are always meant to be
specified as total per job, not by thread (i.e. above mem_mb=100 in rule a means that any job from rule a will require
100 megabytes of memory in total, and not per thread).
Importantly, there are some standard resources that should be considered before making up your own.
In general, resources are just names to the Snakemake scheduler, i.e., Snakemake does not check on the resource con-
sumption of jobs in real time. Instead, resources are used to determine which jobs can be executed at the same time
without exceeding the limits specified at the command line. Apart from making Snakemake aware of hybrid-computing
architectures (e.g. with a limited number of additional devices like GPUs) this allows us to control scheduling in various
ways, e.g. to limit IO-heavy jobs by assigning an artificial IO-resource to them and limiting it via the --resources
flag. If no limits are given, the resources are ignored in local execution.
Resources can have any arbitrary name, and must be assigned int or str values. In case of None, the resource is
considered to be unset (i.e. ignored) in the rule.

Dynamic Resources

It is often useful to determine resource specifications dynamically during workflow execution. A common example is
determining the amount of memory that a job needs, based on the input file size of that particular rule instance. To enable
this, resource specifications can also be callables (for example functions or lambda expressions) that return int, str or
None values. The signature of the callable must be callable(wildcards [, input] [, threads] [,
attempt]) (input, threads, and attempt are optional parameters). Such callables are evaluated immediately
before the job is executed (or printed during a dry-run).
The above described example of using input size to determined memory requirements could for example be realized via
a lambda expression (here also providing a minimum value of 300 MB memory):

rule:
input: ...
output: ...
resources:

mem_mb=lambda wc, input: max(2.5 * input.size_mb, 300)
shell:

"..."

In order to make this work with a dry-run, where the input files are not yet present, Snakemake automatically converts
a FileNotFoundError that is raised by the callable into a placeholder called <TBD> that will be displayed during
dry-run in such a case.
The parameter attempt allows us to adjust resources based on how often the job has been restarted (see All Options,
option --retries). This is handy when executing a Snakemake workflow in a cluster environment, where jobs can e.g.

78 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

fail because of too limited resources. When Snakemake is executed with --retries 3, it will try to restart a failed
job 3 times before it gives up. Thereby, the parameter attempt will contain the current attempt number (starting from
1). This can be used to adjust the required memory as follows

def get_mem_mb(wildcards, attempt):
return attempt * 100

rule:
input: ...
output: ...
resources:

mem_mb=get_mem_mb
shell:

"..."

Here, the first attempt will require 100 MB memory, the second attempt will require 200 MB memory and so on. When
passing memory requirements to the cluster engine, you can by this automatically try out larger nodes if it turns out to be
necessary.
Another application of callables as resources is when memory usage depends on the number of threads:

def get_mem_mb(wildcards, threads):
return threads * 150

rule b:
input: ...
output: ...
threads: 8
resources:

mem_mb=get_mem_mb
shell:

"..."

Here, the value that the function get_mem_mb returns, grows linearly with the number of threads. Of course, any other
arithmetic could be performed in that function.
Both threads and resources can be defined (or overwritten) upon invocation (without modifying the workflow code) via
–set-threads and –set-resources, see All Options. Or they can be defined via workflow Profiles, with the variables listed
above in the signature for usable callables. You could, for example, provide the following workflow profile in a file
profiles/default/config.yaml relative to the Snakefile or the current working directory:

set-threads:
b: 3

set-resources:
b:

mem_mb: 1000

to set the requirements for rule b to 3 threads and 1000 MB.

4.11. Snakefiles and Rules 79

Snakemake Documentation, Release 8.2.1

Standard Resources

There are several standard resources, for total memory, disk usage, runtime, and the temporary directory of a job: mem,
disk, runtime, and tmpdir. All of these resources have specific meanings understood by snakemake and are treated
in varying unique ways:

• The tmpdir resource automatically leads to setting the $TMPDIR variable for shell commands, scripts, wrappers
and notebooks. In cluster or cloud setups, its evaluation is delayed until the actual execution of the job. This way,
it can dynamically react on the context of the node of execution.

• The runtime resource indicates the amount of wall clock time a job needs to run. It can be given as string
defining a time span or as integer defining minutes. In the former case, the time span can be defined as a string
with a number followed by a unit (ms, s, m, h, d, w, y for seconds, minutes, hours, days, and years, respectively).
The interpretation happens via the humanfriendly package. Cluster or cloud backends may use this to constrain the
allowed execution time of the submitted job. See the section below for more information.

• disk and mem define the amount of memory and disk space needed by the job. They are given as strings with
a number followed by a unit (B, KB, MB, GB, TB, PB, KiB, MiB, GiB, TiB, PiB). The interpretation of the
definition happens via the humanfriendly package. Alternatively, the two can be directly defined as integers via the
resources mem_mb and disk_mb (to which disk and mem are also automatically translated internally). They
are both locally scoped by default, a fact important for cluster and compute execution. See below for more info.
They are usually passed to execution backends, e.g. to allow the selection of appropriate compute nodes for the job
execution.

Because of these special meanings, the above names should always be used instead of possible synonyms (e.g. tmp,
time, temp, etc).

Default Resources

Since it could be cumbersome to define these standard resources for every rule, you can set default values via the command
line flag --default-resources or in a profile. As with --set-resources, this can be done dynamically, using
the variables specified for the callables in the section onDynamic Resources. If those resource definitions aremandatory for
a certain executionmode, Snakemakewill fail with a hint if they aremissing. Any resource definitions inside a rule override
what has been defined with --default-resources. If --default-resources are not specified, Snakemake
uses 'mem_mb=max(2*input.size_mb, 1000)', 'disk_mb=max(2*input.size_mb, 1000)', and
'tmpdir=system_tmpdir'. The latter points to whatever is the default of the operating system or specified by any
of the environment variables $TMPDIR, $TEMP, or $TMP as outlined here. If --default-resources is specified
with some definitions, but any of the above defaults (e.g. mem_mb) is omitted, these are still used. In order to explicitly
unset these defaults, assign them a value of None, e.g. --default-resources mem_mb=None.

Resources and Remote Execution

New to Snakemake 7.11. In cluster or cloud execution, resources may represent either a global constraint across all
submissions (e.g. number of API calls per second), or a constraint local to each specific job sumbmission (e.g. the
amount of memory available on a node). Snakemake distinguishes between these two types of constraints using resource
scopes. By default, mem_mb, disk_mb, and threads are all considered "local" resources, meaning specific to
individual submissions. So if a constraint of 16G of memory is given to snakemake (e.g. snakemake --resources
mem_mb=16000), each group job will be allowed 16G of memory. All other resources are considered "global",
meaning they are tracked across all jobs across all submissions. For example, if api_calls was limited to 5 and each
job scheduled used 1 api call, only 5 jobs would be scheduled at a time, even if more job submissions were available.
These resource scopes may be modified both in the Snakefile and via the CLI parameter --set-resource-scopes.
The CLI parameter takes priority. Modification in the Snakefile uses the following syntax:

80 Chapter 4. Resources

https://humanfriendly.readthedocs.io/en/latest/api.html?highlight=parse_timespan#humanfriendly.parse_timespan
https://humanfriendly.readthedocs.io/en/latest/api.html?highlight=parse_timespan#humanfriendly.parse_size
https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir

Snakemake Documentation, Release 8.2.1

resource_scopes:
gpus="local",
foo="local",
disk_mb="global"

Here, we set both gpus and foo as local resources, and we changed disk_mb from its default to be a global resource.
These options could be overriden at the command line using:

$ snakemake --set-resource-scopes gpus=global disk_mb=local

Resources and Group Jobs

New to Snakemake 7.11. When submitting group jobs to the cluster, Snakemake calculates howmany resources to request
by first determining which component jobs can be run in parallel, and which must be run in series. For most resources,
such as mem_mb or threads, a sum will be taken across each parallel layer. The layer requiring the most resource
(i.e. max()) will determine the final amount requested. The only exception is runtime. For it, max() will be used
within each layer, then the total amount of time across all layers will be summed. If resource constraints are provided
(via --resources or --cores) Snakemake will prevent group jobs from requesting more than the constraint. Jobs
that could otherwise be run in parallel will be run in series to prevent the violation of resource constraints.

Preemptible Jobs

You can specify parameters preemptible-rules and preemption-default to request a Google Cloud pre-
emptible virtual machine for use with the Google Life Sciences Executor. There are several ways to go about doing
this. This first example will use preemptible instances for all rules, with 10 repeats (restarts of the instance if it stops
unexpectedly).

snakemake --preemption-default 10

If your preference is to set a default but then overwrite some rules with a custom value, this is where you can use
--preemtible-rules:

snakemake --preemption-default 10 --preemptible-rules map_reads=3 call_variants=0

The above statement says that we want to use preemtible instances for all steps, defaulting to 10 retries, but for the steps
“map_reads” and “call_variants” we want to apply 3 and 0 retries, respectively. The final option is to not use preemptible
instances by default, but only for a particular rule:

snakemake --preemptible-rules map_reads=10

Note that this is currently implemented for the Google Life Sciences API.

GPU Resources

The Google Life Sciences API currently has support for NVIDIA GPUs, meaning that you can request a number of
NVIDIA GPUs explicitly by adding nvidia_gpu or gpu to your Snakefile resources for a step:

rule a:
output:

"test.txt"
resources:

nvidia_gpu=1

(continues on next page)

4.11. Snakefiles and Rules 81

https://cloud.google.com/life-sciences/docs/reference/gcloud-examples#using_preemptible_vms
https://cloud.google.com/life-sciences/docs/reference/gcloud-examples#using_preemptible_vms
https://snakemake.readthedocs.io/en/stable/executing/cloud.html#executing-a-snakemake-workflow-via-google-cloud-life-sciences
https://cloud.google.com/compute/docs/gpus#restrictions

Snakemake Documentation, Release 8.2.1

(continued from previous page)
shell:

"somecommand ..."

A specific gpu model can be requested using gpu_model and lowercase identifiers like nvidia-tesla-p100
or nvidia-tesla-p4, for example: gpu_model="nvidia-tesla-p100". If you don’t specify gpu or
nvidia_gpu with a count, but you do specify a gpu_model, the count will default to 1.

4.11.6 Messages

When executing snakemake, a short summary for each running rule is given to the console. This can be overridden by
specifying a message for a rule:

rule NAME:
input: "path/to/inputfile", "path/to/other/inputfile"
output: "path/to/outputfile", "path/to/another/outputfile"
threads: 8
message: "Executing somecommand with {threads} threads on the following files

↪→{input}."
shell: "somecommand --threads {threads} {input} {output}"

Note that access to wildcards is also possible via the variable wildcards (e.g, {wildcards.sample}), which is
the same as with shell commands. It is important to have a namespace around wildcards in order to avoid clashes with
other variable names.

4.11.7 Priorities

Snakemake allows for rules that specify numeric priorities:

rule:
input: ...
output: ...
priority: 50
shell: ...

Per default, each rule has a priority of 0. Any rule that specifies a higher priority, will be preferred by the scheduler over
all rules that are ready to execute at the same time without having at least the same priority.
Furthermore, the --prioritize or -P command line flag allows to specify files (or rules) that shall be created with
highest priority during the workflow execution. This means that the scheduler will assign the specified target and all
its dependencies highest priority, such that the target is finished as soon as possible. The --dry-run (equivalently
--dryrun) or -n option allows you to see the scheduling plan including the assigned priorities.

4.11.8 Log-Files

Each rule can specify a log file where information about the execution is written to:

rule abc:
input: "input.txt"
output: "output.txt"
log: "logs/abc.log"
shell: "somecommand --log {log} {input} {output}"

82 Chapter 4. Resources

https://cloud.google.com/compute/docs/gpus#introduction

Snakemake Documentation, Release 8.2.1

Log files can be used as input for other rules, just like any other output file. However, unlike output files, log files are not
deleted upon error. This is obviously necessary in order to discover causes of errors which might become visible in the
log file.
The variable log can be used inside a shell command to tell the used tool to which file to write the logging information.
The log file has to use the same wildcards as output files, e.g.

log: "logs/abc.{dataset}.log"

For programs that do not have an explicit log parameter, you may always use 2> {log} to redirect stderr to a file
(here, the log file) in Linux-based systems. Note that it is also possible to have multiple named log files, which could be
used to capture stdout and stderr:

rule abc:
input: "input.txt"
output: "output.txt"
log: stdout="logs/foo.stdout", stderr="logs/foo.stderr"
shell: "somecommand {input} {output} > {log.stdout} 2> {log.stderr}"

4.11.9 Non-file parameters for rules

Sometimes you may want to define certain parameters separately from the rule body. Snakemake provides the params
keyword for this purpose:

rule:
input:

...
params:

prefix="somedir/{sample}"
output:

"somedir/{sample}.csv"
shell:

"somecommand -o {params.prefix}"

The params keyword allows you to specify additional parameters depending on the wildcards values. This allows you
to circumvent the need to use run: and python code for non-standard commands like in the above case. Here, the
command somecommand expects the prefix of the output file instead of the actual one. The params keyword helps
here since you cannot simply add the prefix as an output file (as the file won’t be created, Snakemake would throw an error
after execution of the rule).
Furthermore, for enhanced readability and clarity, the params section is also an excellent place to name and assign
parameters and variables for your subsequent command.
Similar to input, params can take functions as well (see Input functions), e.g. you can write

rule:
input:

...
params:

prefix=lambda wildcards, output: output[0][:-4]
output:

"somedir/{sample}.csv"
shell:

"somecommand -o {params.prefix}"

4.11. Snakefiles and Rules 83

Snakemake Documentation, Release 8.2.1

Note

When accessing auxiliary source files (i.e. files that are located relative to the current Snakefile, e.g. some additional
configuration) it is crucial to not manually build their path but rather rely on Snakemake’s special registration for these
files, see Accessing auxiliary source files.

to get the same effect as above. Note that in contrast to the input directive, the params directive can optionally take
more arguments than only wildcards, namely input, output, threads, and resources. From the Python
perspective, they can be seen as optional keyword arguments without a default value. Their order does not matter, apart
from the fact that wildcards has to be the first argument. In the example above, this allows you to derive the prefix
name from the output file.

4.11.10 External scripts

A rule can also point to an external script instead of a shell command or inline Python code, e.g.

Python

rule NAME:
input:

"path/to/inputfile",
"path/to/other/inputfile"

output:
"path/to/outputfile",
"path/to/another/outputfile"

script:
"scripts/script.py"

Note

It is possible to refer to wildcards and params in the script path, e.g. by specifying "scripts/{params.
scriptname}.py" or "scripts/{wildcards.scriptname}.py".

The script path is always relative to the Snakefile containing the directive (in contrast to the input and output file paths,
which are relative to the working directory). It is recommended to put all scripts into a subfolder scripts as above.
Inside the script, you have access to an object snakemake that provides access to the same objects that are available
in the run and shell directives (input, output, params, wildcards, log, threads, resources, config), e.g. you can use
snakemake.input[0] to access the first input file of above rule.
An example external Python script could look like this:

def do_something(data_path, out_path, threads, myparam):
python code

do_something(snakemake.input[0], snakemake.output[0], snakemake.threads, snakemake.
↪→config["myparam"])

You can use the Python debugger from within the script if you invoke Snakemake with --debug.

84 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

R and R Markdown

Apart from Python scripts, this mechanism also allows you to integrate R and R Markdown scripts with Snakemake, e.g.

rule NAME:
input:

"path/to/inputfile",
"path/to/other/inputfile"

output:
"path/to/outputfile",
"path/to/another/outputfile"

script:
"scripts/script.R"

In the R script, an S4 object named snakemake analogous to the Python case above is available and allows access to
input and output files and other parameters. Here the syntax follows that of S4 classes with attributes that are R lists, e.g.
we can access the first input file with snakemake@input[[1]] (note that the first file does not have index 0 here,
because R starts counting from 1). Named input and output files can be accessed in the same way, by just providing the
name instead of an index, e.g. snakemake@input[["myfile"]].
An equivalent script (to the Python one above) written in R would look like this:

do_something <- function(data_path, out_path, threads, myparam) {
R code

}

do_something(snakemake@input[[1]], snakemake@output[[1]], snakemake@threads,␣
↪→snakemake@config[["myparam"]])

To debug R scripts, you can save the workspace with save.image(), and invoke R after Snakemake has terminated.
Then you can use the usual R debugging facilities while having access to the snakemake variable. It is best practice
to wrap the actual code into a separate function. This increases the portability if the code shall be invoked outside of
Snakemake or from a different rule. A convenience method, snakemake@source(), acts as a wrapper for the normal
R source() function, and can be used to source files relative to the original script directory.
An R Markdown file can be integrated in the same way as R and Python scripts, but only a single output (html) file can
be used:

rule NAME:
input:

"path/to/inputfile",
"path/to/other/inputfile"

output:
"path/to/report.html",

script:
"path/to/report.Rmd"

In the R Markdown file you can insert output from a R command, and access variables stored in the S4 object named
snakemake

title: "Test Report"
author:

- "Your Name"
date: "`r format(Sys.time(), '%d %B, %Y')`"
params:

rmd: "report.Rmd"

(continues on next page)

4.11. Snakefiles and Rules 85

https://www.r-project.org
https://rmarkdown.rstudio.com

Snakemake Documentation, Release 8.2.1

(continued from previous page)
output:

html_document:
highlight: tango
number_sections: no
theme: default
toc: yes
toc_depth: 3
toc_float:
collapsed: no
smooth_scroll: yes

R Markdown

This is an R Markdown document.

Test include from snakemake `r snakemake@input`.

Source
<a download="report.Rmd" href="`r base64enc::dataURI(file = params$rmd, mime = 'text/
↪→rmd', encoding = 'base64')`">R Markdown source file (to produce this document)

A link to the RMarkdown document with the snakemake object can be inserted. Therefore a variable called rmd needs to
be added to the params section in the header of the report.Rmd file. The generated RMarkdown file with snakemake
object will be saved in the file specified in this rmd variable. This file can be embedded into the HTML document using
base64 encoding and a link can be inserted as shown in the example above. Also other input and output files can be
embedded in this way to make a portable report. Note that the above method with a data URI only works for small files.
An experimental technology to embed larger files is using Javascript Blob object.

Julia

rule NAME:
input:

"path/to/inputfile",
"path/to/other/inputfile"

output:
"path/to/outputfile",
"path/to/another/outputfile"

script:
"path/to/script.jl"

In the Julia script, a snakemake object is available, which can be accessed similar to the Python case, with the only
difference that you have to index from 1 instead of 0.

86 Chapter 4. Resources

https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://julialang.org

Snakemake Documentation, Release 8.2.1

Rust

rule NAME:
input:

"path/to/inputfile",
"path/to/other/inputfile",
named_input="path/to/named/inputfile",

output:
"path/to/outputfile",
"path/to/another/outputfile"

params:
seed=4

conda:
"rust.yaml"

log:
stdout="path/to/stdout.log",
stderr="path/to/stderr.log",

script:
"path/to/script.rs"

The ability to execute Rust scripts is facilitated by rust-script. As such, the script must be a valid rust-script
script and rust-script (plus OpenSSL and a C compiler toolchain, provided by Conda packages openssl,
c-compiler, pkg-config) must be available in the environment the rule is run in. The minimum required
rust-script version is 0.15.0, so in the example above, the contents of rust.yaml might look like this:

channels:
- conda-forge
- bioconda

dependencies:
- rust-script>=0.15.0
- openssl
- c-compiler
- pkg-config

Some example scripts can be found in the tests directory.
In the Rust script, a snakemake instance is available, which is automatically generated from the python snakemake
object using json_typegen. It usually looks like this:

pub struct Snakemake {
input: Input,
output: Ouput,
params: Params,
wildcards: Wildcards,
threads: u64,
log: Log,
resources: Resources,
config: Config,
rulename: String,
bench_iteration: Option<usize>,
scriptdir: String,

}

Any named parameter is translated to a corresponding field_name: Type, such that params.seed from the
example above can be accessed just like in python, i.e.:

let seed = snakemake.params.seed;
assert_eq!(seed, 4);

4.11. Snakefiles and Rules 87

https://rust-script.org/
https://github.com/snakemake/snakemake/tree/main/tests/test_script/scripts
https://github.com/evestera/json_typegen

Snakemake Documentation, Release 8.2.1

Positional arguments for input, output, log and wildcards can be accessed by index and iterated over:

let input = &snakemake.input;

// Input implements Index<usize>
let inputfile = input[0];
assert_eq!(inputfile, "path/to/inputfile");

// Input implements IntoIterator
//
// prints
// > 'path/to/inputfile'
// > 'path/to/other/inputfile'
for f in input {

println!("> '{}'", &f);
}

It is also possible to redirect stdout and stderr:

println!("This will NOT be written to path/to/stdout.log");
// redirect stdout to "path/to/stdout.log"
let _stdout_redirect = snakemake.redirect_stdout(snakemake.log.stdout)?;
println!("This will be written to path/to/stdout.log");

// redirect stderr to "path/to/stderr.log"
let _stderr_redirect = snakemake.redirect_stderr(snakemake.log.stderr)?;
eprintln!("This will be written to path/to/stderr.log");
drop(_stderr_redirect);
eprintln!("This will NOT be written to path/to/stderr.log");

Redirection of stdout/stderr is only “active” as long as the returned Redirect instance is alive; in order to stop redi-
recting, drop the respective instance.
In order to work, rust-script support for snakemake has some dependencies enabled by default:

1. anyhow=1, for its Result type
2. gag=1, to enable stdout/stderr redirects
3. json_typegen=0.6, for generating rust structs from a json representation of the snakemake object
4. lazy_static=1.4, to make a snakemake instance easily accessible
5. serde=1, explicit dependency of json_typegen
6. serde_derive=1, explicit dependency of json_typegen
7. serde_json=1, explicit dependency of json_typegen

If your script uses any of these packages, you do not need to use them in your script. Trying to use them will cause a
compilation error.

88 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

Bash

Bash scripts work much the same as the other script languages above, but with some important differences. Access to
the rule’s directives is provided through the use of associative arrays - requiring Bash version 4.0 or greater. One
“limitation” of associative arrays is they cannot be nested. As such, the following rule directives are found in a separate
variable, named as snakemake_<directive>:

• input

• output

• log

• wildcards

• resources

• params

• config

Access to the input directive is faciliated through the bash associative array named snakemake_input. The re-
maining directives can be found in the variable snakemake.

Note

As arrays cannot be nested in Bash, use of python’s dict in directives is not supported. So, adding a params key
of data={"foo": "bar"} will not be reflected - ${snakemake_params[data]} actually only returns
"foo".

Bash Example 1

rule align:
input:

"{sample}.fq",
reference="ref.fa",

output:
"{sample}.sam"

params:
opts="-a -x map-ont",

threads: 4
log:

"align/{sample}.log"
conda:

"envs/align.yaml"
script:

"scripts/align.sh"

align.sh

#!/usr/bin/env bash

echo "Aligning sample ${snakemake_wildcards[sample]} with minimap2" 2> "${snakemake_
↪→log[0]}"

minimap2 ${snakemake_params[opts]} -t ${snakemake[threads]} "${snakemake_

(continues on next page)

4.11. Snakefiles and Rules 89

https://www.gnu.org/software/bash/manual/html_node/Arrays.html#Arrays

Snakemake Documentation, Release 8.2.1

(continued from previous page)
↪→input[reference]}" \

"${snakemake_input[0]}" > "${snakemake_output[0]}" 2>> "${snakemake_log[0]}"

If you don’t add a shebang, the default #!/usr/bin/env bash will be inserted for you. A tutorial on how to use
associative arrays can be found here.
You may also have noticed the mixed use of double-quotes when accessing some variables. It is generally good practice
in Bash to double-quote variables for which you want to prevent word splitting; generally, you will want to double-quote
any variable that could contain a file name. However, in some cases, word splitting is desired, such as ${snake-
make_params[opts]} in the above example.

Bash Example 2

rule align:
input:

reads=["{sample}_R1.fq", "{sample}_R2.fq]"],
reference="ref.fa",

output:
"{sample}.sam"

params:
opts="-M",

threads: 4
log:

"align/{sample}.log"
conda:

"envs/align.yaml"
script:

"scripts/align.sh"

In this example, the input variable reads, which is a python list, actually gets stored as a space-separated string in
Bash because, you guessed it, you can’t nest arrays in Bash! So in order to access the individual members, we turn the
string into an array; allowing us to access individual elements of the list/array. See this stackoverflow question for other
solutions.
align.sh

#!/usr/bin/env bash

exec 2> "${snakemake_log[0]}" # send all stderr from this script to the log file

reads=(${snakemake_input[reads]}) # don't double-quote this - we want word splitting

r1="${reads[0]}"
r2="${reads[1]}"

bwa index "${snakemake_input[reference]}"
bwa mem ${snakemake_params[opts]} -t ${snakemake[threads]} \

"${snakemake_input[reference]}" "$r1" "$r2" > "${snakemake_output[0]}"

If, in the above example, the fastq reads were not in a named variable, but were instead just a list, they would be available
as "${snakemake_input[0]}" and "${snakemake_input[1]}".

For technical reasons, scripts are executed in .snakemake/scripts. The original script directory is available as
scriptdir in the snakemake object.

90 Chapter 4. Resources

https://www.xmodulo.com/key-value-dictionary-bash.html
https://github.com/koalaman/shellcheck/wiki/SC2046
https://github.com/koalaman/shellcheck/wiki/SC2046#exceptions
https://stackoverflow.com/q/1469849/5299417

Snakemake Documentation, Release 8.2.1

4.11.11 Jupyter notebook integration

Instead of plain scripts (see above), one can integrate Jupyter Notebooks. This enables the interactive development of
data analysis components (e.g. for plotting). Integration works as follows (note the use of notebook: instead of script:):

rule hello:
output:

"test.txt"
log:

optional path to the processed notebook
notebook="logs/notebooks/processed_notebook.ipynb"

notebook:
"notebooks/hello.py.ipynb"

Note

Consider Jupyter notebook integration as a way to get the best of both worlds. A modular, readable workflow definition
with Snakemake, and the ability to quickly explore and plot data with Jupyter. The benefit will be maximal when
integrating many small notebooks that each do a particular job, hence allowing to get away from large monolithic, and
therefore unreadable notebooks.

It is recommended to prefix the .ipynb suffix with either .py or .r to indicate the notebook language. In the notebook,
a snakemake object is available, which can be accessed in the same way as the with script integration. In other words, you
have access to input files via snakemake.input (in the Python case) and snakemake@input (in the R case) etc..
Optionally it is possible to automatically store the processed notebook. This can be achieved by adding a named logfile
notebook=... to the log directive.

Note

It is possible to refer to wildcards and params in the notebook path, e.g. by specifying "notebook/{params.
name}.py" or "notebook/{wildcards.name}.py".

In order to simplify the coding of notebooks given the automatically inserted snakemake object, Snakemake provides
an interactive edit mode for notebook rules. Let us assume you have written above rule, but the notebook does not yet
exist. By running

snakemake --cores 1 --edit-notebook test.txt

you instruct Snakemake to allow interactive editing of the notebook needed to create the file test.txt. Snakemake
will run all dependencies of the notebook rule, such that all input files are present. Then, it will start a jupyter notebook
server with an empty draft of the notebook, in which you can interactively program everything needed for this particular
step. Once done, you should save the notebook from the jupyter web interface, go to the jupyter dashboard and hit the
Quit button on the top right in order to shut down the jupyter server. Snakemake will detect that the server is closed
and automatically store the drafted notebook into the path given in the rule (here hello.py.ipynb). If the notebook
already exists, above procedure can be used to easily modify it. Note that Snakemake requires local execution for the
notebook edit mode. On a cluster or the cloud, you can generate all dependencies of the notebook rule via

snakemake --cluster ... --jobs 100 --until test.txt

Then, the notebook rule can easily be executed locally.
Finally, it is advisable to combine the notebook directive with the conda directive (see Integrated Package Manage-
ment) in order to define a software stack to use. At least, this software stack should contain jupyter and the language to
use (e.g. Python or R). For the above case, this means

4.11. Snakefiles and Rules 91

https://jupyter.org/

Snakemake Documentation, Release 8.2.1

rule hello:
output:

"test.txt"
conda:

"envs/hello.yaml"
notebook:

"notebooks/hello.py.ipynb"

with

channels:
- conda-forge

dependencies:
- python =3.8
- jupyter =1.0
- jupyterlab_code_formatter =1.4

The last dependency is advisable in order to enable autoformatting of notebook cells when editing. When using other
languages than Python in the notebook, one needs to additionally add the respective kernel, e.g. r-irkernel for R
support.
When using an IDE with built-in Jupyter support, an alternative to --edit-notebook is --draft-notebook.
Instead of firing up a notebook server, --draft-notebook just creates a skeleton notebook for editing within the
IDE. In addition, it prints instructions for configuring the IDE’s notebook environment to use the interpreter from the
Conda environment defined in the corresponding rule. For example, running

snakemake --cores 1 --draft-notebook test.txt --software-deployment-method conda
or the short form
snakemake -c 1 --draft-notebook test.txt --sdm conda

will generate skeleton code in notebooks/hello.py.ipynb and additionally print instructions on how to open and
execute the notebook in VSCode.

4.11.12 Protected and Temporary Files

A particular output file may require a huge amount of computation time. Hence one might want to protect it against
accidental deletion or overwriting. Snakemake allows this by marking such a file as protected:

rule NAME:
input:

"path/to/inputfile"
output:

protected("path/to/outputfile")
shell:

"somecommand {input} {output}"

A protected file will be write-protected after the rule that produces it is completed.
Further, an output file marked as temp is deleted after all rules that use it as an input are completed:

rule NAME:
input:

"path/to/inputfile"
output:

temp("path/to/outputfile")

(continues on next page)

92 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

(continued from previous page)
shell:

"somecommand {input} {output}"

4.11.13 Directories as outputs

Sometimes it can be convenient to have directories, rather than files, as outputs of a rule. As of version 5.2.0, directories as
outputs have to be explicitly marked with directory. This is primarily for safety reasons; since all outputs are deleted
before a job is executed, we don’t want to risk deleting important directories if the user makes some mistake. Marking
the output as directorymakes the intent clear, and the output can be safely removed. Another reason comes down to
how modification time for directories work. The modification time on a directory changes when a file or a subdirectory
is added, removed or renamed. This can easily happen in not-quite-intended ways, such as when Apple macOS or MS
Windows add .DS_Store or thumbs.db files to store parameters for how the directory contents should be displayed.
When the directory flag is used a hidden file called .snakemake_timestamp is created in the output directory,
and the modification time of that file is used when determining whether the rule output is up to date or if it needs to be
rerun. Always consider if you can’t formulate your workflow using normal files before resorting to using directory().

rule NAME:
input:

"path/to/inputfile"
output:

directory("path/to/outputdir")
shell:

"somecommand {input} {output}"

4.11.14 Ignoring timestamps

For determining whether output files have to be re-created, Snakemake checks whether the file modification date (i.e.
the timestamp) of any input file of the same job is newer than the timestamp of the output file. This behavior can be
overridden by marking an input file as ancient. The timestamp of such files is ignored and always assumed to be older
than any of the output files:

rule NAME:
input:

ancient("path/to/inputfile")
output:

"path/to/outputfile"
shell:

"somecommand {input} {output}"

Here, this means that the file path/to/outputfile will not be triggered for re-creation after it has been generated
once, even when the input file is modified in the future. Note that any flag that forces re-creation of files still also applies
to files marked as ancient.

4.11. Snakefiles and Rules 93

Snakemake Documentation, Release 8.2.1

4.11.15 Ensuring output file properties like non-emptyness or checksum compli-
ance

It is possible to annotate certain additional criteria for output files to be ensured after they have been generated suc-
cessfully. For example, this can be used to check for output files to be non-empty, or to compare them against a given
sha256 checksum. If this functionality is used, Snakemake will check such annotated files before considering a job to be
successfull. Non-emptyness can be checked as follows:

rule NAME:
output:

ensure("test.txt", non_empty=True)
shell:

"somecommand {output}"

Above, the output file test.txt is marked as non-empty. If the command somecommand happens to generate an
empty output, the job will fail with an error listing the unexpected empty file.
A sha256 checksum can be compared as follows:

my_checksum = "u98a9cjsd98saud090923ßkpoasköf9ß32"

rule NAME:
output:

ensure("test.txt", sha256=my_checksum)
shell:

"somecommand {output}"

In addition to providing the checksum as plain string, it is possible to provide a pointer to a function (similar to input
functions). The function has to accept a single argument that will be the wildcards object generated from the application
of the rule to create some requested output files:

def get_checksum(wildcards):
e.g., look up the checksum with the value of the wildcard sample
in some dictionary
return my_checksums[wildcards.sample]

rule NAME:
output:

ensure("test/{sample}.txt", sha256=get_checksum)
shell:

"somecommand {output}"

Note that you can also use lambda expressions instead of full function definitions.
Often, it is a good idea to combine ensure annotations with retry definitions, e.g. for retrying upon invalid checksums
or empty files.

94 Chapter 4. Resources

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions

Snakemake Documentation, Release 8.2.1

4.11.16 Shadow rules

Shadow rules result in each execution of the rule to be run in isolated temporary directories. This “shadow” directory
contains symlinks to files and directories in the current workdir. This is useful for running programs that generate lots
of unused files which you don’t want to manually cleanup in your snakemake workflow. It can also be useful if you want
to keep your workdir clean while the program executes, or simplify your workflow by not having to worry about unique
filenames for all outputs of all rules.
By setting shadow: "shallow", the top level files and directories are symlinked, so that any relative paths in a
subdirectory will be real paths in the filesystem. The setting shadow: "full" fully shadows the entire subdirec-
tory structure of the current workdir. The setting shadow: "minimal" only symlinks the inputs to the rule, and
shadow: "copy-minimal" copies the inputs instead of just creating symlinks. Once the rule successfully executes,
the output file will be moved if necessary to the real path as indicated by output.
Typically, you will not need to modify your rule for compatibility with shadow, unless you reference parent directories
relative to your workdir in a rule.

rule NAME:
input: "path/to/inputfile"
output: "path/to/outputfile"
shadow: "shallow"
shell: "somecommand --other_outputs other.txt {input} {output}"

Shadow directories are stored one per rule execution in .snakemake/shadow/, and are cleared on successful execu-
tion. Consider running with the --cleanup-shadow argument every now and then to remove any remaining shadow
directories from aborted jobs. The base shadow directory can be changed with the --shadow-prefix command line
argument.

4.11.17 Defining retries for fallible rules

Sometimes, rules may be expected to fail occasionally. For example, this can happen when a rule downloads some online
resources. For such cases, it is possible to defined a number of automatic retries for each job from that particular rule via
the retries directive:

rule a:
output:

"test.txt"
retries: 3
shell:

"curl https://some.unreliable.server/test.txt > {output}"

Often, it is a good idea to combine retry functionality with ensure annotations, e.g. for retrying upon invalid checksums
or empty files.
Note that it is also possible to define retries globally (via the --retries command line option, see All Options). The
local definition of the rule thereby overwrites the global definition.
Importantly theretries directive ismeant to be used for defining platform independent behavior (like adding robustness
to above download command). For dealing with unreliable cluster or cloud systems, you should use the --retries
command line option.

4.11. Snakefiles and Rules 95

Snakemake Documentation, Release 8.2.1

4.11.18 Flag files

Sometimes it is necessary to enforce some rule execution order without real file dependencies. This can be achieved by
“touching” empty files that denote that a certain task was completed. Snakemake supports this via the touch flag:

rule all:
input: "mytask.done"

rule mytask:
output: touch("mytask.done")
shell: "mycommand ..."

With the touch flag, Snakemake touches (i.e. creates or updates) the file mytask.done after mycommand has
finished successfully.

4.11.19 Job Properties

Note

If there are more than 100 input and/or output files for a job, None will be used instead of listing all values. This is to
prevent the jobscript from becoming larger than Slurm jobscript size limits.

When executing a workflow on a cluster using the --cluster parameter (see below), Snakemake creates a job script for
each job to execute. This script is then invoked using the provided cluster submission command (e.g. qsub). Sometimes
you want to provide a custom wrapper for the cluster submission command that decides about additional parameters. As
this might be based on properties of the job, Snakemake stores the job properties (e.g. rule name, threads, input files,
params etc.) as JSON inside the job script. For convenience, there exists a parser function snakemake.utils.
read_job_properties that can be used to access the properties. The following shows an example job submission
wrapper:

#!/usr/bin/env python3
import os
import sys

from snakemake.utils import read_job_properties

jobscript = sys.argv[1]
job_properties = read_job_properties(jobscript)

do something useful with the threads
threads = job_properties[threads]

access property defined in the cluster configuration file (Snakemake >=3.6.0)
job_properties["cluster"]["time"]

os.system("qsub -t {threads} {script}".format(threads=threads, script=jobscript))

96 Chapter 4. Resources

https://slurm.schedmd.com/slurm.conf.html#OPT_max_script_size=

Snakemake Documentation, Release 8.2.1

4.11.20 Input functions

Instead of specifying strings or lists of strings as input files, snakemake can also make use of functions that return single
or lists of input files:

def myfunc(wildcards):
return [... a list of input files depending on given wildcards ...]

rule:
input:

myfunc
output:

"someoutput.{somewildcard}.txt"
shell:

"..."

The function has to accept a single argument that will be the wildcards object generated from the application of the rule
to create some requested output files. Note that you can also use lambda expressions instead of full function definitions.
By this, rules can have entirely different input files (both in form and number) depending on the inferred wildcards. E.g.
you can assign input files that appear in entirely different parts of your filesystem based on some wildcard value and a
dictionary that maps the wildcard value to file paths.
In additon to a single wildcards argument, input functions can optionally take a groupid (with exactly that name) as
second argument, see Group-local jobs for details.
Finally, when implementing the input function, it is best practice to make sure that it can properly handle all possible
wildcard values your rule can have. In particular, input files should not be combined with very general rules that can
be applied to create almost any file: Snakemake will try to apply the rule, and will report the exceptions of your input
function as errors.
For a practical example, see the Snakemake Tutorial (Step 3: Input functions).

4.11.21 Input Functions and unpack()

In some cases, you might want to have your input functions return named input files. This can be done by having them
return dict() objects with the names as the dict keys and the file names as the dict values and using the unpack()
keyword.

def myfunc(wildcards):
return {'foo': '{wildcards.token}.txt'.format(wildcards=wildcards)}

rule:
input:

unpack(myfunc)
output:

"someoutput.{token}.txt"
shell:

"..."

Note that unpack() is only necessary for input functions returning dict. While it also works for list, remember
that lists (and nested lists) of strings are automatically flattened.
Also note that if you do not pass in a function into the input list but you directly call a function then you shouldn’t use
unpack(). Here, you can simply use Python’s double-star (**) operator for unpacking the parameters.
Note that as Snakefiles are translated into Python for execution, the same rules as for using the star and double-star
unpacking Python operators apply. These restrictions do not apply when using unpack().

4.11. Snakefiles and Rules 97

https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists
https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists

Snakemake Documentation, Release 8.2.1

def myfunc1():
return ['foo.txt']

def myfunc2():
return {'foo': 'nowildcards.txt'}

rule:
input:

*myfunc1(),
**myfunc2(),

output:
"..."

shell:
"..."

4.11.22 Code Tracking

Snakemake tracks the code that was used to create your files. In combination with --summary or
--list-code-changes this can be used to see what files may need a re-run because the implementation changed.
Re-run can be automated by invoking Snakemake as follows:

$ snakemake -R `snakemake --list-code-changes`

4.11.23 Onstart, onsuccess and onerror handlers

Sometimes, it is necessary to specify code that shall be executed when the workflow execution is finished (e.g. cleanup,
or notification of the user). With Snakemake 3.2.1, this is possible via the onsuccess and onerror keywords:

onsuccess:
print("Workflow finished, no error")

onerror:
print("An error occurred")
shell("mail -s "an error occurred" youremail@provider.com < {log}")

The onsuccess handler is executed if the workflow finished without error. Otherwise, the onerror handler is ex-
ecuted. In both handlers, you have access to the variable log, which contains the path to a logfile with the complete
Snakemake output. Snakemake 3.6.0 adds an onstart handler, that will be executed before the workflow starts. Note
that dry-runs do not trigger any of the handlers.

4.11.24 Rule dependencies

From version 2.4.8 on, rules can also refer to the output of other rules in the Snakefile, e.g.:

rule a:
input: "path/to/input"
output: "path/to/output"
shell: ...

rule b:
input: rules.a.output

(continues on next page)

98 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

(continued from previous page)
output: "path/to/output/of/b"
shell: ...

Importantly, be aware that referring to rule a here requires that rule a was defined above rule b in the file, since the object
has to be known already. This feature also allows us to resolve dependencies that are ambiguous when using filenames.
Note that when the rule you refer to defines multiple output files but you want to require only a subset of those as input
for another rule, you should name the output files and refer to them specifically:

rule a:
input: "path/to/input"
output: a = "path/to/output", b = "path/to/output2"
shell: ...

rule b:
input: rules.a.output.a
output: "path/to/output/of/b"
shell: ...

4.11.25 Handling Ambiguous Rules

When two rules can produce the same output file, snakemake cannot decide which one to use without additional guidance.
Hence an AmbiguousRuleException is thrown. Note: ruleorder is not intended to bring rules in the correct execu-
tion order (this is solely guided by the names of input and output files you use), it only helps snakemake to decide which
rule to use when multiple ones can create the same output file! To deal with such ambiguity, provide a ruleorder for
the conflicting rules, e.g.

ruleorder: rule1 > rule2 > rule3

Here, rule1 is preferred over rule2 and rule3, and rule2 is preferred over rule3. Only if rule1 and rule2 cannot
be applied (e.g. due to missing input files), rule3 is used to produce the desired output file.
Alternatively, rule dependencies (see above) can also resolve ambiguities.
Another (quick and dirty) possiblity is to tell snakemake to allow ambiguity via a command line option

$ snakemake --allow-ambiguity

such that similar to GNU Make always the first matching rule is used. Here, a warning that summarizes the decision of
snakemake is provided at the terminal.

4.11.26 Local Rules

When working in a cluster environment, not all rules need to become a job that has to be submitted (e.g. downloading
some file, or a target-rule like all, see Targets and aggregation). The keyword localrules allows to mark a rule as local, so
that it is not submitted to the cluster and instead executed on the host node:

localrules: all, foo

rule all:
input: ...

rule foo:

(continues on next page)

4.11. Snakefiles and Rules 99

Snakemake Documentation, Release 8.2.1

(continued from previous page)
...

rule bar:
...

Here, only jobs from the rule bar will be submitted to the cluster, whereas all and foo will be run locally. Note that you
can use the localrules directivemultiple times. The result will be the union of all declarations.
Alternatively, you can also use the rule directive localrule:

rule all:
input: ...
localrule: True

rule foo:
...
localrule: True

rule bar:
...

4.11.27 Benchmark Rules

Since version 3.1, Snakemake provides support for benchmarking the run times of rules. This can be used to create
complex performance analysis pipelines. With the benchmark keyword, a rule can be declared to store a benchmark of
its code into the specified location. E.g. the rule

rule benchmark_command:
input:

"path/to/input.{sample}.txt"
output:

"path/to/output.{sample}.txt"
benchmark:

"benchmarks/somecommand/{sample}.tsv"
shell:

"somecommand {input} {output}"

benchmarks the
• CPU time (in seconds),
• wall clock time,
• memory usage (RSS, VMS, USS, PSS in megabytes),
• CPU load (CPU time divided by wall clock time),
• I/O (in bytes)

of the command somecommand for the given output and input files.
For this, the shell or run body of the rule is executed on that data, and all run times are stored into the given benchmark tsv
file (which will contain a tab-separated table of run times and memory usage in MiB). Per default, Snakemake executes
the job once, generating one run time. However, the benchmark file can be annotated with the desired number of repeats,
e.g.,

100 Chapter 4. Resources

https://en.wikipedia.org/wiki/Resident_set_size
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Unique_set_size
https://en.wikipedia.org/wiki/Proportional_set_size

Snakemake Documentation, Release 8.2.1

rule benchmark_command:
input:

"path/to/input.{sample}.txt"
output:

"path/to/output.{sample}.txt"
benchmark:

repeat("benchmarks/somecommand/{sample}.tsv", 3)
shell:

"somecommand {input} {output}"

will instruct Snakemake to run each job of this rule three times and store all measurements in the benchmark file. The
resulting tsv file can be used as input for other rules, just like any other output file.

Note

Note that benchmarking is only possible in a reliable fashion for subprocesses (thus for tasks run through
the shell, script, and wrapper directive). In the run block, the variable bench_record is avail-
able that you can pass to shell() as bench_record=bench_record. When using shell(...,
bench_record=bench_record), the maximum of all measurements of all shell() calls will be used but
the running time of the rule execution including any Python code.

4.11.28 Defining scatter-gather processes

Via Snakemake’s powerful and abitrary Python based aggregation abilities (via the expand function and arbitrary Python
code, see here), scatter-gather workflows are well supported. Nevertheless, it can sometimes be handy to use Snakemake’s
specific scatter-gather support, which allows to avoid boilerplate and offers additional configuration options. Scatter-gather
processes can be defined via a global scattergather directive:

scattergather:
split=8

Each process thereby defines a name (here e.g. split) and a default number of scatter items. Then, scattering and
gathering can be implemented by using globally available scatter and gather objects:

rule all:
input:

"gathered/all.txt"

rule split:
output:

scatter.split("splitted/{scatteritem}.txt")
shell:

"touch {output}"

rule intermediate:
input:

"splitted/{scatteritem}.txt"
output:

"splitted/{scatteritem}.post.txt"
shell:

"cp {input} {output}"

(continues on next page)

4.11. Snakefiles and Rules 101

Snakemake Documentation, Release 8.2.1

(continued from previous page)

rule gather:
input:

gather.split("splitted/{scatteritem}.post.txt")
output:

"gathered/all.txt"
shell:

"cat {input} > {output}"

Thereby, scatter.split("splitted/{scatteritem}.txt") yields a list of paths "splitted/
1-of-n.txt", "splitted/2-of-n.txt", …, depending on the number n of scatter items defined. Analogously,
gather.split("splitted/{scatteritem}.post.txt"), yields a list of paths "splitted/0.post.
txt", "splitted/1.post.txt", …, which request the application of the rule intermediate to each scatter
item.
The default number of scatter items can be overwritten via the command line interface. For example

snakemake --set-scatter split=2

would set the number of scatter items for the split process defined above to 2 instead of 8. This allows to adapt paral-
lelization according to the needs of the underlying computing platform and the analysis at hand.
For more complex workflows it’s possible to define multiple processes, for example:

scattergather:
split_a=8,
split_b=3,

The calls to scatter and gather would need to reference the appropriate process name, e.g. scatter.split_a
and gather.split_a to use the split_a settings.

4.11.29 Defining groups for execution

From Snakemake 5.0 on, it is possible to assign rules to groups. Such groups will be executed together in cluster or cloud
mode, as a so-called group job, i.e., all jobs of a particular group will be submitted at once, to the same computing node.
When executing locally, group definitions are ignored.
Groups can be defined via the group keyword. This way, queueing and execution time can be saved, in particular if one
or several short-running rules are involved.

samples = [1,2,3,4,5]

rule all:
input:

"test.out"

rule a:
output:

"a/{sample}.out"
group: "mygroup"
shell:

"touch {output}"

(continues on next page)

102 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

(continued from previous page)

rule b:
input:

"a/{sample}.out"
output:

"b/{sample}.out"
group: "mygroup"
shell:

"touch {output}"

rule c:
input:

expand("b/{sample}.out", sample=samples)
output:

"test.out"
shell:

"touch {output}"

Here, jobs from rule a and b end up in one group mygroup, whereas jobs from rule c are executed separately. Note that
Snakemake always determines a connected subgraph with the same group id to be a group job. Here, this means that,
e.g., the jobs creating a/1.out and b/1.out will be in one group, and the jobs creating a/2.out and b/2.out
will be in a separate group. However, if we would add group: "mygroup" to rule c, all jobs would end up in a
single group, including the one spawned from rule c, because c connects all the other jobs.
Alternatively, groups can be defined via the command line interface. This enables to almost arbitrarily partition the DAG,
e.g. in order to safe network traffic, see here.
For execution on the cloud using Google Life Science API and preemptible instances, we expect all rules in the group to
be homogenously set as preemptible instances (e.g., with command-line option --preemptible-rules), such that
a preemptible VM is requested for the execution of the group job.

Group-local jobs

From Snakemake 7.0 on, it is further possible to ensure that jobs from a certain rule are executed separately within
each job group. For this purpose we use input functions, which, in addition to the wildcards argument can expect
a groupid argument. In such a case, Snakemake passes the ID of the corresponding group job to the input function.
Consider the following example

rule all:
input:

expand("bar{i}.txt", i=range(3))

rule grouplocal:
output:

"foo.{groupid}.txt"
group:

"foo"
shell:

"echo test > {output}"

def get_input(wildcards, groupid):

(continues on next page)

4.11. Snakefiles and Rules 103

Snakemake Documentation, Release 8.2.1

(continued from previous page)
return f"foo.{groupid}.txt"

rule consumer:
input:

get_input
output:

"bar{i}.txt"
group:

"foo"
shell:

"cp {input} {output}"

Here, the value of groupid that is passed by Snakemake to the input function is a UUID that uniquely identifies the
group job in which each instance of the rule consumer is contained. In the input function get_input we use this ID
to request the desired input file from the rule grouplocal. Since the value of the corresponding wildcard groupid
is now always a group specific unique ID, it is ensured that the rule grouplocal will run for every group job spawned
from the group foo (remember that group jobs by default only span one connected component, and that this can be
configured via the command line, see Job Grouping). Of course, above example would also work if the groups are not
specified via the rule definition but entirely via the command line.

4.11.30 Piped output

From Snakemake 5.0 on, it is possible to mark output files as pipes, via the pipe flag, e.g.:

rule all:
input:

expand("test.{i}.out", i=range(2))

rule a:
output:

pipe("test.{i}.txt")
shell:

"for i in {{0..2}}; do echo {wildcards.i} >> {output}; done"

rule b:
input:

"test.{i}.txt"
output:

"test.{i}.out"
shell:

"grep {wildcards.i} < {input} > {output}"

If an output file is marked to be a pipe, then Snakemake will first create a named pipe with the given name and then
execute the creating job simultaneously with the consuming job, inside a group job (see above). This works in all
execution modes, local, cluster, and cloud. Naturally, a pipe output may only have a single consumer. It is possible to
combine explicit group definition as above with pipe outputs. Thereby, pipe jobs can live within, or (automatically) extend
existing groups. However, the two jobs connected by a pipe may not exist in conflicting groups.
As with other groups, Snakemake will automatically calculate the required resources for the group job (see resources.

104 Chapter 4. Resources

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Named_pipe

Snakemake Documentation, Release 8.2.1

4.11.31 Service rules/jobs

From Snakemake 7.0 on, it is possible to define so-called service rules. Jobs spawned from such rules provide at least
one special output file that is marked as service, which means that it is considered to provide a resource that shall be
kept available until all consuming jobs are finished. This can for example be the socket of a database, a shared memory
device, a ramdisk, and so on. It can even just be a dummy file, and access to the service might happen via a different
channel (e.g. a local http port). Service jobs are expected to not exit after creating that resource, but instead wait until
Snakemake terminates them (e.g. via SIGTERM on Unixoid systems).
Consider the following example:

rule the_service:
output:

service("foo.socket")
shell:

here we simulate some kind of server process that provides data via a socket
"ln -s /dev/random {output}; sleep 10000"

rule consumer1:
input:

"foo.socket"
output:

"test.txt"
shell:

"head -n1 {input} > {output}"

rule consumer2:
input:

"foo.socket"
output:

"test2.txt"
shell:

"head -n1 {input} > {output}"

Snakemake will schedule the service with all consumers to the same physical node (in the future we might provide fur-
ther controls and other modes of operation). Once all consumer jobs are finished, the service job will be terminated
automatically by Snakemake, and the service output will be removed.

Group-local service jobs

Since Snakemake supports arbitrary partitioning of the DAG into so-called job groups, one should consider what this
implies for service jobs when running a workflow in a cluster of cloud context: since each group job spans at least one
connected component (see job groups and the Snakemake paper <https://doi.org/10.12688/f1000research.29032.2>), this
means that the service job will automatically connect all consumers into one big group. This can be undesired, because
depending on the number of consumers that group job can become too big for efficient execution on the underlying
architecture. In case of local execution, this is not a problem because here DAG partitioning has no effect.
However, to make a workflow portable across different backends, this behavior should always be considered. In order to
circumvent it, it is possible to model service jobs as group-local, i.e. ensuring that each group job gets its own instance
of the service rule. This works by combining the service job pattern from above with the group-local pattern as follows:

rule the_service:
output:

service("foo.{groupid}.socket")

(continues on next page)

4.11. Snakefiles and Rules 105

Snakemake Documentation, Release 8.2.1

(continued from previous page)
shell:

here we simulate some kind of server process that provides data via a socket
"ln -s /dev/random {output}; sleep 10000"

def get_socket(wildcards, groupid):
return f"foo.{groupid}.socket"

rule consumer1:
input:

get_socket
output:

"test.txt"
shell:

"head -n1 {input} > {output}"

rule consumer2:
input:

get_socket
output:

"test2.txt"
shell:

"head -n1 {input} > {output}"

4.11.32 Parameter space exploration

The basic Snakemake functionality already provides everything to handle parameter spaces in any way (sub-spacing for
certain rules and even depending on wildcard values, the ability to read or generate spaces on the fly or from files via
pandas, etc.). However, it usually would require some boilerplate code for translating a parameter space into wildcard
patterns, and translate it back into concrete parameters for scripts and commands. From Snakemake 5.31 on (inspired by
JUDI), this is solved via the Paramspace helper, which can be used as follows:

from snakemake.utils import Paramspace
import pandas as pd

declare a dataframe to be a paramspace
paramspace = Paramspace(pd.read_csv("params.tsv", sep="\t"))

rule all:
input:

Aggregate over entire parameter space (or a subset thereof if needed)
of course, something like this can happen anywhere in the workflow (not
only at the end).
expand("results/plots/{params}.pdf", params=paramspace.instance_patterns)

rule simulate:
output:

format a wildcard pattern like "alpha~{alpha}/beta~{beta}/gamma~{gamma}"
into a file path, with alpha, beta, gamma being the columns of the data␣

↪→frame
f"results/simulations/{paramspace.wildcard_pattern}.tsv"

(continues on next page)

106 Chapter 4. Resources

https://pyjudi.readthedocs.io

Snakemake Documentation, Release 8.2.1

(continued from previous page)
params:

automatically translate the wildcard values into an instance of the param␣
↪→space

in the form of a dict (here: {"alpha": ..., "beta": ..., "gamma": ...})
simulation=paramspace.instance

script:
"scripts/simulate.py"

rule plot:
input:

f"results/simulations/{paramspace.wildcard_pattern}.tsv"
output:

f"results/plots/{paramspace.wildcard_pattern}.pdf"
shell:

"touch {output}"

In above example, please note the Python f-string formatting (the f before the initial quotes) applied to the input and
output file strings that contain paramspace.wildcard_pattern. This means that the file that is registered as
input or output file by Snakemake does not contain a wildcard {paramspace.wildcard_pattern}, but instead
this item is replaced by a pattern of multiple wildcards derived from the columns of the paramter space dataframe. This
is done by the Python f-string formatting before the string is registered in the rule. Given that params.tsv contains:

alpha beta gamma
1.0 0.1 0.99
2.0 0.0 3.9

This workflow will run as follows:

[Fri Nov 27 20:57:27 2020]
rule simulate:

output: results/simulations/alpha~2.0/beta~0.0/gamma~3.9.tsv
jobid: 4
wildcards: alpha=2.0, beta=0.0, gamma=3.9

[Fri Nov 27 20:57:27 2020]
rule simulate:

output: results/simulations/alpha~1.0/beta~0.1/gamma~0.99.tsv
jobid: 2
wildcards: alpha=1.0, beta=0.1, gamma=0.99

[Fri Nov 27 20:57:27 2020]
rule plot:

input: results/simulations/alpha~2.0/beta~0.0/gamma~3.9.tsv
output: results/plots/alpha~2.0/beta~0.0/gamma~3.9.pdf
jobid: 3
wildcards: alpha=2.0, beta=0.0, gamma=3.9

[Fri Nov 27 20:57:27 2020]
rule plot:

input: results/simulations/alpha~1.0/beta~0.1/gamma~0.99.tsv
output: results/plots/alpha~1.0/beta~0.1/gamma~0.99.pdf
jobid: 1
wildcards: alpha=1.0, beta=0.1, gamma=0.99

(continues on next page)

4.11. Snakefiles and Rules 107

Snakemake Documentation, Release 8.2.1

(continued from previous page)

[Fri Nov 27 20:57:27 2020]
localrule all:

input: results/plots/alpha~1.0/beta~0.1/gamma~0.99.pdf, results/plots/alpha~2.0/
↪→beta~0.0/gamma~3.9.pdf

jobid: 0

Naturally, it is possible to create sub-spaces from Paramspace objects, simply by applying all the usual methods and
attributes that Pandas data frames provide (e.g. .loc[...], .filter() etc.). Further, the form of the created
wildcard_pattern can be controlled via additional arguments of the Paramspace constructor. In particular,
using the argument single_wildcard the default behavior of encoding each column as a wildcard can be replaced
with a single given wildcard name. This can be handy in case a rule shall serve multiple param spaces with different sets
of columns.

4.11.33 Data-dependent conditional execution

From Snakemake 5.4 on, conditional reevaluation of the DAG of jobs based on the content outputs is possible. The key
idea is that rules can be declared as checkpoints, e.g.,

checkpoint somestep:
input:

"samples/{sample}.txt"
output:

"somestep/{sample}.txt"
shell:

"somecommand {input} > {output}"

Snakemake allows to re-evaluate the DAG after the successful execution of every job spawned from a checkpoint. For
this, every checkpoint is registered by its name in a globally available checkpoints object. The checkpoints
object can be accessed by input functions. Assuming that the checkpoint is named somestep as above, the output files
for a particular job can be retrieved with

checkpoints.somestep.get(sample="a").output

Note

Note that output files of checkpoints that are accessed via this mechanism should not be marked as temporary. Other-
wise, they would require to trigger reruns of the checkpoint whenever the DAG shall be reevaluated (because they are
already missing at that point).

Thereby, the get method throws snakemake.exceptions.IncompleteCheckpointException if the
checkpoint has not yet been executed for these particular wildcard value(s). Inside an input function, the exception
will be automatically handled by Snakemake, and leads to a re-evaluation after the checkpoint has been successfully
passed.
To illustrate the possibilities of this mechanism, consider the following complete example:

a target rule to define the desired final output
rule all:

input:
"aggregated/a.txt",
"aggregated/b.txt"

(continues on next page)

108 Chapter 4. Resources

https://snakemake-api.readthedocs.io/en/latest/api_reference/snakemake_utils.html#snakemake.utils.Paramspace

Snakemake Documentation, Release 8.2.1

(continued from previous page)

the checkpoint that shall trigger re-evaluation of the DAG
checkpoint somestep:

input:
"samples/{sample}.txt"

output:
"somestep/{sample}.txt"

shell:
simulate some output value
"echo {wildcards.sample} > somestep/{wildcards.sample}.txt"

intermediate rule
rule intermediate:

input:
"somestep/{sample}.txt"

output:
"post/{sample}.txt"

shell:
"touch {output}"

alternative intermediate rule
rule alt_intermediate:

input:
"somestep/{sample}.txt"

output:
"alt/{sample}.txt"

shell:
"touch {output}"

input function for the rule aggregate
def aggregate_input(wildcards):

decision based on content of output file
Important: use the method open() of the returned file!
This way, Snakemake is able to automatically download the file if it is␣

↪→generated in
a cloud environment without a shared filesystem.
with checkpoints.somestep.get(sample=wildcards.sample).output[0].open() as f:

if f.read().strip() == "a":
return "post/{sample}.txt"

else:
return "alt/{sample}.txt"

rule aggregate:
input:

aggregate_input
output:

"aggregated/{sample}.txt"
shell:

"touch {output}"

As can be seen, the rule aggregate uses an input function.

4.11. Snakefiles and Rules 109

Snakemake Documentation, Release 8.2.1

Note

You don’t need to use the checkpoint mechanism to determine parameter or resource values of downstream rules that
would be based on the output of previous rules. In fact, it won’t even work because the checkpoint mechanism is only
considered for input functions. Instead, you can simply use normal parameter or resource functions that just assume
that those output files are there. Snakemake will evaluate them immediately before the job is scheduled, when the
required files from upstream rules are already present.

Inside the function, we first retrieve the output files of the checkpoint somestep with the wildcards, passing through the
value of the wildcard sample. Upon execution, if the checkpoint is not yet complete, Snakemake will record somestep
as a direct dependency of the rule aggregate. Once somestep has finished for a given sample, the input function
will automatically be re-evaluated and the method get will no longer return an exception. Instead, the output file will be
opened, and depending on its contents either "post/{sample}.txt" or "alt/{sample}.txt"will be returned
by the input function. This way, the DAG becomes conditional on some produced data.
It is also possible to use checkpoints for cases where the output files are unknown before execution. Consider the following
example where an arbitrary number of files is generated by a rule before being aggregated:

a target rule to define the desired final output
rule all:

input:
"aggregated.txt"

the checkpoint that shall trigger re-evaluation of the DAG
an number of file is created in a defined directory
checkpoint somestep:

output:
directory("my_directory/")

shell:'''
mkdir my_directory/
cd my_directory
for i in 1 2 3; do touch $i.txt; done
'''

input function for rule aggregate, return paths to all files produced by the␣
↪→checkpoint 'somestep'
def aggregate_input(wildcards):

checkpoint_output = checkpoints.somestep.get(**wildcards).output[0]
return expand("my_directory/{i}.txt",

i=glob_wildcards(os.path.join(checkpoint_output, "{i}.txt")).i)

rule aggregate:
input:

aggregate_input
output:

"aggregated.txt"
shell:

"cat {input} > {output}"

Because the number of output files is unknown beforehand, the checkpoint only defines an output directory. This time,
instead of explicitly writing

110 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

checkpoints.somestep.get(sample=wildcards.sample).output[0]

we use the shorthand

checkpoints.somestep.get(**wildcards).output[0]

which automatically unpacks the wildcards as keyword arguments (this is standard python argument unpacking). If the
checkpoint has not yet been executed, accessing checkpoints.somestep.get(**wildcards) ensures that
Snakemake records the checkpoint as a direct dependency of the rule aggregate. Upon completion of the checkpoint,
the input function is re-evaluated, and the code beyond its first line is executed. Here, we retrieve the values of the wildcard
i based on all files named {i}.txt in the output directory of the checkpoint. Because the wildcard i is evaluated only
after completion of the checkpoint, it is nescessay to use directory to declare its output, instead of using the full
wildcard patterns as output.
A more practical example building on the previous one is a clustering process with an unknown number of clusters for
different samples, where each cluster shall be saved into a separate file. In this example the clusters are being processed
by an intermediate rule before being aggregated:

a target rule to define the desired final output
rule all:

input:
"aggregated/a.txt",
"aggregated/b.txt"

the checkpoint that shall trigger re-evaluation of the DAG
checkpoint clustering:

input:
"samples/{sample}.txt"

output:
clusters=directory("clustering/{sample}")

shell:
"mkdir clustering/{wildcards.sample}; "
"for i in 1 2 3; do echo $i > clustering/{wildcards.sample}/$i.txt; done"

an intermediate rule
rule intermediate:

input:
"clustering/{sample}/{i}.txt"

output:
"post/{sample}/{i}.txt"

shell:
"cp {input} {output}"

def aggregate_input(wildcards):
checkpoint_output = checkpoints.clustering.get(**wildcards).output[0]
return expand("post/{sample}/{i}.txt",

sample=wildcards.sample,
i=glob_wildcards(os.path.join(checkpoint_output, "{i}.txt")).i)

an aggregation over all produced clusters
rule aggregate:

input:
aggregate_input

(continues on next page)

4.11. Snakefiles and Rules 111

Snakemake Documentation, Release 8.2.1

(continued from previous page)
output:

"aggregated/{sample}.txt"
shell:

"cat {input} > {output}"

Here a new directory will be created for each sample by the checkpoint. After completion of the checkpoint, the ag-
gregate_input function is re-evaluated as previously. The values of the wildcard i is this time used to expand the
pattern "post/{sample}/{i}.txt", such that the rule intermediate is executed for each of the determined
clusters.

4.11.34 Rule inheritance

With Snakemake 6.0 and later, it is possible to inherit from previously defined rules, or in other words, reuse an existing
rule in a modified way. This works via the use rule statement that also allows to declare the usage of rules from
external modules (see Modules). Consider the following example:

rule a:
output:

"test.out"
shell:

"echo test > {output}"

use rule a as b with:
output:

"test2.out"

As can be seen, we first declare a rule a, and then we reuse the rule a as rule b, while changing only the output file
and keeping everything else the same. In reality, one will often change more. Analogously to the use rule from
external modules, any properties of the rule (input, output, log, params, benchmark, threads, resources,
etc.) can be modified, except the actual execution step (shell, notebook, script, cwl, or run). All unmodified
properties are inherited from the parent rule.

4.11.35 Accessing auxiliary source files

Snakemake workflows can refer to various other source files via paths relative to the current Snakefile. This happens for
example with the script directive or the conda directive. Sometimes, it is necessary to access further source files that are
in a directory relative to the current Snakefile. Since workflows can be imported from remote locations (e.g. when using
modules), it is important to not do this manually, so that Snakemake has the chance to cache these files locally before they
are accessed. This can be achieved by accessing their path via the workflow.source_path, which (a) computes
the correct path relative to the current Snakefile such that the file can be accessed from any working directory, and (b)
downloads remote files to a local cache:

rule a:
output:

"test.out"
params:

json=workflow.source_path("../resources/test.json")
shell:

"somecommand {params.json} > {output}"

Note that if such source paths are specified as input files, they are automatically considered to be non-storage files. This
means that Snakemake will not try to map them to an eventually specified default storage provider (see Storage support).

112 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

4.11.36 Template rendering integration

Sometimes, data analyses entail the dynamic rendering of internal configuration files that are required for certain steps.
From Snakemake 7 on, such template rendering is directly integrated such that it can happen with minimal code and
maximum performance. Consider the following example:

rule render_jinja2_template:
input:

"some-jinja2-template.txt"
output:

"results/{sample}.rendered-version.txt"
params:

foo=0.1
template_engine:

"jinja2"

Here, Snakemake will automatically use the specified template engine Jinja2 to render the template given as input file
into the given output file. The template_engine instruction has to be specified at the end of the rule. Template rendering
rules may only have a single output file. If the rule needs more than one input file, there has to be one input file called
template, pointing to the main template to be used for the rendering:

rule render_jinja2_template:
input:

template="some-jinja2-template.txt",
other_file="some-other-input-file-used-by-the-template.txt"

output:
"results/{sample}.rendered-version.txt"

params:
foo=0.1

template_engine:
"jinja2"

The template itself has access to input, params, wildcards, and config, which are the same objects you can
use for example in the shell or run directive, and the same objects as can be accessed from script or notebook
directives (but in the latter two cases they are stored behind thesnakemake object which serves as a dedicated namespace
to avoid name clashes).
An example Jinja2 template could look like this:

This is some text and now we access {{ params.foo }}.

Apart from Jinja2, Snakemake supports YTE (YAML template engine), which is particularly designed to support tem-
plating of the ubiquitious YAML file format:

rule render_jinja2_template:
input:

"some-yte-template.yaml"
output:

"results/{sample}.rendered-version.yaml"
params:

foo=0.1
template_engine:

"yte"

Analogously to the jinja2 case YTE has access to params, wildcards, and config:

4.11. Snakefiles and Rules 113

https://jinja.palletsprojects.com/
https://github.com/koesterlab/yte

Snakemake Documentation, Release 8.2.1

?if params.foo < 0.5:
x:
- 1
- 2
- 3

?else:
y:
- a
- b
- ?config["threshold"]

Template rendering rules are always executed locally, without submission to cluster or cloud processes (since templating
is usually not resource intensive).

4.11.37 MPI support

Highly parallel programs may use the MPI (:ref: message passing interface<https://en.wikipedia.org/wiki/Message_
Passing_Interface>) to enable a programm to span work across an invidual compute node’s boundary. The command to
run the MPI program (in below example we assume there exists a program calc-pi-mpi) has to be specified in the
mpi-resource, e.g.:

rule calc_pi:
output:

"pi.calc",
log:

"logs/calc_pi.log",
resources:

tasks=10,
mpi="mpiexec",

shell:
"{resources.mpi} -n {resources.tasks} calc-pi-mpi 10 > {output} 2> {log}"

Thereby, additional parameters may be passed to the MPI-starter, e.g.:

rule calc_pi:
output:

"pi.calc",
log:

"logs/calc_pi.log",
resources:

tasks=10,
mpi="mpiexec -arch x86",

shell:
"{resources.mpi} -n {resources.tasks} calc-pi-mpi 10 > {output} 2> {log}"

As any other resource, the mpi-resource can be overwritten via the command line e.g. in order to adapt to a specific
platform (see Resources):

$ snakemake --set-resources calc_pi:mpi="srun --hint nomultithread" ...

Note that in case of distributed, remote execution (cluster, cloud), MPI support might not be available. So far, explicit
MPI support is implemented in the slurm plugin.

114 Chapter 4. Resources

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://snakemake.github.io/snakemake-plugin-catalog/plugins/executor/slurm.html

Snakemake Documentation, Release 8.2.1

4.12 Configuration

Snakemake allows you to use configuration files for making your workflows more flexible and also for abstracting away
direct dependencies to a fixed HPC cluster scheduler.

4.12.1 Standard Configuration

Snakemake directly supports the configuration of your workflow. A configuration is provided as a JSON or YAML file
and can be loaded with:

configfile: "path/to/config.yaml"

The config file can be used to define a dictionary of configuration parameters and their values. In case of YAML, the file
can optionally be processed with YTE. To activate this, you have to add the top-level key __use_yte__ = true to
the YAML file.
In the workflow, the configuration is accessible via the global variable config, e.g.

rule all:
input:

expand("{sample}.{param}.output.pdf", sample=config["samples"], param=config[
↪→"yourparam"])

If the configfile statement is not used, the config variable provides an empty array. In addition to the configfile statement,
config values can be overwritten via the command line or the api_reference_snakemake, e.g.:

$ snakemake --config yourparam=1.5

Further, you can manually alter the config dictionary using any Python code outside of your rules. Changes made from
within a rule won’t be seen from other rules. Finally, you can use the --configfile command line argument to
overwrite values from the configfile statement. Note that any values parsed into the config dictionary with any of above
mechanisms are merged, i.e., all keys defined via a configfile statement, or the --configfile and --config
command line arguments will end up in the final config dictionary, but if two methods define the same key, command line
overwrites the configfile statement.
For adding config placeholders into a shell command, Python string formatting syntax requires you to leave out the quotes
around the key name, like so:

shell:
"mycommand {config[foo]} ..."

4.12.2 Tabular configuration

It is usually advisable to complement YAML based configuration (see above) by a sheet based approach for meta-data
that is of tabular form. For example, such a sheet can contain per-sample information. With the Pandas library such data
can be read and used with minimal overhead, e.g.,

import pandas as pd

samples = pd.read_table("samples.tsv").set_index("samples", drop=False)

reads in a table samples.tsv in TSV format and makes every record accessible by the sample name. For details, see
the Pandas documentation. A fully working real-world example containing both types of configuration can be found here.

4.12. Configuration 115

https://yte-template-engine.github.io
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_table.html?highlight=read_table#pandas-read-table
https://github.com/snakemake-workflows/rna-seq-star-deseq2

Snakemake Documentation, Release 8.2.1

4.12.3 Environment variables

Sometimes, it is not desirable to put configuration information into text files. For example, this holds for secrets like access
tokens or passwords. Here, environment variables are the method of choice. Snakemake allows to assert the existence of
environment variables by adding a statement like:

envvars:
"SOME_VARIABLE",
"SOME_OTHER_VARIABLE"

When executing, Snakemake will fail with a reasonable error message if the variables SOME_VARIABLE and
SOME_OTHER_VARIABLE are undefined. Otherwise, it will take care of passing them to cluster and cloud environ-
ments. However, note that this does not mean that Snakemake makes them available e.g. in the jobs shell command.
Instead, for data provenance and reproducibility reasons, you are required to pass them explicitly to your job via the
params directive, e.g. like this:

envvars:
"SOME_VARIABLE"

rule do_something:
output:

"test.txt"
params:

x=os.environ["SOME_VARIABLE"]
shell:

"echo {params.x} > {output}"

4.12.4 Validation

With Snakemake 5.1, it is possible to validate both types of configuration via JSON schemas. The functionsnakemake.
utils.validate takes a loaded configuration (a config dictionary or a Pandas data frame) and validates it with a given
JSON schema. Thereby, the schema can be provided in JSON or YAML format. Also, by using the defaults property it is
possible to populate entries with default values. See jsonschema FAQ on setting default values for details. In case of the
data frame, the schema should model the record that is expected in each row of the data frame. In the following example,

import pandas as pd
from snakemake.utils import validate

configfile: "config.yaml"
validate(config, "config.schema.yaml")

samples = pd.read_table(config["samples"]).set_index("sample", drop=False)
validate(samples, "samples.schema.yaml")

rule all:
input:

expand("test.{sample}.txt", sample=samples.index)

rule a:
output:

"test.{sample}.txt"
shell:

"touch {output}"

116 Chapter 4. Resources

https://en.wikipedia.org/wiki/Environment_variable
https://json-schema.org
https://python-jsonschema.readthedocs.io/en/latest/faq/

Snakemake Documentation, Release 8.2.1

the schema for validating the samples data frame looks like this:

$schema: "https://json-schema.org/draft-06/schema#"
description: an entry in the sample sheet
properties:

sample:
type: string
description: sample name/identifier

condition:
type: string
description: sample condition that will be compared during differential␣

↪→expression analysis (e.g. a treatment, a tissue time, a disease)
case:
type: boolean
default: true
description: boolean that indicates if sample is case or control

required:
- sample
- condition

Here, in case the case column is missing, the validate function will populate it with True for all entries.

4.12.5 Configuring scientific experiments via PEPs

Often scientific experiments consist of a set of samples (with optional subsamples), for which raw data and metainforma-
tion is known. Instead of writing custom sample sheets as shown above, Snakemake allows to use portable encapsulated
project (PEP) definitions to configure a workflow. This is done via a special directive pepfile, that can optionally comple-
mented by a schema for validation (which is recommended for production workflows):

pepfile: "pep/config.yaml"
pepschema: "schemas/pep.yaml"

rule all:
input:

expand("{sample}.txt", sample=pep.sample_table["sample_name"])

rule a:
output:

"{sample}.txt"
shell:

"touch {output}"

Using the pepfile directive leads to parsing of the provided PEP with peppy. The resulting project object is made
globally available under the name pep. Here, we use it to aggregate over the set of sample names that is defined in the
corresponding PEP.
Importantly, note that PEPs are meant to contain sample metadata and any global information about a project or ex-
periment. They should not be used to encode workflow specific configuration options. For those, one should always
complement the pepfile with an ordinary config file. The rationale is that PEPs should be portable between different data
analysis workflows (that could be applied to the same data) and even between workflow management systems. In other
words, a PEP should describe everything needed about the data, while a workflow and its configuration should describe
everything needed about the analysis that is applied to it.

4.12. Configuration 117

http://pep.databio.org
http://pep.databio.org
http://peppy.databio.org

Snakemake Documentation, Release 8.2.1

Validating PEPs

Using the pepschema directive leads to an automatic parsing of the provided schema and PEP validation with the
PEP validation tool – eido. Eido schemas extend JSON Schema vocabulary to accommodate the powerful PEP features.
Follow the How to write a PEP schema guide to learn more.

4.12.6 Configure Working Directory

All paths in the snakefile are interpreted relative to the directory snakemake is executed in. This behaviour can be over-
ridden by specifying a workdir in the snakefile:

workdir: "path/to/workdir"

Usually, it is preferred to only set the working directory via the command line, because above directive limits the portability
of Snakemake workflows.

4.12.7 Cluster Configuration (not supported anymore)

The previously supported cluster configuration has been replaced by configuration profiles (see Profiles).

4.13 Modularization

Modularization in Snakemake comes at four different levels.
1. The most fine-grained level are wrappers. They are available and can be published at the Snakemake Wrapper

Repository. These wrappers can then be composed and customized according to your needs, by copying skeleton
rules into your workflow. In combination with conda integration, wrappers also automatically deploy the needed
software dependencies into isolated environments.

2. For larger, reusable parts that shall be integrated into a common workflow, it is recommended to write small
Snakefiles and include them into a main Snakefile via the include statement. In such a setup, all rules share a
common config file.

3. The third level is provided via the module statement, which enables arbitrary combination and reuse of rules.

4.13.1 Wrappers

The wrapper directive allows to have re-usable wrapper scripts around e.g. command line tools. In contrast to mod-
ularization strategies like include or subworkflows, the wrapper directive allows to re-wire the DAG of jobs. For
example

rule samtools_sort:
input:

"mapped/{sample}.bam"
output:

"mapped/{sample}.sorted.bam"
params:

"-m 4G"
threads: 8
wrapper:

"0.0.8/bio/samtools/sort"

118 Chapter 4. Resources

http://eido.databio.org
https://json-schema.org
http://eido.databio.org/en/latest/writing-a-schema
https://snakemake-wrappers.readthedocs.io
https://snakemake-wrappers.readthedocs.io

Snakemake Documentation, Release 8.2.1

Note: It is possible to refer to wildcards and params in the wrapper identifier, e.g. by specifying "0.0.8/bio/
{params.wrapper}" or "0.0.8/bio/{wildcards.wrapper}".

Refers to the wrapper "0.0.8/bio/samtools/sort" to create the output from the input. Snakemake will auto-
matically download the wrapper from the Snakemake Wrapper Repository. Thereby, 0.0.8 can be replaced with the
git version tag you want to use, or a commit id. This ensures reproducibility since changes in the wrapper implementation
will only be propagated to your workflow once you update the version tag. Examples for each wrapper can be found in
the READMEs located in the wrapper subdirectories at the Snakemake Wrapper Repository.
Alternatively, for example during development, the wrapper directive can also point to full URLs, including URLs to
local files with absolute paths file:// or relative paths file:. Such a URL will have to point to the folder containing
the wrapper.* and environment.yaml files. In the above example, the full GitHub URL could for example
be provided with wrapper: https://github.com/snakemake/snakemake-wrappers/raw/0.0.
8/bio/samtools/sort. Note that it needs to point to the /raw/ version of the folder, not the rendered HTML
version.
In addition, the Snakemake Wrapper Repository offers so-called meta-wrappers, which can be used as modules, see
Meta-Wrappers.
The Snakemake Wrapper Repository is meant as a collaborative project and pull requests are very welcome.

4.13.2 Common-Workflow-Language (CWL) support

With Snakemake 4.8.0, it is possible to refer to CWL tool definitions in rules instead of specifying a wrapper or a plain
shell command. A CWL tool definition can be used as follows.

rule samtools_sort:
input:

input="mapped/{sample}.bam"
output:

output_name="mapped/{sample}.sorted.bam"
params:

threads=lambda wildcards, threads: threads,
memory="4G"

threads: 8
cwl:

"https://github.com/common-workflow-language/workflows/blob/"
"fb406c95/tools/samtools-sort.cwl"

Note: It is possible to refer to wildcards and params in the tool definition URL, e.g. by specifying something
like "https://.../tools/{params.tool}.cwl" or "https://.../tools/{wildcards.tool}.
cwl".

It is advisable to use a github URL that includes the commit as above instead of a branch name, in order to ensure
reproducible results. Snakemake will execute the rule by invoking cwltool, which has to be available via your $PATH
variable, and can be, e.g., installed via conda or pip. When using in combination with –software-deployment-method
apptainer (--sdm for short), Snakemake will instruct cwltool to execute the command via Singularity in user space.
Otherwise, cwltool will in most cases use a Docker container, which requires Docker to be set up properly.
The advantage is that predefined tools available via any repository of CWL tool definitions can be used in any supporting
workflow management system. In contrast to a Snakemake wrapper, CWL tool definitions are in general not suited to
alter the behavior of a tool, e.g., by normalizing output names or special input handling. As you can see in comparison

4.13. Modularization 119

https://snakemake-wrappers.readthedocs.io
https://github.com/snakemake/snakemake-wrappers/releases
https://github.com/snakemake/snakemake-wrappers/commits
https://snakemake-wrappers.readthedocs.io
https://snakemake-wrappers.readthedocs.io
https://snakemake-wrappers.readthedocs.io
https://www.commonwl.org/
https://www.commonwl.org/#Repositories_of_CWL_Tools_and_Workflows

Snakemake Documentation, Release 8.2.1

to the analog wrapper declaration above, the rule becomes slightly more verbose, because input, output, and params have
to be dispatched to the specific expectations of the CWL tool definition.

4.13.3 Includes

Another Snakefile with all its rules can be included into the current:

include: "path/to/other/snakefile"

The default target rule (often called the all-rule), won’t be affected by the include. I.e. it will always be the first rule in
your Snakefile, no matter how many includes you have above your first rule. Includes are relative to the directory of the
Snakefile in which they occur. For example, if above Snakefile resides in the directory my/dir, then Snakemake will
search for the include at my/dir/path/to/other/snakefile, regardless of the working directory.

4.13.4 Modules

With Snakemake 6.0 and later, it is possible to define external workflows as modules, from which rules can be used by
explicitly “importing” them.

from snakemake.utils import min_version
min_version("6.0")

module other_workflow:
snakefile:

here, plain paths, URLs and the special markers for code hosting providers␣
↪→(see below) are possible.

"other_workflow/Snakefile"

use rule * from other_workflow exclude ruleC as other_*

The module other_workflow: statement registers the external workflow as a module, by defining the path to the
main snakefile of other_workflow. Here, plain paths, HTTP/HTTPS URLs and special markers for code hosting
providers like Github or Gitlab are possible (see Code hosting providers). The second statement, use rule * from
other_workflow exclude ruleC as other_*, declares all rules of that module to be used in the current one,
except for ruleC. Thereby, the as other_* at the end renames all those rules with a common prefix. This can be handy
to avoid rule name conflicts (note that rules from modules can otherwise overwrite rules from your current workflow or
other modules).

Note: The imported module cannot be named as workflow, which is a reserved name.

The module is evaluated in a separate namespace, and only the selected rules are added to the current workflow. Non-rule
Python statements inside the module are also evaluated in that separate namespace. They are available in the module-
defining workflow under the name of the module (e.g. here other_workflow.myfunction() would call the
function myfunction that has been defined in the model, e.g. in other_workflow/Snakefile). Also note that
this means that any Python variables and functions available in the module-defining namespace will not be visible from
inside the module. However, it is possible to pass information to the module using the config mechanism described in
the following.
It is possible to overwrite the global config dictionary for the module, which is usually filled by the configfile state-
ment (see Standard Configuration):

120 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

from snakemake.utils import min_version
min_version("6.0")

configfile: "config/config.yaml"

module other_workflow:
here, plain paths, URLs and the special markers for code hosting providers (see␣

↪→below) are possible.
snakefile: "other_workflow/Snakefile"
config: config["other-workflow"]

use rule * from other_workflow as other_*

In this case, any configfile statements inside the module are ignored. In addition, it is possible to skip any validation
statements in the module, by specifying skip_validation: True in the module statment. Moreover, one can au-
tomatically move all relative input and output files of a module into a dedicated folder: by specifying prefix: "foo"
in the module definition, e.g. any output file path/to/output.txt in the module would be stored under foo/
path/to/output.txt instead. This becomes particularly usefull when combining multiple modules, see Using and
combining pre-exising workflows.
Instead of using all rules, it is possible to import specific rules. Specific rules may even be modified before using them,
via a final with: followed by a block that lists items to overwrite. This modification can be performed after a general
import, and will overwrite any unmodified import of the same rule.

from snakemake.utils import min_version
min_version("6.0")

module other_workflow:
here, plain paths, URLs and the special markers for code hosting providers (see␣

↪→below) are possible.
snakefile: "other_workflow/Snakefile"
config: config["other-workflow"]

use rule * from other_workflow as other_*

use rule some_task from other_workflow as other_some_task with:
output:

"results/some-result.txt"

By such a modifying use statement, any properties of the rule (input, output, log, params, benchmark,
threads, resources, etc.) can be overwritten, except the actual execution step (shell, notebook, script,
cwl, or run).
Note that the second use statement has to use the original rule name, not the one that has been prefixed with other_ via
the first use statement (there is no rule other_some_task in the module other_workflow). In order to overwrite
the rulesome_task that has been imported with the firstuse rule statement, it is crucial to ensure that the rule is used
with the same name in the second statement, by adding an equivalent as clause (here other_some_task). Otherwise,
you will have two versions of the same rule, which might be unintended (a common symptom of such unintended repeated
uses would be ambiguous rule exceptions thrown by Snakemake).
Of course, it is possible to combine the use of rules from multiple modules (see Using and combining pre-exising work-
flows), and via modifying statements they can be rewired and reconfigured in an arbitrary way.

4.13. Modularization 121

Snakemake Documentation, Release 8.2.1

Meta-Wrappers

Snakemake wrappers offer a simple way to include commonly used tools in Snakemake workflows. In addition the
Snakemake Wrapper Repository offers so-called meta-wrappers, which are combinations of wrappers, meant to perform
common tasks. Both wrappers and meta-wrappers are continously tested. The module statement also allows to easily use
meta-wrappers, for example:

from snakemake.utils import min_version
min_version("6.0")

configfile: "config.yaml"

module bwa_mapping:
meta_wrapper: "0.72.0/meta/bio/bwa_mapping"

use rule * from bwa_mapping

def get_input(wildcards):
return config["samples"][wildcards.sample]

use rule bwa_mem from bwa_mapping with:
input:

get_input

First, we define the meta-wrapper as a module. Next, we declare all rules from the module to be used. And finally, we
overwrite the input directive of the rule bwa_mem such that the raw data is taken from the place where our workflow
configures it via it’s config file.

4.13.5 Code hosting providers

To obtain the correct URL to an external source code resource (e.g. a snakefile, see Modules), Snakemake provides
markers for code hosting providers. Currently, Github

github("owner/repo", path="workflow/Snakefile", tag="v1.0.0")

and Gitlab are supported:

gitlab("owner/repo", path="workflow/Snakefile", tag="v1.0.0")

For the latter, it is also possible to specify an alternative host, e.g.

gitlab("owner/repo", path="workflow/Snakefile", tag="v1.0.0", host="somecustomgitlab.
↪→org")

While specifying a tag is highly encouraged, it is alternatively possible to specify a commit or a branch via respective
keyword arguments. Note that only when specifying a tag or a commit, Snakemake is able to persistently cache the
source, thereby avoiding to repeatedly query it in case of multiple executions.

122 Chapter 4. Resources

https://snakemake-wrappers.readthedocs.io

Snakemake Documentation, Release 8.2.1

Private repositories

To access source code resources located in private repositories you can define an access token in the GITHUB_TOKEN
and/or GITLAB_TOKEN environment variables.

4.14 Storage support

By default, input and output files or directories defined and used in Snakemake rules are written to the local filesystem,
thereby interpreting relative paths relative to the current working directory.
However, Snakemake also allows to transparently map input and output files to storage providers. Storage providers are
implemented via plugins. All available storage providers and their documentation are available in the Snakemake plugin
catalog.

4.14.1 Deployment

Storage plugins can be used by deploying them to your local environment via pip:

pip install snakemake-storage-plugin-s3

or Mamba:

mamba install -c conda-forge -c bioconda snakemake-storage-plugin-s3

If you choose to register a storage plugin within your workflow (see below), it is advisable to add the respective plugin
package as a dependency of your workflow itself (see Global workflow dependencies).

4.14.2 Usage

In general, there are four ways to use a storage provider.
1. Use the --default-storage-provider command line argument to set a default storage provider. This

will be used for all input and output files that are not explicitly mapped to a storage provider.
2. Register a storage provider in the workflow and use it only for particular input and output, not all of them.
3. Register multiple entities of the same storage provider with different names/tags. This allows to e.g. use the same

protocol to access multiple different remote storages.
4. Let Snakemake automatically find a matching storage provider.

Using the S3 storage plugin, we will provide an example for all of the cases below. For provider specific options (also for
all options of the S3 plugin which are omitted here for brevity) and all available plugins see the Snakemake plugin catalog.

4.14. Storage support 123

https://snakemake.github.io/snakemake-plugin-catalog
https://snakemake.github.io/snakemake-plugin-catalog
https://github.com/mamba-org/mamba
https://snakemake.github.io/snakemake-plugin-catalog

Snakemake Documentation, Release 8.2.1

As default provider

If you want all your input and output (which is not explicitly marked to come from another storage) to be written to and
read from this storage, you can use it as a default provider via:

snakemake --default-storage-provider s3 --default-storage-prefix s3://mybucket/

Custom settings can be passed as well:

snakemake --default-storage-provider s3 --default-storage-prefix s3://mybucket/ \
--storage-s3-max-requests-per-second 10

Local input/output files

Despite using a default storage provider, you might have certain files in your workflow that still come from the local
filesystem. In this case, you can use the local flag:

rule example:
input:

local("resources/example-input.txt")
output:

"example-output.txt"
shell:

"..."

Here, resources/example-input.txt will be interpreted as a local file, while example-output.txt will
be written to the default storage provider that you have specified (with the prefix prepended).
Note that source paths (see Accessing auxiliary source files) are also not mapped to the default storage provider. There is
no need to additionally mark them as local.

Within the workflow

If you want to use this storage plugin only for specific items, you can register it inside of your workflow:

register storage provider (not needed if no custom settings are to be defined here)
storage:

provider="s3",
optionally add custom settings here if needed
alternatively they can be passed via command line arguments
starting with --storage-s3-...
max_requests_per_second=10,

rule example:
input:

storage.s3(
define query to the storage backend here
...

),
output:

"example.txt"
shell:

"..."

124 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

Using multiple entities of the same storage plugin

In case you have to use this storage plugin multiple times, but with different settings (e.g. to connect to different storage
servers), you can register it multiple times, each time providing a different tag:

register shared settings
storage:

provider="s3",
optionally add custom settings here if needed
alternatively they can be passed via command line arguments
starting with --storage-s3-...
max_requests_per_second=10,

register multiple tagged entities
storage awss3:

provider="s3",
endpoint_url="s3.us-east-2.amazonaws.com"

rule example:
input:

storage.awss3(
define query to the storage backend here
...

),
output:

"example.txt"
shell:

"..."

Automatic inference

If the query for a storage plugin is unique given those plugins that you have currently installed, you can let Snakemake
automatically infer the plugin to use:

rule example:
input:

storage("s3://mybucket/example.txt")
output:

"example.txt"
shell:

"..."

Credentials

Depending on the storage provider, you might have to provide credentials. Usually, this can be done via environment
variables, e.g. for S3:

export SNAKEMAKE_STORAGE_S3_ACCESS_KEY=...
export SNAKEMAKE_STORAGE_S3_SECRET_KEY=...

4.14. Storage support 125

Snakemake Documentation, Release 8.2.1

4.15 Utils

The module snakemake.utils provides a collection of helper functions for common tasks in Snakemake workflows.
Details can be found in utils-api.

4.16 Distribution and Reproducibility

It is recommended to store each workflow in a dedicated git repository of the following structure:

├── .gitignore
├── README.md
├── LICENSE.md
├── workflow
│ ├── rules
| │ ├── module1.smk
| │ └── module2.smk
│ ├── envs
| │ ├── tool1.yaml
| │ └── tool2.yaml
│ ├── scripts
| │ ├── script1.py
| │ └── script2.R
│ ├── notebooks
| │ ├── notebook1.py.ipynb
| │ └── notebook2.r.ipynb
│ ├── report
| │ ├── plot1.rst
| │ └── plot2.rst
| └── Snakefile
├── config
│ ├── config.yaml
│ └── some-sheet.tsv
├── results
└── resources

In other words, the workflow code goes into a subfolder workflow, while the configuration is stored in a subfolder
config. Inside of the workflow subfolder, the central Snakefile marks the entrypoint of the workflow (it will
be automatically discovered when running snakemake from the root of above structure. This main structure and the
recommendations below are implemented in this Snakemake workflow template that you can use to create your own
workflow repository with a single click on “Use this template”. In addition to the central Snakefile, rules can be
stored in a modular way, using the optional subfolder workflow/rules. Such modules should end with .smk, the
recommended file extension of Snakemake. Further, scripts should be stored in a subfolder workflow/scripts and
notebooks in a subfolder workflow/notebooks. Conda environments (see Integrated Package Management) should
be stored in a subfolder workflow/envs (make sure to keep them as finegrained as possible to improve transparency
and maintainability). Finally, report caption files should be stored in workflow/report. All output files generated
in the workflow should be stored under results, unless they are rather retrieved resources, in which case they should
be stored under resources. The latter subfolder may also contain small resources that shall be delivered along with
the workflow via git (although it might be tempting, please refrain from trying to generate output file paths with string
concatenation of a central outdir variable or so, as this hampers readability).
Workflows set up in above structure can be easily used and combined via the Snakemake module system. Such deployment
can even be automated via Snakedeploy. Moreover, by publishing a workflow on Github and following a set of additional
rules the workflow will be automatically included in the Snakemake workflow catalog, thereby easing discovery and even
automating its usage documentation. For an example of such automated documentation, see here.

126 Chapter 4. Resources

https://github.com/snakemake-workflows/snakemake-workflow-template
https://github.com/snakemake-workflows/snakemake-workflow-template/generate
https://github.com/snakemake-workflows/snakemake-workflow-template/generate
https://snakedeploy.readthedocs.io
https://github.com
https://snakemake.github.io/snakemake-workflow-catalog/?rules=true
https://snakemake.github.io/snakemake-workflow-catalog
https://snakemake.github.io/snakemake-workflow-catalog/?usage=snakemake-workflows%2Fdna-seq-varlociraptor

Snakemake Documentation, Release 8.2.1

Visit the Snakemake Workflows Project for more best-practice workflows.

4.16.1 Using and combining pre-exising workflows

Via the module/use system introduced with Snakemake 6.0, it is very easy to deploy existing workflows for new projects.
This ranges from the simple application to new data to the complex combination of several complementary workflows in
order to perfom an integrated analysis over multiple data types.
Consider the following example:

from snakemake.utils import min_version
min_version("6.0")

configfile: "config/config.yaml"

module dna_seq:
snakefile:

here, it is also possible to provide a plain raw URL like "https://github.
↪→com/snakemake-workflows/dna-seq-gatk-variant-calling/raw/v2.0.1/workflow/Snakefile"

github("snakemake-workflows/dna-seq-gatk-variant-calling", path="workflow/
↪→Snakefile", tag="v2.0.1")

config:
config

use rule * from dna_seq

First, we load a local configuration file. Next, we define the module dna_seq to be loaded from
the URL https://github.com/snakemake-workflows/dna-seq-gatk-variant-calling/raw/
v2.0.1/workflow/Snakefile, while using the contents of the local configuration file. Note that it is possible to
either specify the full URL pointing to the raw Snakefile as a string or to use the github marker as done here. With the
latter, Snakemake can however cache the used source files persistently (if a tag is given), such that they don’t have to be
downloaded on each invocation. Finally we declare all rules of the dna_seq module to be used.
This kind of deployment is equivalent to just cloning the original repository and modifying the configuration in it. How-
ever, the advantage here is that we are (a) able to easily extend of modify the workflow, while making the changes
transparent, and (b) we can store this workflow in a separate (e.g. private) git repository, along with for example con-
figuration and meta data, without the need to duplicate the workflow code. Finally, we are always able to later combine
another module into the current workflow, e.g. when further kinds of analyses are needed. The ability to modify rules
upon using them (see Modules) allows for arbitrary rewiring and configuration of the combined modules.
For example, we can easily add another rule to extend the given workflow:

from snakemake.utils import min_version
min_version("6.0")

configfile: "config/config.yaml"

module dna_seq:
snakefile:

here, it is also possible to provide a plain raw URL like "https://github.
↪→com/snakemake-workflows/dna-seq-gatk-variant-calling/raw/v2.0.1/workflow/Snakefile"

github("snakemake-workflows/dna-seq-gatk-variant-calling", path="workflow/
↪→Snakefile", tag="v2.0.1")

config: config

use rule * from dna_seq as dna_seq_*

(continues on next page)

4.16. Distribution and Reproducibility 127

https://github.com/snakemake-workflows/docs

Snakemake Documentation, Release 8.2.1

(continued from previous page)
easily extend the workflow
rule plot_vafs:

input:
"filtered/all.vcf.gz"

output:
"results/plots/vafs.svg"

notebook:
"notebooks/plot-vafs.py.ipynb"

Define a new default target that collects both the targets from the dna_seq module␣
↪→as well as
the new plot.
rule all:

input:
rules.dna_seq_all.input,
"results/plots/vafs.svg",

default_target: True

Above, we have added a prefix to all rule names of the dna_seq module, such that there is no name clash with the added
rules (as dna_seq_* in the use rule statement). In addition, we have added a new rule all, defining the default
target in case the workflow is executed (as usually) without any specific target files or rule. The new target rule collects
both all input files of the rule all from the dna_seq workflow, as well as additionally collecting the new plot.
It is possible to further extend the workflow with other modules, thereby generating an integrative analysis. Here, let us
assume that we want to conduct another kind of analysis, say RNA-seq, using a different external workflow. We can
extend above example in the following way:

from snakemake.utils import min_version
min_version("6.0")

configfile: "config/config.yaml"

module dna_seq:
snakefile:

github("snakemake-workflows/dna-seq-gatk-variant-calling", path="workflow/
↪→Snakefile", tag="v2.0.1")

config: config["dna-seq"]
prefix: "dna-seq"

use rule * from dna_seq as dna_seq_*

rule plot_vafs:
input:

"filtered/all.vcf.gz"
output:

"results/plots/vafs.svg"
notebook:

"notebooks/plot-vafs.py.ipynb"

module rna_seq:
snakefile:

github("snakemake-workflows/rna-seq-kallisto-sleuth", path="workflow/Snakefile
↪→", tag="v2.0.1")

config: config["rna-seq"]
prefix: "rna-seq"

use rule * from rna_seq as rna_seq_*
(continues on next page)

128 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

(continued from previous page)

Define a new default target that collects all the targets from the dna_seq and rna_
↪→seq module.
rule all:

input:
rules.dna_seq_all.input,
rules.rna_seq_all.input,

default_target: True

Above, several things have changed.
• First, we have added another module rna_seq.
• Second, we have added a prefix to all non-absolute input and output file names of both modules (prefix:
"dna-seq" and prefix: "rna-seq") in order to avoid file name clashes.

• Third, we have added a default target rule that collects both the default targets from the module dna_seq as well
as the module rna_seq.

• Finally, we provide the config of the two modules via two separate sections in the common config file
(config["dna-seq"] and config["rna-seq"]).

4.16.2 Uploading workflows to WorkflowHub

In order to share a workflow with the scientific community it is advised to upload the repository to WorkflowHub, where
each submission will be automatically parsed and encapsulated into a Research Object Crate. That way a snakemake
workflow is annotated with proper metadata and thus complies with the FAIR principles of scientific data.
To adhere to the high WorkflowHub standards of scientific workflows the recommended snakemake repository structure
presented above needs to be extended by the following elements:

• Code of Conduct
• Contribution instructions
• Workflow rule graph
• Workflow documentation
• Test directory

A code of conduct for the repository developers as well as instruction on how to contribute to the project should be placed
in the top-level files: CODE_OF_CONDUCT.md and CONTRIBUTING.md, respectively. Each snakemake workflow
repository needs to contain an SVG-formatted rule graph placed in a subdirectory images/rulegraph.svg. Ad-
ditionally, the workflow should be annotated with a technical documentation of all of its subsequent steps, described
in workflow/documentation.md. Finally, the repository should contain a .tests directory with two subdi-
rectories: .tests/integration and .tests/unit. The former has to contain all the input data, configuration
specifications and shell commands required to run an integration test of the whole workflow. The latter shall contain
subdirectories dedicated to testing each of the separate workflow steps independently. To simplify the testing procedure
snakemake can automatically generate unit tests from a successful workflow execution (see Automatically generating unit
tests).
Therefore, the repository structure should comply with:

├── .gitignore
├── README.md
├── LICENSE.md

(continues on next page)

4.16. Distribution and Reproducibility 129

https://workflowhub.eu/
https://w3id.org/ro/crate
https://en.wikipedia.org/wiki/FAIR_data

Snakemake Documentation, Release 8.2.1

(continued from previous page)
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── .tests
│ ├── integration
│ └── unit
├── images
│ └── rulegraph.svg
├── workflow
│ ├── rules
| │ ├── module1.smk
| │ └── module2.smk
│ ├── envs
| │ ├── tool1.yaml
| │ └── tool2.yaml
│ ├── scripts
| │ ├── script1.py
| │ └── script2.R
│ ├── notebooks
| │ ├── notebook1.py.ipynb
| │ └── notebook2.r.ipynb
│ ├── report
| │ ├── plot1.rst
| │ └── plot2.rst
│ ├── Snakefile
| └── documentation.md
├── config
│ ├── config.yaml
│ └── some-sheet.tsv
├── results
└── resources

4.16.3 Integrated Package Management

It is possible (and highly encouraged, see Best practices) to define isolated software environments per rule. Upon
execution of a workflow, the Conda package manager is used to obtain and deploy the defined software packages
in the specified versions. Packages will be installed into your working directory, without requiring any admin/root
priviledges. Given that conda is available on your system (see Miniconda), to use the Conda integration, add the
--software-deployment-method conda option (--sdm for short) to your workflow execution command,
e.g. snakemake --cores 8 --sdm conda. When --software-deployment-method conda (--sdm
for short) is activated, Snakemake will automatically create software environments for any used wrapper (seeWrappers).
Further, you can manually define environments via the conda directive, e.g.:

rule NAME:
input:

"table.txt"
output:

"plots/myplot.pdf"
conda:

"envs/ggplot.yaml"
script:

"scripts/plot-stuff.R"

with the following environment definition:

130 Chapter 4. Resources

https://conda.pydata.org
https://conda.pydata.org/miniconda.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually

Snakemake Documentation, Release 8.2.1

channels:
- r

dependencies:
- r=3.3.1
- r-ggplot2=2.1.0

Please note that in the environment definition, conda determines the priority of channels depending on their order of
appearance in the channels list. For instance, the channel that comes first in the list gets the highest priority.
The path to the environment definition is interpreted as relative to the Snakefile that contains the rule (unless it is an
absolute path, which is discouraged).
Instead of using a concrete path, it is also possible to provide a path containing wildcards (which must also occur in the
output files of the rule), analogous to the specification of input files.
In addition, it is possible to use a callable which returns a str value. The signature of the callable has to be
callable(wildcards [, params] [, input]) (params and input are optional parameters).
Note that the use of distinct conda environments for different jobs from the same rule is currently not properly displayed
in the generated reports. At the moment, only a single, random conda environment is shown.

Note

Note that conda environments are only used with shell, script, notebook and the wrapper directive, not the
run directive. The reason is that therun directive has access to the rest of the Snakefile (e.g. globally defined variables)
and therefore must be executed in the same process as Snakemake itself. If used with notebook directive, the
associated conda environment should have package jupyter installed (this package contains dependencies required
to execute the notebook).
Further, note that search path modifying environment variables like R_LIBS and PYTHONPATH can interfere with
your conda environments. Therefore, Snakemake automatically deactivates them for a job when a conda environ-
ment definition is used. If you know what you are doing, in order to deactivate this behavior, you can use the flag
--conda-not-block-search-path-envvars.

Snakemake will store the environment persistently in .snakemake/conda/$hashwith $hash being the MD5 hash
of the environment definition file content. This way, updates to the environment definition are automatically detected.
Note that you need to clean up environments manually for now. However, in many cases they are lightweight and consist
of symlinks to your central conda installation.
Conda deployment also works well for offline or air-gapped environments. Running snakemake --sdm conda
--conda-create-envs-only will only install the required conda environments without running the full workflow.
Subsequent runs with --sdm conda will make use of the local environments without requiring internet access.

Freezing environments to exactly pinned packages

If Snakemake finds a special file ending on <platform>.pin.txt next to a conda environment file (with
<platform> being the current platform, e.g. linux-64), it will try to use the contents of that file to determine
the conda packages to deploy. The file is expected to contain conda’s explicit specification file format. Snakemake will
first try to deploy the environment using that file, and only if that fails it will use the regular enviroment file.
This enables to freeze an environment to a certain state, and will ensure that people using a workflow will get exactly
the same environments down to the individual package builds, which is in fact very similar to providing the environment
encapsulated in a container image. Generating such pin files for conda environments can be automatically done using
Snakedeploy. Let envs/ggplot.yaml be the conda environment file used in the example above. Then, the pinning
can be generated with

4.16. Distribution and Reproducibility 131

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#building-identical-conda-environments
https://snakedeploy.readthedocs.io

Snakemake Documentation, Release 8.2.1

snakedeploy pin-conda-envs envs/ggplot.yaml

Multiple paths to environments can be provided at the same time; also see snakedeploy pin-conda-envs
--help.
Of course, it is important to update the pinnings whenever the original environment is modified, such that they do not
diverge.

Updating environments

When a workflow contains many conda environments, it can be helpful to automatically update them to the latest versions
of all packages. This can be done automatically via Snakedeploy:

snakedeploy update-conda-envs envs/ggplot.yaml

Multiple paths to environments can be provided at the same time; also see snakedeploy update-conda-envs
--help.

Providing post-deployment scripts

From Snakemake 6.14 onwards post-deployment shell-scripts can be provided to perform additional adjustments of a
conda environment. This might be helpful in case a conda package is missing components or requires further configuration
for execution. Post-deployment scripts must be placed next to their corresponding environment-file and require the suffix
.post-deploy.sh, e.g.:

rule NAME:
input:

"seqs.fastq"
output:

"results.tsv"
conda:

"envs/interproscan.yaml"
shell:

"interproscan.sh -i {input} -f tsv -o {output}"

├── Snakefile
└── envs

├── interproscan.yaml
└── interproscan.post-deploy.sh

The path of the conda environment can be accessed within the script via $CONDA_PREFIX. Importantly, if the script
relies on certain shell specific syntax, (e.g. set -o pipefail for bash), make sure to add a matching shebang to the script,
e.g.:

#!env bash
set -o pipefail
...

If no shebang line like above (#!env bash) is provided, the script will be executed with the sh command.

132 Chapter 4. Resources

https://snakedeploy.readthedocs.io

Snakemake Documentation, Release 8.2.1

4.16.4 Using already existing named conda environments

Sometimes it can be handy to refer to an already existing named conda environment from a rule, instead of defining a new
one from scratch. Importantly, one should be aware that this can hamper reproducibility, because the workflow then
relies on this environment to be present in exactly the same way on any new system where the workflow is executed.
Essentially, you will have to take care of this manually in such a case. Therefore, the approach using environment definition
files described above is highly recommended and preferred.
Nevertheless, in case you are still sure that you want to use an existing named environment, it can simply be put into the
conda directive, e.g.

rule NAME:
input:

"table.txt"
output:

"plots/myplot.pdf"
conda:

"some-env-name"
script:

"scripts/plot-stuff.R"

For such a rule, Snakemake will just activate the given environment, instead of automatically deploying anything. Instead
of using a concrete name, it is also possible to provide a name containing wildcards (which must also occur in the output
files of the rule), analogous to the specification of input files.
Note that Snakemake distinguishes file based environments from named ones as follows: if the given specification ends
on .yaml or .yml, Snakemake assumes it to be a path to an environment definition file; otherwise, it assumes the given
specification to be the name of an existing environment.

4.16.5 Running jobs in containers

As an alternative to using Conda (see above), it is possible to define, for each rule, a (docker) container to use, e.g.,

rule NAME:
input:

"table.txt"
output:

"plots/myplot.pdf"
container:

"docker://joseespinosa/docker-r-ggplot2"
script:

"scripts/plot-stuff.R"

When executing Snakemake with

snakemake --software-deployment-method apptainer
or the shorthand version
snakemake --sdm apptainer

it will execute the job within a container that is spawned from the given image. Allowed image urls entail everything
supported by apptainer (e.g., shub:// and docker://). However, docker:// is preferred, as other container
runtimes will be supported in the future (e.g. podman).

Note

4.16. Distribution and Reproducibility 133

Snakemake Documentation, Release 8.2.1

Note that apptainer integration is only used with shell, script and the wrapper directive, not the run directive.
The reason is that the run directive has access to the rest of the Snakefile (e.g. globally defined variables) and therefore
must be executed in the same process as Snakemake itself.

A global definition of a container image can be given:

container: "docker://joseespinosa/docker-r-ggplot2"

rule NAME:
...

In this case all jobs will be executed in a container. You can disable execution in container by setting the container
directive of the rule to None.

container: "docker://joseespinosa/docker-r-ggplot2"

rule NAME:
container: None

4.16.6 Containerization of Conda based workflows

While Integrated Package Management provides control over the used software in exactly the desired versions, it does not
control the underlying operating system. However, given a workflow with conda environments for each rule, Snakemake
can automatically generate a container image specification (in the form of a Dockerfile) that contains all required
environments via the flag –containerize:

snakemake --containerize > Dockerfile

The container image specification generated by Snakemake aims to be transparent and readable, e.g. by displaying each
contained environment in a human readable way. Via the special directive containerized this container image can
be used in the workflow (both globally or per rule) such that no further conda package downloads are necessary, for
example:

containerized: "docker://username/myworkflow:1.0.0"

rule NAME:
input:

"table.txt"
output:

"plots/myplot.pdf"
conda:

"envs/ggplot.yaml"
script:

"scripts/plot-stuff.R"

Using the containerization of Snakemake has three advantages over manually crafting a container image for a workflow:
1. A workflow with conda environment definitions is much more transparent to the reader than a black box container

image, as each rule directly shows which software stack is used. Containerization just persistently projects those
environments into a container image.

2. It remains possible to run the workflow without containers, just via the conda environments.
3. During development, testing can first happen without the container and just on the conda environments. When

releasing a production version of the workflow the image can be uploaded just once and for future stable releases,
thereby limiting the overhead created in container registries.

134 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

4.16.7 Ad-hoc combination of Conda package management with containers

While Integrated Package Management provides control over the used software in exactly the desired versions, it does not
control the underlying operating system. Here, it becomes handy that Snakemake >=4.8.0 allows to combine Conda-based
package management with Running jobs in containers. For example, you can write

container: "docker://continuumio/miniconda3:4.4.10"

rule NAME:
input:

"table.txt"
output:

"plots/myplot.pdf"
conda:

"envs/ggplot.yaml"
script:

"scripts/plot-stuff.R"

in other words, a global definition of a container image can be combined with a per-rule conda directive. Then, upon
invocation with

snakemake --software-deployment-method conda apptainer
or the shorthand version
snakemake --sdm conda apptainer

Snakemake will first pull the defined container image, and then create the requested conda environment from within
the container. The conda environments will still be stored in your working environment, such that they don’t have to
be recreated unless they have changed. The hash under which the environments are stored includes the used container
image url, such that changes to the container image also lead to new environments to be created. When a job is executed,
Snakemake will first enter the container and then activate the conda environment.
By this, both packages and OS can be easily controlled without the overhead of creating and distributing specialized
container images. Of course, it is also possible (though less common) to define a container image per rule in this scenario.
The user can, upon execution, freely choose the desired level of reproducibility:

• no package management (use whatever is on the system)
• Conda based package management (use versions defined by the workflow developer)
• Conda based package management in containerized OS (use versions and OS defined by the workflow developer)

4.16.8 Using environment modules

In high performace cluster systems (HPC), it can be preferable to use environment modules for deployment of optimized
versions of certain standard tools. Snakemake allows to define environment modules per rule:

rule bwa:
input:

"genome.fa"
"reads.fq"

output:
"mapped.bam"

conda:
"envs/bwa.yaml"

envmodules:
"bio/bwa/0.7.9",

(continues on next page)

4.16. Distribution and Reproducibility 135

Snakemake Documentation, Release 8.2.1

(continued from previous page)
"bio/samtools/1.9"

shell:
"bwa mem {input} | samtools view -Sbh - > {output}"

Here, when Snakemake is executed with snakemake --use-envmodules, it will load the defined modules in
the given order, instead of using the also defined conda environment. Note that although not mandatory, one should
always provide either a conda environment or a container (see above), along with environment module definitions. The
reason is that environment modules are often highly platform specific, and cannot be assumed to be available somewhere
else, thereby limiting reproducibility. By definition an equivalent conda environment or container as a fallback, people
outside of the HPC system where the workflow has been designed can still execute it, e.g. by running snakemake
--software-deployment-method conda instead of snakemake --use-envmodules.

4.16.9 Sustainable and reproducible archiving

With Snakemake 3.10.0 it is possible to archive a workflow into a tarball (.tar, .tar.gz, .tar.bz2, .tar.xz), via

snakemake --archive my-workflow.tar.gz

If above layout is followed, this will archive any code and config files that is under git version control. Further, all input
files will be included into the archive. Finally, the software packages of each defined conda environment are included.
This results in a self-contained workflow archive that can be re-executed on a vanilla machine that only has Conda and
Snakemake installed via

tar -xf my-workflow.tar.gz
snakemake -n

Note that the archive is platform specific. For example, if created on Linux, it will run on any Linux newer than the
minimum version that has been supported by the used Conda packages at the time of archiving (e.g. CentOS 6).
A useful pattern when publishing data analyses is to create such an archive, upload it to Zenodo and thereby obtain a DOI.
Then, the DOI can be cited in manuscripts, and readers are able to download and reproduce the data analysis at any time
in the future.

4.16.10 Global workflow dependencies

Often, your workflow will depend on some additional packages that need to be present along with Snakemake in order
to handle actions before any rule is executed. Classical examples for this are pandas, pep (also see Configuring scientific
experiments via PEPs) and storage plugins.
Snakemake allows to define such global dependencies using a global conda directive that should occur at the beginning
of your workflow, before you import or use any of those additional packages:

conda:
"envs/global.yaml"

With envs/global.yaml containing e.g.:

channels:
- conda-forge
- bioconda
- nodefaults

dependencies:
- pandas=1.0.3
- snakemake-storage-plugin-s3

136 Chapter 4. Resources

https://en.wikipedia.org/wiki/Tar_(computing)
https://zenodo.org/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://pandas.pydata.org/
https://pep.databio.org

Snakemake Documentation, Release 8.2.1

Under the hood, this is implemented using conda-inject, which modifies the python searchpath and the PATH variable on
the fly during execution, pointing to additional environments that do not alter the environment in which Snakemake has
been installed.
This mechanism requires that you use Mamba or Conda and activate conda-based software deployment via:

--software-deployment-method conda
or the shorthand version
--sdm conda

4.17 Reports

From Snakemake 5.1 on, it is possible to automatically generate detailed self-contained HTML reports that encompass
runtime statistics, provenance information, workflow topology and results. As an example, the report of the Snakemake
rolling paper can be found here.
For including results into the report, the Snakefile has to be annotated with additional information. Each output file that
shall be part of the report has to be marked with the report flag, which optionally points to a caption in restructured
text format and allows to define a category for grouping purposes. Moreover, a global workflow description can be
defined via the report directive. Consider the following example:

report: "report/workflow.rst"

rule all:
input:

["fig1.svg", "fig2.png", "testdir"]

rule c:
output:

"test.{i}.out"
container:

"docker://continuumio/miniconda3:4.4.10"
conda:

"envs/test.yaml"
shell:

"sleep `shuf -i 1-3 -n 1`; touch {output}"

rule a:
input:

expand("test.{i}.out", i=range(10))
output:

report("fig1.svg", caption="report/fig1.rst", category="Step 1")
shell:

"sleep `shuf -i 1-3 -n 1`; cp data/fig1.svg {output}"

rule b:
input:

expand("{model}.{i}.out", i=range(10))
output:

report("fig2.png", caption="report/fig2.rst", category="Step 2", subcategory="
↪→{model}")

(continues on next page)

4.17. Reports 137

https://github.com/koesterlab/conda-inject
https://github.com/mamba-org/mamba
https://snakemake.github.io/resources/report.html
https://docutils.sourceforge.io/docs/user/rst/quickstart.html
https://docutils.sourceforge.io/docs/user/rst/quickstart.html

Snakemake Documentation, Release 8.2.1

(continued from previous page)
shell:

"sleep `shuf -i 1-3 -n 1`; cp data/fig2.png {output}"

rule d:
output:

report(
directory("testdir"),
patterns=["{name}.txt"],
caption="report/somedata.rst",
category="Step 3")

shell:
"mkdir {output}; for i in 1 2 3; do echo $i > {output}/$i.txt; done"

As can be seen, we define a global description which is contained in the file report/workflow.rst. In addition, we
mark fig1.svg and fig2.png for inclusion into the report, while in both cases specifying a caption text via again
referring to a restructured text file. Note the paths to the .rst-files are interpreted relative to the current Snakefile.
Inside the .rst-files you can use Jinja2 templating to access context information. In case of the global descrip-
tion, you can access the config dictionary via {{ snakemake.config }}, (e.g., use {{ snakemake.
config["mykey"] }} to access the key mykey). In case of output files, you can access the same values as available
with the script directive (e.g., snakemake.wildcards).
When marking files for inclusion in the report, a category and a subcategory can be given, allowing to group
results in of the report. For both, wildcards (like {model} see rule b in the example), are automatically replaced with
the respective values from the corresponding job.
The last rule d creates a directory with several files, here mimicing the case that it is impossible to specify exactly which
files will be created while writing the workflow (e.g. it might depend on the data). Nevertheless, it is still possible to include
those files one by one into the report by defining inclusion patterns (here patterns=["{name}.txt"]) along with
the report flag. When creating the report, Snakemake will scan the directory for files matching the given patterns and
include all of them in the report. Wildcards in those patterns are made available in the jinja-templated caption document
along with the rules wildcards in the snakemake.wildcards object.
If the output of a rule is a directory with an HTML file hierarchy, it is also possible to specify an entry-point HTML file
for inclusion into the report, instead of the patterns approach from above. This works as follows:

rule generate_html_hierarchy:
output:

report(directory("test"), caption="report/caption.rst", htmlindex="test.html")
shell:

"""
mimic writing of an HTML hierarchy
mkdir test
cp template.html test/test.html
mkdir test/js
echo \"alert('test')\" > test/js/test.js
"""

138 Chapter 4. Resources

https://jinja.palletsprojects.com

Snakemake Documentation, Release 8.2.1

4.17.1 Defining file labels

In addition to category, and subcategory, it is possible to define a dictionary of labels for each report item. By that,
the actual filename will be hidden in the report and instead a table with the label keys as columns and the values in the
respective row for the file will be displayed. This can lead to less technical reports that abstract away the fact that the
results of the analysis are actually files. Consider the following modification of rule b from above:

rule b:
input:

expand("{model}.{i}.out", i=range(10))
output:

report(
"fig2.png",
caption="report/fig2.rst",
category="Step 2",
subcategory="{model}",
labels={

"model": "{model}",
"figure": "some plot"

}
)

shell:
"sleep `shuf -i 1-3 -n 1`; cp data/fig2.png {output}"

4.17.2 Determining category, subcategory, and labels dynamically via functions

Similar to e.g. with input file and parameter definition (see Input functions), category and a subcategory and
labels can be specified by pointing to a function that takes wildcards as the first argument (and optionally in
addition input, output, params in any order). The function is expected to return a string or number (int, float,
numpy types), or, in case of labels, a dict with strings as keys and strings or numbers as values.

4.17.3 Linking between items

In every .rst document, you can link to
• theWorkflow panel (with Rules_),
• the Statistics panel (with Statistics_),
• any category panel (with Mycategory_, while Mycategory is the name given for the category argument of
the report flag). E.g., with above example, you could write see `Step 2`_ in order to link to the section with
the results that have been assigned to the category Step 2.

• any file marked with the report flag (with myfile.txt_, while myfile.txt is the basename of the file,
without any leading directories). E.g., with above example, you could write see fig2.png_ in order to link to
the result in the report document.

For details about the hyperlink mechanism of restructured text see here.

4.17. Reports 139

https://docutils.sourceforge.io/docs/user/rst/quickref.html#hyperlink-targets

Snakemake Documentation, Release 8.2.1

4.17.4 Rendering reports

To create the report simply run

snakemake --report report.html

after your workflow has finished. All other information contained in the report (e.g. runtime statistics) is automatically
collected during creation. These statistics are obtained from the metadata that is stored in the .snakemake directory
inside your working directory.
You can define an institute specific stylesheet with:

snakemake --report report.html --report-stylesheet custom-stylesheet.css

In particular, this allows you to e.g. set a logo at the top (by using CSS to inject a background for the placeholder <div
id="brand">, or overwrite colors. For an example custom stylesheet defining the logo, see here. The report for
above example can be found here (with a custom branding for the University of Duisburg-Essen). The full example
source code can be found here.
Note that the report can be restricted to particular jobs and results by specifying targets at the command line, analog to
normal Snakemake execution. For example, with

snakemake fig1.svg --report report-short.html

the report contains only fig1.svg.

4.18 Automatically generating unit tests

Snakemake can automatically generate unit tests from a workflow that has already been successfully executed. By running

snakemake --generate-unit-tests

Snakemake is instructed to take one representative job for each rule and copy its input files to a hidden folder .tests/
unit, along with generating test cases for Pytest.
Importantly, note that such unit tests shall not be generated from big data, as they should usually be finished in a few
seconds. Further, it makes sense to store the generated unit tests in version control (e.g. git), such that huge files are
not recommended. Instead, we suggest to first execute the workflow that shall be tested with some kind of small dummy
datasets, and then use the results thereof to generate the unit tests. The small dummy datasets can in addition be used to
generate an integration test, that could e.g. be stored under .tests/integration, next to the unit tests.
Each auto-generated unit test is stored in a file .tests/unit/test_<rulename>.py, and executes just the one
representative job of the respective rule. After successfull execution of the job, it will compare the obtained results with
those that have been present when running snakemake --generate-unit-tests. By default, the comparison
happens byte by byte (using cmp). This behavior can be overwritten by modifying the test file.

140 Chapter 4. Resources

https://github.com/snakemake/snakemake/tree/main/tests/test_report/
https://pytest.org

Snakemake Documentation, Release 8.2.1

4.19 Integrating foreign workflow management systems

Snakemake 6.2 and later allows to hand over execution steps to other workflow management systems. By this, it is
possible to make use of workflows written for other systems, while performing any further pre- or postprocessing within
Snakemake. Such a handover is indicated with the handover directive. Consider the following example:

rule chipseq_pipeline:
input:

input="design.csv",
fasta="data/genome.fasta",
gtf="data/genome.gtf",

output:
"multiqc/broadPeaks/multiqc_report.html",

params:
pipeline="nf-core/chipseq",
revision="1.2.1",
profile=["conda"],

handover: True
wrapper:

"0.74.0/utils/nextflow"

Here, the workflow is executed as usual until this rule is reached. Then, Snakemake passes all resources to the nextflow
workflow management system, which generates certain files. The rule is executed as a local rule, meaning that it would
not be submitted to a cluster or cloud system by Snakemake. Instead, the invoked other workflow management system
is responsible for that. E.g., in case of Nextflow, submission behavior can be configured via a nextflow.conf file
or environment variables. After the step is done, Snakemake continues execution with the output files produced by the
foreign workflow.

4.20 Citing and Citations

This section gives instructions on how to cite Snakemake and lists citing articles.

4.20.1 Citing Snakemake

When using Snakemake for a publication, please cite the following article in you paper:
Mölder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster, J., Lee, S., Twardziok,
S.O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., Köster, J., 2021. Sustainable data analysis with
Snakemake. F1000Res 10, 33.
This “rolling” paper will be regularly updated when Snakemake receives new features.

More References

The initial Snakemake publication was:
Köster, Johannes and Rahmann, Sven. “Snakemake - A scalable bioinformatics workflow engine”. Bioinformatics 2012.
Another publication describing more of Snakemake internals:
Köster, Johannes and Rahmann, Sven. “Building and Documenting Bioinformatics Workflows with Python-based Snake-
make”. Proceedings of the GCB 2012.
And my PhD thesis which describes all algorithmic details as of 2015:

4.19. Integrating foreign workflow management systems 141

https://nextflow.io
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.12688/f1000research.29032.1
https://bioinformatics.oxfordjournals.org/content/28/19/2520
https://drops.dagstuhl.de/opus/volltexte/oasics-complete/oasics-vol26-gcb2012-complete.pdf
https://drops.dagstuhl.de/opus/volltexte/oasics-complete/oasics-vol26-gcb2012-complete.pdf

Snakemake Documentation, Release 8.2.1

Johannes Köster, “Parallelization, Scalability, and Reproducibility in Next-Generation Sequencing Analysis”, TU Dort-
mund 2014
The most comprehensive publication is our “rolling” paper (see above):
Mölder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster, J., Lee, S., Twardziok,
S.O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., Köster, J., 2021. Sustainable data analysis with
Snakemake. F1000Res 10, 33.

Project Pages

If you publish a Snakemake workflow, consider to add this badge to your project page:

The markdown syntax is

[![Snakemake](https://img.shields.io/badge/snakemake-≥5.6.0-brightgreen.svg?
↪→style=flat)](https://snakemake.readthedocs.io)

Replace the 5.6.0 with the minimum required Snakemake version. You can also change the style.

4.21 More Resources

4.21.1 Talks and Posters

• Poster at ECCB 2016, The Hague, Netherlands.
• Invited talk by Johannes Köster at the Broad Institute, Boston 2015.
• Introduction to Snakemake. Tutorial Slides presented by Johannes Köster at the GCB 2015, Dortmund, Germany.
• Invited talk by Johannes Köster at the DTL Focus Meeting: “NGS Production Pipelines”, Dutch Techcentre for
Life Sciences, Utrecht 2014.

• Taming Snakemake by Jeremy Leipzig, Bioinformatics software developer at Children’s Hospital of Philadelphia,
2014.

• “Snakemake makes … snakes?” - An Introduction by Marcel Martin from SciLifeLab, Stockholm 2015
• “Workflow Management with Snakemake” by Johannes Köster, 2015. Held at the Department of Biostatistics and
Computational Biology, Dana-Farber Cancer Institute

4.21.2 External Resources

These resources are not part of the official documentation.
• A number of tutorials on the subject “Tools for reproducible research”
• Snakemake workflow used for the Kallisto paper
• An alternative tutorial for Snakemake
• An Emacs mode for Snakemake
• Flexible bioinformatics pipelines with Snakemake
• Sandwiches with Snakemake

142 Chapter 4. Resources

https://hdl.handle.net/2003/33940
https://hdl.handle.net/2003/33940
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.12688/f1000research.29032.1
https://shields.io/#styles
https://johanneskoester.bitbucket.io/posters/snakemake+bioconda-2016.pdf
https://slides.com/johanneskoester/snakemake-broad-2015
https://slides.com/johanneskoester/deck-1
https://speakerdeck.com/johanneskoester/workflow-management-with-snakemake
https://speakerdeck.com/johanneskoester/workflow-management-with-snakemake
https://de.slideshare.net/jermdemo/taming-snakemake
https://de.slideshare.net/jermdemo/taming-snakemake
https://marcelm.net/talks/2015/snakemake
https://speakerdeck.com/johanneskoester/workflow-management-with-snakemake-1
https://speakerdeck.com/johanneskoester/workflow-management-with-snakemake-1
https://nbis-reproducible-research.readthedocs.io
https://github.com/pachterlab/kallisto_paper_analysis
https://slowkow.com/notes/snakemake-tutorial/
https://melpa.org/#/snakemake-mode
http://watson.nci.nih.gov/~sdavis/blog/flexible_bioinformatics_pipelines_with_snakemake/
https://github.com/leipzig/SandwichesWithSnakemake

Snakemake Documentation, Release 8.2.1

• A visualization of the past years of Snakemake development
• Japanese version of the Snakemake tutorial
• Basic and advanced french Snakemake tutorial.
• Mini tutorial on Snakemake and Bioconda
• Snakeparse: a utility to expose Snakemake workflow configuation via a command line interface

4.22 Frequently Asked Questions

Contents

• Frequently Asked Questions

– What is the key idea of Snakemake workflows?

– How does Snakemake interpret relative paths?

– Snakemake does not connect my rules as I have expected, what can I do to debug my dependency structure?

– My shell command fails with with errors about an “unbound variable”, what’s wrong?

– My shell command fails with exit code != 0 from within a pipe, what’s wrong?

– I don’t want Snakemake to detect an error if my shell command exits with an exitcode > 1. What can I do?

– How do I run my rule on all files of a certain directory?

– I don’t want expand to use the product of every wildcard, what can I do?

– I don’t want expand to use every wildcard, what can I do?

– Snakemake complains about a cyclic dependency or a PeriodicWildcardError. What can I do?

– Is it possible to pass variable values to the workflow via the command line?

– I get a NameError with my shell command. Are braces unsupported?

– How do I incorporate files that do not follow a consistent naming scheme?

– How do I force Snakemake to rerun all jobs from the rule I just edited?

– How should Snakefiles be formatted?

– How do I enable syntax highlighting in Vim for Snakefiles?

– I want to import some helper functions from another python file. Is that possible?

– How can I run Snakemake on a cluster where its main process is not allowed to run on the head node?

– Can the output of a rule be a symlink?

– Can the input of a rule be a symlink?

– I would like to receive a mail upon snakemake exit. How can this be achieved?

– I want to pass variables between rules. Is that possible?

– Why do my global variables behave strangely when I run my job on a cluster?

– I want to configure the behavior of my shell for all rules. How can that be achieved with Snakemake?

4.22. Frequently Asked Questions 143

https://youtu.be/bq3vXrWw1yk
https://github.com/joemphilips/Translate_Snakemake_Tutorial
https://bioinfo-fr.net/snakemake-pour-les-nuls
https://bioinfo-fr.net/snakemake-aller-plus-loin-avec-la-parallelisation
https://github.com/dlaehnemann/TutMinicondaSnakemake
https://github.com/nh13/snakeparse

Snakemake Documentation, Release 8.2.1

– Some command line arguments like –config cannot be followed by rule or file targets. Is that intended
behavior?

– How do I enforce config values given at the command line to be interpreted as strings?

– How do I make my rule fail if an output file is empty?

– How does Snakemake lock the working directory?

– How do I trigger re-runs for rules with updated code or parameters?

– How do I remove all files created by snakemake, i.e. like make clean

– Why can’t I use the conda directive with a run block?

– Myworkflow is very large, how do I stop Snakemake from printing all this rule/job information in a dry-run?

– Git is messing up the modification times of my input files, what can I do?

– How do I exit a running Snakemake workflow?

– How can I make use of node-local storage when running cluster jobs?

– How do I access elements of input or output by a variable index?

– There is a compiler error when installing Snakemake with pip or easy_install, what shall I do?

– How to enable autocompletion for the zsh shell?

– How can I avoid system /tmp to be used when combining apptainer and conda?

4.22.1 What is the key idea of Snakemake workflows?

The key idea is very similar to GNU Make. The workflow is determined automatically from top (the files you want) to
bottom (the files you have), by applying very general rules with wildcards you give to Snakemake:

When you start using Snakemake, please make sure to walk through the official tutorial. It is crucial to understand how
to properly use the system.

144 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

4.22.2 How does Snakemake interpret relative paths?

Relative paths in Snakemake are interpreted depending on their context.
• Input, output, log, and benchmark files are considered to be relative to the working directory (either the directory in
which you have invoked Snakemake or whatever was specified for --directory or the workdir: directive).

• Any other directives (e.g. conda:, include:, script:, notebook:) consider paths to be relative to the
Snakefile they are defined in.

If you have to manually specify a file that has to be relative to the currently evaluated Snakefile, you can use workflow.
source_path(filepath).

rule read_a_file_relative_to_snakefile:
input:

workflow.source_path("resources/some-file.txt")
output:

"results/some-output.txt"
shell:

"somecommand {input} {output}"

This will in particular also work in combination with modules.

4.22.3 Snakemake does not connect my rules as I have expected, what can I do to
debug my dependency structure?

Since dependencies are inferred implicitly, results can sometimes be suprising when little errors are made in filenames
or when input functions raise unexpected errors. For debugging such cases, Snakemake provides the command line flag
--debug-dag that leads to printing details each decision that is taken while determining the dependencies.
In addition, it is advisable to check whether certain intermediate files would be created by targetting them individually via
the command line.
Finally, it is possible to constrain the rules that are considered for DAG creating via --allowed-rules. This way,
you can easily check rule by rule if it does what you expect. However, note that --allowed-rules is only meant for
debugging. A workflow should always work fine without it.

4.22.4 My shell command fails with with errors about an “unbound variable”, what’s
wrong?

This happens often when calling virtual environments from within Snakemake. Snakemake is using bash strict mode, to
ensure e.g. proper error behavior of shell scripts. Unfortunately, virtualenv and some other tools violate bash strict mode.
The quick fix for virtualenv is to temporarily deactivate the check for unbound variables

set +u; source /path/to/venv/bin/activate; set -u

For more details on bash strict mode, see the here.

4.22. Frequently Asked Questions 145

http://redsymbol.net/articles/unofficial-bash-strict-mode/
http://redsymbol.net/articles/unofficial-bash-strict-mode/

Snakemake Documentation, Release 8.2.1

4.22.5 My shell command fails with exit code != 0 fromwithin a pipe, what’s wrong?

Snakemake is using bash strict mode to ensure best practice error reporting in shell commands. This entails the pipefail
option, which reports errors from within a pipe to outside. If you don’t want this, e.g., to handle empty output in the pipe,
you can disable pipefail via prepending

set +o pipefail;

to your shell command in the problematic rule.

4.22.6 I don’t want Snakemake to detect an error if my shell command exits with
an exitcode > 1. What can I do?

Sometimes, tools encode information in exit codes bigger than 1. Snakemake by default treats anything > 0 as an error.
Special cases have to be added by yourself. For example, you can write

shell:
"""
set +e
somecommand ...
exitcode=$?
if [$exitcode -eq 1]
then

exit 1
else

exit 0
fi
"""

This way, Snakemake only treats exit code 1 as an error, and thinks that everything else is fine. Note that such tools are
an excellent use case for contributing a wrapper.

4.22.7 How do I run my rule on all files of a certain directory?

In Snakemake, similar to GNU Make, the workflow is determined from the top, i.e. from the target files. Imagine you
have a directory with files 1.fastq, 2.fastq, 3.fastq, ..., and you want to produce files 1.bam, 2.
bam, 3.bam, ... you should specify these as target files, using the ids 1,2,3,.... You could end up with at least
two rules like this (or any number of intermediate steps):

IDS = "1 2 3 ...".split() # the list of desired ids

a pseudo-rule that collects the target files
rule all:

input: expand("otherdir/{id}.bam", id=IDS)

a general rule using wildcards that does the work
rule:

input: "thedir/{id}.fastq"
output: "otherdir/{id}.bam"
shell: "..."

Snakemake will then go down the line and determine which files it needs from your initial directory.
In order to infer the IDs from present files, Snakemake provides the glob_wildcards function, e.g.

146 Chapter 4. Resources

http://redsymbol.net/articles/unofficial-bash-strict-mode/
https://snakemake-wrappers.readthedocs.io

Snakemake Documentation, Release 8.2.1

IDS, = glob_wildcards("thedir/{id}.fastq")

The function matches the given pattern against the files present in the filesystem and thereby infers the values for all
wildcards in the pattern. A named tuple that contains a list of values for each wildcard is returned. Here, this named tuple
has only one item, that is the list of values for the wildcard {id}.

4.22.8 I don’t want expand to use the product of every wildcard, what can I do?

By default the expand function uses itertools.product to create every combination of the supplied wildcards.
Expand takes an optional, second positional argument which can customize how wildcards are combined. To create
the list ["a_1.txt", "b_2.txt", "c_3.txt"], invoke expand as: expand("{sample}_{id}.txt",
zip, sample=["a", "b", "c"], id=["1", "2", "3"])

4.22.9 I don’t want expand to use every wildcard, what can I do?

Sometimes partially expanding wildcards is useful to define inputs which still depend on some wildcards. Ex-
pand takes an optional keyword argument, allow_missing=True, that will format only wildcards which are supplied,
leaving others as is. To create the list ["{sample}_1.txt", "{sample}_2.txt"], invoke expand as:
expand("{sample}_{id}.txt", id=["1", "2"], allow_missing=True) If the filename con-
tains the wildcard allow_missing, it will be formatted normally: expand("{allow_missing}.txt", al-
low_missing=True) returns ["True.txt"].

4.22.10 Snakemake complains about a cyclic dependency or a PeriodicWildcardEr-
ror. What can I do?

One limitation of Snakemake is that graphs of jobs have to be acyclic (similar to GNU Make). This means, that no
path in the graph may be a cycle. Although you might have considered this when designing your workflow, Snakemake
sometimes runs into situations where a cyclic dependency cannot be avoided without further information, although the
solution seems obvious for the developer. Consider the following example:

rule all:
input:

"a"

rule unzip:
input:

"{sample}.tar.gz"
output:

"{sample}"
shell:

"tar -xf {input}"

If this workflow is executed with

snakemake -n

two things may happen.
1. If the file a.tar.gz is present in the filesystem, Snakemake will propose the following (expected and correct)

plan:

4.22. Frequently Asked Questions 147

Snakemake Documentation, Release 8.2.1

rule a:
input: a.tar.gz

output: a
wildcards: sample=a

localrule all:
input: a

Job counts:
count jobs
1 a
1 all
2

2. If the file a.tar.gz is not present and cannot be created by any other rule than rule a, Snakemake will try to run
rule a again, with {sample}=a.tar.gz. This would infinitely go on recursively. Snakemake detects this case
and produces a PeriodicWildcardError.

In summary, PeriodicWildcardErrors hint to a problem where a rule or a set of rules can be applied to create its
own input. If you are lucky, Snakemake can be smart and avoid the error by stopping the recursion if a file exists in the
filesystem. Importantly, however, bugs upstream of that rule can manifest as PeriodicWildcardError, although
in reality just a file is missing or named differently. In such cases, it is best to restrict the wildcard of the output file(s),
or follow the general rule of putting output files of different rules into unique subfolders of your working directory. This
way, you can discover the true source of your error.

4.22.11 Is it possible to pass variable values to the workflow via the command line?

Yes, this is possible. Have a look at Configuration. Previously it was necessary to use environment variables like so: E.g.
write

$ SAMPLES="1 2 3 4 5" snakemake

and have in the Snakefile some Python code that reads this environment variable, i.e.

SAMPLES = os.environ.get("SAMPLES", "10 20").split()

4.22.12 I get a NameError with my shell command. Are braces unsupported?

You can use the entire Python format minilanguage in shell commands. Braces in shell commands that are not intended
to insert variable values thus have to be escaped by doubling them:
This:

...
shell: "awk '{print $1}' {input}"

becomes:

...
shell: "awk '{{print $1}}' {input}"

Here the double braces are escapes, i.e. there will remain single braces in the final command. In contrast, {input} is
replaced with an input filename.
In addition, if your shell command has literal backslashes, \\, you must escape them with a backslash, \\\\. For
example:

148 Chapter 4. Resources

https://docs.python.org/3/library/string.html#formatspec

Snakemake Documentation, Release 8.2.1

This:

shell: """printf \">%s\"" {{input}}"""

becomes:

shell: """printf \\">%s\\"" {{input}}"""

4.22.13 How do I incorporate files that do not follow a consistent naming scheme?

The best solution is to have a dictionary that translates a sample id to the inconsistently named files and use a function
(see Input functions) to provide an input file like this:

FILENAME = dict(...) # map sample ids to the irregular filenames here

rule:
use a function as input to delegate to the correct filename
input: lambda wildcards: FILENAME[wildcards.sample]
output: "somefolder/{sample}.csv"
shell: ...

4.22.14 How do I force Snakemake to rerun all jobs from the rule I just edited?

This can be done by invoking Snakemake with the --forcerun or -R flag, followed by the rules that should be re-
executed:

$ snakemake -R somerule

This will cause Snakemake to re-run all jobs of that rule and everything downstream (i.e. directly or indirectly depending
on the rules output).

4.22.15 How should Snakefiles be formatted?

To ensure readability and consistency, you can format Snakefiles with our tool snakefmt.
Python code gets formatted with black and Snakemake-specific blocks are formatted using similar principles (such as
PEP8).

4.22.16 How do I enable syntax highlighting in Vim for Snakefiles?

Instructions for doing this are located here.
Note that you can also format Snakefiles in Vim using snakefmt, with instructions located here!

4.22. Frequently Asked Questions 149

https://github.com/snakemake/snakefmt
https://github.com/psf/black
https://www.python.org/dev/peps/pep-0008/
https://github.com/snakemake/snakemake/tree/main/misc/vim
https://github.com/snakemake/snakefmt/blob/master/docs/editor_integration.md#vim

Snakemake Documentation, Release 8.2.1

4.22.17 I want to import some helper functions from another python file. Is that
possible?

Yes, from version 2.4.8 on, Snakemake allows to import python modules (and also simple python files) from the same
directory where the Snakefile resides.

4.22.18 How can I run Snakemake on a cluster where its main process is not al-
lowed to run on the head node?

This can be achived by submitting the main Snakemake invocation as a job to the cluster. If it is not allowed to submit a
job from a non-head cluster node, you can provide a submit command that goes back to the head node before submitting:

qsub -N PIPE -cwd -j yes python snakemake --cluster "ssh user@headnode_address 'qsub -
↪→N pipe_task -j yes -cwd -S /bin/sh ' " -j

This hint was provided by Inti Pedroso.

4.22.19 Can the output of a rule be a symlink?

Yes. As of Snakemake 3.8, output files are removed before running a rule and then touched after the rule completes to
ensure they are newer than the input. Symlinks are treated just the same as normal files in this regard, and Snakemake
ensures that it only modifies the link and not the target when doing this.
Here is an example where you want to merge N files together, but if N == 1 a symlink will do. This is easier than
attempting to implement workflow logic that skips the step entirely. Note the -r flag, supported by modern versions of ln,
is useful to achieve correct linking between files in subdirectories.

rule merge_files:
output: "{foo}/all_merged.txt"
input: my_input_func # some function that yields 1 or more files to merge
run:

if len(input) > 1:
shell("cat {input} | sort > {output}")

else:
shell("ln -sr {input} {output}")

Do be careful with symlinks in combination with Step 6: Temporary and protected files. When the original file is deleted,
this can cause various errors once the symlink does not point to a valid file any more.
If you get a message like Unable to set utime on symlink Your Python build does not
support it. this means that Snakemake is unable to properly adjust the modification time of the symlink. In this
case, a workaround is to add the shell command touch -h {output} to the end of the rule.

4.22.20 Can the input of a rule be a symlink?

Yes. In this case, since Snakemake 3.8, one extra consideration is applied. If either the link itself or the target of the link
is newer than the output files for the rule then it will trigger the rule to be re-run.

150 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

4.22.21 I would like to receive a mail upon snakemake exit. How can this be
achieved?

On unix, you can make use of the commonly pre-installed mail command:

snakemake 2> snakemake.log
mail -s "snakemake finished" youremail@provider.com < snakemake.log

In case your administrator does not provide you with a proper configuration of the sendmail framework, you can configure
mail to work e.g. via Gmail (see here).

4.22.22 I want to pass variables between rules. Is that possible?

Because of the cluster support and the ability to resume a workflow where you stopped last time, Snakemake in general
should be used in a way that information is stored in the output files of your jobs. Sometimes it might though be handy to
have a kind of persistent storage for simple values between jobs and rules. Using plain python objects like a global dict
for this will not work as each job is run in a separate process by snakemake. What helps here is the PersistentDict from
the pytools package. Here is an example of a Snakemake workflow using this facility:

from pytools.persistent_dict import PersistentDict

storage = PersistentDict("mystorage")

rule a:
input: "test.in"
output: "test.out"
run:

myvar = storage.fetch("myvar")
do stuff

rule b:
output: temp("test.in")
run:

storage.store("myvar", 3.14)

Here, the output rule b has to be temp in order to ensure that myvar is stored in each run of the workflow as rule a relies
on it. In other words, the PersistentDict is persistent between the job processes, but not between different runs of this
workflow. If you need to conserve information between different runs, use output files for them.

4.22.23 Why do my global variables behave strangely when I run my job on a clus-
ter?

This is closely related to the question above. Any Python code you put outside of a rule definition is normally run once
before Snakemake starts to process rules, but on a cluster it is re-run again for each submitted job, because Snakemake
implements jobs by re-running itself.
Consider the following…

from mydatabase import get_connection

dbh = get_connection()
latest_parameters = dbh.get_params().latest()

rule a:

(continues on next page)

4.22. Frequently Asked Questions 151

https://www.cyberciti.biz/tips/linux-use-gmail-as-a-smarthost.html
https://github.com/inducer/pytools

Snakemake Documentation, Release 8.2.1

(continued from previous page)
input: "{foo}.in"
output: "{foo}.out"
shell: "do_op -params {latest_parameters} {input} {output}"

When run a single machine, you will see a single connection to your database and get a single value for latest_parameters
for the duration of the run. On a cluster you will see a connection attempt from the cluster node for each job submitted,
regardless of whether it happens to involve rule a or not, and the parameters will be recalculated for each job.

4.22.24 I want to configure the behavior of my shell for all rules. How can that be
achieved with Snakemake?

You can set a prefix that will prepended to all shell commands by adding e.g.

shell.prefix("set -o pipefail; ")

to the top of your Snakefile. Make sure that the prefix ends with a semicolon, such that it will not interfere with the
subsequent commands. To simulate a bash login shell, you can do the following:

shell.executable("/bin/bash")
shell.prefix("source ~/.bashrc; ")

4.22.25 Some command line arguments like –config cannot be followed by rule or
file targets. Is that intended behavior?

This is a limitation of the argparse module, which cannot distinguish between the perhaps next arg of --config and a
target. As a solution, you can put the –config at the end of your invocation, or prepend the target with a single --, i.e.

$ snakemake --config foo=bar -- mytarget
$ snakemake mytarget --config foo=bar

4.22.26 How do I enforce config values given at the command line to be interpreted
as strings?

When passing config values like this

$ snakemake --config version=2018_1

Snakemake will first try to interpret the given value as number. Only if that fails, it will interpret the value as string.
Here, it does not fail, because the underscore _ is interpreted as thousand separator. In order to ensure that the value is
interpreted as string, you have to pass it in quotes. Since bash otherwise automatically removes quotes, you have to also
wrap the entire entry into quotes, e.g.:

$ snakemake --config 'version="2018_1"'

152 Chapter 4. Resources

Snakemake Documentation, Release 8.2.1

4.22.27 How do I make my rule fail if an output file is empty?

Snakemake expects shell commands to behave properly, meaning that failures should cause an exit status other than zero.
If a command does not exit with a status other than zero, Snakemake assumes everything worked fine, even if output
files are empty. This is because empty output files are also a reasonable tool to indicate progress where no real output
was produced. However, sometimes you will have to deal with tools that do not properly report their failure with an exit
status. Here, the recommended way is to use bash to check for non-empty output files, e.g.:

rule:
input: ...
output: "my/output/file.txt"
shell: "somecommand {input} {output} && [[-s {output}]]"

4.22.28 How does Snakemake lock the working directory?

Per default, Snakemake will lock a working directory by output and input files. Two Snakemake instances that want to
create the same output file are not possible. Two instances creating disjoint sets of output files are possible. With the
command line option --nolock, you can disable this mechanism on your own risk. With --unlock, you can be
remove a stale lock. Stale locks can appear if your machine is powered off with a running Snakemake instance.

4.22.29 How do I trigger re-runs for rules with updated code or parameters?

Similar to the solution above, you can use

$ snakemake -n -R `snakemake --list-params-changes`

and

$ snakemake -n -R `snakemake --list-code-changes`

Again, the list commands in backticks return the list of output files with changes, which are fed into -R to trigger a re-run.

4.22.30 How do I remove all files created by snakemake, i.e. like make clean

To remove all files created by snakemake as output files to start from scratch, you can use

$ snakemake some_target --delete-all-output

Only files that are output of snakemake rules will be removed, not those that serve as primary inputs to the work-
flow. Note that this will only affect the files involved in reaching the specified target(s). It is strongly advised to first
run together with --dry-run to list the files that would be removed without actually deleting anything. The flag
--delete-temp-output can be used in a similar manner to only delete files flagged as temporary.

4.22. Frequently Asked Questions 153

Snakemake Documentation, Release 8.2.1

4.22.31 Why can’t I use the conda directive with a run block?

The run block of a rule (see Snakefiles and Rules) has access to anything defined in the Snakefile, outside of the rule. Hence,
it has to share the conda environment with the main Snakemake process. To avoid confusion we therefore disallow the
conda directive together with the run block. It is recommended to use the script directive instead (see External scripts).

4.22.32 My workflow is very large, how do I stop Snakemake from printing all this
rule/job information in a dry-run?

Indeed, the information for each individual job can slow down a dry-run if there are tens of thousands of jobs. If you are
just interested in the final summary, you can use the --quiet flag to suppress this.

$ snakemake -n --quiet

4.22.33 Git is messing up the modification times of my input files, what can I do?

When you checkout a git repository, the modification times of updated files are set to the time of the checkout. If you rely
on these files as input and output files in your workflow, this can cause trouble. For example, Snakemake could think that
a certain (git-tracked) output has to be re-executed, just because its input has been checked out a bit later. In such cases,
it is advisable to set the file modification dates to the last commit date after an update has been pulled. One solution is to
add the following lines to your .bashrc (or similar):

gitmtim(){
local f
for f; do

touch -d @0`git log --pretty=%at -n1 -- "$f"` "$f"
done

}
gitmodtimes(){

for f in $(git ls-tree -r $(git rev-parse --abbrev-ref HEAD) --name-only); do
gitmtim $f

done
}

(inspired by the answer here). You can then run gitmodtimes to update the modification times of all tracked files on
the current branch to their last commit time in git; BE CAREFUL–this does not account for local changes that have not
been commited.

4.22.34 How do I exit a running Snakemake workflow?

There are two ways to exit a currently running workflow.
1. If you want to kill all running jobs, hit Ctrl+C. Note that when using --cluster, this will only cancel the main

Snakemake process.
2. If you want to stop the scheduling of new jobs and wait for all running jobs to be finished, you can send a TERM

signal, e.g., via

killall -TERM snakemake

154 Chapter 4. Resources

https://stackoverflow.com/questions/2458042/restore-files-modification-time-in-git/22638823#22638823

Snakemake Documentation, Release 8.2.1

4.22.35 How can I make use of node-local storage when running cluster jobs?

When running jobs on a cluster you might want to make use of a node-local scratch directory in order to reduce cluster
network traffic and/or get more efficient disk storage for temporary files. There is currently no way of doing this in
Snakemake, but a possible workaround involves the shadow directive and setting the --shadow-prefix flag to e.g.
/scratch.

rule:
output:

"some_summary_statistics.txt"
shadow: "minimal"
shell:

"""
generate huge_file.csv
summarize huge_file.csv > {output}
"""

The following would then lead to the job being executed in /scratch/shadow/some_unique_hash/, and the
temporary file huge_file.csv could be kept at the compute node.

$ snakemake --shadow-prefix /scratch some_summary_statistics.txt --cluster ...

If you want the input files of your rule to be copied to the node-local scratch directory instead of just using symbolic
links, you can use copy-minimal in the shadow directive. This is useful for example for benchmarking tools as a
black-box.

rule:
input:

"input_file.txt"
output:

file = "output_file.txt",
benchmark = "benchmark_results.txt",

shadow: "copy-minimal"
shell:

"""
/usr/bin/time -v command "{input}" "{output.file}" > "{output.benchmark}"
"""

Executing snakemake as above then leads to the shell script accessing only node-local storage.

4.22.36 How do I access elements of input or output by a variable index?

Assuming you have something like the following rule

rule a:
output:

expand("test.{i}.out", i=range(20))
run:

for i in range(20):
shell("echo test > {output[i]}")

Snakemake will fail upon execution with the error 'OutputFiles' object has no attribute 'i'. The
reason is that the shell command is using the Python format mini language, which only allows indexing via constants, e.g.,
output[1], but not via variables. Variables are treated as attribute names instead. The solution is to write

4.22. Frequently Asked Questions 155

https://docs.python.org/3/library/string.html#formatspec

Snakemake Documentation, Release 8.2.1

rule a:
output:

expand("test.{i}.out", i=range(20))
run:

for i in range(20):
f = output[i]
shell("echo test > {f}")

or, more concise in this special case:

rule a:
output:

expand("test.{i}.out", i=range(20))
run:

for f in output:
shell("echo test > {f}")

4.22.37 There is a compiler error when installing Snakemake with pip or
easy_install, what shall I do?

Snakemake itself is plain Python, hence the compiler error must come from one of the dependencies, like e.g., datrie.
You should have a look if maybe you are missing some library or a certain compiler package. If everything seems fine,
please report to the upstream developers of the failing dependency.
Note that in general it is recommended to install Snakemake via Conda which gives you precompiled packages and the
additional benefit of having automatic software deployment integrated into your workflow execution.

4.22.38 How to enable autocompletion for the zsh shell?

For users of the Z shell (zsh), just run the following (assuming an activated zsh) to activate autocompletion for snakemake:

compdef _gnu_generic snakemake

Example: Say you have forgotten how to use the various options startingforce, just type the partial match i.e. --force
which results in a list of all potential hits along with a description:

$snakemake --force**pressing tab**

--force -- Force the execution of the selected target or the
--force-use-threads -- Force threads rather than processes. Helpful if shared
--forceall -- Force the execution of the selected (or the first)
--forcerun -- (TARGET (TARGET ...)), -R (TARGET (TARGET ...))

To activate this autocompletion permanently, put this line in ~/.zshrc.
Here is some further reading.

156 Chapter 4. Resources

https://conda.io
https://www.zsh.org/
https://github.com/zsh-users/zsh-completions/blob/master/zsh-completions-howto.org

Snakemake Documentation, Release 8.2.1

4.22.39 How can I avoid system /tmp to be used when combining apptainer and
conda?

When using both apptainer and conda the idea is that inside the apptainer container the conda environment is being
installed. Some apptainer instances are set to share the system /tmp with the containers. This can lead to unexpected
behaviour where the system /tmp gets full. To stop this behaviour you’d have to run apptainer with the --contain
option.

4.23 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.
You can contribute in many ways:

4.23.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/snakemake/snakemake/issues
If you are reporting a bug, please include:

• Your operating system name and version.
• Any details about your local setup that might be helpful in troubleshooting.
• Detailed steps to reproduce the bug.

Fix Bugs

Look through the Github issues for bugs. If you want to start working on a bug then please write short message on the
issue tracker to prevent duplicate work.

Implement Features

Look through the Github issues for features. If you want to start working on an issue then please write short message on
the issue tracker to prevent duplicate work.

Contributing a plugin

Currently, Snakemake supports executor plugins and storage plugins. The Snakemake plugin catalog shows which plugins
are available and how to contribute new ones.

4.23. Contributing 157

https://github.com/snakemake/snakemake/issues
https://snakemake.github.io/snakemake-plugin-catalog

Snakemake Documentation, Release 8.2.1

Write Documentation

Snakemake could always use more documentation, whether as part of the official vcfpy docs, in docstrings, or even on the
web in blog posts, articles, and such.
Snakemake uses Sphinx for the user manual (that you are currently reading). See project_info-doc_guidelines on how the
documentation reStructuredText is used.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/snakemake/snakemake/issues
If you are proposing a feature:

• Explain in detail how it would work.
• Keep the scope as narrow as possible, to make it easier to implement.
• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.23.2 Pull Request Guidelines

To update the documentation, fix bugs or add new features you need to create a Pull Request . A PR is a change you make
to your local copy of the code for us to review and potentially integrate into the code base.
To create a Pull Request you need to do these steps:

1. Create a Github account.
2. Fork the repository.
3. Clone your fork locally.
4. Go to the created snakemake folder with cd snakemake.
5. Create a new branch with git checkout -b <descriptive_branch_name>.
6. Make your changes to the code or documentation.
7. Run git add . to add all the changed files to the commit (to see what files will be added you can run git add

. --dry-run).
8. To commit the added files use git commit. (This will open a command line editor to write a commit message.

These should have a descriptive 80 line header, followed by an empty line, and then a description of what you did
and why. To use your command line text editor of choice use (for example) export GIT_EDITOR=vim before
running git commit).

9. Now you can push your changes to your Github copy of Snakemake by running git push origin
<descriptive_branch_name>.

10. If you now go to the webpage for your Github copy of Snakemake you should see a link in the sidebar called “Create
Pull Request”.

11. Now you need to choose your PR from the menu and click the “Create pull request” button. Be sure to change the
pull request target branch to <descriptive_branch_name>!

If you want to create more pull requests, first run git checkout main and then start at step 5. with a new branch
name.
Feel free to ask questions about this if you want to contribute to Snakemake :)

158 Chapter 4. Resources

https://sphinx-doc.org
https://github.com/snakemake/snakemake/issues

Snakemake Documentation, Release 8.2.1

4.23.3 Testing Guidelines

To ensure that you do not introduce bugs into Snakemake, you should test your code thouroughly.
To have integration tests run automatically when commiting code changes to Github, you need to sign up on wercker.com
and register a user.
The easiest way to run your development version of Snakemake is perhaps to go to the folder containing your local copy
of Snakemake and call:

$ conda env create -f test-environment.yml -n snakemake-testing
$ conda activate snakemake-testing
$ pip install -e .

This will make your development version of Snakemake the one called when running snakemake. You do not need to run
this command after each time you make code changes.
From the base snakemake folder you call pytest to run all the tests, or choose one specific test:

$ pytest
$ pytest tests/tests.py::test_log_input

If you introduce a new feature you should add a new test to the tests directory. See the folder for examples.

4.23.4 Documentation Guidelines

For the documentation, please adhere to the following guidelines:
• Put each sentence on its own line, this makes tracking changes through Git SCM easier.
• Provide hyperlink targets, at least for the first two section levels. For this, use the format
<document_part>-<section_name>, e.g., project_info-doc_guidelines.

• Use the section structure from below.

.. document_part-heading_1:

=========
Heading 1
=========

.. document_part-heading_2:

Heading 2

.. document_part-heading_3:

Heading 3
=========

.. document_part-heading_4:

Heading 4

(continues on next page)

4.23. Contributing 159

Snakemake Documentation, Release 8.2.1

(continued from previous page)

.. document_part-heading_5:

Heading 5
~~~~~~~~~

.. document_part-heading_6:

Heading 6
:::::::::

4.23.5 Documentation Setup

For building the documentation, you have to install the Sphinx. If you have already installed Conda, all you need to do is
to create a Snakemake development environment via

$ git clone git@github.com:snakemake/snakemake.git
$ cd snakemake
$ conda env create -f doc-environment.yml -n snakemake

Then, the docs can be built with

$ conda activate snakemake
$ cd docs
$ make html
$ make clean && make html # force rebuild

Alternatively, you can use virtualenv. The following assumes you have a working Python 3 setup.

$ git clone git@github.org:snakemake/snakemake.git
$ cd snakemake/docs
$ virtualenv -p python3 .venv
$ source .venv/bin/activate
$ pip install --upgrade -r requirements.txt

Afterwards, the docs can be built with

$ source .venv/bin/activate
$ make html # rebuild for changed files only
$ make clean && make html # force rebuild

160 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

4.24 Credits

4.24.1 Development Lead

• Johannes Köster

4.24.2 Development Team

• Christopher Tomkins-Tinch
• David Koppstein
• Tim Booth
• Manuel Holtgrewe
• Christian Arnold
• Wibowo Arindrarto
• Rasmus Ågren
• Soohyun Lee
• Vanessa Sochat

4.24.3 Contributors

In alphabetical order
• Andreas Wilm
• Anthony Underwood
• Ryan Dale
• David Alexander
• Elias Kuthe
• Elmar Pruesse
• Hyeshik Chang
• Jay Hesselberth
• Jesper Foldager
• John Huddleston
• Joona Lehtomäki
• Karel Brinda
• Karl Gutwin
• Kemal Eren
• Kostis Anagnostopoulos
• Kyle A. Beauchamp
• Kyle Meyer

4.24. Credits 161



Snakemake Documentation, Release 8.2.1

• Lance Parsons
• Manuel Holtgrewe
• Marcel Martin
• Matthew Shirley
• Mattias Franberg
• Matt Shirley
• Paul Moore
• Per Unneberg
• Ryan C. Thompson
• Ryan Dale
• Sean Davis
• Simon Ye
• Tobias Marschall
• Vanessa Sochat
• Willem Ligtenberg

4.25 Changelog

4.25.1 8.2.1 (2024-01-17)

Bug Fixes

• do not require cores to be set for rule-level methods of the workflow API or the corresponding CLI commands (e.g.
–lint). (#2629) (2040468)

• fix false complaints about rules with multiple output files (#2628) (b1b4f5b)
• migration guide typo and wrong link (#2625) (645f3d1)

4.25.2 8.2.0 (2024-01-16)

Features

• add method to obtain group args for spawned jobs (bd1b450)

162 Chapter 4. Resources

https://github.com/snakemake/snakemake/issues/2629
https://github.com/snakemake/snakemake/commit/20404688e91beadd8790e3c6cdcb727bc47d597e
https://github.com/snakemake/snakemake/issues/2628
https://github.com/snakemake/snakemake/commit/b1b4f5b0adcd8066b7a6376e9b56778014f9921b
https://github.com/snakemake/snakemake/issues/2625
https://github.com/snakemake/snakemake/commit/645f3d1426c1dcd41adf813bdb833060775ffda5
https://github.com/snakemake/snakemake/commit/bd1b450950c5b6e510778ca09fe11beffd9a6ff3


Snakemake Documentation, Release 8.2.1

Bug Fixes

• properly resolve wildcards in group components (#2620) (c788a46)
• return set of rules when obtaining allowed rules for remote job (2c44cf6)

4.25.3 8.1.3 (2024-01-15)

Bug Fixes

• bug with preemptible rules (#2616) (c6d7141)
• do not pass snakefile as metadata when wms monitor flag is used (#2573) (13b3205)
• use default group settings if not execution workflow (fixes attribute error occurring with –report) (#2617) (21e9964)

4.25.4 8.1.2 (2024-01-12)

Bug Fixes

• local mtime handling in case of storage plugins and cleaner error message for parallel storage retrieval (#2611)
(880b264)

• Migrate away from deprecated pulp API (#2610) (fb26640)

4.25.5 8.1.1 (2024-01-11)

Bug Fixes

• deduplicate input files before retrieval from storage (#2600) (37cf475)

4.25.6 8.1.0 (2024-01-08)

Features

• add –sdm short opt for –deployment (#2551) (fd8b4b0)

Bug Fixes

• add mamba to docker image (eb0c884)
• correctly report lineno (#2584) (967a0d7)
• move apptainer into separate env in docker image (94e9e2c)
• single line f-string format error in py3.12 (#2588) (87c06c0)

4.25. Changelog 163

https://github.com/snakemake/snakemake/issues/2620
https://github.com/snakemake/snakemake/commit/c788a465f25dc700103df6475d566d81e2c88bef
https://github.com/snakemake/snakemake/commit/2c44cf641335812ca0877e3987726403c8919415
https://github.com/snakemake/snakemake/issues/2616
https://github.com/snakemake/snakemake/commit/c6d71410a042f2c0075a75fc024bd1e05fe0af15
https://github.com/snakemake/snakemake/issues/2573
https://github.com/snakemake/snakemake/commit/13b3205a6e808dc48fd7a3be9652b9f0c8887648
https://github.com/snakemake/snakemake/issues/2617
https://github.com/snakemake/snakemake/commit/21e996421abd72122a1403a10eb74c111bde28be
https://github.com/snakemake/snakemake/issues/2611
https://github.com/snakemake/snakemake/commit/880b2645c961a98c0eb33b9cdab75d7804860c0a
https://github.com/snakemake/snakemake/issues/2610
https://github.com/snakemake/snakemake/commit/fb2664008d6cffd09c52ec9fd9c994bd198ed69c
https://github.com/snakemake/snakemake/issues/2600
https://github.com/snakemake/snakemake/commit/37cf475a4205d306a3969ab0e3249f0c9f7d4e19
https://github.com/snakemake/snakemake/issues/2551
https://github.com/snakemake/snakemake/commit/fd8b4b08da778097071ea8c32c95e21e610c6614
https://github.com/snakemake/snakemake/commit/eb0c88495b506300fdf7c1afc4c02d6b91c6a582
https://github.com/snakemake/snakemake/issues/2584
https://github.com/snakemake/snakemake/commit/967a0d7cb90c63c7be00b49fd535cf1029f63b5b
https://github.com/snakemake/snakemake/commit/94e9e2c33ee63551aa3630c7106344ee2fa11f4d
https://github.com/snakemake/snakemake/issues/2588
https://github.com/snakemake/snakemake/commit/87c06c0f5745f577c12db39852c6f763a2d41954


Snakemake Documentation, Release 8.2.1

Documentation

• add note on google executor backends (ff8683c)
• diff 7 and 8 (#2561) (ba22e07)

4.25.7 8.0.1 (2023-12-21)

Bug Fixes

• remove bash completion entrypoint (no longer supported, was too slow to be usable anyway) (922b53a)

Documentation

• fix cli options rendering (264c1a9)
• fixes in migration guide (f8adefa)

4.25.8 8.0.0 (2023-12-20)

� BREAKING CHANGES

Snakemake 8 marks the beginning of decomposing Snakemake into a framework of plugins. This enables the democ-
ratization of method development within the Snakemake ecosystem. We start with plugins for storage and execution
backends. In the future, there will be plugins for the scheduling, metadata, software deployment, reporting, and many
more. This way, it will be possible to easily launch and explore new developments in workflow management and repro-
ducible data analysis without the need to get your work merged into the main codebase of Snakemake and also without
the need to develop a new workflow management system as a proof of concept.
In detail, Snakemake 8 introduces the following changes. Unfortunately it was unavoidable to break some usages (we
apologize). Nevertheless, we tried to ensure that every removed or modified feature has been replaced with an equivalent
reimplementation, as outlined in our migration docs. While Snakemake 8 has an even more thorough testing framework
than any release before, and while it has been quite heavily tested in practice by us, you might initially experience bugs
and glitches for which we want to apologize beforehand. We think that the massive codebase improvements are worth it
in the long run, and hope that everything goes well. As always, any pull requests with test cases and pointers to bugs are
more than welcome.

Detailed breaking changes

• removed the long time ago deprecated support for dynamic, version, and subworkflow (see the migration docs)
• migrated old remote providers into storage plugins (see the migration docs)
• migrated execution backends into plugins, including a change in the respective command line interfaces (see the
migration docs)

• deprecates --use-conda and --use-singularity in favor of --software-deployment-method
conda or --software-deployment-method apptainer and
--software-deployment-method conda apptainer (see the migration docs)

• profile support is now versioned, such that different profiles can be written for different minimum Snakemake
versions (see the migration docs)

• redesigned Snakemake API. It now uses a modern, dataclass based approach (see the migration docs)

164 Chapter 4. Resources

https://github.com/snakemake/snakemake/commit/ff8683c80511a78103c14442a3d3fb81bcbef2cc
https://github.com/snakemake/snakemake/issues/2561
https://github.com/snakemake/snakemake/commit/ba22e07af2ab8248888cb57f4bcb8a9eb2623977
https://github.com/snakemake/snakemake/commit/922b53aa0cba05da067cc67fccc6852bbc161edb
https://github.com/snakemake/snakemake/commit/264c1a92e824323b3060192d7a22aeb0c07678e0
https://github.com/snakemake/snakemake/commit/f8adefaa605bd87df40440a211276a6825d138ed
https://snakemake.readthedocs.io/en/latest/getting_started/migration.html#migrating-to-snakemake-8
https://snakemake.readthedocs.io/en/latest/getting_started/migration.html#migrating-to-snakemake-8
https://snakemake.readthedocs.io/en/latest/getting_started/migration.html#migrating-to-snakemake-8
https://snakemake.readthedocs.io/en/latest/getting_started/migration.html#migrating-to-snakemake-8
https://snakemake.readthedocs.io/en/latest/getting_started/migration.html#migrating-to-snakemake-8
https://snakemake.readthedocs.io/en/latest/getting_started/migration.html#migrating-to-snakemake-8
https://snakemake.readthedocs.io/en/latest/getting_started/migration.html#migrating-to-snakemake-8
https://snakemake.readthedocs.io/en/latest/getting_started/migration.html#migrating-to-snakemake-8


Snakemake Documentation, Release 8.2.1

Features

• add ability to inject conda environments into running Snakefile (#2479) (6140e29)
• add functionality for deploying sources if no shared FS is assumed (#2486) (76eac3c)
• add option to control software deployment mode (shared or non shared FS) (#2525) (04ec2c0)
• allow detailed configuration of shared FS usage (#2528) (0d34be9)
• allow environment variables in string values of profile (e.g. paths may now contain elements like $USER).
(58dc70c)

• allow python expressions in –set-resources (#2521) (022a31e)
• allow to set latency_wait in executor test suite (c0bca0b)
• automatically upload workflow sources to default storage provider if no shared FS is used (a450c49)
• Faster ci test setup (#2489) (4798e8a)
• implement precommand (#2482) (ff0f979)
• redesigned Snakemake API. It now uses a modern, dataclass based approach (#2403) (2be3bfa)
• support for external executor plugins (#2305) (c9eaa4e)
• version specific profile config files (profile/config.v8+.yaml with profile/config.yaml as fallback that matches any
version) (#2498) (47e5811)

Bug Fixes

• adapt to changes in snakemake-interface-executor-plugins (635c68a)
• add storage provider args to deploy sources command (67178e3)
• add testcase for script directive to work with Python 3.7 and corresponding fix. (0b4ae2e)
• allow pepfile and pepschema to take pathlib (#2546) (ca91661)
• also inherit rule proxies if there is no rulename modifier specified in a use rule statement (#2440) (1570289)
• assume at most 8GB memory for default resources. This way, we avoid exploding memory requirements for large
input files that are very unlikely to be put entirely into memory by any tool. (11c2ecc)

• comparison to float in scheduler (ef44d84)
• detect job paths that leave and then enter a group. Such paths are invalid because then the group depends on itself.
(#2527) (5383a4d)

• ensure that auto deployment of default storage provider works in containers with read-only root home. (1a347ff)
• ensure that log and benchmark files are uploaded to storage as well (#2545) (6aabb5d)
• ensure that targetjob is always forced. This fixes a bug causing run-directive rules to not being executed even when
enforced via e.g. -R. (#2448) (b2a60d5)

• fix cache handling and unlock handling (2f4d5e1)
• fix nargs definition for –deploy-sources (fc252c8)
• fix path handling when detective profiles (fe63881)
• fix storage handling on windows by converting all paths to posix paths (#2519) (7864a76)
• handle different f-string tokens in py3.12 (#2485) (f2c7613)

4.25. Changelog 165

https://github.com/snakemake/snakemake/issues/2479
https://github.com/snakemake/snakemake/commit/6140e29864cf0fcdd83194f218408867c54b730d
https://github.com/snakemake/snakemake/issues/2486
https://github.com/snakemake/snakemake/commit/76eac3c570624f818ff43f4759a27a3e284bf03c
https://github.com/snakemake/snakemake/issues/2525
https://github.com/snakemake/snakemake/commit/04ec2c0262b2cb96cbcd7edbbb2596979c1703ae
https://github.com/snakemake/snakemake/issues/2528
https://github.com/snakemake/snakemake/commit/0d34be90040f937021eb25becb4ef5d5aae66473
https://github.com/snakemake/snakemake/commit/58dc70c513d08cb217647ec591df93b40517b650
https://github.com/snakemake/snakemake/issues/2521
https://github.com/snakemake/snakemake/commit/022a31e0e75416904589c62b58e54c952d930c69
https://github.com/snakemake/snakemake/commit/c0bca0bb8bf66fb34def7459f757140ce3825a25
https://github.com/snakemake/snakemake/commit/a450c4998de3ab7deb0fb2bc19dc59fdc484309d
https://github.com/snakemake/snakemake/issues/2489
https://github.com/snakemake/snakemake/commit/4798e8ac226bded585e9fe31d43ae9e93a598780
https://github.com/snakemake/snakemake/issues/2482
https://github.com/snakemake/snakemake/commit/ff0f979b68b1e12be8151c7f5547c6a13ad3ee9a
https://github.com/snakemake/snakemake/issues/2403
https://github.com/snakemake/snakemake/commit/2be3bfa4841967928069a2a024554b8a86b699f1
https://github.com/snakemake/snakemake/issues/2305
https://github.com/snakemake/snakemake/commit/c9eaa4e12e4a348f93e5ea5793faaec1fd547fac
https://github.com/snakemake/snakemake/issues/2498
https://github.com/snakemake/snakemake/commit/47e581181f952884577f0237a1aa9457ee9554dd
https://github.com/snakemake/snakemake/commit/635c68abe3c6e01a70803f2423718a99ea056a00
https://github.com/snakemake/snakemake/commit/67178e31e68dc165c503d49eaf40340a9ad65e90
https://github.com/snakemake/snakemake/commit/0b4ae2e1155378a78e0786ad4dfd5d44fa41c9ae
https://github.com/snakemake/snakemake/issues/2546
https://github.com/snakemake/snakemake/commit/ca91661bf2ff215f005e8d9351fa3320d5cf5498
https://github.com/snakemake/snakemake/issues/2440
https://github.com/snakemake/snakemake/commit/15702891b31635a79f31e857d09f3e285f71717b
https://github.com/snakemake/snakemake/commit/11c2eccfa72a2732d20a66bbf57995ee9dfd14ae
https://github.com/snakemake/snakemake/commit/ef44d844b81d671604a1ce285a43ca1d5ea59d96
https://github.com/snakemake/snakemake/issues/2527
https://github.com/snakemake/snakemake/commit/5383a4d85f8b7a3fb61fd0b457fcd1d008c2255f
https://github.com/snakemake/snakemake/commit/1a347ffd8b2144aee5c35ea17fec2262c5cc9c40
https://github.com/snakemake/snakemake/issues/2545
https://github.com/snakemake/snakemake/commit/6aabb5db16634c077ba808dbd000a3ed67d6a3c0
https://github.com/snakemake/snakemake/issues/2448
https://github.com/snakemake/snakemake/commit/b2a60d5674c84f58c6e48af5d675ce4690a1d625
https://github.com/snakemake/snakemake/commit/2f4d5e11b36f199d3335839e9b5dc5d2094d11f8
https://github.com/snakemake/snakemake/commit/fc252c80227e75a4fcf869f828d3c7d5d066f794
https://github.com/snakemake/snakemake/commit/fe63881371036fc6d55e6a113cb3ed5029b31d2d
https://github.com/snakemake/snakemake/issues/2519
https://github.com/snakemake/snakemake/commit/7864a76c41ad7839fb3b9aeb1c4468215ba0cb21
https://github.com/snakemake/snakemake/issues/2485
https://github.com/snakemake/snakemake/commit/f2c761320a5a73d6027ae3649843e6bf6a24f324


Snakemake Documentation, Release 8.2.1

• handle storage for local jobs; add test case (6d978ef)
• handling of group jobs when obtaining temp input files (71be1de)
• import (#2402) (2c831f1)
• improved error handling for storage upload; fixed bugs caused by outdated calls to IOFile.exists(). (720bb84)
• improved error messages in case of invalid storage queries (9671fd0)
• in addition to localrules statement, infer that job is local if it has any input or output file that is marked as local
(#2541) (e8b682b)

• only deactivate conda inject envs upon workflow tear down (#2503) (e6dfdd4)
• Panoptes –wms-monitor-arg (#2444) (98d2bdf)
• proper reuse of rule proxies when importing several times from the same module (#2404) (e867dda)
• Restore backward compatibility for Google Life Sciences executor (#2461) (5e3a464)
• shadow “full” mode ignore symlinks (#2516) (1d58120)
• show failed logs in executor testcases (92f7bf4)
• Slack log service (#2537) (26eb4ba)
• sort report (sub-)categories in lexicographical order (#2449) (d0705ad)
• update minimum snakemake-interface-storage-plugins version (0ef7226)
• use temporary directory (faster, more likely local, always writable) for persistence and source cache in case of
remote execution without shared fs (#2502) (c8fa7ba)

• wait for logs before showing them on error (a4ff328)

Documentation

• document name directive with example (#2534) (cce5551)
• fix syntax in cluster example (#2460) (64e9645)
• notes on arm based machines in tutorial docs (0586f04)
• rust: Fix typo on rust-script version (#2488) (a79dd94)

4.25.9 7.32.4 (2023-08-18)

Bug Fixes

• always sort report (sub-)categories in lexicographical order
• also inherit rule proxies if there is no rulename modifier specified in a use rule statement
• ensure that targetjob is always forced. This fixes a bug causing run-directive rules to not being executed even when
enforced via e.g. -R.

166 Chapter 4. Resources

https://github.com/snakemake/snakemake/commit/6d978ef31060393bd3a69b7973170e3c79473705
https://github.com/snakemake/snakemake/commit/71be1de734032ae8c9e8b07fad57e36b321be421
https://github.com/snakemake/snakemake/issues/2402
https://github.com/snakemake/snakemake/commit/2c831f1fa98813cf5f69ecb046aad1364f514238
https://github.com/snakemake/snakemake/commit/720bb8400ecf8e6c3caf3ca6b47d7dda4f1f7ba9
https://github.com/snakemake/snakemake/commit/9671fd0770fbe2d79d3546ca5f19c8fc39ffc25a
https://github.com/snakemake/snakemake/issues/2541
https://github.com/snakemake/snakemake/commit/e8b682be0bd52a01ec3ebdbbcb1ec018950819b2
https://github.com/snakemake/snakemake/issues/2503
https://github.com/snakemake/snakemake/commit/e6dfdd49cbaad228827f62a48cfe6419e4c1715e
https://github.com/snakemake/snakemake/issues/2444
https://github.com/snakemake/snakemake/commit/98d2bdfd1e3aeddf189b272d3e4042632248c10f
https://github.com/snakemake/snakemake/issues/2404
https://github.com/snakemake/snakemake/commit/e867dda24dff306f42939ad0d4d93d32ec94f6e5
https://github.com/snakemake/snakemake/issues/2461
https://github.com/snakemake/snakemake/commit/5e3a46476d78d5d52340a9ffa327d18a5e7e9828
https://github.com/snakemake/snakemake/issues/2516
https://github.com/snakemake/snakemake/commit/1d5812027e5d1a8d5f2e45175fa38d28ca32763e
https://github.com/snakemake/snakemake/commit/92f7bf4b86f491073898b2385c3ed45a557a3b4d
https://github.com/snakemake/snakemake/issues/2537
https://github.com/snakemake/snakemake/commit/26eb4babc28464a24c33d75703e7bf4f15c0e33f
https://github.com/snakemake/snakemake/issues/2449
https://github.com/snakemake/snakemake/commit/d0705adb4702ead9db0c26809859c7b769d800e1
https://github.com/snakemake/snakemake/commit/0ef72262e29a5b22cdf016a4ab6aba4b8dbc686d
https://github.com/snakemake/snakemake/issues/2502
https://github.com/snakemake/snakemake/commit/c8fa7ba3ee70c9c62011a3839758a5eb8fde16f8
https://github.com/snakemake/snakemake/commit/a4ff3280db0beb4f1a077ee880433f767c4ad142
https://github.com/snakemake/snakemake/issues/2534
https://github.com/snakemake/snakemake/commit/cce555142814f5bd1d73e68b9a17b772454817d4
https://github.com/snakemake/snakemake/issues/2460
https://github.com/snakemake/snakemake/commit/64e964554748bdee93bad1c7e6cd2924595c414f
https://github.com/snakemake/snakemake/commit/0586f04d2b03443a25deddd017f303156acdcd9c
https://github.com/snakemake/snakemake/issues/2488
https://github.com/snakemake/snakemake/commit/a79dd94f330f1d5c1fba7d16cb5b08bd780d950d


Snakemake Documentation, Release 8.2.1

4.25.10 7.32.3 (2023-08-07)

Bug Fixes

• fix bug occuring when using multiple use rule statements in combination with the rules object for referring to
output of already defined rules.

4.25.11 7.32.2 (2023-08-07)

Bug Fixes

• unnecessary set Snakefile in AzBatch executor (#2397) (78e6d6e)

4.25.12 7.32.1 (2023-08-05)

Bug Fixes

• add missing spaces between lines that get concatenated. (#2268) (7238458)
• better message about profile usage upon execution (#2391) (cf8aea5)
• do not overwrite default resources setting in azure batch executor (#2395) (4aef3b9)
• updating of non-dict config values gives error (#2364) (b33aeec)
• wrong rule names when nesting module imports (#1817) (65c79a4)

Documentation

• basics.rst: suggest VS Code instead of deprecated Atom as IDE (#2368) (1357316)

4.25.13 7.32.0 (2023-08-03)

Features

• add support for Kubernetes service account name spec (#2254) (3370426)

Bug Fixes

• Enable values with an = sign in default_resources (#2340) (c1c9229)
• Escape workdir paths for potential spaces in paths (#2196) (9261f7e)
• ga4gh executor resources (#2042) (ad6eaef)
• print exceptions when job is not a shell job (#2385) (8a37b85)
• remote-azblob-sasToken-Authorization (#1800) (bc854a7)
• wms-monitor now gets data in correct json format (#2347) (7fafa7a)

4.25. Changelog 167

https://github.com/snakemake/snakemake/issues/2397
https://github.com/snakemake/snakemake/commit/78e6d6ec6a1ad930e40d6edfe9f7210232a674f2
https://github.com/snakemake/snakemake/issues/2268
https://github.com/snakemake/snakemake/commit/7238458c6d56c5d94787b93668718358ad44e9ef
https://github.com/snakemake/snakemake/issues/2391
https://github.com/snakemake/snakemake/commit/cf8aea5862767f104c7e03c09369d401f25d50e7
https://github.com/snakemake/snakemake/issues/2395
https://github.com/snakemake/snakemake/commit/4aef3b93ddf029c532fabe38e05c262dd4237b5f
https://github.com/snakemake/snakemake/issues/2364
https://github.com/snakemake/snakemake/commit/b33aeecdf51afba6012007a2b125b9c87b7b98f2
https://github.com/snakemake/snakemake/issues/1817
https://github.com/snakemake/snakemake/commit/65c79a48f956077839bb5ab1ea8d60a5f0ddecab
https://github.com/snakemake/snakemake/issues/2368
https://github.com/snakemake/snakemake/commit/135731605b974915cd2bd78b88a981f974bc7b78
https://github.com/snakemake/snakemake/issues/2254
https://github.com/snakemake/snakemake/commit/3370426da7ee78af5de54689f623e2b5afa45f1f
https://github.com/snakemake/snakemake/issues/2340
https://github.com/snakemake/snakemake/commit/c1c922904f09c133e39872346a541e7cd216d0d2
https://github.com/snakemake/snakemake/issues/2196
https://github.com/snakemake/snakemake/commit/9261f7ea50a8ae424c015faca73b7811fb51d093
https://github.com/snakemake/snakemake/issues/2042
https://github.com/snakemake/snakemake/commit/ad6eaef6bac05d4de682f59d9d4a088f143b5798
https://github.com/snakemake/snakemake/issues/2385
https://github.com/snakemake/snakemake/commit/8a37b8584f216ada10caffcbb8b731efd675376a
https://github.com/snakemake/snakemake/issues/1800
https://github.com/snakemake/snakemake/commit/bc854a7e012cac751b708df83378fd5791e6e6fc
https://github.com/snakemake/snakemake/issues/2347
https://github.com/snakemake/snakemake/commit/7fafa7ace72f8a727457f4abe6db2f9ed2d74d64


Snakemake Documentation, Release 8.2.1

Documentation

• fix a copy&paste (?) mistake (#2386) (d878847)

4.25.14 7.31.1 (2023-08-02)

Bug Fixes

• require python >=3.7 again (the python 3.9 dependency was unnecessary) (#2372) (0d0e9c4)

Documentation

• update CHANGELOG.md: add minimum Python version bump (#2370) (48e934d)

4.25.15 7.31.0 (2023-07-26)

Features

• Add support for Google Service Accounts and GCE VM network configuration (#2318) (2b754aa)

4.25.16 7.30.2 (2023-07-20)

Breaking changes

• Bump minimum Python version from 3.7 to 3.9 (#2369) (4608163)

Bug Fixes

• do not allow setting benchmark and between-workflow caching for the same rule. The reason is that when the result
is taken from cache, there is no way to fill the benchmark file with any reasonable values. (#2335) (e2d64fa)

• ensure lazy evaluation of resource functions/callables (this also entails, for now, a removal of the thread statistics in
the yellow job stats table); further, added some clarifying sentences about resource function evaluation to the docs
(#2356) (4c591b7)

• handle non-PEP440 versions of apptainer/singulariy (#2337) (dea6ba8)
• remote GS builds too many inventories; io:collect_mtime always uses uncached mtime (#2266) (bad9115)
• Solve apptainer version issue (#2333) (a876e0f)
• SyntaxWarnings due to non-raw regex pattern strings (#2359) (a08c0b0)

168 Chapter 4. Resources

https://github.com/snakemake/snakemake/issues/2386
https://github.com/snakemake/snakemake/commit/d87884749fd9450062f6fde5b7727867396e7a78
https://github.com/snakemake/snakemake/issues/2372
https://github.com/snakemake/snakemake/commit/0d0e9c4cf48a97952464e6da476ed7661d629ce3
https://github.com/snakemake/snakemake/issues/2370
https://github.com/snakemake/snakemake/commit/48e934dcf96e4e8fd30c81cab3674583bf049a45
https://github.com/snakemake/snakemake/issues/2318
https://github.com/snakemake/snakemake/commit/2b754aae535ef76bd2dd34bc31d5c9f5c69363de
https://github.com/snakemake/snakemake/issues/2369
https://github.com/snakemake/snakemake/pull/2341/commits/4608163727bb32e216f1a26adc61d4c15d4b6a47
https://github.com/snakemake/snakemake/issues/2335
https://github.com/snakemake/snakemake/commit/e2d64fad76b8ca1805eeaa48c0bf8d1fb7bf4736
https://github.com/snakemake/snakemake/issues/2356
https://github.com/snakemake/snakemake/commit/4c591b72b31d6c6c36b43f1d7773d8317352fbc9
https://github.com/snakemake/snakemake/issues/2337
https://github.com/snakemake/snakemake/commit/dea6ba8808793b88c7553880bde48711abb037f8
https://github.com/snakemake/snakemake/issues/2266
https://github.com/snakemake/snakemake/commit/bad91152eeb70693e1459324f738a8c481378801
https://github.com/snakemake/snakemake/issues/2333
https://github.com/snakemake/snakemake/commit/a876e0f5e187168eb269b504918c6aeff1496f16
https://github.com/snakemake/snakemake/issues/2359
https://github.com/snakemake/snakemake/commit/a08c0b071b2f9a9212117bbcf560fa67f1a02178


Snakemake Documentation, Release 8.2.1

Documentation

• clarify minimum Snakemake version for profiles (86dc277)
• clarify the channel priority in environment definition deployment.rst (#2352) (76aa964)
• fix typo (stackoverflow issue) (#2365) (f770984)
• note on using checkpoint mechanism only for input function, not for params or resources. (#2353) (4be2f9d)

4.25.17 7.30.1 (2023-06-28)

Bug Fixes

• conda env inside script (#1812) (49cac6a)

4.25.18 7.30.0 (2023-06-28)

Features

• allow profiles to be YTE templates; adapt to eido 2.0 (#2325) (67d9ff2)

4.25.19 7.29.0 (2023-06-21)

Features

• introduce –workflow-profile for additional workflow specific profiles that overwrite global profiles; add ability to
define key-value CLI flags like –set-threads or –set-resources as multi-level dictionaries in profile config yaml files
(#2310) (9675c17)

Bug Fixes

• addressing #2197 by allowing 256 character account names in slurm (#2198) (ab58c65)
• removed distutils from snakemake (#2312) (9b8c362)
• Update init.py to move “file” param to “print” (#2291) (92352b6)

4.25.20 7.28.3 (2023-06-16)

Bug Fixes

• Detect pandas availability to select serializer (#2300) (e08a771)

4.25. Changelog 169

https://github.com/snakemake/snakemake/commit/86dc277d530a557c9bdd6784b863f63ab859a1c7
https://github.com/snakemake/snakemake/issues/2352
https://github.com/snakemake/snakemake/commit/76aa964c38b4aa069d9cce6f8f43c91c7d496cfb
https://github.com/snakemake/snakemake/issues/2365
https://github.com/snakemake/snakemake/commit/f7709844cd932465859a2095edafcf9baa8c2bf7
https://github.com/snakemake/snakemake/issues/2353
https://github.com/snakemake/snakemake/commit/4be2f9dd9fb41dc169bae068753ceed9552248e7
https://github.com/snakemake/snakemake/issues/1812
https://github.com/snakemake/snakemake/commit/49cac6ac67fba360f2f35be7ab1972b2d8cc1f8b
https://github.com/snakemake/snakemake/issues/2325
https://github.com/snakemake/snakemake/commit/67d9ff20ea61186d3818e7bc1d33e4414058fc1f
https://github.com/snakemake/snakemake/issues/2310
https://github.com/snakemake/snakemake/commit/9675c17d4d7cbb95e589767974faa9219dd4154d
https://github.com/snakemake/snakemake/issues/2197
https://github.com/snakemake/snakemake/issues/2198
https://github.com/snakemake/snakemake/commit/ab58c652847c03a9f1529d2d7632f2788a5fadc4
https://github.com/snakemake/snakemake/issues/2312
https://github.com/snakemake/snakemake/commit/9b8c3620e8c14e322ba15b7d044b9deab1854b2a
https://github.com/snakemake/snakemake/issues/2291
https://github.com/snakemake/snakemake/commit/92352b69d14ef196b0253561c78fa04ffa25d73e
https://github.com/snakemake/snakemake/issues/2300
https://github.com/snakemake/snakemake/commit/e08a771f90aef84f3075e07c8d4e4c0f7881047c


Snakemake Documentation, Release 8.2.1

Performance Improvements

• avoid superflous mtime checks when the same file is referred to by multiple jobs (#2284) (eb6e2e1)

Documentation

• update docs for azbatch and dockerhub ref (#2298) (908dbf1)

4.25.21 7.28.2 (2023-06-13)

Bug Fixes

• fix pandas import handling in metadata persistence (27f7b40)

4.25.22 7.28.1 (2023-06-11)

Bug Fixes

• Bump yte from >=1.0,<2.0 to >=1.5.1,<2.0 (#2275) (8c0b34f)
• remove superfluous dependency (aad61a0)

4.25.23 7.28.0 (2023-06-11)

Features

• Added native support for execution via Azure Batch (#1953) (#2246) (0f9c49f)

4.25.24 7.27.0 (2023-06-07)

Features

• Allow the environment variable SNAKEMAKE_CONDA_PREFIX to be present without –use-conda (#2263)
(e4eba8d)

Bug Fixes

• adapt linting rule to Python 3.11 (a3a5c58)

170 Chapter 4. Resources

https://github.com/snakemake/snakemake/issues/2284
https://github.com/snakemake/snakemake/commit/eb6e2e161f01c61b139d95bcf1ddfa862f8029ba
https://github.com/snakemake/snakemake/issues/2298
https://github.com/snakemake/snakemake/commit/908dbf143d4b1625fa6ee80f2b4eb713a6411a3f
https://github.com/snakemake/snakemake/commit/27f7b4014eaea66aa4e599aa854dda75822d30a0
https://github.com/snakemake/snakemake/issues/2275
https://github.com/snakemake/snakemake/commit/8c0b34f869e4f65ff2e47cf5f1e2863bd104f8e7
https://github.com/snakemake/snakemake/commit/aad61a0131d7ca0f7393af23b98b1db702cd976d
https://github.com/snakemake/snakemake/issues/1953
https://github.com/snakemake/snakemake/issues/2246
https://github.com/snakemake/snakemake/commit/0f9c49fe8643cca0e42e3b091cf9706a7feb877d
https://github.com/snakemake/snakemake/issues/2263
https://github.com/snakemake/snakemake/commit/e4eba8d72b84aaa460c7d1b1ac54b607e844d782
https://github.com/snakemake/snakemake/commit/a3a5c58cbbbe9a84b7383ce046b5981271288979


Snakemake Documentation, Release 8.2.1

4.25.25 7.26.0 (2023-05-22)

Features

• allow config files to be processed with YTE (#2269) (8e1c22f)

4.25.26 7.25.4 (2023-05-12)

Bug Fixes

• fix scrolling behavior in landing page of report for large workflows (63c0c31)
• report spacing (f3954b3)

Documentation

• fix statement about logging (#2252) (56c24b6)

4.25.27 7.25.3 (2023-05-03)

Bug Fixes

• fix missed wildcard constraints when using local rule inheritance (#2242) (8e94785)

4.25.28 7.25.2 (2023-04-28)

Bug Fixes

• Fix inconsistencies between detailed summary and normal summary (#2218) (d903123)
• Fix race condition when creating lock directory (#2225) (66ea4d1)
• quote paths given to singularity in order to ensure that it does not fail when paths contain whitespace (#2190)
(a572fb7)

Documentation

• added changelog info for >v7.19.1 parsing error of “hh:mm:ss” time format in runtime resource (#2189) (2889f38)
• update misc/vim/Readme with info for packer.nvim (#2095) (32166a7)
• Update workflow syntax with priority directive (#2188) (af10db5)

4.25. Changelog 171

https://github.com/snakemake/snakemake/issues/2269
https://github.com/snakemake/snakemake/commit/8e1c22ff54e85ee941c6e0ac74dd594fce80efbb
https://github.com/snakemake/snakemake/commit/63c0c31c222a921a843d83e330a6f91e430f209a
https://github.com/snakemake/snakemake/commit/f3954b33536314e6a252c044eee5f424dd234065
https://github.com/snakemake/snakemake/issues/2252
https://github.com/snakemake/snakemake/commit/56c24b6436cee9a4962d006bb201708c7a37c474
https://github.com/snakemake/snakemake/issues/2242
https://github.com/snakemake/snakemake/commit/8e947858dd510cb4c813f24093b5be843fa4cf6c
https://github.com/snakemake/snakemake/issues/2218
https://github.com/snakemake/snakemake/commit/d9031236563b7dd8e31ed27208c9ad39699f765e
https://github.com/snakemake/snakemake/issues/2225
https://github.com/snakemake/snakemake/commit/66ea4d199e3d9266b1b5fdb8752772e8137ffdea
https://github.com/snakemake/snakemake/issues/2190
https://github.com/snakemake/snakemake/commit/a572fb7b8f00e39723cd98d6936f63171b26c8d9
https://github.com/snakemake/snakemake/issues/2189
https://github.com/snakemake/snakemake/commit/2889f3851b64cee7885fbf73f64a453eed5e806a
https://github.com/snakemake/snakemake/issues/2095
https://github.com/snakemake/snakemake/commit/32166a7fce95312bfa6b6d3ae76bf94accf6d5de
https://github.com/snakemake/snakemake/issues/2188
https://github.com/snakemake/snakemake/commit/af10db56b11badfab2aa4f3aa9fa4bbe3c05fe7d


Snakemake Documentation, Release 8.2.1

4.25.29 7.25.1 (2023-04-28)

Bug Fixes

• allow log directive in default target rule (#2191) (86e9624)
• only consider global wildcard_constraints from the same module (#2235) (c412b71)
• Use job.rule.name attribute to fill rule field in summary (#2217) (837c3fd)

Documentation

• fix formatting (087fe63)
• replace nosetest with pytest (#2211) (f6b3c47)

4.25.30 7.25.0 (2023-03-23)

Features

• added localrule directive (#2180) (9c990b0)
• Tes auth (#2169) (3326a6f)

Bug Fixes

• always make sure that the original path of source cached files is properly passed into metadata persistence records
(#2179) (8bacbd0)

• slurm batch job status queries (#2167) (0bb69e4)

Documentation

• Change snakemake-tutorial download link to always be the latest (#2183) (ae8a8f4)
• fix typos in –help (#2182) (09f0cbe)
• Improve error message when rule contains multiple run/shell/script/notebook/wrapper/template_engine/cwl key-
words (#2186) (cd5a3c4)

4.25.31 7.24.2 (2023-03-14)

Bug Fixes

• fix index out of bounds error raised by usage of workflow.source_path called from input or params functions (thanks
@AKBrueggemann) (#2170) (cf8e6e8)

• limit length of failed logs decorations (#2125) (6fc9243)
• raise error if callable is passed to expand. (#2171) (1f28476)
• rounding for batch calculation (#2064) (cbdbf9b)

172 Chapter 4. Resources

https://github.com/snakemake/snakemake/issues/2191
https://github.com/snakemake/snakemake/commit/86e962488dcd346cd0a29a2ff1b2dcd1abafb841
https://github.com/snakemake/snakemake/issues/2235
https://github.com/snakemake/snakemake/commit/c412b714a9fbe5cad9ad30de4a0b78b3c13068f6
https://github.com/snakemake/snakemake/issues/2217
https://github.com/snakemake/snakemake/commit/837c3fd97b5a16ddb4f6b74bd2c2b5479d77bd8a
https://github.com/snakemake/snakemake/commit/087fe6307a72a577daefcea0cb150f69092138c7
https://github.com/snakemake/snakemake/issues/2211
https://github.com/snakemake/snakemake/commit/f6b3c47983bfe436f8ec33ab5830ba577fc38f90
https://github.com/snakemake/snakemake/issues/2180
https://github.com/snakemake/snakemake/commit/9c990b076b51e9e2123ced56bfab176e03424770
https://github.com/snakemake/snakemake/issues/2169
https://github.com/snakemake/snakemake/commit/3326a6f7bbaf9c277400625649c3da903e251e2f
https://github.com/snakemake/snakemake/issues/2179
https://github.com/snakemake/snakemake/commit/8bacbd0b19b0e372f5840b1fab838b79a6bab557
https://github.com/snakemake/snakemake/issues/2167
https://github.com/snakemake/snakemake/commit/0bb69e429e161bf68b1f3e0b8f6fe3cbd6ed4dae
https://github.com/snakemake/snakemake/issues/2183
https://github.com/snakemake/snakemake/commit/ae8a8f4abca233e0c162e3fbd9dfb29ef38f98e6
https://github.com/snakemake/snakemake/issues/2182
https://github.com/snakemake/snakemake/commit/09f0cbe9452a22bde768c7049eeb17f1c93db7ea
https://github.com/snakemake/snakemake/issues/2186
https://github.com/snakemake/snakemake/commit/cd5a3c44eace393f24d9338b21d5ef3cb6298126
https://github.com/snakemake/snakemake/issues/2170
https://github.com/snakemake/snakemake/commit/cf8e6e8995ecb4371c179851f4ded1d01cd1b7f9
https://github.com/snakemake/snakemake/issues/2125
https://github.com/snakemake/snakemake/commit/6fc92434f5aaed60c3d1e62bf4d33c68eeb6ed53
https://github.com/snakemake/snakemake/issues/2171
https://github.com/snakemake/snakemake/commit/1f28476c35dc15a04e1032139b9dab5779801235
https://github.com/snakemake/snakemake/issues/2064
https://github.com/snakemake/snakemake/commit/cbdbf9b648124422ffe16c61b776f92c33c72ef8


Snakemake Documentation, Release 8.2.1

4.25.32 7.24.1 (2023-03-09)

Bug Fixes

• better job status queries for slurm executor (#2136) (a4df38c)
• get python version for script environment in a backwards compatible way that works down to python 2.7 (#2161)
(44e59b9)

• prevents DeprecationWarning caused by using old draft of json schema (#2152) (9791ffb)

Performance Improvements

• Gfal2 remote provider using gfal2-python instead of gfal2-utils. (#2128) (0b9bfe5)

Documentation

• fix minor typos in a linting rule (#2162) (71e1171)

4.25.33 7.24.0 (2023-03-01)

Features

• limit the number of input/output files in job properties (#2149) (d93f091)

Bug Fixes

• #2130 by patching the protect() method so the path of files in subdirectories is properly resolved during write-
protection (#2131) (1a754fd)

• sre_constants import because of deprecation (#2139) (3b326db)
• ensure user and group rw permissions for metadata files and source cache (#2132) (cc51faa)
• is_run error with local, group jobs (#2133) (31bfcd5)
• require toposort >= 1.10 (#2145) (3cb54b8)

Documentation

• Update modularization.rst (#2137) (16954c7)

4.25.34 7.23.1 (2023-02-18)

Bug Fixes

• batch collect jobs for scancel (#2114) (0b1fe31)

4.25. Changelog 173

https://github.com/snakemake/snakemake/issues/2136
https://github.com/snakemake/snakemake/commit/a4df38c56e935dde9c2745bed6afc13e1fed671f
https://github.com/snakemake/snakemake/issues/2161
https://github.com/snakemake/snakemake/commit/44e59b9baa0842e19c5e0f2e05cf2fe5c9f47790
https://github.com/snakemake/snakemake/issues/2152
https://github.com/snakemake/snakemake/commit/9791ffb978a6d09d90d311cc98363c4d4efc2042
https://github.com/snakemake/snakemake/issues/2128
https://github.com/snakemake/snakemake/commit/0b9bfe500a06e669d2557d897ed26550aec526d6
https://github.com/snakemake/snakemake/issues/2162
https://github.com/snakemake/snakemake/commit/71e1171a0dab824baed77bfe235268af9e095c1f
https://github.com/snakemake/snakemake/issues/2149
https://github.com/snakemake/snakemake/commit/d93f091acea63a662dcb350c3f86c15fa9bdf721
https://github.com/snakemake/snakemake/issues/2130
https://github.com/snakemake/snakemake/issues/2131
https://github.com/snakemake/snakemake/commit/1a754fd094bd13bb4a201f1c80a077656c89f995
https://github.com/snakemake/snakemake/issues/2139
https://github.com/snakemake/snakemake/commit/3b326dba22ef5358092c281479eafafe3480eeae
https://github.com/snakemake/snakemake/issues/2132
https://github.com/snakemake/snakemake/commit/cc51faaa7d4f20896fc46b9fd67d062936d641bb
https://github.com/snakemake/snakemake/issues/2133
https://github.com/snakemake/snakemake/commit/31bfcd5399540fc6cf52e3b76144e9abea6d4eab
https://github.com/snakemake/snakemake/issues/2145
https://github.com/snakemake/snakemake/commit/3cb54b8c62743897f20feb3fcf269a7357878434
https://github.com/snakemake/snakemake/issues/2137
https://github.com/snakemake/snakemake/commit/16954c7b633049df6646275139251097d574fd35
https://github.com/snakemake/snakemake/issues/2114
https://github.com/snakemake/snakemake/commit/0b1fe312e8c98a814b1c419940f35253f58f958e


Snakemake Documentation, Release 8.2.1

4.25.35 7.23.0 (2023-02-18)

Features

• changed report layout to display menu always left of the results. For fullscreen, one can still hide the menu, which
leads to automatic growth of the results (#2116) (d771b1b)

• Publish docker images for amd64 & arm64 (#2105) (4c898f5)

Bug Fixes

• use text/markdown for long_description_content_type (#2112) (0241075)

Performance Improvements

• Improve execution speed of cleanup_workdir (in dag) (#2103) (1fbc5f5)

4.25.36 7.22.0 (2023-02-12)

Features

• add cleanup containers option (#2088) (053e3b3)

Bug Fixes

• assume shared filesystem by default when running with –flux (#2075) (4bec2fd)
• properly handle NA values for paramspaces (#2098) (6b6a880)

4.25.37 7.21.0 (2023-01-30)

Features

• ability to encode paramspaces into a single wildcard, via the newly introduced single_wildcard argument of
Paramspace. (#2069) (728ab3c)

• allow input, output, and params to be used in functions passed to report mark arguments (#2081) (93ff8b6)

Bug Fixes

• more robust encoding of params in persistent metadata storage. This way, pandas parameters do not lead to spurious
rerun triggers. (#2080) (106a4c3)

• more robust parsing of sacct output in slurm executor (#2036) (fe651f8)
• Postprocess job groups in toposorted order for correct touch times (#2073) (10b5849)

174 Chapter 4. Resources

https://github.com/snakemake/snakemake/issues/2116
https://github.com/snakemake/snakemake/commit/d771b1b5fc8344aaffe1f30388d4e4d31d4fe937
https://github.com/snakemake/snakemake/issues/2105
https://github.com/snakemake/snakemake/commit/4c898f5587d832c45f0b534681f9502abe1de6ce
https://github.com/snakemake/snakemake/issues/2112
https://github.com/snakemake/snakemake/commit/02410755c51df21833199db70406b2179248380e
https://github.com/snakemake/snakemake/issues/2103
https://github.com/snakemake/snakemake/commit/1fbc5f5aee65bc8dd776765644d07051dd857670
https://github.com/snakemake/snakemake/issues/2088
https://github.com/snakemake/snakemake/commit/053e3b37cfcc6c67bae6ac3660b82879b75acb4c
https://github.com/snakemake/snakemake/issues/2075
https://github.com/snakemake/snakemake/commit/4bec2fd3bb0c48a1f38506a966cb64dc8c2d1021
https://github.com/snakemake/snakemake/issues/2098
https://github.com/snakemake/snakemake/commit/6b6a88074eac6e3a9aa8c89501fc9481f07ecc1d
https://github.com/snakemake/snakemake/issues/2069
https://github.com/snakemake/snakemake/commit/728ab3cf59fb188bf1872a5cab3aba4519340a06
https://github.com/snakemake/snakemake/issues/2081
https://github.com/snakemake/snakemake/commit/93ff8b604a152f50ca31389ecffe1a7527c5b5a8
https://github.com/snakemake/snakemake/issues/2080
https://github.com/snakemake/snakemake/commit/106a4c3f4b181d787a6c309b8ea2e655780413e7
https://github.com/snakemake/snakemake/issues/2036
https://github.com/snakemake/snakemake/commit/fe651f8a10b9ead94b07ab31efe2d560525fc3b6
https://github.com/snakemake/snakemake/issues/2073
https://github.com/snakemake/snakemake/commit/10b584916a869fa1147a9f42d1de4fec4120b441


Snakemake Documentation, Release 8.2.1

4.25.38 7.20.0 (2023-01-18)

Features

• add tes token (#1966) (59a8fa0)
• Add token auth to GitLab/GitHub hosting providers (#1761) (e03a3b4), closes #1301
• allow for human friendly resource definitions (e.g. mem=”5GB”, runtime=”1d”) which deprecates slurm con-
strained time format (e.g. runtime=”hh:mm:ss”) (#1861) (24610ac) (#2154)

Bug Fixes

• :bug: - fix hyperlink (#2046) (9519d31)
• Catch missing error stream in Slurm executor (#2063) (c21fc7e)
• correctly parse empty values in config cli (#2032) (1b0689d)
• Correctly parse UserDicts in executors (#2016) (e3926fa)
• Fix handling of –jobs in no-exec state (#2029) (e8e8222)
• make --show-failed-logs handle empty log files (#2039) (683c6f2), closes #2023
• make python version check more robust (#2058) (e685621)
• parsing error when last line is comment (#2054) (a928dd4)
• prevent overriding of retries when set to 0 (#2053) (a328f3e)
• propagate attempt count from group to subjobs (#2052) (da3f1c0)
• remove overflow from rulegraph div in report (9a0aaa7)
• skip type checks of missing dir in touch mode (#2051) (ae00c25)
• slurm default_resources quoting (#2043) (47d3fc3)
• Update list of python versions in classifiers (#2020) (7a98100)
• use short argument name for --chdir for compatibility with Slurm <=v17 (#2040) (a9ed3ec)
• human friendly resource definitions introduce inability to parse slurm specific time format (e.g. “hh:mm:ss”). New
time format (e.g. “1d”) adds portability among various job schedulers and clusters (#2154)

Documentation

• Fix typo in SLURM help text (#2049) (79b7025)
• mention XDG_CACHE_HOME (#2057) (ec2ef45)

4.25. Changelog 175

https://github.com/snakemake/snakemake/issues/1966
https://github.com/snakemake/snakemake/commit/59a8fa04c4c6b113775fe11228b82510ecd36cb8
https://github.com/snakemake/snakemake/issues/1761
https://github.com/snakemake/snakemake/commit/e03a3b42eea89d512290bf98ee7d77ce2e17447c
https://github.com/snakemake/snakemake/issues/1301
https://github.com/snakemake/snakemake/issues/1861
https://github.com/snakemake/snakemake/commit/24610ac75849d543fc38c83fb2454fa4f9b42075
https://github.com/snakemake/snakemake/issues/2154
https://github.com/snakemake/snakemake/issues/2046
https://github.com/snakemake/snakemake/commit/9519d31b4ed2390d5c14f0f6a754ca665374d15c
https://github.com/snakemake/snakemake/issues/2063
https://github.com/snakemake/snakemake/commit/c21fc7e528327b13d762c5db90ee0e40506cf0bd
https://github.com/snakemake/snakemake/issues/2032
https://github.com/snakemake/snakemake/commit/1b0689dddf5eecbd8afd307c6df3dc31a32c338f
https://github.com/snakemake/snakemake/issues/2016
https://github.com/snakemake/snakemake/commit/e3926fa4b44bedf99745b949080397919a522aa1
https://github.com/snakemake/snakemake/issues/2029
https://github.com/snakemake/snakemake/commit/e8e8222a6f2192423aa55766304f9d1616a0d6e3
https://github.com/snakemake/snakemake/issues/2039
https://github.com/snakemake/snakemake/commit/683c6f2284e867457d7ed25e838ed3018da8f2d4
https://github.com/snakemake/snakemake/issues/2023
https://github.com/snakemake/snakemake/issues/2058
https://github.com/snakemake/snakemake/commit/e685621f3b4c0e21aa6f640dd571406d1d39e588
https://github.com/snakemake/snakemake/issues/2054
https://github.com/snakemake/snakemake/commit/a928dd4391d186b6ddb582331047f09fbee03f03
https://github.com/snakemake/snakemake/issues/2053
https://github.com/snakemake/snakemake/commit/a328f3e009a53002781539dfe3e3c8c5d1738189
https://github.com/snakemake/snakemake/issues/2052
https://github.com/snakemake/snakemake/commit/da3f1c0a80ffabbe9d02ce1361bfa2374c546007
https://github.com/snakemake/snakemake/commit/9a0aaa703d6531d890b7116638dc515425f6ed34
https://github.com/snakemake/snakemake/issues/2051
https://github.com/snakemake/snakemake/commit/ae00c25541600dba14ad68f1145bab3c4455de19
https://github.com/snakemake/snakemake/issues/2043
https://github.com/snakemake/snakemake/commit/47d3fc3eef8ebe54df8b77f100fc2ab3fa36c190
https://github.com/snakemake/snakemake/issues/2020
https://github.com/snakemake/snakemake/commit/7a98100ba92b0174c8ead3ae715042c1ab710c61
https://github.com/snakemake/snakemake/issues/2040
https://github.com/snakemake/snakemake/commit/a9ed3ec3e823442810388fce8a17ba4950bbdaa2
https://github.com/snakemake/snakemake/issues/2154
https://github.com/snakemake/snakemake/issues/2049
https://github.com/snakemake/snakemake/commit/79b702528b9801d0283766f2da377d4b9daeebd2
https://github.com/snakemake/snakemake/issues/2057
https://github.com/snakemake/snakemake/commit/ec2ef45c5e49f97a0b58535f8e39152d2789d428


Snakemake Documentation, Release 8.2.1

4.25.39 7.19.1 (2022-12-13)

Bug Fixes

• improved default resources parsing (also allowing to deactivate a default resource via setting it to None) (#2006)
(e6cdb32)

Documentation

• fix link (4889c93)
• fix typo (e1c3cc6)
• fix typos (e45b9e6)
• fix typos (151095d)
• format table (4180a1b)
• polished text and table display (413356c)

4.25.40 7.19.0 (2022-12-13)

Features

• add keyword to gridftp remote provide to specify the number or disable usage of multiple data stream (#1974)
(3e6675d)

• provide information about temp, pipe, and service files in –summary (#1977) (c7c7776)
• native SLURM support (–slurm, see docs) (#1015) (c7ea059)

Bug Fixes

• avoid logfile writing in case of dryrun; better hints in case of incomplete checkpoints (#1994) (a022705)
• handle case where zenodo deposition does not return files (#2004) (b63c4a7)
• issue #1882 WorkflowError: Metadata can’t be created as it already exists (Windows) (#1971) (d4484e6)
• json validation error with markdown cells (#1986) (6c26f75)

4.25.41 7.18.2 (2022-11-10)

Bug Fixes

• Change ratelimiter dependency to throttler (#1958) (50b8f16)
• fixed problem with leaked modifications when inheriting multiple times from the same rule (#1957) (2475cbc)
• forwarding –keep-incomplete to cluster executor (#1951) (2894c7d)
• show input files on job error (#1949) (ad21631)

176 Chapter 4. Resources

https://github.com/snakemake/snakemake/issues/2006
https://github.com/snakemake/snakemake/commit/e6cdb32fd20a9899f441b3ec8aca3f36710f7a4a
https://github.com/snakemake/snakemake/commit/4889c93a031acc3ada22c9bdfd27301cce2c107e
https://github.com/snakemake/snakemake/commit/e1c3cc6c6ddbf67e9d3cfc9dcef9bcf35b0060f3
https://github.com/snakemake/snakemake/commit/e45b9e608c31af5a5c3389520486d46935549eb4
https://github.com/snakemake/snakemake/commit/151095ddc839860d33a27cafeb83260dc17d736b
https://github.com/snakemake/snakemake/commit/4180a1b6a8b7104e27a748c638275b98c5998200
https://github.com/snakemake/snakemake/commit/413356cceb8d3a96b24531ef350168e681c9d383
https://github.com/snakemake/snakemake/issues/1974
https://github.com/snakemake/snakemake/commit/3e6675df26bf65fa27006ea57a4c3cf36b89d6da
https://github.com/snakemake/snakemake/issues/1977
https://github.com/snakemake/snakemake/commit/c7c7776f8722adf94e6a176174cb0a7564f11d9f
https://github.com/snakemake/snakemake/issues/1015
https://github.com/snakemake/snakemake/commit/c7ea0590c396c67fa5d56042e21f678c20784d3b
https://github.com/snakemake/snakemake/issues/1994
https://github.com/snakemake/snakemake/commit/a022705db14c9409b1ceadf6d5ae6367833e2131
https://github.com/snakemake/snakemake/issues/2004
https://github.com/snakemake/snakemake/commit/b63c4a7e496ca7a3353e8a59b8ba493d65156cb5
https://github.com/snakemake/snakemake/issues/1882
https://github.com/snakemake/snakemake/issues/1971
https://github.com/snakemake/snakemake/commit/d4484e61ef49be23fc2bef8bf879185e521f5376
https://github.com/snakemake/snakemake/issues/1986
https://github.com/snakemake/snakemake/commit/6c26f757785226d796c80689fabae771f316af9f
https://github.com/snakemake/snakemake/issues/1958
https://github.com/snakemake/snakemake/commit/50b8f1609a597dc9f25d2fd86c9cdda531bdc041
https://github.com/snakemake/snakemake/issues/1957
https://github.com/snakemake/snakemake/commit/2475cbcd74d9c9f62e07617751979bb00025850a
https://github.com/snakemake/snakemake/issues/1951
https://github.com/snakemake/snakemake/commit/2894c7dfaa854ebe34b1248897c90b4110d3962b
https://github.com/snakemake/snakemake/issues/1949
https://github.com/snakemake/snakemake/commit/ad2163187f031317d889e0cbe368176e1d48d13f


Snakemake Documentation, Release 8.2.1

4.25.42 7.18.1 (2022-11-03)

Bug Fixes

• regression ValueError introduced with 7.17.2 (#1947) (53a4fca)

4.25.43 7.18.0 (2022-10-31)

Features

• first try to match output files against input files while persisting wildcard values from the consuming job. This can
dramatically reduce ambiuity problems. Thanks to @descostesn! (#1939) (d093907)

4.25.44 7.17.2 (2022-10-28)

Bug Fixes

• Consider source cache when setting search path for python scripts. This allows to import from Python modules next
to scripts while deploying the workflow as a snakemake module, even from remote locations. (#1940) (27be1d4)

4.25.45 7.17.1 (2022-10-28)

Bug Fixes

• change source cache entries to keep the original name and folder structure, such that imports from e.g. scripts also
work with remote modules (if specified as additional input files with workflow.source_path) (#1936) (c34f3f6)

4.25.46 7.17.0 (2022-10-27)

Features

• allow to define the cache mode per rule (this enables to exclude software envs from the caching hash value, which
can be handy e.g. for download rules where the software version does not affect the result) (#1933) (715e618)

Performance Improvements

• cached os.pathconf() call in _record_path() (#1920) (551badb)

4.25. Changelog 177

https://github.com/snakemake/snakemake/issues/1947
https://github.com/snakemake/snakemake/commit/53a4fca8c67a3b58d61b146c8cfff3982889d77d
https://github.com/descostesn
https://github.com/snakemake/snakemake/issues/1939
https://github.com/snakemake/snakemake/commit/d093907417778c7693a05ed1f38fc40b8d34d9ba
https://github.com/snakemake/snakemake/issues/1940
https://github.com/snakemake/snakemake/commit/27be1d41c397a974f33dcf93ccce331a80ab0198
https://github.com/snakemake/snakemake/issues/1936
https://github.com/snakemake/snakemake/commit/c34f3f64ac19d2c2eaab361d73d3144430538bb6
https://github.com/snakemake/snakemake/issues/1933
https://github.com/snakemake/snakemake/commit/715e6187e9a132c2a61f5bef34a1e10491680b0a
https://github.com/snakemake/snakemake/issues/1920
https://github.com/snakemake/snakemake/commit/551badb4eb9de582278185449d8fa9298ad7ae8c


Snakemake Documentation, Release 8.2.1

4.25.47 7.16.2 (2022-10-26)

Bug Fixes

• fix false rerun triggering downstream of checkpoints due to spurious parameter, code or software env changes
(638ea86)

• remove redundant dot in expand call in multiext documentation (#1921) (278beaa)

4.25.48 7.16.1 (2022-10-18)

Bug Fixes

• conda create –no-shortcuts absent on Linux/MacOS (regression from #1046) (#1916) (8a86a1e)
• fix typo in line display of exceptions (#1912) (55e38a6)

4.25.49 7.16.0 (2022-10-14)

Features

• k8s: add –k8s-cpu-scalar (#1857) (a067a1b)

Bug Fixes

• allow report generation to handle pathlib objects (#1904) (7c34656)
• fix false reruns after checkpoints (#1907) (dc5af12)

4.25.50 7.15.2 (2022-10-08)

Bug Fixes

• Comparison of rules and non-rule instances (#1894) (bf01ece)
• delay evaluation of tmpdir to actual job execution, and not submission. This way, tmpdir can be dependent on the
node context. (#1860) (4203556)

• ensure that rule name string instead of object is passed to tabulate package (#1898) (f9ff157)
• issue 1846 (#1888) (da2dfbd)
• lexicographically sorted rule display with –list, and trimmed rule docstrings (#1880) (32128ae)

178 Chapter 4. Resources

https://github.com/snakemake/snakemake/commit/638ea86c51ea5746c8b5452cc8a0e43108de15ef
https://github.com/snakemake/snakemake/issues/1921
https://github.com/snakemake/snakemake/commit/278beaa7c81b9e418fa42ac5f944e3d7e2cdfbbd
https://github.com/snakemake/snakemake/issues/1046
https://github.com/snakemake/snakemake/issues/1916
https://github.com/snakemake/snakemake/commit/8a86a1e5ec7438492e2f1403b1b0fd81030255ad
https://github.com/snakemake/snakemake/issues/1912
https://github.com/snakemake/snakemake/commit/55e38a6f80c74b24d7763975b0ae2826d75f23d9
https://github.com/snakemake/snakemake/issues/1857
https://github.com/snakemake/snakemake/commit/a067a1b6eb8f6432348bc257782faba40f89e805
https://github.com/snakemake/snakemake/issues/1904
https://github.com/snakemake/snakemake/commit/7c346569106a36bbbce990576324af472ada9efd
https://github.com/snakemake/snakemake/issues/1907
https://github.com/snakemake/snakemake/commit/dc5af12f54e774612bb1f8ead45e4597080dc100
https://github.com/snakemake/snakemake/issues/1894
https://github.com/snakemake/snakemake/commit/bf01ece0e9c51442daba02ecf2ef37aa276283d6
https://github.com/snakemake/snakemake/issues/1860
https://github.com/snakemake/snakemake/commit/420355662ebea0bc72c9bd6bca1eea5259f3b43e
https://github.com/snakemake/snakemake/issues/1898
https://github.com/snakemake/snakemake/commit/f9ff157c5c534ba035bdf51a02fbbba5ad94dd61
https://github.com/snakemake/snakemake/issues/1888
https://github.com/snakemake/snakemake/commit/da2dfbd765aa1e2a8da36d9eaa1ac9fcffa5e921
https://github.com/snakemake/snakemake/issues/1880
https://github.com/snakemake/snakemake/commit/32128ae118d15f250e4b438735e30151cd6f27c5


Snakemake Documentation, Release 8.2.1

Performance Improvements

• Average NamedList getitem performance improvement (#1825) (10451b7)

4.25.51 7.15.1 (2022-10-04)

Bug Fixes

• fix --immediate-submit (#1851) (e358372)
• Handle temp files for all jobs in a group. (#1779) (d28b893)

Documentation

• small tweaks to flux documentation (#1886) (f29b371)
• various little fixes (#1875) (b93f8e3)

4.25.52 7.15.0 (2022-10-04)

Features

• adding flux executor (#1810) (40d2bd0)

Bug Fixes

• Add back logging of run directives (#1883) (a65559c)

Documentation

• fix grammar in the intro (#1859) (774bc6a)
• fix typo (#1843) (6572ad9)

4.25.53 7.14.2 (2022-09-26)

Bug Fixes

• reduce resource requirements for kubernetes tests (#1876) (cb4b78a)

4.25. Changelog 179

https://github.com/snakemake/snakemake/issues/1825
https://github.com/snakemake/snakemake/commit/10451b7198a4a39149ce5e8ec82c17df1f18813b
https://github.com/snakemake/snakemake/issues/1851
https://github.com/snakemake/snakemake/commit/e3583721f2dc620ce96876ecec58846d1cbe7bfd
https://github.com/snakemake/snakemake/issues/1779
https://github.com/snakemake/snakemake/commit/d28b89363f007d303d733b2b12f517502867035c
https://github.com/snakemake/snakemake/issues/1886
https://github.com/snakemake/snakemake/commit/f29b37106727c470b691076189e92f35e4cecfb6
https://github.com/snakemake/snakemake/issues/1875
https://github.com/snakemake/snakemake/commit/b93f8e316cb2f51e72933e7a28872bdf523aec11
https://github.com/snakemake/snakemake/issues/1810
https://github.com/snakemake/snakemake/commit/40d2bd071984914ac511e7858690dfd16cefaf69
https://github.com/snakemake/snakemake/issues/1883
https://github.com/snakemake/snakemake/commit/a65559c1e21d65e5b4509b9565b472e734ab9f02
https://github.com/snakemake/snakemake/issues/1859
https://github.com/snakemake/snakemake/commit/774bc6aaa3105c94a551691498d9a5efb13ac216
https://github.com/snakemake/snakemake/issues/1843
https://github.com/snakemake/snakemake/commit/6572ad91bed14dece6b01a26134007a25ef0c4b2
https://github.com/snakemake/snakemake/issues/1876
https://github.com/snakemake/snakemake/commit/cb4b78a05ee08f7dafb561ba33bbe460ec097eb5


Snakemake Documentation, Release 8.2.1

4.25.54 7.14.1 (2022-09-23)

Bug Fixes

• allocation of local ssds in k8s tests (#1870) (d0de4dc)
• allow script directive to take pathlib Path (#1869) (12cdc96)
• catch errors in remote.AUTO provider list (#1834) (c613ed2)
• consistently use text output in conda shell commands and various little fixes for failing test cases due to conda
package changes (#1864) (4234fe7)

• declare associative arrays (#1844) (90ae449)
• fix falsely triggered reruns if input files are obtained via workflow.source_path() (#1862) (2dc2e6a)
• fixed typos (#1847) (a1e49b6)
• k8s container volume mounts as list (#1868) (5c54df3)
• None type error when invoking Workflow object manually (#1731) (dc45ccb)
• request disk_mb resource from k8s (#1858) (f68f166)
• respect shebang lines in post-deploy scripts (see deployment docs) (#1841) (c26c4b6)

4.25.55 7.14.0 (2022-08-27)

Features

• add support for bash scripts in the script directive (beyond small shell commands) (#1821) (c4cf8fd)

Documentation

• fix small typo in FAQ (#1832) (914172b)

4.25.56 7.13.0 (2022-08-25)

Features

• add gitfile option to make it possible to use local git repos when importing modules (#1376) (1a3b91f)

Bug Fixes

• allow to use {wildcards} for group jobs in cluster config (#1555) (f0ec73d)
• avoid “Admin” prompt when using conda on windows (#1046) (552fadf)
• handle benmark bug that arise with singularity (#1671) (10ef7c4)
• Open Snakefile for reading with explicit encoding specified (#1146) (ec1d859)
• remove superfluous comma causing TypeError in conda-frontend error message (#1804) (87b013c)

180 Chapter 4. Resources

https://github.com/snakemake/snakemake/issues/1870
https://github.com/snakemake/snakemake/commit/d0de4dccf6f6c749da0d4a30ef27fe0f9274995d
https://github.com/snakemake/snakemake/issues/1869
https://github.com/snakemake/snakemake/commit/12cdc961c86541d5c50533a6b8ff5df0cb6fd7d1
https://github.com/snakemake/snakemake/issues/1834
https://github.com/snakemake/snakemake/commit/c613ed217f1dfb16fc63fa7b06af4ddf4f3dd0b8
https://github.com/snakemake/snakemake/issues/1864
https://github.com/snakemake/snakemake/commit/4234fe765e996dbb3a1738567299ebb4d8c28af0
https://github.com/snakemake/snakemake/issues/1844
https://github.com/snakemake/snakemake/commit/90ae44943a6b7712d46677364752bf0a7cf91806
https://github.com/snakemake/snakemake/issues/1862
https://github.com/snakemake/snakemake/commit/2dc2e6aa3255b8b73e06b7af1ea646d5081799ce
https://github.com/snakemake/snakemake/issues/1847
https://github.com/snakemake/snakemake/commit/a1e49b6f290daeb2012575ab3a85ca72cfe42747
https://github.com/snakemake/snakemake/issues/1868
https://github.com/snakemake/snakemake/commit/5c54df39c6a111dcfa7adaea15d0b81a3fc16b90
https://github.com/snakemake/snakemake/issues/1731
https://github.com/snakemake/snakemake/commit/dc45ccb9ee94e8fcdf386c8598bbae57e319ba10
https://github.com/snakemake/snakemake/issues/1858
https://github.com/snakemake/snakemake/commit/f68f166582abaeb45a1a093306626bb8abb0e0bb
https://github.com/snakemake/snakemake/issues/1841
https://github.com/snakemake/snakemake/commit/c26c4b6ff43e38797168ef7983c40b0c8a4b2f8c
https://github.com/snakemake/snakemake/issues/1821
https://github.com/snakemake/snakemake/commit/c4cf8fdb119e678e51fd1932392699957c63b6c4
https://github.com/snakemake/snakemake/issues/1832
https://github.com/snakemake/snakemake/commit/914172baf366570fa2a2818746d3ed1417790e3a
https://github.com/snakemake/snakemake/issues/1376
https://github.com/snakemake/snakemake/commit/1a3b91fa8461d44bc1583f1d2e33ff2bae1360b3
https://github.com/snakemake/snakemake/issues/1555
https://github.com/snakemake/snakemake/commit/f0ec73d2470d3ecf1d8500b52fa86021463a96fe
https://github.com/snakemake/snakemake/issues/1046
https://github.com/snakemake/snakemake/commit/552fadf7d0ea0f0ff3990295db2618a31c692f61
https://github.com/snakemake/snakemake/issues/1671
https://github.com/snakemake/snakemake/commit/10ef7c4d1cbbd89fa1760ec9f643e09ae4eb8bd9
https://github.com/snakemake/snakemake/issues/1146
https://github.com/snakemake/snakemake/commit/ec1d859dd2422fa551bbf58843907fc5eed244ff
https://github.com/snakemake/snakemake/issues/1804
https://github.com/snakemake/snakemake/commit/87b013cbba420b71892ab9f482718c1cd59e6bda


Snakemake Documentation, Release 8.2.1

Documentation

• explain SNAKEMAKE_PROFILE environment variable (2b32bba)
• update contribution docs (09a5595)

4.25.57 7.12.1 (2022-08-09)

Bug Fixes

• Fix case of multiple scattergather processes (#1799) (417aad4)
• more comprehensive error reporting for RuleExceptions (#1802) (1cd9512)

4.25.58 7.12.0 (2022-07-29)

Features

• print reason summary in case of dryrun (#1778) (bd2a68b)

Bug Fixes

• Fix technical bugs in resource-scope documentation (#1784) (878420c)
• move max_status_checks_per_second attribute setting before the wait thread of cluster backends is started to avoid
missing attribute errors (#1775) (a48e9d0)

4.25.59 7.11.0 (2022-07-27)

Features

• improved resource handling in groups and ability to define resource scopes (global or per node), see docs and –help
(#1218) (a8014d0)

Bug Fixes

• fixed conda frontend detection and checking to also work with latest mambaforge (#1781) (225e68c)

4.25.60 7.10.0 (2022-07-26)

Features

• Support conda environment definitions to be passed as function pointers, similar to input, params, and resources
(#1300) (6f582f1)

4.25. Changelog 181

https://github.com/snakemake/snakemake/commit/2b32bba6efa53a9359bc67d8eb8ce06f1106e8ef
https://github.com/snakemake/snakemake/commit/09a559504d7a4346e40d8b3a99ece46e903ff7a0
https://github.com/snakemake/snakemake/issues/1799
https://github.com/snakemake/snakemake/commit/417aad4c1a5fe83bdf24729d0d4e70df112fd293
https://github.com/snakemake/snakemake/issues/1802
https://github.com/snakemake/snakemake/commit/1cd95129a92e522e11689620473f68b1fe69fb42
https://github.com/snakemake/snakemake/issues/1778
https://github.com/snakemake/snakemake/commit/bd2a68bb8a7ddb64ad91bb822aa7d0342e884704
https://github.com/snakemake/snakemake/issues/1784
https://github.com/snakemake/snakemake/commit/878420c4496562df7fe5fed4e6f877e670dcd533
https://github.com/snakemake/snakemake/issues/1775
https://github.com/snakemake/snakemake/commit/a48e9d035efec3a91b50bbda43ddf92196d5084b
https://github.com/snakemake/snakemake/issues/1218
https://github.com/snakemake/snakemake/commit/a8014d030a2a3ea04743e30bcf5164801291378f
https://github.com/snakemake/snakemake/issues/1781
https://github.com/snakemake/snakemake/commit/225e68cb05ecbf8fe001a884a416da0239cfd4d1
https://github.com/snakemake/snakemake/issues/1300
https://github.com/snakemake/snakemake/commit/6f582f180f5df9292e005623f093a3a0b2e597a7


Snakemake Documentation, Release 8.2.1

Bug Fixes

• fix regression in workflow source acquisition of google life science executor (#1773) (c07732e)
• limit filename length of temporary files generated by the persistence backend (metadata, incomplete markers, etc.)
(#1780) (59053e7)

4.25.61 7.9.0 (2022-07-19)

Features

• make it possible to exclude rules that will be imported when using ‘use rule’ statement (#1717) (d9e0611)

Bug Fixes

• add lock free mechanism for avoiding race conditions when writing persistence information; consider corrupt meta-
data records as non-existent (#1745) (71fe952)

• conda python interpreter path on Windows (#1711) (155c9d6)
• ensures that REncoder also checks for numpy.bool_ in encode_value (#1749) (10a6e1d)
• Move quiet default after profile parsing (#1764) (6ade76d)

4.25.62 7.8.5 (2022-06-30)

Documentation

• fix long description type for pypi (set to markdown) (d8d9b8f)

4.25.63 7.8.4 (2022-06-30)

Bug Fixes

• only display a warning in case of non-strict channel priorities (#1752) (b84fa33)
• pass triggers and resources to subworkflow (#1733) (fa7fb75)
• add pyproject.toml to use setuptools features (#1725) (454bfd1)

Documentation

• add workflows.community metadata (#1736) (8a42afc)

182 Chapter 4. Resources

https://github.com/snakemake/snakemake/issues/1773
https://github.com/snakemake/snakemake/commit/c07732e2c7d6e95fabb3f2570bf0a1b0af2ac2cb
https://github.com/snakemake/snakemake/issues/1780
https://github.com/snakemake/snakemake/commit/59053e7017584ea94860cecb5ebecce66aed14ce
https://github.com/snakemake/snakemake/issues/1717
https://github.com/snakemake/snakemake/commit/d9e061178bd22307cc710bea28a5994e866260d9
https://github.com/snakemake/snakemake/issues/1745
https://github.com/snakemake/snakemake/commit/71fe9527bb7011ba01d25fdd21c102c135412c04
https://github.com/snakemake/snakemake/issues/1711
https://github.com/snakemake/snakemake/commit/155c9d6688a99db4b49c5b25d5a8a65a3aca532d
https://github.com/snakemake/snakemake/issues/1749
https://github.com/snakemake/snakemake/commit/10a6e1de50ea7957e8685ba55b2cc115101cc23f
https://github.com/snakemake/snakemake/issues/1764
https://github.com/snakemake/snakemake/commit/6ade76d1287c8f62056853491a4e67b08a4739a6
https://github.com/snakemake/snakemake/commit/d8d9b8f284d2863f672cd96fd96d2034806d52de
https://github.com/snakemake/snakemake/issues/1752
https://github.com/snakemake/snakemake/commit/b84fa337f5c417360fc744202a419da3f37594b5
https://github.com/snakemake/snakemake/issues/1733
https://github.com/snakemake/snakemake/commit/fa7fb75d2314cd2965a9f578506e27aae4b07349
https://github.com/snakemake/snakemake/issues/1725
https://github.com/snakemake/snakemake/commit/454bfd17aba8631ea34d6a8971b1db60b2955965
https://github.com/snakemake/snakemake/issues/1736
https://github.com/snakemake/snakemake/commit/8a42afc053e3f398f1a299fb3234ca0ee847faae


Snakemake Documentation, Release 8.2.1

7.8.3 (2022-06-20)

Bug Fixes

• allow apptainer as a successor to singularity. (#1706) (bcbdb0b)
• improved provenance trigger info (#1720) (29d959d)
• small changes to make docs checkpoint example functional (#1714) (1d4909e)

7.8.2 (2022-06-08)

Bug Fixes

• fixed bug in needrun computation of jobs downsteam of checkpoints (#1704) (c634b78)

7.8.1 (2022-05-31)

Bug Fixes

• handling of remaining jobs when using –keep-going (#1693) (87e4303)
• more robust calculation of number of jobs until ready for execution (#1691) (fdfc717)
• propagate rerun trigger info to cluster jobs; fix a bug leading to software stack trigger generating false positives in
case of conda environments; fixed display of infomessage in case of provenance triggered reruns (#1686) (503c70c)

• set channel priority in container system wide (#1690) (41175b3)

4.25.64 7.8.0 (2022-05-24)

Features

• automatically rerun jobs if parameters, code, input file set, or software stack changed (thanks to @cclienty and
@timtroendle). This also increases performance of DAG building by handling job “needrun” updates level wise,
while avoiding to perform a full check for those jobs that are already downstream of a job that has been determined
to require a rerun. (#1663) (4c11893)

• enable the definition of conda pin files in order to freeze an environment. This can drastically increase the robustness
because it allows to freeze an environment at a working state. (#1667) (53972bf)

Bug Fixes

• fail with error if conda installation is not set to strict channel priorities (#1672) (f1ffbf2)
• fix errors occurring when refering to input func via rules..input (#1669) (28a4795)
• parsing error when combining single line directive with multi-line directive in use rule statements (#1662)
(26e57d6)

4.25. Changelog 183

https://www.github.com/snakemake/snakemake/issues/1706
https://www.github.com/snakemake/snakemake/commit/bcbdb0bc44746961838f9603e42d0e171407c740
https://www.github.com/snakemake/snakemake/issues/1720
https://www.github.com/snakemake/snakemake/commit/29d959d86341aee66e945f216cae41e9c531a4d1
https://www.github.com/snakemake/snakemake/issues/1714
https://www.github.com/snakemake/snakemake/commit/1d4909ef838ac79f8e7be9f29d76b969d358ef1b
https://www.github.com/snakemake/snakemake/issues/1704
https://www.github.com/snakemake/snakemake/commit/c634b78b4d7c4f6ef59e46c94162893e42de6f73
https://www.github.com/snakemake/snakemake/issues/1693
https://www.github.com/snakemake/snakemake/commit/87e430354b45c702e4d782bad8461fde44477a48
https://www.github.com/snakemake/snakemake/issues/1691
https://www.github.com/snakemake/snakemake/commit/fdfc717f8764ce535801d06805aaa1d59186ec84
https://www.github.com/snakemake/snakemake/issues/1686
https://www.github.com/snakemake/snakemake/commit/503c70c7727e154f8fadf6ead088887d22a87a65
https://www.github.com/snakemake/snakemake/issues/1690
https://www.github.com/snakemake/snakemake/commit/41175b3001ff59db5d7ea8bf91354decea04f74d
https://www.github.com/cclienty
https://www.github.com/timtroendle
https://www.github.com/snakemake/snakemake/issues/1663
https://www.github.com/snakemake/snakemake/commit/4c11893d2fda5824adff44d16d7741484e63efea
https://www.github.com/snakemake/snakemake/issues/1667
https://www.github.com/snakemake/snakemake/commit/53972bfddcca836d5abb8cdd452cbea40ab2571f
https://www.github.com/snakemake/snakemake/issues/1672
https://www.github.com/snakemake/snakemake/commit/f1ffbf28f04150c6e66297f242b768a22f80bd94
https://www.github.com/snakemake/snakemake/issues/1669
https://www.github.com/snakemake/snakemake/commit/28a47959bca2d135f82f9d8901b2b0aa228f30cb
https://www.github.com/snakemake/snakemake/issues/1662
https://www.github.com/snakemake/snakemake/commit/26e57d69fc320adc972967a8046c5163b455456c


Snakemake Documentation, Release 8.2.1

4.25.65 7.7.0 (2022-05-16)

Features

• add flag ensure that allows to annotate that certain output files should be non-empty or agree with a given check-
sum (#1651) (76f69d9)

• for small files, compare checksums to determine if job needs to run if input file is newer than output file (#1568)
(1ae85c6)

• LockException (#1276) (f5e6fa6)
• new directive “retries” for annotating the number of times a job shall be restarted after a failure (#1649) (c8d81d0)

Bug Fixes

• iRODS functionality - issue #1510 (#1611) (9c3767d)

Documentation

• singularity sometimes uses system /tmp explanation (#1588) (170c1d9)

7.6.2 (2022-05-06)

Bug Fixes

• fixed permission issues when using zenodo remote provider to access restricted depositions (#1634) (510f534)

7.6.1 (2022-05-04)

Bug Fixes

• check for skipped rules in case of local rule inheritance (#1631) (9083ac1)

4.25.66 7.6.0 (2022-05-03)

Features

• enable restricted access support in zenodo remote provider (#1623) (692caf9)

Bug Fixes

• avoid erroneous too early deletion of parent directories in case of failed jobs (thanks to @SichongP). (#1601)
(b0917e6)

• ensure that rule inheritance considers the same globals and other settings as parent module (#1621) (104cab9)
• issue 1615 - Switch formatting condition for dictionary (#1617) (0771062)
• multiext prefix computation in case it is used within a module that defines an additional prefix (#1609) (fc6dfc6)
• remove redundant print (#1608) (cc7e0e3)

184 Chapter 4. Resources

https://www.github.com/snakemake/snakemake/issues/1651
https://www.github.com/snakemake/snakemake/commit/76f69d9e21b9c9a9a01198862b66284bc3942d20
https://www.github.com/snakemake/snakemake/issues/1568
https://www.github.com/snakemake/snakemake/commit/1ae85c6b57b3c6b5860214a9c0e3ab28c7c8c5dc
https://www.github.com/snakemake/snakemake/issues/1276
https://www.github.com/snakemake/snakemake/commit/f5e6fa68a68640ed39df86c256d676f2e4efddfc
https://www.github.com/snakemake/snakemake/issues/1649
https://www.github.com/snakemake/snakemake/commit/c8d81d03de2885d5d0473084141e9f6abc5de445
https://www.github.com/snakemake/snakemake/issues/1510
https://www.github.com/snakemake/snakemake/issues/1611
https://www.github.com/snakemake/snakemake/commit/9c3767d6ee13a2c149a4ffe1c0547cabec0346dd
https://www.github.com/snakemake/snakemake/issues/1588
https://www.github.com/snakemake/snakemake/commit/170c1d9d92de4cafc0da9567a6970b173161c7da
https://www.github.com/snakemake/snakemake/issues/1634
https://www.github.com/snakemake/snakemake/commit/510f534ff55635e5c3ca677e0ccd8c5b5dd7ca0f
https://www.github.com/snakemake/snakemake/issues/1631
https://www.github.com/snakemake/snakemake/commit/9083ac1f40daf3d284ce9b1ac2d4addde9b5b258
https://www.github.com/snakemake/snakemake/issues/1623
https://www.github.com/snakemake/snakemake/commit/692caf963d90313d2cd8117fecde097b228633ce
https://www.github.com/snakemake/snakemake/issues/1601
https://www.github.com/snakemake/snakemake/commit/b0917e6f07e356764880632495ec3567ec8555b4
https://www.github.com/snakemake/snakemake/issues/1621
https://www.github.com/snakemake/snakemake/commit/104cab97d9e1a7dda4c9948efa5883d5478d2229
https://www.github.com/snakemake/snakemake/issues/1617
https://www.github.com/snakemake/snakemake/commit/0771062a07f0e2cfe9ee45a2276aa61b096eb6e1
https://www.github.com/snakemake/snakemake/issues/1609
https://www.github.com/snakemake/snakemake/commit/fc6dfc6469137a82382a36b9469190d967593759
https://www.github.com/snakemake/snakemake/issues/1608
https://www.github.com/snakemake/snakemake/commit/cc7e0e3605bd65ffcb2d055e69761ff7337588ae


Snakemake Documentation, Release 8.2.1

4.25.67 7.5.0 (2022-04-26)

Features

• vim syntax updates (#1584) (b8c77f6)

Bug Fixes

• properly use configfiles specified via CLI also if configfile specified via configfile directive is not present (1e0649a)

Documentation

• checkpoint documentation (#1562) (4cbfb47)

4.25.68 7.4.0 (2022-04-22)

Features

• Allow paramspace to separate filename params with custom separator (#1299) (8236e80)

Bug Fixes

• preserve dtypes across paramspace (#1578) (70ce6a0)
• use mambaforge for snakemake container image (#1595) (b7e6906)

7.3.8 (2022-04-06)

Bug Fixes

• support multiple input files for template_engine rules (#1571) (aee7cf2)

7.3.7 (2022-04-05)

Bug Fixes

• allow labels function to return None (#1565) (fef74d6)
• do not wrap whitespace in result info headers of reports (653d0d0)
• fixed detection of norun rules inside of modules (#1566) (d2223d4)
• properly use retry mechanism in source cache (#1564) (624a83d)

4.25. Changelog 185

https://www.github.com/snakemake/snakemake/issues/1584
https://www.github.com/snakemake/snakemake/commit/b8c77f6a2a1372a5c3ad8077ad36facf393bfacf
https://www.github.com/snakemake/snakemake/commit/1e0649ac37176a68bb2d8f4d1508ac8bb02463ff
https://www.github.com/snakemake/snakemake/issues/1562
https://www.github.com/snakemake/snakemake/commit/4cbfb4786a729a0c899a0a3e0427c1c1f0796c15
https://www.github.com/snakemake/snakemake/issues/1299
https://www.github.com/snakemake/snakemake/commit/8236e80794d0f9c9670238ba168770c0947e8379
https://www.github.com/snakemake/snakemake/issues/1578
https://www.github.com/snakemake/snakemake/commit/70ce6a0feb8572ddcf888c3d377d631ea4a24370
https://www.github.com/snakemake/snakemake/issues/1595
https://www.github.com/snakemake/snakemake/commit/b7e6906926cae5fef6987adcf7b0294266d5faec
https://www.github.com/snakemake/snakemake/issues/1571
https://www.github.com/snakemake/snakemake/commit/aee7cf236611e5201feda152f5b7357b49b9f15b
https://www.github.com/snakemake/snakemake/issues/1565
https://www.github.com/snakemake/snakemake/commit/fef74d6406a04e29c115a699e76ac96e4a37cf9e
https://www.github.com/snakemake/snakemake/commit/653d0d0b92d2556e0fa04a8208f37fd982dcb829
https://www.github.com/snakemake/snakemake/issues/1566
https://www.github.com/snakemake/snakemake/commit/d2223d41dfba057ab735395eac8339c27866c2ae
https://www.github.com/snakemake/snakemake/issues/1564
https://www.github.com/snakemake/snakemake/commit/624a83d1bfc592a2a1878d5191e09f6c3d7ee7c2


Snakemake Documentation, Release 8.2.1

7.3.6 (2022-04-02)

Bug Fixes

• always recalculate job resources before job is scheduled as input might have changed or not have been present
initially (#1552) (44aacdb)

• fixed handling of input functions and unpack when using the prefix setting of module definitions (#1553) (d561e04)
• fixed parsing of subsequent use rule statements directly beneath each other (#1548) (77d5a08)
• fix spurious missing file errors when using google storage (#1541) (1b3ede1)
• proper error message if resource types do not match (#1556) (1112321)
• quote workdir in job exec prefix to allow to spaces in the workdir (#1547) (c3a593e)
• report error and possible cause if metadata cleanup fails (#1554) (6866134)

7.3.5 (2022-03-31)

Bug Fixes

• do not remove existing temp files in case of dryrun (#1543) (e820f97)
• fixed bug in missing input file handling for cluster jobs (#1544) (40e2eb2)

Documentation

• explain automatic decompression strategy for http remote provider (e6826b6)

7.3.4 (2022-03-30)

Bug Fixes

• better error messages in case of missing files after latency period (#1528) (5b394c0)
• correct handling of exceptions in input functions that are generators (#1536) (d9a56aa)
• obtaining conda prefix when using in combination with singularity (#1535) (99b22d3)
• proper error message in case of missing git when checking for source files (#1534) (92887a3)
• throw error message in case of target rule that depends on a pipe. (#1532) (b9e9a7e)

Documentation

• display rust-script env. (950d8ba)
• zenodo example (76159ae)

186 Chapter 4. Resources

https://www.github.com/snakemake/snakemake/issues/1552
https://www.github.com/snakemake/snakemake/commit/44aacdbb35879e1d7914aa105401541465387955
https://www.github.com/snakemake/snakemake/issues/1553
https://www.github.com/snakemake/snakemake/commit/d561e041a8919717046be0d39f197b2c6b937cb7
https://www.github.com/snakemake/snakemake/issues/1548
https://www.github.com/snakemake/snakemake/commit/77d5a08ab49d67b8cbd8ea4b6b6b7792edb38e3b
https://www.github.com/snakemake/snakemake/issues/1541
https://www.github.com/snakemake/snakemake/commit/1b3ede19159856a982de65e6293ab064c0987352
https://www.github.com/snakemake/snakemake/issues/1556
https://www.github.com/snakemake/snakemake/commit/11123213188672a3b6e5acfffed18d9e0ccc8819
https://www.github.com/snakemake/snakemake/issues/1547
https://www.github.com/snakemake/snakemake/commit/c3a593e8f7fc8e0dccec4e025f4cd9743bd80bc3
https://www.github.com/snakemake/snakemake/issues/1554
https://www.github.com/snakemake/snakemake/commit/68661341efa0a3de4e03de3fb1b8f3117de66efe
https://www.github.com/snakemake/snakemake/issues/1543
https://www.github.com/snakemake/snakemake/commit/e820f973ad8ca99822be69c927c7d7bf6a89f54e
https://www.github.com/snakemake/snakemake/issues/1544
https://www.github.com/snakemake/snakemake/commit/40e2eb2e6c6e31c7cc590c8d643e0640e9377aa4
https://www.github.com/snakemake/snakemake/commit/e6826b6a740ba5b8877f12732c4ad95194833e07
https://www.github.com/snakemake/snakemake/issues/1528
https://www.github.com/snakemake/snakemake/commit/5b394c0319cfc5f8000b616d0f3c911a9091d05b
https://www.github.com/snakemake/snakemake/issues/1536
https://www.github.com/snakemake/snakemake/commit/d9a56aaf75c5f70ba0217d9d461d839fa3013f2e
https://www.github.com/snakemake/snakemake/issues/1535
https://www.github.com/snakemake/snakemake/commit/99b22d33f2100a7e4cf2d080a2272959a712d055
https://www.github.com/snakemake/snakemake/issues/1534
https://www.github.com/snakemake/snakemake/commit/92887a33dc3674f942bd0355edfbba53b810f18f
https://www.github.com/snakemake/snakemake/issues/1532
https://www.github.com/snakemake/snakemake/commit/b9e9a7eff4b6e3349dde6b90eec9f5a37ef69ce7
https://www.github.com/snakemake/snakemake/commit/950d8ba785a384fa47fcda3d6fb948799a259e0e
https://www.github.com/snakemake/snakemake/commit/76159ae22539e38923712e487371a5f32d7cb3cf


Snakemake Documentation, Release 8.2.1

7.3.3 (2022-03-28)

Bug Fixes

• better error message in case of failing to create conda env (#1526) (e7a461c)
• fix singularity logging messages causing conda fail (#1523) (7797595)
• more robust handling of incompletely evaluated parameters (any interaction with them will result in a string now).
(#1525) (3d4c768)

Documentation

• details on benchmarked results (64fea09)

7.3.2 (2022-03-25)

Bug Fixes

• fixed code change detection (#1513) (67298c6)
• modify dag and workflow display in report to also work for big DAGs (#1517) (1364dfb)

Documentation

• Clarify the use of conda with notebook directive (#1515) (aefb1eb)

7.3.1 (2022-03-23)

Bug Fixes

• add about page to report, including embedded packages and licenses (#1511) (142a452)
• in google live science backend, save multiple logs per rule name and overwrite existing logs (#1504) (9e92d63)
• in rules from imported modules, exclude modified paths from module prefixing (#1494) (1e73db0)
• Replaced pathlib relative_to with os.relpath (#1505) (dc65e29)
• update for minimum of Python 3.7 (#1509) (62024e2)

4.25.69 7.3.0 (2022-03-21)

Features

• Support for machine_type for kubernetes executor (#1291) (12d6f67)

4.25. Changelog 187

https://www.github.com/snakemake/snakemake/issues/1526
https://www.github.com/snakemake/snakemake/commit/e7a461ce7b5626e603784da27aa4c87649f5edec
https://www.github.com/snakemake/snakemake/issues/1523
https://www.github.com/snakemake/snakemake/commit/77975952ce7df346729f76a767ad4f475b385306
https://www.github.com/snakemake/snakemake/issues/1525
https://www.github.com/snakemake/snakemake/commit/3d4c768aafbdca67a9032ad9e3b73449a1fadb0d
https://www.github.com/snakemake/snakemake/commit/64fea0921f6a35dbea96435debb114012603ffc2
https://www.github.com/snakemake/snakemake/issues/1513
https://www.github.com/snakemake/snakemake/commit/67298c6167ccaef5f9fbd03ec6b4fe65d86e9ca3
https://www.github.com/snakemake/snakemake/issues/1517
https://www.github.com/snakemake/snakemake/commit/1364dfbc9db58541aaf5600bca61230f9eb4ecbc
https://www.github.com/snakemake/snakemake/issues/1515
https://www.github.com/snakemake/snakemake/commit/aefb1eb0a2d62faa6108670f3a11d58a1d797c41
https://www.github.com/snakemake/snakemake/issues/1511
https://www.github.com/snakemake/snakemake/commit/142a45256f1b192246dd8e9843abedb24badecc6
https://www.github.com/snakemake/snakemake/issues/1504
https://www.github.com/snakemake/snakemake/commit/9e92d63b9e68b29ccd680c34171994b0a2041efb
https://www.github.com/snakemake/snakemake/issues/1494
https://www.github.com/snakemake/snakemake/commit/1e73db0325f407529108acc689a915ff23611b5a
https://www.github.com/snakemake/snakemake/issues/1505
https://www.github.com/snakemake/snakemake/commit/dc65e2921163e9b069c13f79dc0488be21452905
https://www.github.com/snakemake/snakemake/issues/1509
https://www.github.com/snakemake/snakemake/commit/62024e2bfd6d5735763f37a0f4bf43a16f229443
https://www.github.com/snakemake/snakemake/issues/1291
https://www.github.com/snakemake/snakemake/commit/12d6f67a19a55ead092c80b2e5b49e1836fb4e5f


Snakemake Documentation, Release 8.2.1

Bug Fixes

• always wait for input files before starting jobs, also upon local execution and within group jobs. This should add
further robustness against NFS latency issues. (#1486) (cab2adb)

• cleaned up and rewritten execution backend structure, (fixing #1475, #860, #1007, #1008) (PR #1491) (e87cc97)
• do not skip local conda env creation per se when having no shared FS, because it is still needed for local jobs.
Instead, decide for each env whether it is needed locally or not. (#1490) (3f03c5d)

• fixed temp file deletion for group jobs (#1487) (d030443)
• improve robustness when retrieving remote source files, fixed usage of local git repos as wrapper prefixes (in col-
laboration with @cokelaer and @Smeds) (#1495) (e16531d)

• mtime inventory for google storage was accidentally setting a float instead of a proper mtime object (#1484)
(7c762c7)

• render empty caption if nothing defined in report flag (013a6e8)

Documentation

• clarify namespacing when using modules. (dbed4a3)
• separate api docs (ded7da9)
• separate api docs (#1499) (5cf275a)

7.2.1 (2022-03-14)

Bug Fixes

• add missing report.templates.components module to setup.py (cb4e3fe)

Documentation

• add install info of development (git) version to docs (#1477) (2a2d6cd)

4.25.70 7.2.0 (2022-03-13)

Features

• improved reports: more interactive and modern interface, ability to define a label based representation of files
(#1470) (d09df0c)

188 Chapter 4. Resources

https://www.github.com/snakemake/snakemake/issues/1486
https://www.github.com/snakemake/snakemake/commit/cab2adbc2278a2c1689414d2a3f172bb1d5c84d1
https://www.github.com/snakemake/snakemake/issues/1475
https://www.github.com/snakemake/snakemake/issues/860
https://www.github.com/snakemake/snakemake/issues/1007
https://www.github.com/snakemake/snakemake/issues/1008
https://www.github.com/snakemake/snakemake/issues/1491
https://www.github.com/snakemake/snakemake/commit/e87cc979bea0567e1cd97722d385f472857df83c
https://www.github.com/snakemake/snakemake/issues/1490
https://www.github.com/snakemake/snakemake/commit/3f03c5d303fbdd9e05aa13a4d93bce08cade32b2
https://www.github.com/snakemake/snakemake/issues/1487
https://www.github.com/snakemake/snakemake/commit/d030443548a9851a82bcce618b24a9e24a8b545d
https://www.github.com/cokelaer
https://www.github.com/snakemake/snakemake/issues/1495
https://www.github.com/snakemake/snakemake/commit/e16531d6d35b5eb3f7d19008e3e9c4432c4b2e69
https://www.github.com/snakemake/snakemake/issues/1484
https://www.github.com/snakemake/snakemake/commit/7c762c7e5204f95ca85157ba5fe5ab061b8abdfa
https://www.github.com/snakemake/snakemake/commit/013a6e8459d0659e05546c849f84151860686004
https://www.github.com/snakemake/snakemake/commit/dbed4a3f160106feb15a51d2e8cfcafae531ea57
https://www.github.com/snakemake/snakemake/commit/ded7da90258284f06d4e9263e667cd632cdc12ae
https://www.github.com/snakemake/snakemake/issues/1499
https://www.github.com/snakemake/snakemake/commit/5cf275ab9c556dd1828a0618799bcdba0c561e70
https://www.github.com/snakemake/snakemake/commit/cb4e3feaa192ed9c53ddb7c965cb5b71297710c9
https://www.github.com/snakemake/snakemake/issues/1477
https://www.github.com/snakemake/snakemake/commit/2a2d6cd15cf48278ff17470c7c1323e7ebc40bbd
https://www.github.com/snakemake/snakemake/issues/1470
https://www.github.com/snakemake/snakemake/commit/d09df0c6b02494829345f0af0fa8811007afa28b


Snakemake Documentation, Release 8.2.1

Bug Fixes

• always deploy conda envs inmain process when assuming a shared file system (fixes issue #1463) (#1472) (79788eb)
• do not wait for named or containerized conda envs (#1473) (6b1d09c)
• implement lock-free source file caching. This avoids hangs on network file systems like NFS. (#1464) (9520e98)

7.1.1 (2022-03-07)

Bug Fixes

• quote jobid passed to status script to support multi-cluster Slurm setup (#1459) (0232201)

4.25.71 7.1.0 (2022-03-04)

Features

• Zenodo remote provider for transparent storage on and retrieval from Zenodo (#1455) (4586ef7)

Bug Fixes

• disable mtime retrieval from github api for now. This quickly exceeds rate limits. (1858bb9)
• display change warnings only for jobs that won’t be executed otherwise (086f60f)
• work around segfault with >100 jobs in google life sciences backend (#1451) (2c0fee2)

7.0.4 (2022-03-03)

Bug Fixes

• more details on input and output exceptions (missing input, protected output, etc.) (#1453) (8d64af2)

7.0.3 (2022-03-02)

Bug Fixes

• fix a bug leading to duplicate conda env initializations; fix display of jobs and output files with changes (994b151)
• preserve empty names input or output file lists in params or resource functions (0d19ab0)
• remove accidental pdb statement (9c935f1)
• remove deprecated and add missing arguments to internal functions (93a7e39)

4.25. Changelog 189

https://www.github.com/snakemake/snakemake/issues/1463
https://www.github.com/snakemake/snakemake/issues/1472
https://www.github.com/snakemake/snakemake/commit/79788eb5e8bd404e507ef7e54a0caa6103d90c4e
https://www.github.com/snakemake/snakemake/issues/1473
https://www.github.com/snakemake/snakemake/commit/6b1d09c1e270348e8ef77d6ad8c24e1ca540215c
https://www.github.com/snakemake/snakemake/issues/1464
https://www.github.com/snakemake/snakemake/commit/9520e988a32f0c5369b4f2c68fdb741f21daa1a4
https://www.github.com/snakemake/snakemake/issues/1459
https://www.github.com/snakemake/snakemake/commit/023220160c6146810e3da2b277439441e8af9827
https://www.github.com/snakemake/snakemake/issues/1455
https://www.github.com/snakemake/snakemake/commit/4586ef7c9e5945568e9994a013235574c24d582f
https://www.github.com/snakemake/snakemake/commit/1858bb912823da2021f88a9c0cdabe1ee1083575
https://www.github.com/snakemake/snakemake/commit/086f60f142721a6085b105bc4bbe12cccc9cee02
https://www.github.com/snakemake/snakemake/issues/1451
https://www.github.com/snakemake/snakemake/commit/2c0fee2faec33185ca7fcd2276901977857e2c64
https://www.github.com/snakemake/snakemake/issues/1453
https://www.github.com/snakemake/snakemake/commit/8d64af2cb905fef95585055c7b69fd1c45d44108
https://www.github.com/snakemake/snakemake/commit/994b1510766083df7f22d10c0e6e4bb65ffdd710
https://www.github.com/snakemake/snakemake/commit/0d19ab0e6fcabe61b49d5ef9f2b293b9bcc06534
https://www.github.com/snakemake/snakemake/commit/9c935f1566b976392393aeb00acf0e39eb159e19
https://www.github.com/snakemake/snakemake/commit/93a7e39d9f225fac5ff5cb8cbe14500a09986ab3


Snakemake Documentation, Release 8.2.1

7.0.2 (2022-03-01)

Bug Fixes

• add local marker for input files in cufflinks example. fixes issue #1362 (90bc88b)
• failure to properly apply default remote prefix in combination with the unpack marker (#1448) (82666f1)
• set mtime for cached source files [WIP] (#1443) (dd27209)
• small bug in snakemake.executors (#1440) (6e64292)

Documentation

• fix list display in docs (3724367)
• fix list display in docs (2dd0e91)
• Fix typo and grammar mistake in scatter-gather section. (#1441) (f218aaa)

7.0.1 (2022-02-26)

Bug Fixes

• avoid incomplete remote files in case of errors and automatically retry download and upload (#1432) (8fc23ed)
• do not apply module prefix in case of remote files (5645b3f)
• do not require –cores or –jobs to be set when –cleanup-metadata is used. (#1429) (9c73907)
• more robust place for runtime source file cache (#1436) (2681f6f)
• provide details on error when failing to evaluate default resources (#1430) (04f39a9)
• provide proper error when using immediate submit in combination with checkpoint jobs. (#1437) (865cf0f)

Documentation

• explain relative path interpretation (#1428) (add9a05)
• Fix problems with code blocks and broken internal link. (#1424) (5d4e7d8)
• temaplte rendering examples and available variables (#1431) (5995e9e)
• update copyright year (#1427) (6b9f5da)

4.25.72 7.0.0 (2022-02-23)

� BREAKING CHANGES

• require at least Python 3.7 (fd5daae)

190 Chapter 4. Resources

https://www.github.com/snakemake/snakemake/issues/1362
https://www.github.com/snakemake/snakemake/commit/90bc88b84282b477f481e368ad657056e131cbdc
https://www.github.com/snakemake/snakemake/issues/1448
https://www.github.com/snakemake/snakemake/commit/82666f1b2b043f0a8de739d7027aba66eccdaee3
https://www.github.com/snakemake/snakemake/issues/1443
https://www.github.com/snakemake/snakemake/commit/dd27209b4a600d3704cabc39776dfef718129197
https://www.github.com/snakemake/snakemake/issues/1440
https://www.github.com/snakemake/snakemake/commit/6e64292cfa7d5bd9f6cb786681b3710ee51abc43
https://www.github.com/snakemake/snakemake/commit/372436747a97496466b60dc60ee0ebe4cfef1016
https://www.github.com/snakemake/snakemake/commit/2dd0e91f8b7e13d0ffcebe4ed11024a39357ebc7
https://www.github.com/snakemake/snakemake/issues/1441
https://www.github.com/snakemake/snakemake/commit/f218aaad1b9b80074ea602cde0352c34c18e70b5
https://www.github.com/snakemake/snakemake/issues/1432
https://www.github.com/snakemake/snakemake/commit/8fc23ed09f9c6de7519160797584ff9df3104939
https://www.github.com/snakemake/snakemake/commit/5645b3f75066d8d1d8841b6e6732cd8ad098f67f
https://www.github.com/snakemake/snakemake/issues/1429
https://www.github.com/snakemake/snakemake/commit/9c739079bf3e6340facaa03f88f757df36f6dd91
https://www.github.com/snakemake/snakemake/issues/1436
https://www.github.com/snakemake/snakemake/commit/2681f6f163832dfa5214e10f5234d256f5a13407
https://www.github.com/snakemake/snakemake/issues/1430
https://www.github.com/snakemake/snakemake/commit/04f39a92f58c21265d859666bd63fe686e1d61f5
https://www.github.com/snakemake/snakemake/issues/1437
https://www.github.com/snakemake/snakemake/commit/865cf0f22656e22cd2450e5537421ce70c1705f9
https://www.github.com/snakemake/snakemake/issues/1428
https://www.github.com/snakemake/snakemake/commit/add9a05eecf10f45113bc511a1d166e1708ff756
https://www.github.com/snakemake/snakemake/issues/1424
https://www.github.com/snakemake/snakemake/commit/5d4e7d8c4d7901c41bfb8f01c4b2c6551add59f7
https://www.github.com/snakemake/snakemake/issues/1431
https://www.github.com/snakemake/snakemake/commit/5995e9ebf7b037479b3f1317cb920773410bd2f2
https://www.github.com/snakemake/snakemake/issues/1427
https://www.github.com/snakemake/snakemake/commit/6b9f5da0c986d5de444e00b45656dba85244a6c7
https://www.github.com/snakemake/snakemake/commit/fd5daaeff070f9987dba411a0f5262c533a2f666


Snakemake Documentation, Release 8.2.1

Features

• adding service jobs, i.e. the ability to define jobs that provide a resource for consumers (like a shared memory
device or a database), and will be automatically terminated by Snakemake once all consumers are finished. (see
docs, #1413) (a471adb)

• support for group local jobs by enabling optional groupid consideration in input functions (see docs, #1418)
(5d45493)

• Adding –cluster-cancel and –cluster-cancel-nargs (#1395) (0593de1)
• cluster sidecar (#1397) (b992cd1)
• template rendering integration (yte and jinja2) (#1410) (e1cbde5)

Bug Fixes

• bug in pipe group handling that led to multiple assignments of the same group id to different groups; bug that
accidentally added already running groups of the list of ready jobs (issue #1331) (#1332) (1a9b483)

• display wrapper or external script code in report #1393 (#1404) (a007bd1)
• do not pass SNAKEMAKE_PROFILE into cluster-submit (#1398) (#1407) (7189183)
• issue with duplicated prefix for checkpoints on cloud (#1294) (8ed0c8c)
• keep flags with apply_wildcards on cloned IOFile (#1416) (23c943f)
• remove raise that limits using –config with dicts (#1341) (bd65057)
• Repair MREs from #823 (#1203) (b007979)
• warn on non-file-modification-date changes like params, code, or input files (#1419) (b5f53f0)

6.15.5 (2022-02-09)

Bug Fixes

• convert conda env to string before checks (#1382) (7a8da9f)
• fix pepfile handling in case of module usage (#1387) (f097a76)

6.15.4 (2022-02-09)

Bug Fixes

• fix issue when generating unit tests for rules with directory output (#1385) (7db614f)

4.25. Changelog 191

https://snakemake.readthedocs.io/en/latest/snakefiles/rules.html#service-rules-jobs
https://www.github.com/snakemake/snakemake/issues/1413
https://www.github.com/snakemake/snakemake/commit/a471adbb785e5ac7f0c854fd09781c502b577c65
https://snakemake.readthedocs.io/en/latest/snakefiles/rules.html#group-local-jobs
https://www.github.com/snakemake/snakemake/issues/1418
https://www.github.com/snakemake/snakemake/commit/5d45493db4485af2f4b288b5002605c87315d2b7
https://www.github.com/snakemake/snakemake/issues/1395
https://www.github.com/snakemake/snakemake/commit/0593de134499712929ba75e65f65df90491eac2e
https://www.github.com/snakemake/snakemake/issues/1397
https://www.github.com/snakemake/snakemake/commit/b992cd19dc1c011f536e3662a3ddffc8b1bb9f67
https://www.github.com/snakemake/snakemake/issues/1410
https://www.github.com/snakemake/snakemake/commit/e1cbde5a378a29e3e7c7c16c73e08b35afa47a56
https://www.github.com/snakemake/snakemake/issues/1331
https://www.github.com/snakemake/snakemake/issues/1332
https://www.github.com/snakemake/snakemake/commit/1a9b483a6c675315d74bff791502c2bdd74609c1
https://www.github.com/snakemake/snakemake/issues/1393
https://www.github.com/snakemake/snakemake/issues/1404
https://www.github.com/snakemake/snakemake/commit/a007bd11fb49a5765a643ec78e19f30b3a10dfab
https://www.github.com/snakemake/snakemake/issues/1398
https://www.github.com/snakemake/snakemake/issues/1407
https://www.github.com/snakemake/snakemake/commit/71891839e397130fb1af3e499d30fa9a953a93f7
https://www.github.com/snakemake/snakemake/issues/1294
https://www.github.com/snakemake/snakemake/commit/8ed0c8cb453b6ebf6df138391a0681ffc8442e09
https://www.github.com/snakemake/snakemake/issues/1416
https://www.github.com/snakemake/snakemake/commit/23c943f0e285f2dc725aa3e4a2e8798021085cb3
https://www.github.com/snakemake/snakemake/issues/1341
https://www.github.com/snakemake/snakemake/commit/bd65057a782355ede86ad0bb912e063ff25a97f5
https://www.github.com/snakemake/snakemake/issues/823
https://www.github.com/snakemake/snakemake/issues/1203
https://www.github.com/snakemake/snakemake/commit/b0079791718a390d1f920df15a405cf633314312
https://www.github.com/snakemake/snakemake/issues/1419
https://www.github.com/snakemake/snakemake/commit/b5f53f09ae8c01e1223d2279c3a7f59819a8b44f
https://www.github.com/snakemake/snakemake/issues/1382
https://www.github.com/snakemake/snakemake/commit/7a8da9fbf01a037a99ebaa3732fe25e87a96fcd2
https://www.github.com/snakemake/snakemake/issues/1387
https://www.github.com/snakemake/snakemake/commit/f097a761472248d779113cdb22b5274395828bcb
https://www.github.com/snakemake/snakemake/issues/1385
https://www.github.com/snakemake/snakemake/commit/7db614fa1753179d2cdc20095df17d5ac2885ad0


Snakemake Documentation, Release 8.2.1

Documentation

• fix tutorial setup instructions for MacOS. (#1383) (b57b749)

6.15.3 (2022-02-07)

Bug Fixes

• skip global report caption when using a module (#1379) (a755cee)

6.15.2 (2022-02-05)

Bug Fixes

• avoid mutable default argument (#1330) (978cc93)
• don’t raise WorkflowError when entry is empty (#1368) (1fc6f7b)
• fix assertion error in conda env file spec when applying wildcards (thanks @ddesvillechabrol) (#1377) (6200652)
• fix None type error when invoking Workflow object manually (#1366) (fca3895)
• XRootDHelper.exists supports non posix filesystem (object store) (#1348) (7a3ad2f)

Documentation

• add sentence about workflow template to docs (#1369) (5fabffb)
• fix typo in installation.rst (#1344) (c45d47a)

6.15.1 (2022-01-31)

Bug Fixes

• consider post-deploy script for env hashing (#1363) (d50efd9)

4.25.73 6.15.0 (2022-01-29)

Features

• adding default_target directive for declaring default target rules that are not the first rule in the workflow. (#1358)
(638ec1a)

192 Chapter 4. Resources

https://www.github.com/snakemake/snakemake/issues/1383
https://www.github.com/snakemake/snakemake/commit/b57b7493d372605323204122af859ede38864e4d
https://www.github.com/snakemake/snakemake/issues/1379
https://www.github.com/snakemake/snakemake/commit/a755ceefa478d51070f926beed9090067771edf1
https://www.github.com/snakemake/snakemake/issues/1330
https://www.github.com/snakemake/snakemake/commit/978cc9327ce7deb517ad609977e1ce432c58c5e2
https://www.github.com/snakemake/snakemake/issues/1368
https://www.github.com/snakemake/snakemake/commit/1fc6f7b5d7e7d7f40baab961db89c4b59c950bf7
https://www.github.com/ddesvillechabrol
https://www.github.com/snakemake/snakemake/issues/1377
https://www.github.com/snakemake/snakemake/commit/6200652b9aff2362a63581cee58eb9f9cae189da
https://www.github.com/snakemake/snakemake/issues/1366
https://www.github.com/snakemake/snakemake/commit/fca3895430c206fc159e71622ee567f77566980d
https://www.github.com/snakemake/snakemake/issues/1348
https://www.github.com/snakemake/snakemake/commit/7a3ad2f438586690dd40e4c8ec591d8c10b22b00
https://www.github.com/snakemake/snakemake/issues/1369
https://www.github.com/snakemake/snakemake/commit/5fabffbb4af8e9e122677e5adeaebf2d6bd0eeb3
https://www.github.com/snakemake/snakemake/issues/1344
https://www.github.com/snakemake/snakemake/commit/c45d47a79b78a1afed3b1319e6cafd1b2525fe43
https://www.github.com/snakemake/snakemake/issues/1363
https://www.github.com/snakemake/snakemake/commit/d50efd9d16d029fb0e5b14b182882c71a20552bb
https://www.github.com/snakemake/snakemake/issues/1358
https://www.github.com/snakemake/snakemake/commit/638ec1a983741cd7ba8faaf1a9dc76ae43d012e5


Snakemake Documentation, Release 8.2.1

Bug Fixes

• Draft notebook filename with wildcards and params. (#1352) (11d4dc8)
• proper error message when defining cache eligibility for rules with multiple output files and no multiext declaration.
(#1357) (47b5096)

Documentation

• Command line arguments for configuration files (#1343) (ad8aaa4)
• fix broken link in executor_tutorial/tutorial.rst (#1360) (c9be764)

4.25.74 6.14.0 (2022-01-26)

Features

• Added timestamp to each log message (#1304) (a5769f0)
• implement support for removing GFAL remote files (#1103) (25943e5)
• specify conda environments via their name (#1340) (735ab23)
• support for post deploy scripts (#1325) (e5dac4f)

Documentation

• link to list of dependencies from installation (#1336) (99d7bfe)
• update URL to emacs snakemake-mode (#1339) (dae7b8f)

6.13.1 (2022-01-11)

Bug Fixes

• –conda-frontend value not passed on to cluster jobs (#1317) (df46ddb)
• atomic job error display (#1326) (aa2c265)
• fix source cache handling for remote source files retrieved via github() or gitlab() tags. (#1322) (6e2ecd2)
• typos in code examples (#1324) (60010e4)

4.25.75 6.13.0 (2021-12-21)

Features

• allow prefix definition in module statements (#1310) (29e6540)

4.25. Changelog 193

https://www.github.com/snakemake/snakemake/issues/1352
https://www.github.com/snakemake/snakemake/commit/11d4dc88598ffb901450bd4e076b91f4e27d37b0
https://www.github.com/snakemake/snakemake/issues/1357
https://www.github.com/snakemake/snakemake/commit/47b5096ebbdd3d94a9c99b443064b1b0de389c64
https://www.github.com/snakemake/snakemake/issues/1343
https://www.github.com/snakemake/snakemake/commit/ad8aaa4853a150211513baecc474956575d326eb
https://www.github.com/snakemake/snakemake/issues/1360
https://www.github.com/snakemake/snakemake/commit/c9be76482d05577c4b1528b0e52ba15fc17a1dd5
https://www.github.com/snakemake/snakemake/issues/1304
https://www.github.com/snakemake/snakemake/commit/a5769f0baeaa829b7813dee8c78902edbb42cf4b
https://www.github.com/snakemake/snakemake/issues/1103
https://www.github.com/snakemake/snakemake/commit/25943e5630ff6d83afa5cba28edf473ce2ca87da
https://www.github.com/snakemake/snakemake/issues/1340
https://www.github.com/snakemake/snakemake/commit/735ab2301d0905ea054ad6efa3150acb296d0e78
https://www.github.com/snakemake/snakemake/issues/1325
https://www.github.com/snakemake/snakemake/commit/e5dac4ff297b7aeeb1e1a0bbdd03cb967cee3011
https://www.github.com/snakemake/snakemake/issues/1336
https://www.github.com/snakemake/snakemake/commit/99d7bfef1285f131d0e60331511bc4833e7e414a
https://www.github.com/snakemake/snakemake/issues/1339
https://www.github.com/snakemake/snakemake/commit/dae7b8fb0e580a1878d36881cfb5ffc8adeaeb9f
https://www.github.com/snakemake/snakemake/issues/1317
https://www.github.com/snakemake/snakemake/commit/df46ddb37022b291a4feca22fd0fbcf8773e7d03
https://www.github.com/snakemake/snakemake/issues/1326
https://www.github.com/snakemake/snakemake/commit/aa2c2652608d3e95ad7fb568df09ef1ae09e1def
https://www.github.com/snakemake/snakemake/issues/1322
https://www.github.com/snakemake/snakemake/commit/6e2ecd26e48eb64fa04c9c38dde591857e03c722
https://www.github.com/snakemake/snakemake/issues/1324
https://www.github.com/snakemake/snakemake/commit/60010e4ef07b7ba9b89aa5f48ee90ff3cec85b75
https://www.github.com/snakemake/snakemake/issues/1310
https://www.github.com/snakemake/snakemake/commit/29e6540aac95b08b5e386a8478bd2013334e5954


Snakemake Documentation, Release 8.2.1

6.12.3 (2021-12-09)

Bug Fixes

• fixed display of any exceptions and errors from within a workflow definition (23d40d9)

6.12.2 (2021-12-07)

Bug Fixes

• rule inheritance within modules (did previously lead to key errors) (#1292) (603e0a8)

Documentation

• Fix typo in rules.rst (—draft-notebook) (#1290) (f5c42cf)

6.12.1 (2021-11-29)

Bug Fixes

• set default number of nodes to 1 in test cases (#1288) (f6e12b4)

4.25.76 6.12.0 (2021-11-29)

Features

• add flag –draft-notebook for generating a skeleton notebook for manual editing (e.g. in VSCode). (#1284)
(d279322)

Bug Fixes

• issue #1257 (missing logfile failure when using shadow directory) (#1258) (426d92f)
• keep empty output and input dirs of –draft-notebook job (f1181bd)
• SameFileError #1153 (#1220) (ede313d)
• snakemake API using only 1 job as default (#1283) (e92ad48)

Documentation

• short tutorial updates (#1286) (b653a44)

194 Chapter 4. Resources

https://www.github.com/snakemake/snakemake/commit/23d40d99614a88fd3c596d05e6915509ae43d4ce
https://www.github.com/snakemake/snakemake/issues/1292
https://www.github.com/snakemake/snakemake/commit/603e0a87d2c7af57a8f1d397605bc501c50934e0
https://www.github.com/snakemake/snakemake/issues/1290
https://www.github.com/snakemake/snakemake/commit/f5c42cfdc68f1516cec71b8ead8d78225ae915e5
https://www.github.com/snakemake/snakemake/issues/1288
https://www.github.com/snakemake/snakemake/commit/f6e12b4798485be3a1bb240b4af44d57dd5c84b2
https://www.github.com/snakemake/snakemake/issues/1284
https://www.github.com/snakemake/snakemake/commit/d2793223f914790c07b25363cb9b314ef166cb3e
https://www.github.com/snakemake/snakemake/issues/1257
https://www.github.com/snakemake/snakemake/issues/1258
https://www.github.com/snakemake/snakemake/commit/426d92fd9610b61b414b7f0152d777c463c939a2
https://www.github.com/snakemake/snakemake/commit/f1181bd41ea8b20fafd3975c2733ca1d439381dc
https://www.github.com/snakemake/snakemake/issues/1153
https://www.github.com/snakemake/snakemake/issues/1220
https://www.github.com/snakemake/snakemake/commit/ede313dcd31ea5f136b3b8f743e2265331475342
https://www.github.com/snakemake/snakemake/issues/1283
https://www.github.com/snakemake/snakemake/commit/e92ad4867feb456ce8ef3dc57fd8528affa64ae9
https://www.github.com/snakemake/snakemake/issues/1286
https://www.github.com/snakemake/snakemake/commit/b653a44d105e4b3799425a695d75a08239dc0d6b


Snakemake Documentation, Release 8.2.1

6.11.1 (2021-11-26)

Bug Fixes

• provide temporary IPYTHONDIR for notebook execution in order to avoid race conditions in
https://github.com/ipython/ipython/blob/master/IPython/paths.py#L20 upon execution of multiple notebooks at
the same time. (#1280) (4d70da1)

Documentation

• move psutil import into benchmark methods to avoid needing it as a dependency for doc building (6ffe38d)
• require sphinx>=3 (1773875)
• skip lazy property (2883718)

4.25.77 6.11.0 (2021-11-25)

Features

• fail with an error if snakemake cannot write job metadata. (#1273) (cd968cd)

Bug Fixes

• Adds fixes for the first two MREs in #823 (#1215) (cfd2f89)
• env file usage after changes to source file handling (inspired by #1233 and #1211). (#1236) (3ac8e85)
• fixed code change detection when using modules (#1264) (b571e09)
• handle config file extension/overwriting more explicitly (#1251) (d0a7bf2)
• Issue #1253 (problems editing Jupyter Notebooks) (#1255) (3398ddf)
• more informative nothing to be done message (#1234) (368d265)
• only consider context of shell command for technical switches if called from snakemake rules. (#1213) (4816a58)
• R encoding of pathlib.Path objects (#1201) (bd516e9)
• Use ‘snakemake.utils.update_config’ instead of ‘dict.update’ (#1126) (2658027)

4.25.78 6.10.0 (2021-10-21)

Features

• Add more informative errors when evaluation of --default-resources fails (#1192) (b3c4e68)

4.25. Changelog 195

https://www.github.com/snakemake/snakemake/issues/1280
https://www.github.com/snakemake/snakemake/commit/4d70da11f810224ddce192ae1472a6380898865f
https://www.github.com/snakemake/snakemake/commit/6ffe38d1740294a7170765ab875b363f4ae82cd4
https://www.github.com/snakemake/snakemake/commit/1773875fc8f2fddb09362410afb7c49c4406bfa3
https://www.github.com/snakemake/snakemake/commit/28837183fa55a6764621580983b3d724f3881a6a
https://www.github.com/snakemake/snakemake/issues/1273
https://www.github.com/snakemake/snakemake/commit/cd968cd03437ad6db1d791f5d7ae5295b9754137
https://www.github.com/snakemake/snakemake/issues/823
https://www.github.com/snakemake/snakemake/issues/1215
https://www.github.com/snakemake/snakemake/commit/cfd2f890a0af57628f7b9278d8d43f59b7006825
https://www.github.com/snakemake/snakemake/issues/1233
https://www.github.com/snakemake/snakemake/issues/1211
https://www.github.com/snakemake/snakemake/issues/1236
https://www.github.com/snakemake/snakemake/commit/3ac8e858a7b908326922c8f68cae512b1250e906
https://www.github.com/snakemake/snakemake/issues/1264
https://www.github.com/snakemake/snakemake/commit/b571e09ce452f6a1a95395e1c3c8b9e3f83867ad
https://www.github.com/snakemake/snakemake/issues/1251
https://www.github.com/snakemake/snakemake/commit/d0a7bf243c5df204136fa1f14706aab793793c68
https://www.github.com/snakemake/snakemake/issues/1253
https://www.github.com/snakemake/snakemake/issues/1255
https://www.github.com/snakemake/snakemake/commit/3398ddffd1f68182af768ef4ea519e9a9ad4efaf
https://www.github.com/snakemake/snakemake/issues/1234
https://www.github.com/snakemake/snakemake/commit/368d265ff3da984bd3a53b319dcb882d6916975b
https://www.github.com/snakemake/snakemake/issues/1213
https://www.github.com/snakemake/snakemake/commit/4816a58653e466ca94b1482a1d947a856f5381b3
https://www.github.com/snakemake/snakemake/issues/1201
https://www.github.com/snakemake/snakemake/commit/bd516e958af22e57c18cacf0cb22552c2a237bd8
https://www.github.com/snakemake/snakemake/issues/1126
https://www.github.com/snakemake/snakemake/commit/2658027458dde4c10b3d6e1af7671564d175f9cb
https://www.github.com/snakemake/snakemake/issues/1192
https://www.github.com/snakemake/snakemake/commit/b3c4e687c87c75075393cef842b129dcec70e7f6


Snakemake Documentation, Release 8.2.1

Bug Fixes

• add quotes to each item of the wait_for_files list (#1160) (72856ed)
• caching process (#1225) (0825a29)
• enable usage of job grouping in GLS (#1054) (d243c22)
• Only –bind Snakemake when we’re working with a Python script (#1206) (1d79f62)
• run dependencies with non-existent ancient files before the consuming job (#1202) (84d1f64), closes #946
• status cmd repeats until killed by 11 different signals (#1207) (8b28b57)
• typo in sourcecache use (#1229) (8b54bc5)
• wms monitor arg parsing now accepts any kind of value (#1181) (313de93)

Documentation

• Clarification of –cluster-stats docs & elaborating on the situation where job ids are not passed to the status script
(#1221) (ed0e4a2)

• Combine CHANGELOG.rst with CHANGELOG.md (#1228) (19f5a43)
• Mention required openssl dep for rust-script (#1216) (fc8c5f6)
• Unpin docutils version (#1230) (15a82bf)

6.9.1 (2021-09-30)

Bug Fixes

• fix function call when creating report and hashes for between workflow caching (#1198) (a4f6836)

4.25.79 6.9.0 (2021-09-29)

Features

• autoconvert Path objects to str when passing to R or Julia scripts (80ec513)

Bug Fixes

• fix source retrieval during between workflow caching and report generation (2394ca4)

196 Chapter 4. Resources

https://www.github.com/snakemake/snakemake/issues/1160
https://www.github.com/snakemake/snakemake/commit/72856edd12fbe29d723731c6f596f05cd2b59c0e
https://www.github.com/snakemake/snakemake/issues/1225
https://www.github.com/snakemake/snakemake/commit/0825a29e46c08b200efe6bd0c66acf1e6828eed8
https://www.github.com/snakemake/snakemake/issues/1054
https://www.github.com/snakemake/snakemake/commit/d243c22ff494b63bd5e07b7c5bf1f6ff32539cde
https://www.github.com/snakemake/snakemake/issues/1206
https://www.github.com/snakemake/snakemake/commit/1d79f625b7262d66def71c779f2a2c091bc418d8
https://www.github.com/snakemake/snakemake/issues/1202
https://www.github.com/snakemake/snakemake/commit/84d1f6451b12352eba5a8bfefcfcce8b2d98c5aa
https://www.github.com/snakemake/snakemake/issues/946
https://www.github.com/snakemake/snakemake/issues/1207
https://www.github.com/snakemake/snakemake/commit/8b28b5740c34149c9b5df56dbbfa034219eb1574
https://www.github.com/snakemake/snakemake/issues/1229
https://www.github.com/snakemake/snakemake/commit/8b54bc5db9d8e5c0bcb8f2c2ff141dc075e3e659
https://www.github.com/snakemake/snakemake/issues/1181
https://www.github.com/snakemake/snakemake/commit/313de932e2e2a4f2c530df18c1abb15d37eb3217
https://www.github.com/snakemake/snakemake/issues/1221
https://www.github.com/snakemake/snakemake/commit/ed0e4a27a2167a69a4fe1bcdf237dd27bb3732ca
https://www.github.com/snakemake/snakemake/issues/1228
https://www.github.com/snakemake/snakemake/commit/19f5a43261bd6ba548d6f01080640f0d4119871e
https://www.github.com/snakemake/snakemake/issues/1216
https://www.github.com/snakemake/snakemake/commit/fc8c5f62c397a0239ef213ab45a26a1def50f9eb
https://www.github.com/snakemake/snakemake/issues/1230
https://www.github.com/snakemake/snakemake/commit/15a82bfe402b3577bf19e6d2eca3b2fb86109628
https://www.github.com/snakemake/snakemake/issues/1198
https://www.github.com/snakemake/snakemake/commit/a4f68365125c357f30510d0e61036f98b9d3aa69
https://www.github.com/snakemake/snakemake/commit/80ec51322f8134180c52c20b0a9dc6980df6c1bc
https://www.github.com/snakemake/snakemake/commit/2394ca4a23a6b2792397bc9efc09945f01d1963b


Snakemake Documentation, Release 8.2.1

6.8.2 (2021-09-29)

Bug Fixes

• fix path returned by get_source() (ee05315)

6.8.1 (2021-09-24)

Bug Fixes

• async_run to allow nested event loops. (#1170) (5dc6bbd)
• merging of pipe groups when multiple rules are chained together via pipes (#1173) (de91d2c)
• potential memory corruption caused by Google storage objects accessed from different threads (#1174) (41a5071)

Performance Improvements

• more extensive caching of source files, including wrappers. (#1182) (bdb75f8)

Documentation

• move note (75a544b)
• polish (47a7b62)
• tutorial formatting (594f5fb)

4.25.80 6.8.0 (2021-09-06)

Features

• Add shadow: "copy-minimal" directive (#1155) (1803f0b)
• support XRootD as a default remote provider (#1017) (fe03157)

Bug Fixes

• AmbiguousRuleException bug caused by weak ordering of rules (#1124) (7f54c39)
• Bugfix tes add files (#1133) (8892bf2)
• Disable Persistence cache for snakemake jobs (#1159) (7110f9d)
• efficient job status checking when using DRMAA API (this should yield much better parallelization and perfor-
mance when using –drmaa) (#1156) (ac004cb)

• improved error handling for cluster status scripts and smarter job selector choice in case of cluster submission (use
greedy for single jobs). (#1142) (48d2dd9)

• Initialize assignments dictionary when setting rule-based resources (#1154) (68c13fd)
• key error when handling FileNotFoundError in input functions. (#1138) (d25f04d)
• linting of remote snakefiles (#1131) (2104e10)

4.25. Changelog 197

https://www.github.com/snakemake/snakemake/commit/ee053153d2f44156171c127307cb110791b7624a
https://www.github.com/snakemake/snakemake/issues/1170
https://www.github.com/snakemake/snakemake/commit/5dc6bbd440ac46e81a926b6749969b98b7e33a9f
https://www.github.com/snakemake/snakemake/issues/1173
https://www.github.com/snakemake/snakemake/commit/de91d2ccf53bd844b4dbf4f64dd087f4ee935be5
https://www.github.com/snakemake/snakemake/issues/1174
https://www.github.com/snakemake/snakemake/commit/41a5071b750dca5d7fceec324d81d9a93c86bdb6
https://www.github.com/snakemake/snakemake/issues/1182
https://www.github.com/snakemake/snakemake/commit/bdb75f828a3ae27ba97ea6cd5e71a34ac7b27eea
https://www.github.com/snakemake/snakemake/commit/75a544ba528b30b43b861abc0ad464db4d6ae16f
https://www.github.com/snakemake/snakemake/commit/47a7b628686258a28dd870f20bf1f121b3a881c3
https://www.github.com/snakemake/snakemake/commit/594f5fbb342e0722318641dea07d7da4c5eb8116
https://www.github.com/snakemake/snakemake/issues/1155
https://www.github.com/snakemake/snakemake/commit/1803f0b4090d812df0c164653b26502fd130d326
https://www.github.com/snakemake/snakemake/issues/1017
https://www.github.com/snakemake/snakemake/commit/fe03157c31210984fce53c35d5fb87b20d278fe7
https://www.github.com/snakemake/snakemake/issues/1124
https://www.github.com/snakemake/snakemake/commit/7f54c391f2821655ed168bcdafad6d07b96fcec7
https://www.github.com/snakemake/snakemake/issues/1133
https://www.github.com/snakemake/snakemake/commit/8892bf25d9d981a4032d5a1b525960ba3bdd1aec
https://www.github.com/snakemake/snakemake/issues/1159
https://www.github.com/snakemake/snakemake/commit/7110f9d2e7ee3f350bd1da3c5b4aab98c06725a1
https://www.github.com/snakemake/snakemake/issues/1156
https://www.github.com/snakemake/snakemake/commit/ac004cb19cebd4efb5e38f6039861a2810c702ff
https://www.github.com/snakemake/snakemake/issues/1142
https://www.github.com/snakemake/snakemake/commit/48d2dd99a745fd54b74b1435cbb7e41e0ee1b4ac
https://www.github.com/snakemake/snakemake/issues/1154
https://www.github.com/snakemake/snakemake/commit/68c13fd6fb2ad458e79bafe146499b601bf4bd0e
https://www.github.com/snakemake/snakemake/issues/1138
https://www.github.com/snakemake/snakemake/commit/d25f04db820c9651835b7323baef5931d4f8dc0a
https://www.github.com/snakemake/snakemake/issues/1131
https://www.github.com/snakemake/snakemake/commit/2104e10d1d2c5e0f368e9c0fe95cc50f9d4847f1


Snakemake Documentation, Release 8.2.1

Performance Improvements

• improve job selection performance in case of potential ambiguity that is resolved by comprehensive ruleorder
statements. (#1147) (921f4f7)

4.25.81 6.7.0 (2021-08-12)

Features

• Add support for rust scripts (enabling directly integrated ad-hoc robust high performance scripting) (#1053)
(f0e8fa2)

Bug Fixes

• Ga4gh tes bugfixes (#1127) (af21d6c)
• improved display of percentage of done jobs (1fee8c0)
• improved error message in case of target rule misspecification (83b1f5b)

Documentation

• fix contributing executors link (#1112) (4bb58d1)
• Fix typo in file path in remote files documentation (#1110) (9ce294f)

6.6.1 (2021-07-19)

Bug Fixes

• avoid superfluous calls of conda info that have slowed down Snakemake since 6.4.1. (#1099) (e990927)

4.25.82 6.6.0 (2021-07-16)

Features

• Allow to mark all output files as temp with –all-temp (#1097) (0ac3b38)

6.5.5 (2021-07-16)

Bug Fixes

• dummy release (e4dca50)

198 Chapter 4. Resources

https://www.github.com/snakemake/snakemake/issues/1147
https://www.github.com/snakemake/snakemake/commit/921f4f715e3814fc2e22a4f6527ff62e066cc5da
https://www.github.com/snakemake/snakemake/issues/1053
https://www.github.com/snakemake/snakemake/commit/f0e8fa285437a02ca7edcf87334bf00cb347064a
https://www.github.com/snakemake/snakemake/issues/1127
https://www.github.com/snakemake/snakemake/commit/af21d6c2b125c22ef3dbc36a0a6a67a1874549c7
https://www.github.com/snakemake/snakemake/commit/1fee8c06d6ed229d7e3757de3c693e755d01d1bb
https://www.github.com/snakemake/snakemake/commit/83b1f5bbde437e13641be2160f4855f54043c046
https://www.github.com/snakemake/snakemake/issues/1112
https://www.github.com/snakemake/snakemake/commit/4bb58d12a44f77f79d47c5443f927cb6061677f5
https://www.github.com/snakemake/snakemake/issues/1110
https://www.github.com/snakemake/snakemake/commit/9ce294f6d5bdf72055a824ab610488a7f832a4d3
https://www.github.com/snakemake/snakemake/issues/1099
https://www.github.com/snakemake/snakemake/commit/e9909273c22a316dbd7301a243498e3c2a372642
https://www.github.com/snakemake/snakemake/issues/1097
https://www.github.com/snakemake/snakemake/commit/0ac3b3806c065d0ec3a551a5992faf30ddcf0576
https://www.github.com/snakemake/snakemake/commit/e4dca508f6cbd3427d8580ef61f274f909ec8bab


Snakemake Documentation, Release 8.2.1

6.5.4 (2021-07-16)

Fixes

• Fixed –touch in combination with temp files (issue #1028) (@johanneskoester, @iromeo).

Documentation

• Fix syntax error in docs/conf.py and update sphinx.ext.napoleon import (#1084) (3e3fac2)
• Improved pepfile (pepschema) documentation (@stolarczyk).

[6.5.3] - 2021-07-06

• Fixed a bug occuring when using –resources in the command line interface (@johanneskoester).
• Minor improvements in the docs (@johanneskoester).

[6.5.2] - 2021-07-02

• Create directory pointed to by tmpdir resource if it does not yet exist (@johanneskoester).
• Use a single core again in dryrun if –cores is not specified (@johanneskoester).
• Bugfix for FTP remote provider (@jmeppley).
• Improved documentation (@corneliusroemer).

[6.5.1] - 2021-06-24

• Extended best practices document (@johanneskoester)
• Restore -j all behavior for local execution as a (deprecated) way of running Snakemake on all cores. Recom-
mended now: --cores all (@johanneskoester).

• Improved handling and better error messages for checkpoints (@johanneskoester).

4.25.83 [6.5.0] - 2021-06-22

• Allow to set the default profile via the environment variable $SNAKEMAKE_PROFILE.
• There is a new default resource tmpdir (by default reflects the system setting), which is automatically used for
temporary files by shell commands and scripts which properly consider the usual environment variables like $TMP,
$TEMP, $TMPDIR (@johanneskoester).

• The CLI flags –jobs and –cores are now separated, with –cores being responsible for local cores and global cores
in the cluster case, and –jobs being responsible for number of jobs. Still -j and –jobs works as a fallback for local
execution (@johanneskoester).

• Added the ability to overwrite resources via –set-resources (@johanneskoester).
• Various fixes for Windows execution (@melund).
• Fixed a bug with fractional resources (@johanneskoester).
• Fixed timeouts and other issues in google life science backend (@johanneskoester).

4.25. Changelog 199

https://www.github.com/snakemake/snakemake/issues/1084
https://www.github.com/snakemake/snakemake/commit/3e3fac2dbd5a8abad67e252f6181ad14bcfcb711


Snakemake Documentation, Release 8.2.1

• Fixed a bug with missing conda frontend definitions in subworkflows (@johanneskoester).
• Skip envvar checking during linting (@johanneskoester).
• Fixed a bug causing container images in modules to be ignored (@johanneskoester).

[6.4.1] - 2021-05-27

• Fixed bug in workflow.source_path() that occurred with modules included from remote locations (@jo-
hanneskoester).

• Inform cluster jobs about conda/mamba/activate path such that they don’t need to determine this themselves (@jo-
hanneskoester).

4.25.84 [6.4.0] - 2021-05-20

• Improvements in the docs (resource usage, best practices, remote files) (@johanneskoester, @admorris).
• functions given to params can now safely open input files generated by previous rules. If they are not present,
TBD will be displayed and function will be reevaluated immediately before the job is executed (i.e. when files are
present) (@ASLeonard).

• Connection pool for SFTP and FTP remote files, increasing download performance (@jmeppley).
• Require correct minimum version of smart_open (@Redmar-van-den-Berg).
• Added workflow.source_path(path), allowing to get the correct path relative to the current Snakefile, even when
Snakefile is included via URL (@johanneskoester).

• Fixed bugs in module system (@johanneskoester, @dlaehnemann).
• Fixed issue with checkpoints and ruleorder where phantom dependencies are not properly removed from the DAG
(@jmeppley, @johanneskoester).

• Disable tibanna behavior that opens a browser window for each job (@nigiord).
• Allow Paramspace(..., filename_params="*"), meaning that all columns of the paramspace will be
encoded into the filename (@kpj).

• Avoid PATH modification in cluster jobs (@johanneskoester).
• For large sets of input files, pass files to wait for (FS latency) as a file instead of command line args (@kpj,
@epruesse).

4.25.85 [6.3.0] - 2021-04-29

• Changed behavior of workflow.snakefile to always point to the current file instead of the main Snakefile
(also in case of includes and modules) (@johanneskoester).

• Fixed a typo in an error message (@nikostr).

200 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

4.25.86 [6.2.0] - 2021-04-22

• Support for integration of foreign workflowmanagement systems by introducing a handover directive that passes
on all resources to a particular rule (which can then invoke another workflow management system). See the docs
(“Integrating foreign workflow management systems”) (@johanneskoester).

• Behavior improvement for temp handling of checkpoint rules (@epruesse).
• Several improvements in the docs (@johanneskoester).

[6.2.1] - 2021-04-20

• Fixed a minor bug in the linter.

4.25.87 [6.2.0] - 2021-04-20

• Fixed several glitches in paramspace implementation (handling of bools, returning scalar values) (@kpj).
• Fixed bugs in module implementation (@dlaehnemann, @johanneskoester).
• Fall back to greedy scheduling solver if ILP solver needs more than 10 sec (@johanneskoester).

[6.1.1] - 2021-04-07

• Fixed several small bugs of the new module system (@johanneskoester, @dlaehnemann).
• Fixed archive based conda deployment (@johanneskoester).
• Better handling of download and target attributed in the interactive report (@johanneskoester).

4.25.88 [6.1.0] - 2021-04-01

• Snakemake now uses mamba as the default conda frontend (which can be overwritten by specifying to use conda
via the –conda-frontend flag) (@johanneskoester).

• Profiles using –cluster option can now handle relative submit script paths in combination with arguments (@kdm9).
• New AutoRemoteProvider, which infers the type of remote file protocol from the given URL (@kpj).
• When using global container directive, container usage can be deactivated on a per rule base (@bilke).
• Bugfixes for checkpoint handling (@johanneskoester).
• Bugfixes for the module system (@johanneskoester, @dlaehnemann).
• Various improvements for the tutorial.

4.25. Changelog 201



Snakemake Documentation, Release 8.2.1

[6.0.5] - 2021-03-11

• Fix bug (introduced with 6.0) when handling of HTML directories in report (@johanneskoester).

[6.0.4] - 2021-03-11

• Various textual improvements in the tutorial (@dlaehnemann).

[6.0.3] - 2021-03-08

• No longer use a shortened hash for naming conda environments in .snakemake/conda (@johanneskoester).
• Various little updates to the docs (@johanneskoester).

[6.0.2] - 2021-03-03

• Fix race condition in conda checking code (@johanneskoester).

[6.0.1] - 2021-03-03

• Restored Python 3.5 compatibility by removing f-strings (@mbhall88)
• Fix rendering issue in the docs.
• Add gitpod dev environment and gitpod environment for the tutorial.

4.25.89 [6.0.0] - 2021-02-26

• Introduced a new module system, see https://snakemake.readthedocs.io/en/stable/snakefiles/modularization.
html#modules (@johanneskoester).

• Introduced a rule inheritance mechanism, see https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#
rule-inheritance (@johanneskoester).

• Automatically containerize a conda-based pipeline with --containerize, see https://snakemake.readthedocs.
io/en/stable/snakefiles/deployment.html#containerization-of-conda-based-workflows (@johanneskoester).

• Use temporary files for long shell commands (@epruesse).
• Various fixes in the documentation (@ctb, @SilasK, @EthanHolleman).
• Fixed a bug in job grouping that led to non-deterministic behavior (@johanneskoester).

[5.32.2] - 2021-02-11

Changed

• Fixed infinite loading of results in Snakemake reports (@FelixMoelder)

202 Chapter 4. Resources

https://snakemake.readthedocs.io/en/stable/snakefiles/modularization.html#modules
https://snakemake.readthedocs.io/en/stable/snakefiles/modularization.html#modules
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#rule-inheritance
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#rule-inheritance
https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html#containerization-of-conda-based-workflows
https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html#containerization-of-conda-based-workflows


Snakemake Documentation, Release 8.2.1

[5.32.1] - 2021-02-08

Changed

• Improved warning on wildcard constraints (@jheuel)
• Improved logging from the new scheduler implementation (@johanneskoester)
• Restored Python 3.5 compatibility by removing f-strings (@mbhall88)
• Snakemake now automatically adds a global wildcard constraint for {scatteritem}, when scatter/gather support is
used.

• The zip variant of Snakemake reports is now compressed (@FelixMoelder).
• Improved docs (@ctb).
• Make output file removal in cluster mode more robust (@sebschmi).

4.25.90 [5.32.0] - 2021-01-15

Changed

• Handle accidental use of GLS backend with singularity (@vsoch).
• Improved and extended WMS-monitor implementation (@vsoch).
• Display index and total count in {scatteritem} when using the scatter-gather helper (@johanneskoester).
• Fixed problems with jobid display when handling checkpoint updates (@johanneskoester, @jmeppley).
• Fixed bug when checking for directory containment of output files (@jmeppley).
• Implement –no-subworkflows treatment in combination with –cluster (@goi42).

[5.31.1] - 2020-12-21

Changed

• added wget again to the container image

4.25.91 [5.31.0] - 2020-12-21

Added

• The Paramspace helper for automatically exploring parameter spaces given as Pandas dataframes.
• A new directive name: for setting rule names from variables.

4.25. Changelog 203



Snakemake Documentation, Release 8.2.1

Changed

• Various small bug fixes for scheduling and checkpoint handling.
• Automatically block R_LIBS, PYTHONPATH, PERL5LIB, and PERLLIB when using conda with –use-conda.
This behavior can be deactivated with –conda-not-block-envvars.

• Update container image to latest singularity.

[5.30.2] - 2020-12-16

Changed

• Fix permission issues with jobscripts on some systems (@Phhere).
• Added notes on WSL to the tutorial (@RomainFeron).
• Scheduler fixes (@johanneskoester).
• Fixed a bug in checkpoint handling that led to hanging workflow execution (@jmeppley).
• Pass cluster nodes to subworkflows (@votti).
• Fix start time recording in metadata (@lparsons).
• Fix time retrieval in reports (@johanneskoester).
• Fix error when returning a Path from an input function (@sappjw).
• Extending monitoring docs with some notes about future api changes (@vsoch).

4.25.92 [5.30.0] - 2020-11-23

Added

• Benchmarks now also report CPU time (@natir).

Changed

• Fixed a reauthentication bug in Kubernetes support (@haizi-zh).

4.25.93 [5.29.0] - 2020-11-19

Changed

• Fixed several bugs in reports and scheduler.
• Remove automatic (but buggy) encoding of csv/tsv files into HTML tables in the report (we will soon have a better
alternative).

• Fixed bug in kubernetes executor occurring with large source files.

204 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

4.25.94 [5.28.0] - 2020-11-12

Added

• Execution backend for GA4GH TES (task execution scheduler) an abstraction layer for various cluster and cloud
queuing systems (@svedziok, @uniqueg).

• script, notebook, wrapper and cwl directives now permit to use wildcards and params for composing paths (@jo-
hanneskoester).

Changed

• Restored compatibility with Python 3.5 and 3.6 (@cclienti).
• Various usability bug fixes (@goi43, @johanneskoester, @dcroote).
• Better and more secure parsing of values when using –config (@bingxiao).

[5.27.4] - 2020-11-03

Changed

• Further speed improvements for DAG computation.
• Fixed metadata migration errors occuring with long output file paths.
• Add WorkflowHub specifications to the docs.
• Fix group assignments.

[5.27.3] - 2020-10-30

Changed

• Added missing files to source distribution.

[5.27.2] - 2020-10-30

Changed

• DAG computation runtime has been improved by orders of magnitude, it is linear in the number of jobs now
(@mhulsmann, @johanneskoester).

• Stat calls have been dramatically reduced and are now performed in parallel (@johanneskoester).
• Scheduler fixes (@FelixMoelder).
• Directory support and other fixes for Google Life Sciences backend (@vsoch, @millerdz).
• Support for panoptes monitor server (@fgypas).
• Extended pathlib support (@mbhall88).
• Vim plugin improvements (@troycomi).
• Prevent jobs being rerun when input files are marked as ancient and another job in the DAG creates them.

4.25. Changelog 205



Snakemake Documentation, Release 8.2.1

• Fixed –list-code-changes for included rules (@jbloom).

Added

• Syntax highlighting for nano (@baileythegreen).

[5.26.1] - 2020-10-01

Changed

• Use coin ILP solver for scheduling by default (GLPK has bugs that can cause it to fail in certain situations).
• If coin is not available, fall back to greedy scheduler.

4.25.95 [5.26.0] - 2020-09-30

Added

• Flag –max-inventory-time for setting maximum time spend on creating file inventory.
• Flag –scheduler-ilp-solver for defining which solver to use for the ILP scheduler.

Changed

• Fixed various bugs with the new scheduler (@FelixMoelder).
• Fixed bug causing certain parameters not to be passed to the cluster (–set-scatter, –scheduler, –set-threads).
• Updated docs and fixed of google backend (@vsoch).
• Display jupyter notebook code in reports.
• Improved scheduler behavior in order to directly remove temporary files if possible.

4.25.96 [5.25.0] - 2020-09-18

Added

• Simplified and more configurable support for scatter-gather processes (see docs).
• Fully configurable DAG partitioning by grouping jobs at the command line. This should provide a vast additional
improvement to scalability in cluster and cloud settings.

206 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

Changed

• Depend on latest pulp, thereby enable Python >=3.8 compatibility again.
• Fixes for snakefile handling in google life sciences backend (@vsoch).

[5.24.2] - 2020-09-15

Changed

• Fixed a bug in the linter that caused a false warning when using resources in shell commands.

[5.24.1] - 2020-09-13

Changed

• Depend on pulp < 2.0, which includes the default coin cbc solver for all platforms.

4.25.97 [5.24.0] - 2020-09-09

Added

• Preemtion support for google cloud backend (@vsoch).

Changed

• Fixed compatibility issues in new scheduler code (@dtrodrigues and @johanneskoester).
• Improved error messages (@Sam-Tygier, @terrycojones)
• Various small bug fixes.
• Improved profile documentation (@johanneskoester).

4.25.98 [5.23.0] - 2020-08-24

Added

• Support for workflow configuration via portable encapsulated projects (PEPs, https://pep.databio.org).
• A new ILP based default scheduler now ensures that temporary files are deleted as fast as possible (@FelixMoelder,
@johanneskoester).

4.25. Changelog 207

https://pep.databio.org


Snakemake Documentation, Release 8.2.1

Changed

• Fixed bug in modification date comparison for files in google storage (@vsoch).
• Various small documentation improvements (@dcroote, @erjel, @dlaehnemann, @goi42).

[5.22.1] - 2020-08-14

Changed

• Fixed a missing dependency for google storage in cloud execution.

4.25.99 [5.22.0] - 2020-08-13

Added

• Added short option -T for CLI parameter --restart-times (@mbhall88).

Changed

• Various small fixes for google storage and life sciences backends (@vsoch).

4.25.100 [5.21.0] - 2020-08-11

Changed

• Added default-remote-provider support for Azure storage (@andreas-wilm).
• Various small bug fixes and documentation improvements.

[5.20.1] - 2020-07-08

Changed

• Fixed a bug that caused singularity args to be not passed on correctly when using script or conda.

4.25.101 [5.20.0] - 2020-07-08

Changed

• Exceptions in input functions are now handled in a smarter way, by choosing alternative paths in the DAG if
available.

• Debugging dag creation (–debug-dag) now gives more hints if alternative DAG paths are chosen.
• Fixes for XRootD remote file implementation.
• Improved CLI documentation.
• Improved docs.

208 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

• Various minor bug fixes.
• Restored Python 3.5 compatibility.
• Speed improvements for workdir cleanup.
• Allow Path objects to be passed to expand.

[5.19.3] - 2020-06-16

Changed

• Performance improvements for DAG generation (up to 7x in the google cloud, anything from a little to massive in
a cluster, depending on the overall filesystem performance).

• Made harcoded bucket in google cloud executor configurable.
• Improved speed of –unlock command.

[5.19.2] - 2020-06-04

Changed

• Fixed a bug in script and wrapper directives. Tried to decode a str.

[5.19.1] - 2020-06-03

Changed

• Fixed an issue with the parameter linting code, that could cause an index out of bounds exception.

4.25.102 [5.19.0] - 2020-06-02

Added

• The multiext function now allows arbitrary file extensions (no longer required to start with a “.” (thanks to @jafors)
• The include directive can now also take a Pathlib Path object (thanks to @mbhall88).

Changed

• Jupyter notebook integration no longer automatically starts a browser.
• Empty directories are cleaned up after workflow execution.
• Fixed directory handling: no longer fail if the same job writes both a dir and a contained file.
• Linter now recommends using spaces only for indentation.
• Persistence dir “aux” has been renamed to “auxilliary” in order to make windows happy.
• Linter now distinguishes awk syntax from regular variable usage.
• Various bug fixes for Windows (thanks to @melund).

4.25. Changelog 209



Snakemake Documentation, Release 8.2.1

4.25.103 [5.18.0] - 2020-05-21

Added

• Native Google Cloud support via the (despite the name generic) lifesciences API.
• Ability to optionally exchange the conda frontend to mamba (faster and sometimes more correct) instead of conda.

Changed

• Improved notebook integration experience, with various removed bugs and pitfalls.
• Auto-retry google storage API calls on transient or checksum errors.

4.25.104 [5.17.0] - 2020-05-07

Added

• –envvars flag for passing secrets to cloud executors

Changed

• Wider thumbnail dialogs in report.
• Updated installation instructions.
• Various small kubernetes bug fixes.
• Bug fix for iRods remote files.

4.25.105 [5.16.0] - 2020-04-29

Added

• Interactive jupyter notebook editing. Notebooks defined by rules can be interactively drafted and updated using
snakemake –edit-notebook (see docs).

Changed

• Fixed group resource usage to occupy one cluster/cloud node.
• Minor bug fixes.

210 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

4.25.106 [5.15.0] - 2020-04-21

Changed

• The resource directive can now take strings, e.g. for defining a GPU model (see docs). This will e.g. be used for
upcoming updates to cloud executors.

• More extensive conda cleanup with –conda-cleanup-packages, meant for CI usage.
• Further polish for reports.

4.25.107 [5.14.0] - 2020-04-08

Changed

• Redesigned HTML reports, with improved interface and performance.
• For big data, HTML reports can now be stored as ZIP, where files are not anymore embedded but rather are stored
in an auxilliary folder, such that they don’t have to be in memory during report rendering.

• Added subcategories to report (see docs).
• Fixed a bug linter, leading to only one rule or snakefile to be linted.
• Breaking change in CLI: added flags –conda-cleanup-envs and –conda-cleanup-pkgs, removed flag –cleanup-conda.
• Fixed scheduling of pipe jobs, they are now always scheduled, fixing a hangup.
• Corrected quoting of shell command for cluster submission.

4.25.108 [5.13.0] - 2020-03-27

Added

• Allow to flag directories for inclusion in the report.

Changed

• Fixed hash computation for –cache in case of positional params arguments.
• Automatically restrict thread usage of linear algebra libraries to whatever is specified in the rule/job.

[5.12.3] - 2020-03-24

Changed

• Various minor bug fixes.

4.25. Changelog 211



Snakemake Documentation, Release 8.2.1

[5.12.2] - 2020-03-24

Changed

• Further improved linter output.

[5.12.1] - 2020-03-24

Changed

• Linter fixes

4.25.109 [5.12.0] - 2020-03-24

Changed

• Fixed the ability to supply functions for the thread directive.
• Improved error messages for caching.

Added

• A new “cache: true” directive that allows to annotate between workflow caching eligibility for rules in the workflow.

[5.11.2] - 2020-03-19

Changed

• Fixed a spurious error message complaining about missing singularity image if –use-singularity is not activated.

[5.11.1] - 2020-03-16

Changed

• Fixed a KeyError bug when executing a workflow that defines containers without –use-singularity.

4.25.110 [5.11.0] - 2020-03-16

Changed

• Fixes for environment modules and tibanna-based AWS execution.
• Fixes for –default-resources defaults.
• –cores is now a mandatory argument!
• Automatic checksum validation for google storage.

212 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

Added

• Azure storage authentication via SAS
• A generic container directive that will in the future allow for other backends than just singularity. This deprecates
the singularity directive, which will however stay functional at least until the next major release.

• envvars directive for asserting environment variable existence. See docs.
• support for AWS spot instances via –tibanna-config spot=true.
• Automatic code quality linting via –lint.

4.25.111 [5.10.0] - 2020-01-20

Added

• Jupyter notebook integration, see docs. This enables interactive development of certain data analysis parts (e.g. for
plotting).

• Ability to overwrite thread definitions at the command line (--threads rulename=3), thereby improving
scalability.

• Requester pays configuration for google storage remote files.
• Add keyword allow_missing to expand function, thereby allowing partical expansion by skipping wildcards
for which no keywords are defined.

Changed

• Various bug fixes, e.g. for between workflow caching and script execution.

[5.9.1] - 2019-12-20

Changed

• Added a missing module.

4.25.112 [5.9.0] - 2019-12-20

Added

• Support for per-rule environment module definitions to enable HPC specific software deployment (see docs).
• Allow custom log handler defitions via –log-handler-script (e.g. post errors and progress to a slack channel or send
emails).

• Allow setting threads as a function of the given cores (see docs).

4.25. Changelog 213



Snakemake Documentation, Release 8.2.1

Changed

• Various minor fixes.

[5.8.2] - 2019-12-16

Added

• Implemented a multiext helper, allowing to define a set of output files that just differ by extension.

Changed

• Fixed a failure when caching jobs with conda environments.
• Fixed various minor bugs.
• Caching now allows to cache the output of rules using multiext.

[5.8.1] - 2019-11-15

Changed

• Fixed a bug by adding a missing module.

4.25.113 [5.8.0] - 2019-11-15

Added

• Blockchain based caching between workflows (in collaboration with Sven Nahnsen from QBiC), see the docs.
• New flag –skip-cleanup-scripts, that leads to temporary scripts (coming from script or wrapper directive) are not
deleted (by Vanessa Sochat).

Changed

• Various bug fixes.

[5.7.4] - 2019-10-23

Changed

• Various fixes and adaptations in the docker container image and the test suite.

214 Chapter 4. Resources

https://snakemake.readthedocs.io/en/v5.8.0/executing/caching.html


Snakemake Documentation, Release 8.2.1

[5.7.1] - 2019-10-16

Added

• Ability to print log files of failed jobs with –show-failed-logs.

Changed

• Fixed bugs in tibanna executor.
• Fixed handling of symbolic links.
• Fixed typos in help texts.
• Fixed handling of default resources.
• Fixed bugs in azure storage backend.

4.25.114 [5.7.0] - 2019-10-07

Changed

• Fixed various corner case bugs. Many thanks to the community for pull requests and reporting!
• Container execution adapted to latest singularity.

Added

• First class support for Amazon cloud execution via a new Tibanna backend. Thanks to Soo Lee from Harvard
Biomedical Informatics!

• Allow multiple config files to be passed via the command line.
• A new, more detailed way to visualize the DAG (–filegraph). Thanks to Henning Timm!
• Pathlib compatibility added. Input and output files can now also be Path objects. Thanks to Frederik Boulund!
• New azure storage remote provider. Transparently access input and output files on Microsoft Azure. Thanks to
Sebastian Kurscheid!

4.25.115 [5.6.0] - 2019-09-06

Changed

• Fix compatibility with latest singularity versions.
• Various bug fixes (e.g. in cluster error handling, remote providers, kubernetes backend).

4.25. Changelog 215

https://snakemake.readthedocs.io/en/v5.7.0/executable.html#executing-a-snakemake-workflow-via-tibanna-on-amazon-web-services


Snakemake Documentation, Release 8.2.1

Added

• Add –default-resources flag, that allows to define default resources for jobs (e.g. mem_mb, disk_mb), see docs.
• Accept --dry-run as a synonym of --dryrun. Other Snakemake options are similarly hyphenated, so other
documentation now refers to --dry-run but both (and also -n) will always be accepted equivalently.

[5.5.4] - 2019-07-21

Changed

• Reports now automatically include workflow code and configuration for improved transparency.

[5.5.3] - 2019-07-11

Changed

• Various bug fixes.
• Polished reports.

[5.5.2] - 2019-06-25

Changed

• Various minor bug fixes in reports.
• Speed improvements when using checkpoints.

[5.5.1] - 2019-06-18

Changed

• Improved report interface. In particular for large files.
• Small TSV tables are automatically rendered as HTML with datatables.
• Be more permissive with Snakefile choices: allow “Snakefile”, “snakefile”, “workflow/Snakefile”, “work-
flow/snakefile”.

4.25.116 [5.5.0] - 2019-05-31

Added

• Script directives now also support Julia.

216 Chapter 4. Resources

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#resources


Snakemake Documentation, Release 8.2.1

Changed

• Various small bug fixes.

[5.4.5] - 2019-04-12

Changed

• Fixed a bug with pipe output.
• Cleaned up error output.

[5.4.4] - 2019-03-22

Changed

• Vastly improved performance of HTML reports generated with –report, via a more efficient encoding of dara-uri
based download links.

• Tighter layout, plus thumbnails and a lightbox for graphical results in HTML reports.
• Bug fix for pipe groups.
• Updated docs.
• Better error handling in DRMAA executor.

[5.4.3] - 2019-03-11

Changed

• More robust handling of conda environment activation that should work with all setups where the conda is available
when starting snakemake.

• Fixed bugs on windows.

[5.4.2] - 2019-02-15

Changed

• Fixed a bug where git module cannot be imported from wrapper.

4.25. Changelog 217



Snakemake Documentation, Release 8.2.1

[5.4.1] - 2019-02-14

Added

• Warning when R script is used in combination with conda and R_LIBS environment variable is set. This can cause
unexpected results and should be avoided.

Changed

• Improved quoting of paths in conda commands.
• Fixed various issues with checkpoints.
• Improved error messages when combining groups with cluster config.
• Fixed bugs in group implementation.
• Fixed singularity in combination with shadow.

4.25.117 [5.4.0] - 2018-12-18

Added

• Snakemake now allows for data-dependent conditional re-evaluation of the job DAG via checkpoints. This feature
also deprecates the dynamic flag. See the docs.

[5.3.1] - 2018-12-06

Changed

• Various fixed bugs and papercuts, e.g., in group handling, kubernetes execution, singularity support, wrapper and
script usage, benchmarking, schema validation.

4.25.118 [5.3.0] - 2018-09-18

Added

• Snakemake workflows can now be exported to CWL via the flag –export-cwl, see the docs.

Changed

• Fixed bug in script and wrapper execution when using --use-singularity --use-conda.
• Add host argument to S3RemoteProvider.
• Various minor bug fixes.

218 Chapter 4. Resources

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#data-dependent-conditional-execution
https://snakemake.readthedocs.io/en/stable/executing/interoperability.html


Snakemake Documentation, Release 8.2.1

[5.2.4] - 2018-09-10

Added

• New command line flag –shadow-prefix

Changed

• Fixed permission issue when using the script directive. This is a breaking change for scripts referring to files relative
to the script directory (see the docs).

• Fixed various minor bugs and papercuts.
• Allow URL to local git repo with wrapper directive (git+file:///path/to/your/repo/
path_to_file@@version)

[5.2.2] - 2018-08-01

Changed

• Always print timestamps, removed the –timestamps CLI option.
• more robust detection of conda command
• Fixed bug in RMarkdown script execution.
• Fixed a bug in detection of group jobs.

4.25.119 [5.2.0] - 2018-06-28

Changed

• Directory outputs have to marked with directory. This ensures proper handling of timestamps and cleanup.
This is a breaking change. Implemented by Rasmus Ågren.

• Fixed kubernetes tests, fixed kubernetes volume handling. Implemented by Andrew Schriefer.
• jinja2 and networkx are not optional dependencies when installing via pip.
• When conda or singularity directives are used and the corresponding CLI flags are not specified, the user is notified
at the beginning of the log output.

• Fixed numerous small bugs and papercuts and extended documentation.

[5.1.5] - 2018-06-24

Changed

• fixed missing version info in docker image.
• several minor fixes to EGA support.

4.25. Changelog 219

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#external-scripts


Snakemake Documentation, Release 8.2.1

[5.1.4] - 2018-05-28

Added

• Allow category to be set.

Changed

• Various cosmetic changes to reports.
• Fixed encoding issues in reports.

[5.1.3] - 2018-05-22

Changed

• Fixed various bugs in job groups, shadow directive, singularity directive, and more.

[5.1.2] - 2018-05-18

Changed

• Fixed a bug in the report stylesheet.

4.25.120 [5.1.0] - 2018-05-17

Added

• A new framework for self-contained HTML reports, including results, statistics and topology information. In future
releases this will be further extended.

• A new utility snakemake.utils.validate() which allows to validate config and pandas data frames using JSON
schemas.

• Two new flags –cleanup-shadow and –cleanup-conda to clean up old unused conda and shadow data.

Changed

• Benchmark repeats are now specified inside the workflow via a new flag repeat().
• Command line interface help has been refactored into groups for better readability.

220 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

4.25.121 [5.0.0] - 2018-05-11

Added

• Group jobs for reduced queuing and network overhead, in particular with short running jobs.
• Output files can be marked as pipes, such that producing and consuming job are executed simultaneously and
interfomation is transferred directly without using disk.

• Command line flags to clean output files.
• Command line flag to list files in working directory that are not tracked by Snakemake.

Changed

• Fix of –default-remote-prefix in case of input functions returning lists or dicts.
• Scheduler no longer prefers jobs with many downstream jobs.

[4.8.1] - 2018-04-25

Added

• Allow URLs for the conda directive. # Changed
• Various minor updates in the docs.
• Several bug fixes with remote file handling.
• Fix ImportError occuring with script directive.
• Use latest singularity.
• Improved caching for file existence checks. We first check existence of parent directories and cache these results.
By this, large parts of the generated FS tree can be pruned if files are not yet present. If files are present, the
overhead is minimal, since the checks for the parents are cached.

• Various minor bug fixes.

4.25.122 [4.8.0] - 2018-03-13

Added

• Integration with CWL: the cwl directive allows to use CWL tool definitions in addition to shell commands or
Snakemake wrappers.

• A global singularity directive allows to define a global singularity container to be used for all rules that don’t
specify their own.

• Singularity and Conda can now be combined. This can be used to specify the operating system (via singularity),
and the software stack (via conda), without the overhead of creating specialized container images for workflows or
tasks.

4.25. Changelog 221



Snakemake Documentation, Release 8.2.1

4.25.123 [4.7.0] - 2018-02-19

Changed

• Speedups when calculating dry-runs.
• Speedups for workflows with many rules when calculating the DAG.
• Accept SIGTERM to gracefully finish all running jobs and exit.
• Various minor bug fixes.

4.25.124 [4.6.0] - 2018-02-06

Changed

• Log files can now be used as input files for other rules.
• Adapted to changes in Kubernetes client API.
• Fixed minor issues in –archive option.
• Search path order in scripts was changed to fix a bug with leaked packages from root env when using script directive
together with conda.

[4.5.1] - 2018-02-01

Added

• Input and output files can now tag pathlib objects. # ## Changed
• Various minor bug fixes.

4.25.125 [4.5.0] - 2018-01-18

Added

• iRODS remote provider # ## Changed
• Bug fix in shell usage of scripts and wrappers.
• Bug fixes for cluster execution, –immediate-submit and subworkflows.

4.25.126 [4.4.0] - 2017-12-21

Added

• A new shadow mode (minimal) that only symlinks input files has been added.

222 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

Changed

• The default shell is now bash on linux and macOS. If bash is not installed, we fall back to sh. Previously, Snakemake
used the default shell of the user, which defeats the purpose of portability. If the developer decides so, the shell
can be always overwritten using shell.executable().

• Snakemake now requires Singularity 2.4.1 at least (only when running with –use-singularity).
• HTTP remote provider no longer automatically unpacks gzipped files.
• Fixed various smaller bugs.

[4.3.1] - 2017-11-16

Added

• List all conda environments with their location on disk via –list-conda-envs.

Changed

• Do not clean up shadow on dry-run.
• Allow R wrappers.

4.25.127 [4.3.0] - 2017-10-27

Added

• GridFTP remote provider. This is a specialization of the GFAL remote provider that uses globus-url-copy to
download or upload files. # ## Changed

• Scheduling and execution mechanisms have undergone a major revision that removes several potential (but rare)
deadlocks.

• Several bugs and corner cases of the singularity support have been fixed.
• Snakemake now requires singularity 2.4 at least.

4.25.128 [4.2.0] - 2017-10-10

Added

• Support for executing jobs in per-rule singularity images. This is meant as an alternative to the conda directive (see
docs), providing even more guarantees for reproducibility.

4.25. Changelog 223



Snakemake Documentation, Release 8.2.1

Changed

• In cluster mode, jobs that are still running after Snakemake has been killed are automatically resumed.
• Various fixes to GFAL remote provider.
• Fixed –summary and –list-code-changes.
• Many other small bug fixes.

4.25.129 [4.1.0] - 2017-09-26

Added

• Support for configuration profiles. Profiles allow to specify default options, e.g., a cluster submission command.
They can be used via ‘snakemake –profile myprofile’. See the docs for details.

• GFAL remote provider. This allows to use GridFTP, SRM and any other protocol supported by GFAL for remote
input and output files.

• Added –cluster-status flag that allows to specify a command that returns jobs status. # ## Changed
• The scheduler now tries to get rid of the largest temp files first.
• The Docker image used for kubernetes support can now be configured at the command line.
• Rate-limiting for cluster interaction has been unified.
• S3 remote provider uses boto3.
• Resource functions can now use an additional attempt parameter, that contains the number of times this job has
already been tried.

• Various minor fixes.

4.25.130 [4.0.0] - 2017-07-24

Added

• Cloud computing support via Kubernetes. Snakemake workflows can be executed transparently in the cloud, while
storing input and output files within the cloud storage (e.g. S3 or Google Storage). I.e., this feature does not need
a shared filesystem between the cloud notes, and thereby makes the setup really simple.

• WebDAV remote file support: Snakemake can now read and write fromWebDAV. Hence, it can now, e.g., interact
with Nextcloud or Owncloud.

• Support for default remote providers: define a remote provider to implicitly use for all input and output files.
• Added an option to only create conda environments instead of executing the workflow. # ## Changed
• The number of files used for the metadata tracking of Snakemake (e.g., code, params, input changes) in the .snake-
make directory has been reduced by a factor of 10, which should help with NFS and IO bottlenecks. This is a
breaking change in the sense that Snakemake 4.x won’t see the metadata of workflows executed with Snakemake
3.x. However, old metadata won’t be overwritten, so that you can always go back and check things by installing an
older version of Snakemake again.

• The google storage (GS) remote provider has been changed to use the google SDK. This is a breaking change, since
the remote provider invocation has been simplified (see docs).

• Due to WebDAV support (which uses asyncio), Snakemake now requires Python 3.5 at least.

224 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

• Various minor bug fixes (e.g. for dynamic output files).

[3.13.3] - 2017-06-23

Changed

• Fix a followup bug in Namedlist where a single item was not returned as string.

[3.13.2] - 2017-06-20

Changed

• The –wrapper-prefix flag now also affects where the corresponding environment definition is fetched from.
• Fix bug where empty output file list was recognized as containing duplicates (issue #574).

[3.13.1] - 2017-06-20

Changed

• Fix –conda-prefix to be passed to all jobs.
• Fix cleanup issue with scripts that fail to download.

4.25.131 [3.13.0] - 2017-06-12

Added

• An NCBI remote provider. By this, you can seamlessly integrate any NCBI resouce (reference genome,
gene/protein sequences, …) as input file. # ## Changed

• Snakemake now detects if automatically generated conda environments have to be recreated because the workflow
has been moved to a new path.

• Remote functionality has been made more robust, in particular to avoid race conditions.
• --config parameter evaluation has been fixed for non-string types.
• The Snakemake docker container is now based on the official debian image.

4.25.132 [3.12.0] - 2017-05-09

Added

• Support for RMarkdown (.Rmd) in script directives.
• New option –debug-dag that prints all decisions while building the DAG of jobs. This helps to debug problems
like cycles or unexpected MissingInputExceptions.

• New option –conda-prefix to specify the place where conda environments are stored.

4.25. Changelog 225



Snakemake Documentation, Release 8.2.1

Changed

• Benchmark files now also include the maximal RSS and VMS size of the Snakemake process and all sub processes.
• Speedup conda environment creation.
• Allow specification of DRMAA log dir.
• Pass cluster config to subworkflow.

[3.11.2] - 2017-03-15

Changed

• Fixed fix handling of local URIs with the wrapper directive.

[3.11.1] - 2017-03-14

Changed

• –touch ignores missing files
• Fixed handling of local URIs with the wrapper directive.

4.25.133 [3.11.0] - 2017-03-08

Added

• Param functions can now also refer to threads. # ## Changed
• Improved tutorial and docs.
• Made conda integration more robust.
• None is converted to NULL in R scripts.

[3.10.2] - 2017-02-28

Changed

• Improved config file handling and merging.
• Output files can be referred in params functions (i.e. lambda wildcards, output: …)
• Improved conda-environment creation.
• Jobs are cached, leading to reduced memory footprint.
• Fixed subworkflow handling in input functions.

226 Chapter 4. Resources



Snakemake Documentation, Release 8.2.1

4.25.134 [3.10.0] - 2017-01-18

Added

• Workflows can now be archived to a tarball with snakemake --archive my-workflow.tar.gz. The
archive contains all input files, source code versioned with git and all software packages that are defined via conda
environments. Hence, the archive allows to fully reproduce a workflow on a different machine. Such an archive
can be uploaded to Zenodo, such that your workflow is secured in a self-contained, executable way for the future.
# ## Changed

• Improved logging.
• Reduced memory footprint.
• Added a flag to automatically unpack the output of input functions.
• Improved handling of HTTP redirects with remote files.
• Improved exception handling with DRMAA.
• Scripts referred by the script directive can now use locally defined external python modules.

[3.9.1] - 2016-12-23

Added

• Jobs can be restarted upon failure (–restart-times). # ## Changed
• The docs have been restructured and improved. Now available under snakemake.readthedocs.org.
• Changes in scripts show up with –list-code-changes.
• Duplicate output files now cause an error.
• Various bug fixes.

4.25.135 [3.9.0] - 2016-11-15

Added

• Ability to define isolated conda software environments (YAML) per rule. Environments will be deployed by Snake-
make upon workflow execution.

• Command line argument –wrapper-prefix in order to overwrite the default URL for looking up wrapper scripts. #
## Changed

• –summary now displays the log files correspoding to each output file.
• Fixed hangups when using run directive and a large number of jobs
• Fixed pickling errors with anonymous rules and run directive.
• Various small bug fixes

4.25. Changelog 227



Snakemake Documentation, Release 8.2.1

[3.8.2] - 2016-09-23

Changed

• Add missing import in rules.py.
• Use threading only in cluster jobs.

[3.8.1] - 2016-09-14

Changed

• Snakemake now warns when using relative paths starting with “./”.
• The option -R now also accepts an empty list of arguments.
• Bug fix when handling benchmark directive.
• Jobscripts exit with code 1 in case of failure. This should improve the error messages of cluster system.
• Fixed a bug in SFTP remote provider.

4.25.136 [3.8.0] - 2016-08-26

Added

• Wildcards can now be constrained by rule and globally via the new wildcard_constraints directive (see
the docs).

• Subworkflows now allow to overwrite their config file via the configfile directive in the calling Snakefile.
• A method log_fmt_shell in the snakemake proxy object that is available in scripts and wrappers allows to
obtain a formatted string to redirect logging output from STDOUT or STDERR.

• Functions given to resources can now optionally contain an additional argument input that refers to the input
files.

• Functions given to params can now optionally contain additional arguments input (see above) and resources.
The latter refers to the resources.

• It is now possible to let items in shell commands be automatically quoted (see the docs). This is usefull when dealing
with filenames that contain whitespaces.

Changed

• Snakemake now deletes output files before job exection. Further, it touches output files after job execution. This
solves various problems with slow NFS filesystems.

• A bug was fixed that caused dynamic output rules to be executed multiple times when forcing their execution with
-R.

• A bug causing double uploads with remote files was fixed. Various additional bug fixes related to remote files.
• Various minor bug fixes.

228 Chapter 4. Resources

https://bitbucket.org/snakemake/snakemake/wiki/Documentation#markdown-header-wildcards
https://bitbucket.org/snakemake/snakemake/wiki/Documentation#markdown-header-rules


Snakemake Documentation, Release 8.2.1

[3.7.1] - 2016-05-16

Changed

• Fixed a missing import of the multiprocessing module.

4.25.137 [3.7.0] - 2016-05-05

Added

• The entries in resources and the threads job attribute can now be callables that must return int values.
• Multiple --cluster-config arguments can be given to the Snakemake command line. Later one override
earlier ones.

• In the API, multiple cluster_config paths can be given as a list, alternatively to the previous behaviour of
expecting one string for this parameter.

• When submitting cluster jobs (either through --cluster or --drmaa), you can now use
--max-jobs-per-second to limit the number of jobs being submitted (also available through Snake-
make API). Some cluster installations have problems with too many jobs per second.

• Wildcard values are now printed upon job execution in addition to input and output files. # ## Changed
• Fixed a bug with HTTP remote providers.

[3.6.1] - 2016-04-08

Changed

• Work around missing RecursionError in Python < 3.5
• Improved conversion of numpy and pandas data structures to R scripts.
• Fixed locking of working directory.

4.25.138 [3.6.0] - 2016-03-10

Added

• onstart handler, that allows to add code that shall be only executed before the actual workflow execution (not on
dryrun).

• Parameters defined in the cluster config file are now accessible in the job properties under the key “cluster”.
• The wrapper directive can be considered stable. # ## Changed
• Allow to use rule/job parameters with braces notation in cluster config.
• Show a proper error message in case of recursion errors.
• Remove non-empty temp dirs.
• Don’t set the process group of Snakemake in order to allow kill signals from parent processes to be propagated.
• Fixed various corner case bugs.
• The params directive no longer converts a list l implicitly to " ".join(l).

4.25. Changelog 229



Snakemake Documentation, Release 8.2.1

[3.5.5] - 2016-01-23

Added

• New experimental wrapper directive, which allows to refer to re-usable wrapper scripts. Wrappers are provided in
the Snakemake Wrapper Repository.

• David Koppstein implemented two new command line options to constrain the execution of the DAG of job to
sub-DAGs (–until and –omit-from). # ## Changed

• Fixed various bugs, e.g. with shadow jobs and –latency-wait.

[3.5.4] - 2015-12-04

Changed

• The params directive now fully supports non-string parameters. Several bugs in the remote support were fixed.

[3.5.3] - 2015-11-24

Changed

• The missing remote module was added to the package.

[3.5.2] - 2015-11-24

Added

• Support for easy integration of external R and Python scripts via the new script directive.
• Chris Tomkins-Tinch has implemented support for remote files: Snakemake can now handle input and output files
from Amazon S3, Google Storage, FTP, SFTP, HTTP and Dropbox.

• Simon Ye has implemented support for sandboxing jobs with shadow rules.

Changed

• Manuel Holtgrewe has fixed dynamic output files in combination with multiple wildcards.
• It is now possible to add suffixes to all shell commands with shell.suffix(“mysuffix”).
• Job execution has been refactored to spawn processes only when necessary, resolving several problems in combi-
nation with huge workflows consisting of thousands of jobs and reducing the memory footprint.

• In order to reflect the new collaborative development model, Snakemake has moved from my personal bitbucket
account to http://snakemake.bitbucket.org.

230 Chapter 4. Resources

https://bitbucket.org/snakemake/snakemake/wiki/Documentation#markdown-header-wrappers
https://bitbucket.org/snakemake/snakemake-wrappers
https://bitbucket.org/snakemake/snakemake/wiki/Documentation#markdown-header-external-scripts
https://bitbucket.org/snakemake/snakemake/wiki/Documentation#markdown-header-shadow-rules
http://snakemake.bitbucket.org


Snakemake Documentation, Release 8.2.1

[3.4.2] - 2015-09-12

Changed

• Willem Ligtenberg has reduced the memory usage of Snakemake.
• Per Unneberg has improved config file handling to provide a more intuitive overwrite behavior.
• Simon Ye has improved the test suite of Snakemake and helped with setting up continuous integration via Codeship.
• The cluster implementation has been rewritten to use only a single thread to wait for jobs. This avoids failures with
large numbers of jobs.

• Benchmarks are now writing tab-delimited text files instead of JSON.
• Snakemake now always requires to set the number of jobs with -j when in cluster mode. Set this to a high value if
your cluster does not have restrictions.

• The Snakemake Conda package has been moved to the bioconda channel.
• The handling of Symlinks was improved, which made a switch to Python 3.3 as the minimum required Python
version necessary.

[3.4.1] - 2015-08-05

Changed

• This release fixes a bug that caused named input or output files to always be returned as lists instead of single files.

4.25.139 [3.4] - 2015-07-18

Added

• This release adds support for executing jobs on clusters in synchronous mode (e.g. qsub -sync). Thanks to David
Alexander for implementing this.

• There is now vim syntax highlighting support (thanks to Jay Hesselberth).
• Snakemake is now available as Conda package.

Changed

• Lots of bugs have been fixed. Thanks go to e.g. David Koppstein, Marcel Martin, John Huddleston and Tao Wen
for helping with useful reports and debugging.

See here for older changes.

4.25. Changelog 231

https://bitbucket.org/snakemake/snakemake/wiki/News-Archive


Snakemake Documentation, Release 8.2.1

4.26 License

Snakemake is licensed under the MIT License:

Copyright (c) 2012-2023 The Snakemake team

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

232 Chapter 4. Resources


	Getting started
	Support
	Citation
	Resources
	Installation
	Installation via Conda/Mamba
	Full installation
	Notes on Bioconda as a package source

	Installation via pip
	Installation of a development version via pip

	Migration between Snakemake versions
	Migrating to Snakemake 8
	Workflow definitions
	Command line interface
	Profiles
	API


	Best practices
	Snakemake Tutorial
	Setup
	Requirements
	Run tutorial for free in the cloud via Gitpod
	Running the tutorial on your local machine
	Setup on Windows
	Windows Subsystem for Linux
	Vagrant virtual machine

	Step 1: Installing Mambaforge
	Step 2: Preparing a working directory
	Step 3: Creating an environment with the required software
	Step 4: Activating the environment

	Basics: An example workflow
	Background
	Step 1: Mapping reads
	Step 2: Generalizing the read mapping rule
	Step 3: Sorting read alignments
	Step 4: Indexing read alignments and visualizing the DAG of jobs
	Exercise

	Step 5: Calling genomic variants
	Exercise

	Step 6: Using custom scripts
	Step 7: Adding a target rule
	Exercise

	Summary

	Advanced: Decorating the example workflow
	Step 1: Specifying the number of used threads
	Exercise

	Step 2: Config files
	Step 3: Input functions
	Exercise

	Step 4: Rule parameters
	Exercise

	Step 5: Logging
	Exercise

	Step 6: Temporary and protected files
	Exercise

	Summary

	Additional features
	Benchmarking
	Modularization
	Exercise

	Automatic deployment of software dependencies
	Tool wrappers
	Cluster execution
	Using –cluster-status
	Using –cluster-cancel
	Using –cluster-sidecar
	Constraining wildcards


	Command line interface
	Important environment variables
	Useful Command Line Arguments
	Non-local execution
	Dealing with very large workflows


	Profiles
	Visualization
	All Options
	EXECUTION
	GROUPING
	REPORTS
	NOTEBOOKS
	UTILITIES
	OUTPUT
	BEHAVIOR
	REMOTE EXECUTION
	FLUX
	SOFTWARE DEPLOYMENT
	CONDA
	APPTAINER/SINGULARITY
	ENVIRONMENT MODULES
	cluster-generic executor settings
	s3 executor settings


	Job Grouping
	Between workflow caching
	Interoperability
	CWL export

	Monitoring
	Writing Workflows
	Grammar
	Depend on a Minimum Snakemake Version


	Snakefiles and Rules
	Wildcards
	Aggregation
	The expand function
	The multiext function

	Targets and aggregation
	Threads
	Resources
	Dynamic Resources
	Standard Resources
	Default Resources
	Resources and Remote Execution
	Resources and Group Jobs
	Preemptible Jobs
	GPU Resources

	Messages
	Priorities
	Log-Files
	Non-file parameters for rules
	External scripts
	Python
	R and R Markdown
	Julia
	Rust
	Bash
	Bash Example 1
	Bash Example 2


	Jupyter notebook integration
	Protected and Temporary Files
	Directories as outputs
	Ignoring timestamps
	Ensuring output file properties like non-emptyness or checksum compliance
	Shadow rules
	Defining retries for fallible rules
	Flag files
	Job Properties
	Input functions
	Input Functions and unpack()
	Code Tracking
	Onstart, onsuccess and onerror handlers
	Rule dependencies
	Handling Ambiguous Rules
	Local Rules
	Benchmark Rules
	Defining scatter-gather processes
	Defining groups for execution
	Group-local jobs

	Piped output
	Service rules/jobs
	Group-local service jobs

	Parameter space exploration
	Data-dependent conditional execution
	Rule inheritance
	Accessing auxiliary source files
	Template rendering integration
	MPI support

	Configuration
	Standard Configuration
	Tabular configuration
	Environment variables
	Validation
	Configuring scientific experiments via PEPs
	Validating PEPs

	Configure Working Directory
	Cluster Configuration (not supported anymore)

	Modularization
	Wrappers
	Common-Workflow-Language (CWL) support
	Includes
	Modules
	Meta-Wrappers

	Code hosting providers
	Private repositories


	Storage support
	Deployment
	Usage
	As default provider
	Local input/output files

	Within the workflow
	Using multiple entities of the same storage plugin
	Automatic inference
	Credentials


	Utils
	Distribution and Reproducibility
	Using and combining pre-exising workflows
	Uploading workflows to WorkflowHub
	Integrated Package Management
	Freezing environments to exactly pinned packages
	Updating environments
	Providing post-deployment scripts

	Using already existing named conda environments
	Running jobs in containers
	Containerization of Conda based workflows
	Ad-hoc combination of Conda package management with containers
	Using environment modules
	Sustainable and reproducible archiving
	Global workflow dependencies

	Reports
	Defining file labels
	Determining category, subcategory, and labels dynamically via functions
	Linking between items
	Rendering reports

	Automatically generating unit tests
	Integrating foreign workflow management systems
	Citing and Citations
	Citing Snakemake
	More References
	Project Pages


	More Resources
	Talks and Posters
	External Resources

	Frequently Asked Questions
	What is the key idea of Snakemake workflows?
	How does Snakemake interpret relative paths?
	Snakemake does not connect my rules as I have expected, what can I do to debug my dependency structure?
	My shell command fails with with errors about an “unbound variable”, what’s wrong?
	My shell command fails with exit code != 0 from within a pipe, what’s wrong?
	I don’t want Snakemake to detect an error if my shell command exits with an exitcode > 1. What can I do?
	How do I run my rule on all files of a certain directory?
	I don’t want expand to use the product of every wildcard, what can I do?
	I don’t want expand to use every wildcard, what can I do?
	Snakemake complains about a cyclic dependency or a PeriodicWildcardError. What can I do?
	Is it possible to pass variable values to the workflow via the command line?
	I get a NameError with my shell command. Are braces unsupported?
	How do I incorporate files that do not follow a consistent naming scheme?
	How do I force Snakemake to rerun all jobs from the rule I just edited?
	How should Snakefiles be formatted?
	How do I enable syntax highlighting in Vim for Snakefiles?
	I want to import some helper functions from another python file. Is that possible?
	How can I run Snakemake on a cluster where its main process is not allowed to run on the head node?
	Can the output of a rule be a symlink?
	Can the input of a rule be a symlink?
	I would like to receive a mail upon snakemake exit. How can this be achieved?
	I want to pass variables between rules. Is that possible?
	Why do my global variables behave strangely when I run my job on a cluster?
	I want to configure the behavior of my shell for all rules. How can that be achieved with Snakemake?
	Some command line arguments like –config cannot be followed by rule or file targets. Is that intended behavior?
	How do I enforce config values given at the command line to be interpreted as strings?
	How do I make my rule fail if an output file is empty?
	How does Snakemake lock the working directory?
	How do I trigger re-runs for rules with updated code or parameters?
	How do I remove all files created by snakemake, i.e. like make clean
	Why can’t I use the conda directive with a run block?
	My workflow is very large, how do I stop Snakemake from printing all this rule/job information in a dry-run?
	Git is messing up the modification times of my input files, what can I do?
	How do I exit a running Snakemake workflow?
	How can I make use of node-local storage when running cluster jobs?
	How do I access elements of input or output by a variable index?
	There is a compiler error when installing Snakemake with pip or easy_install, what shall I do?
	How to enable autocompletion for the zsh shell?
	How can I avoid system /tmp to be used when combining apptainer and conda?

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Contributing a plugin

	Write Documentation
	Submit Feedback

	Pull Request Guidelines
	Testing Guidelines
	Documentation Guidelines
	Documentation Setup

	Credits
	Development Lead
	Development Team
	Contributors

	Changelog
	8.2.1 (2024-01-17)
	Bug Fixes

	8.2.0 (2024-01-16)
	Features
	Bug Fixes

	8.1.3 (2024-01-15)
	Bug Fixes

	8.1.2 (2024-01-12)
	Bug Fixes

	8.1.1 (2024-01-11)
	Bug Fixes

	8.1.0 (2024-01-08)
	Features
	Bug Fixes
	Documentation

	8.0.1 (2023-12-21)
	Bug Fixes
	Documentation

	8.0.0 (2023-12-20)
	⚠ BREAKING CHANGES
	Detailed breaking changes

	Features
	Bug Fixes
	Documentation

	7.32.4 (2023-08-18)
	Bug Fixes

	7.32.3 (2023-08-07)
	Bug Fixes

	7.32.2 (2023-08-07)
	Bug Fixes

	7.32.1 (2023-08-05)
	Bug Fixes
	Documentation

	7.32.0 (2023-08-03)
	Features
	Bug Fixes
	Documentation

	7.31.1 (2023-08-02)
	Bug Fixes
	Documentation

	7.31.0 (2023-07-26)
	Features

	7.30.2 (2023-07-20)
	Breaking changes
	Bug Fixes
	Documentation

	7.30.1 (2023-06-28)
	Bug Fixes

	7.30.0 (2023-06-28)
	Features

	7.29.0 (2023-06-21)
	Features
	Bug Fixes

	7.28.3 (2023-06-16)
	Bug Fixes
	Performance Improvements
	Documentation

	7.28.2 (2023-06-13)
	Bug Fixes

	7.28.1 (2023-06-11)
	Bug Fixes

	7.28.0 (2023-06-11)
	Features

	7.27.0 (2023-06-07)
	Features
	Bug Fixes

	7.26.0 (2023-05-22)
	Features

	7.25.4 (2023-05-12)
	Bug Fixes
	Documentation

	7.25.3 (2023-05-03)
	Bug Fixes

	7.25.2 (2023-04-28)
	Bug Fixes
	Documentation

	7.25.1 (2023-04-28)
	Bug Fixes
	Documentation

	7.25.0 (2023-03-23)
	Features
	Bug Fixes
	Documentation

	7.24.2 (2023-03-14)
	Bug Fixes

	7.24.1 (2023-03-09)
	Bug Fixes
	Performance Improvements
	Documentation

	7.24.0 (2023-03-01)
	Features
	Bug Fixes
	Documentation

	7.23.1 (2023-02-18)
	Bug Fixes

	7.23.0 (2023-02-18)
	Features
	Bug Fixes
	Performance Improvements

	7.22.0 (2023-02-12)
	Features
	Bug Fixes

	7.21.0 (2023-01-30)
	Features
	Bug Fixes

	7.20.0 (2023-01-18)
	Features
	Bug Fixes
	Documentation

	7.19.1 (2022-12-13)
	Bug Fixes
	Documentation

	7.19.0 (2022-12-13)
	Features
	Bug Fixes

	7.18.2 (2022-11-10)
	Bug Fixes

	7.18.1 (2022-11-03)
	Bug Fixes

	7.18.0 (2022-10-31)
	Features

	7.17.2 (2022-10-28)
	Bug Fixes

	7.17.1 (2022-10-28)
	Bug Fixes

	7.17.0 (2022-10-27)
	Features
	Performance Improvements

	7.16.2 (2022-10-26)
	Bug Fixes

	7.16.1 (2022-10-18)
	Bug Fixes

	7.16.0 (2022-10-14)
	Features
	Bug Fixes

	7.15.2 (2022-10-08)
	Bug Fixes
	Performance Improvements

	7.15.1 (2022-10-04)
	Bug Fixes
	Documentation

	7.15.0 (2022-10-04)
	Features
	Bug Fixes
	Documentation

	7.14.2 (2022-09-26)
	Bug Fixes

	7.14.1 (2022-09-23)
	Bug Fixes

	7.14.0 (2022-08-27)
	Features
	Documentation

	7.13.0 (2022-08-25)
	Features
	Bug Fixes
	Documentation

	7.12.1 (2022-08-09)
	Bug Fixes

	7.12.0 (2022-07-29)
	Features
	Bug Fixes

	7.11.0 (2022-07-27)
	Features
	Bug Fixes

	7.10.0 (2022-07-26)
	Features
	Bug Fixes

	7.9.0 (2022-07-19)
	Features
	Bug Fixes

	7.8.5 (2022-06-30)
	Documentation

	7.8.4 (2022-06-30)
	Bug Fixes
	Documentation
	7.8.3 (2022-06-20)
	Bug Fixes
	7.8.2 (2022-06-08)
	Bug Fixes
	7.8.1 (2022-05-31)
	Bug Fixes

	7.8.0 (2022-05-24)
	Features
	Bug Fixes

	7.7.0 (2022-05-16)
	Features
	Bug Fixes
	Documentation
	7.6.2 (2022-05-06)
	Bug Fixes
	7.6.1 (2022-05-04)
	Bug Fixes

	7.6.0 (2022-05-03)
	Features
	Bug Fixes

	7.5.0 (2022-04-26)
	Features
	Bug Fixes
	Documentation

	7.4.0 (2022-04-22)
	Features
	Bug Fixes
	7.3.8 (2022-04-06)
	Bug Fixes
	7.3.7 (2022-04-05)
	Bug Fixes
	7.3.6 (2022-04-02)
	Bug Fixes
	7.3.5 (2022-03-31)
	Bug Fixes
	Documentation
	7.3.4 (2022-03-30)
	Bug Fixes
	Documentation
	7.3.3 (2022-03-28)
	Bug Fixes
	Documentation
	7.3.2 (2022-03-25)
	Bug Fixes
	Documentation
	7.3.1 (2022-03-23)
	Bug Fixes

	7.3.0 (2022-03-21)
	Features
	Bug Fixes
	Documentation
	7.2.1 (2022-03-14)
	Bug Fixes
	Documentation

	7.2.0 (2022-03-13)
	Features
	Bug Fixes
	7.1.1 (2022-03-07)
	Bug Fixes

	7.1.0 (2022-03-04)
	Features
	Bug Fixes
	7.0.4 (2022-03-03)
	Bug Fixes
	7.0.3 (2022-03-02)
	Bug Fixes
	7.0.2 (2022-03-01)
	Bug Fixes
	Documentation
	7.0.1 (2022-02-26)
	Bug Fixes
	Documentation

	7.0.0 (2022-02-23)
	⚠ BREAKING CHANGES
	Features
	Bug Fixes
	6.15.5 (2022-02-09)
	Bug Fixes
	6.15.4 (2022-02-09)
	Bug Fixes
	Documentation
	6.15.3 (2022-02-07)
	Bug Fixes
	6.15.2 (2022-02-05)
	Bug Fixes
	Documentation
	6.15.1 (2022-01-31)
	Bug Fixes

	6.15.0 (2022-01-29)
	Features
	Bug Fixes
	Documentation

	6.14.0 (2022-01-26)
	Features
	Documentation
	6.13.1 (2022-01-11)
	Bug Fixes

	6.13.0 (2021-12-21)
	Features
	6.12.3 (2021-12-09)
	Bug Fixes
	6.12.2 (2021-12-07)
	Bug Fixes
	Documentation
	6.12.1 (2021-11-29)
	Bug Fixes

	6.12.0 (2021-11-29)
	Features
	Bug Fixes
	Documentation
	6.11.1 (2021-11-26)
	Bug Fixes
	Documentation

	6.11.0 (2021-11-25)
	Features
	Bug Fixes

	6.10.0 (2021-10-21)
	Features
	Bug Fixes
	Documentation
	6.9.1 (2021-09-30)
	Bug Fixes

	6.9.0 (2021-09-29)
	Features
	Bug Fixes
	6.8.2 (2021-09-29)
	Bug Fixes
	6.8.1 (2021-09-24)
	Bug Fixes
	Performance Improvements
	Documentation

	6.8.0 (2021-09-06)
	Features
	Bug Fixes
	Performance Improvements

	6.7.0 (2021-08-12)
	Features
	Bug Fixes
	Documentation
	6.6.1 (2021-07-19)
	Bug Fixes

	6.6.0 (2021-07-16)
	Features
	6.5.5 (2021-07-16)
	Bug Fixes
	6.5.4 (2021-07-16)
	Fixes
	Documentation
	[6.5.3] - 2021-07-06
	[6.5.2] - 2021-07-02
	[6.5.1] - 2021-06-24

	[6.5.0] - 2021-06-22
	[6.4.1] - 2021-05-27

	[6.4.0] - 2021-05-20
	[6.3.0] - 2021-04-29
	[6.2.0] - 2021-04-22
	[6.2.1] - 2021-04-20

	[6.2.0] - 2021-04-20
	[6.1.1] - 2021-04-07

	[6.1.0] - 2021-04-01
	[6.0.5] - 2021-03-11
	[6.0.4] - 2021-03-11
	[6.0.3] - 2021-03-08
	[6.0.2] - 2021-03-03
	[6.0.1] - 2021-03-03

	[6.0.0] - 2021-02-26
	[5.32.2] - 2021-02-11
	Changed
	[5.32.1] - 2021-02-08
	Changed

	[5.32.0] - 2021-01-15
	Changed
	[5.31.1] - 2020-12-21
	Changed


	[5.31.0] - 2020-12-21
	Added
	Changed
	[5.30.2] - 2020-12-16
	Changed


	[5.30.0] - 2020-11-23
	Added
	Changed

	[5.29.0] - 2020-11-19
	Changed

	[5.28.0] - 2020-11-12
	Added
	Changed
	[5.27.4] - 2020-11-03
	Changed

	[5.27.3] - 2020-10-30
	Changed

	[5.27.2] - 2020-10-30
	Changed
	Added

	[5.26.1] - 2020-10-01
	Changed


	[5.26.0] - 2020-09-30
	Added
	Changed

	[5.25.0] - 2020-09-18
	Added
	Changed
	[5.24.2] - 2020-09-15
	Changed

	[5.24.1] - 2020-09-13
	Changed


	[5.24.0] - 2020-09-09
	Added
	Changed

	[5.23.0] - 2020-08-24
	Added
	Changed
	[5.22.1] - 2020-08-14
	Changed


	[5.22.0] - 2020-08-13
	Added
	Changed

	[5.21.0] - 2020-08-11
	Changed
	[5.20.1] - 2020-07-08
	Changed


	[5.20.0] - 2020-07-08
	Changed
	[5.19.3] - 2020-06-16
	Changed

	[5.19.2] - 2020-06-04
	Changed

	[5.19.1] - 2020-06-03
	Changed


	[5.19.0] - 2020-06-02
	Added
	Changed

	[5.18.0] - 2020-05-21
	Added
	Changed

	[5.17.0] - 2020-05-07
	Added
	Changed

	[5.16.0] - 2020-04-29
	Added
	Changed

	[5.15.0] - 2020-04-21
	Changed

	[5.14.0] - 2020-04-08
	Changed

	[5.13.0] - 2020-03-27
	Added
	Changed
	[5.12.3] - 2020-03-24
	Changed

	[5.12.2] - 2020-03-24
	Changed

	[5.12.1] - 2020-03-24
	Changed


	[5.12.0] - 2020-03-24
	Changed
	Added
	[5.11.2] - 2020-03-19
	Changed

	[5.11.1] - 2020-03-16
	Changed


	[5.11.0] - 2020-03-16
	Changed
	Added

	[5.10.0] - 2020-01-20
	Added
	Changed
	[5.9.1] - 2019-12-20
	Changed


	[5.9.0] - 2019-12-20
	Added
	Changed
	[5.8.2] - 2019-12-16
	Added
	Changed

	[5.8.1] - 2019-11-15
	Changed


	[5.8.0] - 2019-11-15
	Added
	Changed
	[5.7.4] - 2019-10-23
	Changed

	[5.7.1] - 2019-10-16
	Added
	Changed


	[5.7.0] - 2019-10-07
	Changed
	Added

	[5.6.0] - 2019-09-06
	Changed
	Added
	[5.5.4] - 2019-07-21
	Changed

	[5.5.3] - 2019-07-11
	Changed

	[5.5.2] - 2019-06-25
	Changed

	[5.5.1] - 2019-06-18
	Changed


	[5.5.0] - 2019-05-31
	Added
	Changed
	[5.4.5] - 2019-04-12
	Changed

	[5.4.4] - 2019-03-22
	Changed

	[5.4.3] - 2019-03-11
	Changed

	[5.4.2] - 2019-02-15
	Changed

	[5.4.1] - 2019-02-14
	Added
	Changed


	[5.4.0] - 2018-12-18
	Added
	[5.3.1] - 2018-12-06
	Changed


	[5.3.0] - 2018-09-18
	Added
	Changed
	[5.2.4] - 2018-09-10
	Added
	Changed

	[5.2.2] - 2018-08-01
	Changed


	[5.2.0] - 2018-06-28
	Changed
	[5.1.5] - 2018-06-24
	Changed

	[5.1.4] - 2018-05-28
	Added
	Changed

	[5.1.3] - 2018-05-22
	Changed

	[5.1.2] - 2018-05-18
	Changed


	[5.1.0] - 2018-05-17
	Added
	Changed

	[5.0.0] - 2018-05-11
	Added
	Changed
	[4.8.1] - 2018-04-25
	Added


	[4.8.0] - 2018-03-13
	Added

	[4.7.0] - 2018-02-19
	Changed

	[4.6.0] - 2018-02-06
	Changed
	[4.5.1] - 2018-02-01
	Added


	[4.5.0] - 2018-01-18
	Added

	[4.4.0] - 2017-12-21
	Added
	Changed
	[4.3.1] - 2017-11-16
	Added
	Changed


	[4.3.0] - 2017-10-27
	Added

	[4.2.0] - 2017-10-10
	Added
	Changed

	[4.1.0] - 2017-09-26
	Added

	[4.0.0] - 2017-07-24
	Added
	[3.13.3] - 2017-06-23
	Changed

	[3.13.2] - 2017-06-20
	Changed

	[3.13.1] - 2017-06-20
	Changed


	[3.13.0] - 2017-06-12
	Added

	[3.12.0] - 2017-05-09
	Added
	Changed
	[3.11.2] - 2017-03-15
	Changed

	[3.11.1] - 2017-03-14
	Changed


	[3.11.0] - 2017-03-08
	Added
	[3.10.2] - 2017-02-28
	Changed


	[3.10.0] - 2017-01-18
	Added
	[3.9.1] - 2016-12-23
	Added


	[3.9.0] - 2016-11-15
	Added
	[3.8.2] - 2016-09-23
	Changed

	[3.8.1] - 2016-09-14
	Changed


	[3.8.0] - 2016-08-26
	Added
	Changed
	[3.7.1] - 2016-05-16
	Changed


	[3.7.0] - 2016-05-05
	Added
	[3.6.1] - 2016-04-08
	Changed


	[3.6.0] - 2016-03-10
	Added
	[3.5.5] - 2016-01-23
	Added

	[3.5.4] - 2015-12-04
	Changed

	[3.5.3] - 2015-11-24
	Changed

	[3.5.2] - 2015-11-24
	Added
	Changed

	[3.4.2] - 2015-09-12
	Changed

	[3.4.1] - 2015-08-05
	Changed


	[3.4] - 2015-07-18
	Added
	Changed


	License


