cyipopt Documentation
Release 1.3.0

cyipopt Developers

Nov 04, 2023






CONTENTS

1 Installation 3
1.1 Usingconda . . . . . . . . e e e e e e e e e e 3
1.2 Fromsource . . . . . . . . i i i i e e e e e e e e e e e e e 3
1.3 On Ubuntu 22.04 Using APT Dependencies . . . . . . . . . ... .. ... 5
1.4 On Ubuntu 18.04 Using APT Dependencies . . . . . . . . . . . o v v v i i it ittt 5
1.5 On Ubuntu 18.04 with Custom Compiled IPOPT . . . . . . .. .. ... ... ... ... ...... 7
1.6 Conda Forge binaries with HSL. . . . . . . . . . .. . . . 9
2 Usage 13
2.1 SciPy Compatible Interface . . . . . . . . . . . . e e e e 13
2.2 ProblemInterface . . . . . . . . .. L e 17
2.3 Accessing iterate and infeasibility vectors in an intermediate callback . . . . . ... ... .0 20
24 Wheretogofromhere . . . . . . ... L 22
3 Reference 23
4 Development 31
4.1 DevelopmentInstall . . . . . .. .. 31
4.2 Building the documentation . . . . . . . ... L. oL 31
43 Testing . . . . .. e e e e e e e e e e e e 32
5 Indices and tables 33
6 Copyright 35
Index 37







cyipopt Documentation, Release 1.3.0

cyipopt: Python wrapper for the Ipopt optimization package, written in Cython.

Ipopt (Interior Point Optimizer, pronounced ‘’Eye-Pea-Opt”) is an open source software package for large-scale non-
linear optimization. It is designed to find (local) solutions of mathematical optimization problems of the form

min f(x)

rER™

subject to

gL < g(z) < gu
r, <x<uxy

Where x are the optimization variables (possibly with upper and lower bounds), f(x) is the objective function and
g(x) are the general nonlinear constraints. The constraints, g(x), have lower and upper bounds. Note that equality
constraints can be specified by setting g¢ = g?;.

cyipopt is a python wrapper around Ipopt. It enables using Ipopt from the comfort of the Python programming lan-
guage. cyipopt is available under the EPL (Eclipse Public License) open-source license.

Contents:
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https://coin-or.github.io/Ipopt/
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CHAPTER
ONE

INSTALLATION

1.1 Using conda

Conda is a cross platform package manager and provides the easiest mechanism to install cyipopt on Linux, Mac, and
Windows. Once conda is installed, install cyipopt from the Conda Forge channel with:

$ conda install -c conda-forge cyipopt

The above command will install binary versions of all the necessary dependencies as well as cyipopt. Conda Forge
supplies a basic build of Ipopt that is suitable for many use cases. You will have to install from source if you want a
customized Ipopt installation.

1.2 From source

To begin installing from source you will need to install the following dependencies:
e C/C++ compiler
* pkg-config [only for Linux and Mac]
* Ipopt >=3.12 [>= 3.13 on Windows]
* Python 3.8+
* setuptools >=44.1.1
 cython >=0.29.28,<3
e NumPy >=1.21.5
¢ SciPy >=1.8 [optional]

The binaries and header files of the Ipopt package can be obtained from http://www.coin-or.org/download/binary/
Ipopt/. These include a version compiled against the MKL library. Or you can build Ipopt from source. The remaining
dependencies can be installed with conda or other package managers.



https://docs.conda.io
http://www.coin-or.org/download/binary/Ipopt/
http://www.coin-or.org/download/binary/Ipopt/
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1.2.1 On Linux and Mac

For Linux and Mac, the ipopt executable should be in your path and discoverable by pkg-config, i.e. this command
should return a valid result:

$ pkg-config --libs --cflags ipopt

You will need to install Ipopt in a system location or set LD_LIBRARY_PATH if pkg-config does not find the executable.

Once all the dependencies are installed, execute:

$ python setup.py install

to build and install the package.

1.2.2 From source on Windows

Install the dependencies with conda (Anaconda or Miniconda):

$ conda.exe install -c conda-forge numpy cython setuptools

Or alternatively with pip:

$ pip install numpy cython setuptools

Additionally, make sure you have a C compiler setup to compile Python C extensions, e.g. Visual C++. Build tools for
VS2019 https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019 have been tested to work
for conda Python 3.7 (see https://github.com/mechmotum/cyipopt/issues/52).

Download and extract the cyipopt source code from Github or PyPi.
Obtain IPOPT one of two ways:
1. Using official IPOPTs binaries:

Download the latest precompiled version of Ipopt that includes the DLL files from https://github.com/coin-or/Ipopt/
releases. Note that the current setup only supports Ipopt >= 3.13.0. The build 3.13.3 of Ipopt has been confirmed to
work and can be downloaded from Ipopt-3.13.3-win64-msvs2019-md.zip. After Ipopt is extracted, the bin, 1ib and
include folders should be in the root cyipopt directory, i.e. adjacent to the setup.py file. Alternatively, you can
set the environment variable TPOPTWINDIR to point to the Ipopt directory that contains the bin, 1ib and include
directories.

2. Using Conda Forge’s IPOPT binary:

If using conda, you can install an IPOPT binary from Conda Forge:

$ conda.exe install -c conda-forge ipopt

The environment variable ITPOPTWINDIR should then be set to USECONDAFORGEIPOPT.

Finally, execute:

$ python setup.py install

NOTE: It is advised to use the Anaconda or Miniconda distributions and not the official python.org distribution. Even
though it has been tested to work with the latest builds, it is well-known for causing issues. (see https://github.com/
mechmotum/cyipopt/issues/52).
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1.3 On Ubuntu 22.04 Using APT Dependencies

All of the dependencies can be installed with Ubuntu’s package manager:

$ apt install build-essential pkg-config python3-pip python3-dev cython3 python3-numpy..
—.coinor-1libipoptlv5 coinor-libipopt-dev

You can then install cyipopt from the PyPi release with:

$ python3 -m pip install cyipopt

Or you use a local copy with:

$ cd /cyipopt/source/directory/
$ python3 setup.py install

1.4 On Ubuntu 18.04 Using APT Dependencies

All of the dependencies can be installed with Ubuntu’s package manager:

$ sudo apt install build-essential pkg-config python-dev cython python-numpy coinor-
—1libipoptlv5 coinor-libipopt-dev

The NumPy and IPOPT libs and headers are installed in standard locations, so you should not need to set
LD_LIBRARY_PATH or PKG_CONFIG_PATH.

Now run python setup.py build to compile cyipopt. In the output of this command you should see two calls to
gcc for compiling and linking. Make sure both of these are pointing to the correct libraries and headers. They will
look something like this (formatted and commented for easy viewing here):

$ python setup.py build

x86_64-1linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -02 -Wall -Wstrict-prototypes -fno-
—strict-aliasing

-Wdate-time -D_FORTIFY_SOURCE=2 -g -fdebug-prefix-map=/build/python2.7-3hk45v/python2.
—7-2.7.15~rcl=.

-fstack-protector-strong -Wformat -Werror=format-security -fPIC

-I/usr/local/include/coin # points to IPOPT headers

-I/usr/local/include/coin/ThirdParty # points to IPOPT third party headers

-I/usr/lib/python2.7/dist-packages/numpy/core/include # points to NumPy headers

-I/usr/include/python2.7 # points to Python 2.7 headers

-c src/cyipopt.c -o build/temp.linux-x86_64-2.7/src/cyipopt.o
x86_64-1linux-gnu-gcc -pthread -shared -Wl,-01 -Wl,-Bsymbolic-functions -W1l,-Bsymbolic-
—functions -Wl,-z,relro

-fno-strict-aliasing -DNDEBUG -g -fwrapv -02 -Wall -Wstrict-prototypes -Wdate-time -D_
—FORTIFY_SOURCE=2 -g

-fdebug-prefix-map=/build/python2.7-3hk45v/python2.7-2.7.15~rcl=. -fstack-protector-
-.strong -Wformat

-Werror=format-security -Wl,-Bsymbolic-functions -Wl,-z,relro -Wdate-time -D_FORTIFY_
—.SOURCE=2 -g

-fdebug-prefix-map=/build/python2.7-3hk45v/python2.7-2.7.15~rcl=. -fstack-protector-
—strong -Wformat

(continues on next page)
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(continued from previous page)

-Werror=format-security build/temp.linux-x86_64-2.7/src/cyipopt.o

-L/usr/local/lib

-L/1ib/../1ib

-L/usr/1ib/../lib

-L/usr/lib/gcc/x86_64-1inux-gnu/5

-L/usr/lib/gcc/x86_64-1linux-gnu/5/../../..

-L/usr/lib/gcc/x86_64-1linux-gnu/5/../../../../1lib

-L/usr/lib/gcc/x86_64-1inux-gnu/5/../../../x86_64-1linux-gnu

-lipopt -1llapack -lblas -1m -1dl -lcoinmumps -1lblas -lgfortran -1m -lquadmath #.
—1linking to relevant libs

-lcoinhsl -llapack -1lblas -lgfortran -lm -lquadmath -lcoinmetis # linking to relevant.
—1ibs

-0 build/lib.linux-x86_64-2.7/cyipopt.so

You can check that everything linked correctly with 1dd:

$ 1dd build/lib.linux-x86_64-2.7/cyipopt.so

linux-vdso.so.1 (0x00007ffc1677c000)

libipopt.so.® => /usr/local/lib/libipopt.so.0® (0x00007fcdc8668000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fcdc8277000)

libcoinmumps.so.® => /usr/local/lib/libcoinmumps.so.® (0x00007fcdc7eef000)
libcoinhsl.so0.® => /usr/local/lib/libcoinhsl.so.® (0x00007fcdc7bb4000)
liblapack.so0.3 => /usr/lib/x86_64-1linux-gnu/liblapack.so.3 (0x00007fcdc732e000)
libblas.so.3 => /usr/lib/x86_64-1linux-gnu/libblas.so0.3 (0x00007fcdc70d3000)
libdl.so0.2 => /1lib/x86_64-1linux-gnu/libdl.so.2 (0x00007fcdc6ecf®00)

libstdc++.s0.6 => /usr/lib/x86_64-linux-gnu/libstdc++.s0.6 (0x00007fcdc6b46000)
libm.so.6 => /1ib/x86_64-1linux-gnu/libm.so.6 (0x00007fcdc67a8000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007fcdc8d20000)

libgcc_s.so.1 => /lib/x86_64-1linux-gnu/libgcc_s.so.1 (0x00007fcdc6590000)
libcoinmetis.so.® => /usr/local/lib/libcoinmetis.so.® (0x00007fcdc6340000)
libgfortran.so.3 => /usr/lib/x86_64-1linux-gnu/libgfortran.so.3 (0x00007fcdc600f000)
libopenblas.so.® => /usr/lib/x86_64-1linux-gnu/libopenblas.so.0 (0x00007fcdc3d69000)
libgfortran.so.4 => /usr/lib/x86_64-1linux-gnu/libgfortran.so.4 (0x00007fcdc398a000)
libquadmath.so.® => /usr/lib/x86_64-1linux-gnu/libquadmath.so.0 (0x00007fcdc374a000)
libpthread.so.® => /1ib/x86_64-1linux-gnu/libpthread.so.0 (0x00007fcdc352b000)

And finally install the package into Python’s default package directory:

$ python setup.py install

Note that you may or may not want to install this package system wide, i.e. prepend sudo to the above command, but it
is safest to install into your user space, i.e. what pip install --user does, or setup a virtual environment with tools
like venv or conda. If you use virtual environments you will need to be careful about selecting headers and libraries
for packages in or out of the virtual environments in the build step. Note that cython, and numpy could alternatively be
installed using Python specific package managers, e.g. pip install cython numpy.
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1.5 On Ubuntu 18.04 with Custom Compiled IPOPT

Install system wide dependencies:

$ sudo apt install pkg-config python-dev wget
$ sudo apt build-dep coinor-libipoptlv5

Install pip so all Python packages can be installed via pip:

$ sudo apt install python-pip

Then use pip to install the following packages:

$ pip install --user numpy cython

1.5.1 Compile Ipopt
The Ipopt compilation instructions are derived from https://www.coin-or.org/Ipopt/documentation/node14.html. If
you get errors, start there for help.

Download Ipopt source code. Choose the version that you would like to have from <https://www.coin-or.org/download/
source/Ipopt/>. For example:

$ cd ~
$ wget https://www.coin-or.org/download/source/Ipopt/Ipopt-3.12.11.tgz

Extract the Ipopt source code:

$ tar -xvf Ipopt-3.12.11.tgz

Create a temporary environment variable pointing to the Ipopt directory:

$ export IPOPTDIR=~/Ipopt-3.12.11

To use linear solvers other than the default mumps, e.g. ma27, ma57, ma86 solvers, the HSL package are needed. HSL
can be downloaded from its official website <http://www.hsl.rl.ac.uk/ipopt/>.

Extract HSL source code after you get it. Rename the extracted folder to coinhsl and copy it in the HSL folder:
Ipopt-3.12.11/ThirdParty/HSL

Build Ipopt:

mkdir $IPOPTDIR/build
cd $IPOPTDIR/build
../configure

make

make test

A A A A

Add make install if you want a system wide install.

Set environment variables:

$ export IPOPT_PATH="~/Ipopt-3.12.11/build"
$ export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$IPOPT_PATH/1lib/pkgconfig
$ export PATH=$PATH:$IPOPT_PATH/bin

1.5. On Ubuntu 18.04 with Custom Compiled IPOPT 7
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Get help from this web-page if you get errors in setting environments:
https://stackoverflow.com/questions/13428910/how-to-set-the-environmental- variable-1d-library-path-in-linux

Now compile cyipopt. Download the cyipopt source code from PyPi, for example:

$ cd ~

$ wget https://files.pythonhosted.org/packages/05/57/
—a7c5a86a8£899c5c109£30b8cdb278b64c43bd2ea®4172cbfed721a98fac/ipopt-0.1.9.tar.gz
$ tar -xvf ipopt-0.1.8.tar.gz

$ cd ipopt

Compile cyipopt:

$ python setup.py build

If there is no error, then you have compiled cyipopt successfully

Check that everything linked correctly with 1dd

$ 1dd build/lib.linux-x86_64-2.7/cyipopt.so

linux-vdso.so.1 (0x00007ffe895e1000)

libipopt.so.1l => /home/<username>/Ipopt-3.12.11/build/1lib/libipopt.so.1.

— (0x00007£f74efc2a000)

libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so.6 (0x00007£f74e£839000)
libcoinmumps.so.1l => /home/<username>/Ipopt-3.12.11/build/lib/libcoinmumps.so.1..
— (0x00007£f74ef42e000)

libcoinhsl.so.1 => /home/<username>/Ipopt-3.12.11/build/lib/libcoinhsl.so.1.

— (0x00007£74e£169000)

liblapack.so.3 => /usr/lib/x86_64-1linux-gnu/liblapack.so.3 (0x00007f74ee8ch000)
libblas.so0.3 => /usr/lib/x86_64-1linux-gnu/libblas.so.3 (0x00007f74ee65e000)
libdl.so.2 => /1ib/x86_64-1inux-gnu/libdl.so.2 (0x00007f74ee45a000)
libstdc++.s0.6 => /usr/lib/x86_64-linux-gnu/libstdc++.s0.6 (0x00007£f74ee®d1000)
libm.so.6 => /1ib/x86_64-1inux-gnu/libm.so.6 (0x00007f74edd33000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£74£02c0000)

libgcc_s.so.1 => /1ib/x86_64-1linux-gnu/libgcc_s.so.1 (0x00007f74edb1b000O)
libcoinmetis.so.1l => /home/<username>/Ipopt-3.12.11/build/lib/libcoinmetis.so.1..
— (0x00007f74ed8ca®bdd)

libgfortran.so.4 => /usr/lib/x86_64-linux-gnu/libgfortran.so.4 (0x00007f74ed4eb000)

Install cyipopt (prepend sudo if you want a system wide install):

$ python setup.py install

To use cyipopt you will need to set the LD_LIBRARY_PATH to point to your Ipopt install if you did not install it to a
standard location. For example:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/Ipopt-3.12.11/build/lib

You can add this to your shell’s configuration file if you want it set every time you open your shell, for example the
following line can it can be added to your ~/.bashrc

$ echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/Ipopt-3.12.11/build/lib"' >> ~/.
—bashrc

Now you should be able to run a cyipopt example:

8 Chapter 1. Installation
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$ cd test
$ python -c "import cyipopt"
$ python examplehs071.py

If it could be run successfully, the optimization will start with the following descriptions:

R R R R R R R R T

B R R R R R R R R TR R R TR o ok o o o o ik e S S ik e S S e e S Sk e e

This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt

R R R R R R R o R R R R R R R

This is Ipopt version 3.12.11, running with linear solver ma27.

1.6 Conda Forge binaries with HSL

It is possible to use the HSL linear solvers with cyipopt installed via Conda Forge. To do so, first download the HSL
source code tarball. The following explanation uses coinhs1-2014.01.10.tar.gz with conda installed on Ubuntu
20.04.

Create a conda environment with at least gfortran and cyipopt:

$ conda create -n hsl-test -c conda-forge gfortran cyipopt
$ conda activate hsl-test

You should now have an environment that includes ipopt. You can checked what ipopt is linked against like so:

(hsl-test) $ 1dd ~/miniconda/envs/hsl-test/lib/libipopt.so

linux-vdso.so.1 (0x00007ffcaf45b000)

librt.so.1l => /1ib/x86_64-1linux-gnu/librt.so.1l (0x00007£8965748000)

liblapack.so.3 => /home/<username>/miniconda/envs/hsl-test/lib/./liblapack.so.3.
— (0x00007£89635fe000)

libdmumps_seq-5.2.1.s0 => /home/<username>/miniconda/envs/hsl-test/lib/./libdmumps_
-.seq-5.2.1.s0 (0x00007£89633d8000)

libmumps_common_seq-5.2.1.s0 => /home/<username>/miniconda/envs/hsl-test/lib/./
—libmumps_common_seq-5.2.1.s0 (0x00007£8963377000)

libpord_seq-5.2.1.s0 => /home/<username>/miniconda/envs/hsl-test/lib/./libpord_seq-5.
—2.1.s0 (0x00007£896335e000)

libmpiseq_seq-5.2.1.s0 => /home/<username>/miniconda/envs/hsl-test/lib/./libmpiseq_
—.seq-5.2.1.s0 (0x00007£8963352000)

libesmumps-6.so => /home/<username>/miniconda/envs/hsl-test/1lib/./libesmumps-6.so..
— (0x00007£8963349000)

libscotch-6.so0 => /home/<username>/miniconda/envs/hsl-test/lib/./libscotch-6.so..
— (0x00007£89632b1000)

libscotcherr-6.so => /home/<username>/miniconda/envs/hsl-test/lib/./libscotcherr-6.so..
— (0x00007£89632ac000)

libmetis.so => /home/<username>/miniconda/envs/hsl-test/lib/./libmetis. so..
— (0x00007£8963237000)

libgfortran.so.5 => /home/<username>/miniconda/envs/hsl-test/lib/./libgfortran.so.5.
— (0x00007£896308e000)

libdl.so.2 => /1ib/x86_64-1linux-gnu/libdl.so.2 (0x00007£8963088000)

(continues on next page)
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(continued from previous page)
libstdc++.s0.6 => /home/<username>/miniconda/envs/hsl-test/lib/./libstdc++.s0.6.
— (0x00007£8962edb006)
libm.so.6 => /1ib/x86_64-1linux-gnu/libm.so.6 (0x00007£8962d8c000)
libc.so.6 => /1ib/x86_64-1linux-gnu/libc.so.6 (0x00007£8962b9a000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£8965a02000)
libgcc_s.so.1 => /home/<username>/miniconda/envs/hsl-test/lib/./libgcc_s.so.1.
— (0x00007£8962b85000)
libpthread.so.0 => /lib/x86_64-1linux-gnu/libpthread.so.® (0x00007£8962b62000)
libgomp.so.1l => /home/<username>/miniconda/envs/hsl-test/lib/././libgomp.so.1..
— (0x00007£8962b2a000)
libz.so.1 => /home/<username>/miniconda/envs/hsl-test/lib/././libz.so.1..
— (0x00007£8962b10000)
libquadmath.so.0 => /home/<username>/miniconda/envs/hsl-test/lib/././libquadmath.so.0.
— (0x00007£8962ad6000)

Now navigate into the extracted HSL directory and configure HSL.:

(hsl-test) $ cd /path/to/coinhsl-2014.01.10/

(hsl-test) $ ./configure \
--prefix=/home/<username>/miniconda/envs/hsl-test/ \
--with-blas="-L/home/<username>/miniconda/envs/hsl-test/1lib/ -1blas" \
LIBS="-1lapack" \
FC=/home/<username>/miniconda/envs/hsl-test/bin/gfortran \
CC=/home/<username>/miniconda/envs/hsl-test/bin/gcc \

This tells HSL to install into your environment, link against the environment’s blas and lapack libraries and to use the
environment’s gfortran and gcc compilers to build HSL. After configuring, build and install with:

(hsl-test) $ make
(hsl-test) $ make install

You should now find a shared HSL library in your environment. Check to make sure it is properly linked (especially
blas):

(hsl-test) $ 1dd ~/miniconda/envs/hsl-test/lib/libcoinhsl.so

linux-vdso.so.1l (0x00007ffe2085a000)

libopenblas.so0.0 => /home/<username>/miniconda/envs/hsl-test/lib/libopenblas.so.0.
— (0x00007£7221766000)

libgfortran.so.5 => /home/<username>/miniconda/envs/hsl-test/lib/libgfortran.so.5.
— (0x00007£72a15bd0O00)

libm.so.6 => /1lib/x86_64-linux-gnu/libm.so.6 (0x00007£f72a143f000)

libgcc_s.so.1 => /home/<username>/miniconda/envs/hsl-test/lib/libgcc_s.so.1.
— (0x00007£722142a000)

libquadmath.so.0® => /home/<username>/miniconda/envs/hsl-test/lib/libquadmath.so.0.
— (0x00007£72a13£0000)

libc.so.6 => /1lib/x86_64-linux-gnu/libc.so.6 (0x00007f72a11fe000)

libpthread.so.0 => /1ib/x86_64-1linux-gnu/libpthread.so.® (0x00007£f72a11d9000)

/1ib64/1d-1inux-x86-64.s0.2 (0x00007£72a39d4000)

Now, in your cyipopt script set the following two options:

problem.add_option('linear_solver', 'ma57")
problem.add_option('hsllib', 'libcoinhsl.so")

10 Chapter 1. Installation
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The various HSL solvers can be set with 1inear_solver and the hs11ib name must be specified because the default
name ipopt looks for is 1ibhsl.so. Identify the shared library installed on your system and make sure the name
provided for the hs11ib option matches. For example, on macOS you may need problem.add_option('hsllib',

'libcoinhsl.dylib"').

1.6. Conda Forge binaries with HSL 11
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CHAPTER
TWO

USAGE

2.1 SciPy Compatible Interface

For simple cases where you do not need the full power of sparse and structured Jacobians etc, cyipopt provides the
function minimize_ipopt which has the same behaviour as scipy.optimize.minimize, for example:

>>> from scipy.optimize import rosen, rosen_der
>>> from cyipopt import minimize_ipopt
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> res = minimize_ipopt(rosen, x0, jac=rosen_der)
>>> print(res)
fun: 2.1256746564022273e-18
info: {'x': array([l., 1., 1., 1., 1.]1), 'g': array([], dtype=float64), 'obj_val': 2.
1256746564022273e-18, 'mult_g': array([], dtype=float64), 'mult_x_L': array([®., 0., 0.
<, 0., 0.1), 'mult_x U': array([0., 0., 0., 0., 0.]), 'status': 0, 'status_msg': b
- "Algorithm terminated successfully at a locally optimal point, satisfying the.
-.convergence tolerances (can be specified by options).'}
message: b'Algorithm terminated successfully at a locally optimal point, satisfying the.
—.convergence tolerances (can be specified by options).'

nfev: 200

nit: 37

njev: 39
status: 0

success: True
x: array([1l., 1., 1., 1., 1.])

In order to demonstrate the usage of sparse jacobians, let’s assume we want to minimize the well-known rosenbrock
function

4
Fl@) = 100(zie1 — 27)% + (1 — 2;)°
i=1

subject to some constraints, i.e. we want to solve the constraint optimization problem

min f(z) st 10— x5 —x3 >0, 100— 22> 0.
€

We won’t implement the rosenbrock function and its derivatives here, since all three can be imported from scipy.
optimize. The constraint function c and the jacobian J. are given by

o= ()= (i) =

(0 2z, -1 0 0
JC(“”)_(O 0 0 0 2x5)

13
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and we can implement the constraint and the sparse jacobian by means of an scipy.sparse.coo_array like this:

from scipy.sparse import coo_array

def con(x):
return np.array([ 10 -x[1]**2 - x[2], 100.0 - x[4]**2 ])

def con_jac(x):
# Dense Jacobian:
#J = (0 -2*x[1] -1 0 0 )
# @ o 0 0 -2*x[4] )
# Sparse Jacobian (C00)
rows = np.array([0, 0O, 1])
cols = np.array(([1, 2, 41))
data = np.array([-2*x[1], -1, -2*x[4]1])
return coo_array((data, (rows, cols)))

In addition, we would like to pass the hessian of the objective and the constraints. Note that Ipopt expects the hessian
V2L of the lagrangian function

2
Lz, A) = f(2) + ATe(@) = f(2) + ) Ay (a),
j=1
which is given by
2
VaL(x, ) = V2 f(x) + > N V3¢(x).
j=1

Hence, we need to pass the hessian-vector-product of the constraint hessians V2¢; (z) and V2cy(z) and the lagrangian
multipliers A (also known as dual variables). In code:

def con_hess(x, _lambda):
H1l = np.array([

[6, 0, 0, 0, 0],
[0, -2, 0, 0, O ],
[0, 0, 0, 0, 0 1],
[0, O, 0, 0, 0 1],
[0, O, 0, 0, 0 ]
D
H2 = np.array([
[0, 0, O, O, O],
[0, 0, O, O, O],
[0, 0, O, O, O],
[0, 0, 0, O, O],
[0, 0, O, 0, -2]

D
return _lambda[0] * H1 + _lambda[l] * H2

Ipopt only uses the lower triangle of the hessian-vector-product under the hood, due to the symmetry of the hessians.
Similar to sparse jacobians, it also supports sparse hessians, but this isn’t supported by the scipy interface yet. However,
you can use cyipopt’s problem interface in case you need to pass sparse hessians.

Finally, after defining the constraint and the initial guess, we can solve the problem:
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from scipy.optimize import rosen, rosen_der, rosen_hess

constr = {'type': 'ineq', 'fun': con, 'jac': con_jac, 'hess': con_hess}

# initial guess
x0 = np.array([1.1, 1.1, 1.1, 1.1, 1.1])

# solve the problem
res = minimize_ipopt(rosen, jac=rosen_der, hess=rosen_hess, x0=x0, constraints=constr)

2.1.1 Algorithmic Differentation

Computing derivatives by hand can be quite error-prone. In case you don’t provide the (exact) objective gradient or the
jacobian of the constraint function, the scipy interface will approximate the missing derivatives by finite differences
similar to scipy.optimize.minimize. However, finite differences are prone to truncation errors due to floating
point arithmetic and computationally expensive especially for evaluating jacobians. A more efficient and accurate way
to evaluate derivatives is algorithmic differentation (AD).

In this example we use AD by means of the JAX library to compute derivatives and we use cyipopt’s scipy interface to
solve an example problem, namely number 71 from the Hock-Schittkowsky test suite',

min .13133‘4(331 + 22 + .133) + 3
z€R*
s.t. x1xox3Ty > 25

x%+x§+x§+mi:40

1 < x,@2, 3,84 <5,
with the starting point,
xo = (1, 5, 5, 1),
and the optimal solution,
x, = (1.0, 4.743, 3.821, 1.379)

We start by importing all required libraries:

from jax.config import config

# Enable 64 bit floating point precision
config.update("jax_enable_x64", True)

# We use the CPU instead of GPU und mute all warnings if no GPU/TPU is found.
config.update('jax_platform_name', 'cpu')

import jax.numpy as np
from jax import jit, grad, jacfwd, jacrev
from cyipopt import minimize_ipopt

Then we define the objective and constraint functions:

! W. Hock and K. Schittkowski. Test examples for nonlinear programming codes. Lecture Notes in Economics and Mathematical Systems, 187,
1981.

2.1. SciPy Compatible Interface 15
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def objective(x):
return x[0]*x[3]*np.sum(x[:3]) + x[2]

def eq_constraints(x):
return np.sum(x**2) - 40

def ineq_constrains(x):
return np.prod(x) - 25

Next, we build the derivatives and just-in-time (jit) compile the functions (more details regarding jit, grad and jacfwd
can be found in the JAX autodiff cookbook):

# jit the functions

obj_jit = jit(objective)

con_eq_jit = jit(eqg_constraints)
con_ineqg_jit = jit(ineg_constrains)

# build the derivatives and jit them

obj_grad = jit(grad(obj_jit)) # objective gradient

obj_hess = jit(jacrev(jacfwd(obj_jit))) # objective hessian

con_eq_jac = jit(jacfwd(con_eq_jit)) # jacobian

con_ineq_jac = jit(jacfwd(con_ineq_jit)) # jacobian

con_eq_hess = jacrev(jacfwd(con_eq_jit)) # hessian

con_eq_hessvp = jit(lambda x, v: con_eq_hess(x) * v[0]) # hessian vector-product
con_ineq_hess = jacrev(jacfwd(con_ineq_jit)) # hessian

con_ineq_hessvp = jit(lambda x, v: con_ineq_hess(x) * v[0]) # hessian vector-product

Finally, we can call minimize_ipopt similar to scipy.optimize.minimize:

# constraints

cons = [
{'type': 'eq', "fun': con_eq_jit, 'jac': con_eq_jac, 'hess': con_eq_hessvp},
{'type': "ineq', 'fun': con_ineq_jit, 'jac': con_ineq_jac, 'hess': con_ineq_hessvp}
]

# starting point
x0 = np.array([1.0, 5.0, 5.0, 1.0])

# variable bounds: 1 <= x[i] <= 5
bnds = [(1, 5) for _ in range(x0.size)]

# executing the solver
res = minimize_ipopt(obj_jit, jac=obj_grad, hess=obj_hess, x0=x0, bounds=bnds,
constraints=cons, options={'disp': 5})
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2.2 Problem Interface

In this example we will use cyipopt problem class interface to solve the aforementioned test problem.

2.2.1 Getting started

Before you can use cyipopt, you have to import it:

import cyipopt

This problem will also make use of NumPy:

import numpy as np

2.2.2 Defining the problem
The first step is to define a class that computes the objective and its gradient, the constraints and its Jacobian, and the
Hessian. The following methods can be defined on the class:

e cyipopt.Problem.objective()

e cyipopt.Problem.gradient()

e cyipopt.Problem.constraints()

* cyipopt.Problem. jacobian()

e cyipopt.Problem.hessian()

The cyipopt.Problem. jacobian() and cyipopt.Problem.hessian() methods should return the non-zero val-
ues of the respective matrices as flattened arrays. The hessian should return a flattened lower triangular matrix.

The Jacobian and Hessian can be dense or sparse. If sparse, you must also define:
e cyipopt.Problem. jacobianstructure()
e cyipopt.Problem.hessianstructure()

which should return a tuple of indices that indicate the location of the non-zero values of the Jacobian and Hessian
matrices, respectively. If not defined then these matrices are assumed to be dense.

The cyipopt.Problem.intermediate () method is called every Ipopt iteration algorithm and can be used to perform
any needed computation at each iteration.

Define the problem class:

class HS0710):

def objective(self, x):
"""Returns the scalar value of the objective given Xx.
return x[0] * x[3] * np.sum(x[0:3]) + x[2]

i

def gradient(self, x):
"""Returns the gradient of the objective with respect to x.
return np.array([
x[0]*x[3] + x[3]*np.sum(x[0:3]),
x[0]*x[3],

e

(continues on next page)
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(continued from previous page)
x[0]1*x[3] + 1.0,
x[0]*np.sum(x[0:3])
D

def constraints(self, x):
"""Returns the constraints.
return np.array((np.prod(x), np.dot(x, x)))

mirn

def jacobian(self, x):
"""Returns the Jacobian of the constraints with respect to x.
return np.concatenate((np.prod(x)/x, 2*x))

mirn

def hessianstructure(self):
"""Returns the row and column indices for non-zero vales of the

mirn

Hessian.

# NOTE: The default hessian structure is of a lower triangular matrix,
# therefore this function is redundant. It is included as an example
# for structure callback.

return np.nonzero(np.tril(np.ones((4, 4))))

def hessian(self, x, lagrange, obj_factor):
"""Returns the non-zero values of the Hessian."""
H = obj_factor*np.array((
(2*x[3], 0, 0, 0),
x[3], 0, 0, 0,
(x[3], 0, 0, 0),
*x[0]+x[1]+x[2], x[0], x[0], 0)))

H += lagrange[0]*np.array((
@, 0, 0, 0,
(x[2]1*x[3]1, 0, 0, 0),
(x[11*x[3]1, x[0]*x[3], O, 0),
(x[11*x[2]1, x[0]1*x[2], x[0]*x[1], ©)))

H += lagrange[1]*2*np.eye(4)
row, col = self.hessianstructure()
return H[row, col]
def intermediate(self, alg_mod, iter_count, obj_value, inf_pr, inf_du, mu,
d_norm, regularization_size, alpha_du, alpha_pr,

ls_trials):
"""Prints information at every Ipopt iteration."""

msg = "Objective value at iteration #{:d} is - {:g}"

print (msg. format(iter_count, obj_value))

Now define the lower and upper bounds of x and the constraints:
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1b = [1.0, 1.0, 1.0, 1.0]
ub = [5.0, 5.0, 5.0, 5.0]
cl = [25.0, 40.0]

cu = [2.0e19, 40.0]

Define an initial guess:

x0 = [1.0, 5.0, 5.0, 1.0]

Define the full problem using the cyipopt.Problem class:

nlp = cyipopt.Problem(
n=len(x0),
m=len(cl),
problem_obj=HS071(),
1b=1b,
ub=ub,
cl=cl,
cu=cu,

)

The constructor of the cyipopt.Problem class requires:
* n: the number of variables in the problem,
e m: the number of constraints in the problem,
* 1b and ub: lower and upper bounds on the variables,
e cl and cu: lower and upper bounds of the constraints.

* problem_obj is an object whose methods implement objective, gradient, constraints, jacobian, and
hessian of the problem.

2.2.3 Setting optimization parameters

Setting optimization parameters is done by calling the cyipopt.Problem.add_option() method, e.g.:

nlp.add_option('mu_strategy', 'adaptive')
nlp.add_option('tol', le-7)

The different options and their possible values are described in the ipopt documentation.

2.2.4 Executing the solver

The optimization algorithm is run by calling the cyipopt.Problem.solve() method, which accepts the starting
point for the optimization as its only parameter:

x, info = nlp.solve(x0)

The method returns the optimal solution and an info dictionary that contains the status of the algorithm, the value of
the constraints multipliers at the solution, and more.

2.2. Problem Interface 19



https://coin-or.github.io/Ipopt/OPTIONS.html

cyipopt Documentation, Release 1.3.0

2.3 Accessing iterate and infeasibility vectors in an intermediate call-
back

When debugging an Ipopt solve that converges slowly or not at all, it can be very useful to track the primal/dual
iterate and infeasibility vectors to get a sense for the variable and constraint coordinates that are causing a problem.
This can be done with Ipopt’s GetCurrentIterate and GetCurrentViolations functions, which were added to
Ipopt’s C interface in Ipopt version 3.14.0. These functions are accessed in Cylpopt via the get_current_iterate
and get_current_violations methods of cyipopt.Problem. These methods should only be called during an
intermediate callback. To access them, we define our problem as a subclass of cyipopt.Problem and access the
get_current_iterate and get_current_violations methods on self.

In contrast to the previous example, we now define the HSO71 problem as a subclass of cyipopt.Problem:

import cyipopt
import numpy as np

class HS071(cyipopt.Problem) :
def objective(self, x):

"""Returns the scalar value of the objective given Xx.
return x[0] * x[3] * np.sum(x[0:3]) + x[2]

i

def gradient(self, x):
"""Returns the gradient of the objective with respect to x.
return np.array([
x[0]*x[3] + x[3]*np.sum(x[0:3]),
x[0]*x[3],
x[0]*x[3] + 1.0,
x[0]*np.sum(x[0:3])
D

e

def constraints(self, x):
"""Returns the constraints.
return np.array((np.prod(x), np.dot(x, x)))

i

def jacobian(self, x):
"""Returns the Jacobian of the constraints with respect to Xx.
return np.concatenate((np.prod(x)/x, 2*x))

mirn

def hessianstructure(self):
"""Returns the row and column indices for non-zero vales of the
Hessian."""

# NOTE: The default hessian structure is of a lower triangular matrix,
# therefore this function is redundant. It is included as an example
# for structure callback.

return np.nonzero(np.tril(np.ones((4, 4))))

def hessian(self, x, lagrange, obj_factor):
"""Returns the non-zero values of the Hessian."""
H = obj_factor*np.array((
(continues on next page)
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(continued from previous page)
(2*x[3], 0, 0, 0),
x[31, 0,0, ®,
x[31, 0,0, 0),
2*x[0]+x[1]+x[2], x[0], x[0], ©)))

H += lagrange[0]*np.array((
o, 0, 0, 0,
(x[2]*x[3], 0, 0, ©),
(x[11*x[3], x[01*x[3]1, O, 0),
(x[11*x[2], x[01*x[2], x[0]*x[1], 0)))

row, col = self.hessianstructure()
return H[row, col]

def intermediate(self, alg_mod, iter_count, obj_value, inf_pr, inf_du, mu,

d_norm, regularization_size, alpha_du, alpha_pr,
ls_trials):

"""Prints information at every Ipopt iteration.

iterate = self.get_current_iterate()

infeas = self.get_current_violations()

primal = iterate["x"]

jac = self.jacobian(primal)

mirn

print("Iteration:", iter_count)

print("Primal iterate:", primal)

print("Flattened Jacobian:", jac)

print("Dual infeasibility:", infeas["grad_lag_x"])

Now, in the intermediate method of HS®71, we call self.get_current_iterate and self.
get_current_violations. These are implemented on cyipopt.Problem. These methods return dicts that
contain each component of the Ipopt iterate and infeasibility vectors. The primal iterate and constraint dual iterate can
be accessed with iterate["x"] and iterate["mult_g"], while the primal and dual infeasibilities can be accessed
with infeas["g_violation"] and infeas["grad_lag_x"]. A full list of keys present in these dictionaries can
be found in the cyipopt.Problem documentation.

We can now set up and solve the optimization problem. Note that now we instantiate the HS®71 class and provide it the
arguments that are required by cyipopt.Problem. When we solve, we will see the primal iterate and dual infeasibility
vectors printed every iteration:

1b = [1.0, 1.0,
ub = [5.0, 5

.0, 1.0, 1.0]
.0, 5.0

, 5.0]

cl = [25.0, 40.0]

cu = [2.0e19, 40.0]
x0 = [1.0, 5.0, 5.0, 1.0]
nlp = HSO071(

n=len(x0),

m=len(cl),

(continues on next page)
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(continued from previous page)
1b=1b,
ub=ub,
cl=cl,
cu=cu,

)

x, info = nlp.solve(x0)

While here we have implemented a very basic callback, much more sophisticated analysis is possible. For example, we
could compute the condition number or rank of the constraint Jacobian to identify when constraint qualifications are
close to being violated.

2.4 Where to go from here

Once you feel sufficiently familiar with the basics, feel free to dig into the reference. For more examples, check the
examples/ subdirectory of the distribution.
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CHAPTER
THREE

REFERENCE

This is the class and function reference of cyipopt. Please refer to the furorial for further details, as the class and
function raw specifications may not be enough to give full guidelines on their uses.

class cyipopt.Problem
Wrapper class for solving optimization problems using the C interface of the Ipopt package.

It can be used to solve general nonlinear programming problems of the form:

R

subject to

g < g(z) < gu
rr <x <y

Where z are the optimization variables (possibly with upper an lower bounds), f(x) is the objective function
and g(z) are the general nonlinear constraints. The constraints, g(x), have lower and upper bounds. Note that
equality constraints can be specified by setting g% = gi;.

Parameters
* n (integer)— Number of primal variables.
e m (integer) — Number of constraints.

* problem_obj (object, optional (default=None))-Anobjectholding the problem’s
callbacks. If None, cyipopt will use self, this is useful when subclassing Problem. The
object is required to have the following attributes and methods (some are optional):

—objective
[function pointer] Callback function for evaluating objective function. The callback
functions accepts one parameter: x (value of the optimization variables at which the
objective is to be evaluated). The function should return the objective function value at
the point x.

—constraints
[function pointer] Callback function for evaluating constraint functions. The callback
functions accepts one parameter: x (value of the optimization variables at which the
constraints are to be evaluated). The function should return the constraints values at the
point x.

—gradient
[function pointer] Callback function for evaluating gradient of objective function. The
callback functions accepts one parameter: x (value of the optimization variables at
which the gradient is to be evaluated). The function should return the gradient of the
objective function at the point x.
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—jacobian
[function pointer] Callback function for evaluating Jacobian of constraint functions.
The callback functions accepts one parameter: x (value of the optimization variables
at which the Jacobian is to be evaluated). The function should return the values of the
Jacobian as calculated using x. The values should be returned as a 1-dim numpy array
(using the same order as you used when specifying the sparsity structure)

—jacobianstructure
[function pointer, optional (default=None)] Callback function that accepts no parame-
ters and returns the sparsity structure of the Jacobian (the row and column indices only).
If None, the Jacobian is assumed to be dense.

-hessian

[function pointer, optional (default=None)] Callback function for evaluating Hessian
of the Lagrangian function. The callback functions accepts three parameters x (value
of the optimization variables at which the Hessian is to be evaluated), lambda (values
for the constraint multipliers at which the Hessian is to be evaluated) objective_factor
the factor in front of the objective term in the Hessian. The function should return the
values of the Hessian as calculated using x, lambda and objective_factor. The values
should be returned as a 1-dim numpy array (using the same order as you used when
specifying the sparsity structure). If None, the Hessian is calculated numerically.

-hessianstructure
[function pointer, optional (default=None)] Callback function that accepts no param-
eters and returns the sparsity structure of the Hessian of the lagrangian (the row and
column indices only). If None, the Hessian is assumed to be dense.

—intermediate
[function pointer, optional (default=None)] Optional. Callback function that is called
once per iteration (during the convergence check), and can be used to obtain information
about the optimization status while Ipopt solves the problem. If this callback returns
False, Ipopt will terminate with the User_Requested_Stop status. Theinformation
below corresponeds to the argument list passed to this callback:

alg_mod:
Algorithm phase: 0 is for regular, 1 is restoration.

iter_count:
The current iteration count.

obj_value:
The unscaled objective value at the current point

inf_pr:
The scaled primal infeasibility at the current point.

inf_du:
The scaled dual infeasibility at the current point.

mu:
The value of the barrier parameter.

d_norm:
The infinity norm (max) of the primal step.

regularization_size:
The value of the regularization term for the Hessian of the Lagrangian in the
augmented system.
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alpha_du:
The stepsize for the dual variables.

alpha_pr:
The stepsize for the primal variables.

1s_trials:
The number of backtracking line search steps.

more information can be found in the following link: https://coin-or.github.io/Ipopt/
OUTPUT.html

e 1b (array-1like, shape(n, )) - Lower bounds on variables, where n is the dimension
of x. To assume no lower bounds pass values lower then 104-19.

e ub (array-like, shape(n, ))- Upper bounds on variables, where n is the dimension
of x. To assume no upper bounds pass values higher then 104-19.

e cl (array-1like, shape(m, ))-Lowerbounds on constraints, where m is the number of
constraints. Equality constraints can be specified by setting c1[i] = cul[i].

* cu(array-like, shape(m, ))-Upperbounds on constraints, where m is the number of
constraints. Equality constraints can be specified by setting c1[i] = culi].

addOption()
Add a keyword/value option pair to the problem.

Deprecated since version 1.0.0: addOption() will be removed in Cylpopt 1.1.0, it is replaced by
add_option() because the latter complies with PEPS.

add_option()
Add a keyword/value option pair to the problem.
See the Ipopt documentaion for details on available options.
Parameters
* keyword (str)— Option name.

e val (str, int or float)- Value of the option. The type of val should match the option
definition as described in the Ipopt documentation.

close()
Deallocate memory resources used by the Ipopt package.
Called implicitly by the Problem class destructor.
get_current_iterate()

Return the current iterate vectors during an Ipopt solve

The iterate contains vectors for primal variables, bound multipliers, constraint function values, and con-
straint multipliers. Here, the constraints are treated as a single function rather than separating equality and
inequality constraints. This method can only be called during an intermediate callback.

Only supports Ipopt >=3.14.0

Parameters
scaled (Bool) — Whether the scaled iterate vectors should be returned

Returns
A dict containing the iterate vector with keys "x", "mult_x_L", "mult_x_U", "g", and
"mult_g". If iterate vectors cannot be obtained, None is returned.

25


https://coin-or.github.io/Ipopt/OUTPUT.html
https://coin-or.github.io/Ipopt/OUTPUT.html

cyipopt Documentation, Release 1.3.0

Return type
dict or None

get_current_violations()

Return the current violation vectors during an Ipopt solve

Violations returned are primal variable bound violations, bound complementarities, the gradient of the
Lagrangian, constraint violation, and constraint complementarity. Here, the constraints are treated as a
single function rather than separating equality and inequality constraints. This method can only be called
during an intermediate callback.

Only supports Ipopt >=3.14.0

Parameters
scaled (Bool) — Whether to scale the returned violations

Returns
A dict containing the violation vector with keys "x_L_violation", "x_U_violation",

"compl_x_L", "compl_x_U", "grad_lag_x", "g_violation", and "compl_g". If viola-

tion vectors cannot be obtained, None is returned.

Return type
dict or None

setProblemScaling ()
Optional function for setting scaling parameters for the problem.

Deprecated since version 1.0.0: setProblemScaling () will be removed in CyIpopt 1.1.0, it is replaced
by set_problem_scaling() because the latter complies with PEPS.

set_problem_scaling()

Optional function for setting scaling parameters for the problem.
To use the scaling parameters set the option nlp_scaling_method to user-scaling.
Parameters

* obj_scaling (float)— Determines, how Ipopt should internally scale the objective func-
tion. For example, if this number is chosen to be 10, then Ipopt solves internally an opti-
mization problem that has 10 times the value of the original objective. In particular, if this
value is negative, then Ipopt will maximize the objective function instead of minimizing it.

e x_scaling(array-1like, shape(n, ))-The scaling factors for the variables. If None,
no scaling is done.

e g_scaling (array-like, shape(m, )) — The scaling factors for the constrains. If
None, no scaling is done.

solve()

Returns the optimal solution and an info dictionary.
Solves the posed optimization problem starting at point x.

Parameters
X (array-like, shape(n, ))- Initial guess.

Returns
* x (array, shape(n, )) — Optimal solution.
* info (dictionary) —

x: ndarray, shape(n, )
optimal solution
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g: ndarray, shape(m, )
constraints at the optimal solution

obj_val: float
objective value at optimal solution

mult_g: ndarray, shape(m, )
final values of the constraint multipliers

mult_x_L: ndarray, shape(n, )
bound multipliers at the solution

mult_x_U: ndarray, shape(n, )
bound multipliers at the solution

status: integer
gives the status of the algorithm

status_msg: string
gives the status of the algorithm as a message

class cyipopt.problem(*args, **kwargs)
Class to continue support for old API.

Deprecated since version 1.0.0: problem will be removed in CylIpopt 1.1.0, it is replaced by Problem because
the latter complies with PEPS.

For full documentation of this class including its attributes and methods please see Problemn.

This class acts as a wrapper to the new Problem class. It simply issues a FutureWarning to the user before
passing all args and kwargs through to Problem.

Returns
Instance created with the args and kwargs parameters.

Return type
Problem

cyipopt.minimize_ipopt (fun, x0, args=(), kwargs=None, method=None, jac=None, hess=None, hessp=None,
bounds=None, constraints=(), tol=None, callback=None, options=None)

Minimization using Ipopt with an interface like scipy.optimize.minimize().
Differences compared to scipy.optimize.minimize() include:
* A different default method: when method is not provided, Ipopt is used to solve the problem.

* Support for parameter kwargs: additional keyword arguments to be passed to the objective function, con-
straints, and their derivatives.

* Lack of support for callback and hessp with the default method.

This function can be used to solve general nonlinear programming problems of the form:

Inin f ()

subject to

gL < g(x) < gu
zp <z <uxy

where z are the optimization variables, f(x) is the objective function, g(x) are the general nonlinear constraints,
and z, and xy are the upper and lower bounds (respectively) on the decision variables. The constraints, g(x),
have lower and upper bounds g;, and gi;. Note that equality constraints can be specified by setting g7 = g;.
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Parameters

* fun (callable) — The objective function to be minimized: fun(x, *args, **kwargs)
-> float.

x0 (array-like, shape(n, ))-Initial guess. Array of real elements of shape (n,), where
n is the number of independent variables.

args (tuple, optional)-Extraarguments passed to the objective function and its deriva-
tives (fun, jac, and hess).

kwargs (dictionary, optional) — Extra keyword arguments passed to the objective
function and its derivatives (fun, jac, hess).

* method (str, optional) — If unspecified (default), Ipopt is used. scipy.optimize.
minimize () methods can also be used.

jac (callable, optional) — The Jacobian of the objective function: jac(x, *args,
**kwargs) -> ndarray, shape(n, ). If None, SciPy’s approx_fprime is used.

hess (callable, optional) — The Hessian of the objective function: hess(x) ->
ndarray, shape(n, ). If None, the Hessian is computed using [IPOPT’s numerical meth-
ods.

hessp (callable, optional) — If method is one of the SciPy methods, this is a callable
that produces the inner product of the Hessian and a vector. Otherwise, an error will be raised
if a value other than None is provided.

* bounds (sequence of shape(n, ) or scipy.optimize.Bounds, optional) — Simple bounds
on decision variables. There are two ways to specify the bounds:

1. Instance of scipy.optimize.Bounds class.

2. Sequence of (min, max) pairs for each element in x. Use None to specify an infinite
bound (i.e., no bound).

» constraints ({Constraint, dict}, optional)- Linear or nonlinear constraint spec-
ified by a dictionary, scipy.optimize.LinearConstraint, or scipy.optimize.
NonlinearConstraint. See scipy.optimize.minimize() for more information. Note
that the Jacobian of each constraint corresponds to the 'jac' key and must be a callable
function with signature jac(x) -> {ndarray, coo_array}. If the constraint’s value of
'jac' is True, the constraint function fun must return a tuple (con_val, con_jac) con-
sisting of the evaluated constraint con_val and the evaluated Jacobian con_jac.

* tol (float, optional (default=1e-8))- The desired relative convergence tolerance,
passed as an option to Ipopt. See' for details.

* options (dict, optional) — A dictionary of solver options. The options disp and
maxiter are automatically mapped to their Ipopt equivalents print_level and max_iter.
All other options are passed directly to Ipopt. See' for details.

e callback (callable, optional)- This parameter isignored unless method is one of the
SciPy methods.

! COIN-OR Project. “Ipopt: Ipopt Options”. https://coin-or.github.io/Ipopt/OPTIONS.html
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References
Examples
Consider the problem of minimizing the Rosenbrock function. The Rosenbrock function and its derivatives

are implemented in scipy.optimize.rosen(), scipy.optimize.rosen_der(), and scipy.optimize.
rosen_hess().

>>> from cyipopt import minimize_ipopt
>>> from scipy.optimize import rosen, rosen_der
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2] # initial guess

If we provide the objective function but no derivatives, Ipopt finds the correct minimizer ([1, 1, 1, 1, 1])
with a minimum objective value of 0. However, it does not report success, and it requires many iterations and
function evaluations before termination. This is because SciPy’s approx_fprime requires many objective func-
tion evaluations to approximate the gradient, and still the approximation is not very accurate, delaying conver-
gence.

>>> res = minimize_ipopt(rosen, x0, jac=rosen_der)
>>> res.success

False

>>> res.x

array([1., 1., 1., 1., 1.1)

>>> res.nit, res.nfev, res.njev

(46, 528, 48)

To improve performance, provide the gradient using the jac keyword. In this case, Ipopt recognizes its own
success, and requires fewer function evaluations to do so.

>>> res = minimize_ipopt(rosen, x0, jac=rosen_der)
>>> res.success

True
>>> res.nit, res.nfev, res.njev
(37, 200, 39)

For best results, provide the Hessian, too.

>>> res = minimize_ipopt(rosen, x0, jac=rosen_der, hess=rosen_hess)
>>> res.success

True
>>> res.nit, res.nfev, res.njev
(17, 29, 19)

cyipopt.set_logging_level O
Set the logger verbosity to the specified level.
Parameters
level (int) — The verbosity of the logger. This threshold is used to determine which logging
messages are logged by this module’s 1og () function.
cyipopt.setLoggingLevel ()
Function to continue support for old APIL

Deprecated since version 1.0.0: setLoggingLevel () will be removed in Cylpopt 1.1.0, it is replaced by
set_logging_level () because the latter complies with PEPS.
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For full documentation of this function please see set_logging_level().

This function acts as a wrapper to the new set_logging_level () function. It simply issues a FutureWarning
to the user before passing all args and kwargs through to set_logging_level().

class cyipopt.CyIpoptEvaluationError

An exception that should be raised in evaluation callbacks to signal to CylIpopt that a numerical error occured
during function evaluation.

Whereas most exceptions that occur in callbacks are re-raised, exceptions of this type are ignored other than to
communicate to Ipopt that an error occurred.

Ipopt handles evaluation errors differently depending on where they are raised (which evaluation callback returns
falseto Ipopt). When evaluation errors are raised in the following callbacks, Ipopt attempts to recover by cutting
the step size. This is usually the desired behavior when an undefined value is encountered.

* objective
e constraints
When raised in the following callbacks, Ipopt fails with an “Invalid number” return status.
e gradient
¢ jacobian
* hessian
Raising an evaluation error in the following callbacks results is not supported.
* jacobianstructure
* hessianstructure

e intermediate
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CHAPTER
FOUR

DEVELOPMENT

4.1 Development Install

Clone the repository:

$ git clone git@github.com:mechmotum/cyipopt.git
$ cd cyipopt

Create a Conda environment with the dependencies:

$ conda env create -f conda/cyipopt-dev.yml

Activate the environment:

$ conda activate cyipopt-dev

Install a development version':

(cyipopt-dev)$ python setup.py develop

4.2 Building the documentation

After installing the development version of cyipopt, navigate to a directory that contains the source code and execute
the Makefile:

(cyipopt-dev)$ cd docs
(cyipopt-dev)$ make html

Once the build process finishes, direct your web browser to build/html/index.html.

! Changes to any of the Cython files require calling python setup.py develop to see effects of the changes.
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4.3 Testing

You can test the installation by running each of the examples in the examples/ directory and running the test suite.
The tests can be run with:

(cyipopt-dev)$ pytest
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CHAPTER
FIVE

INDICES AND TABLES

* genindex
* modindex

¢ search
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CHAPTER
SIX

COPYRIGHT

Copyright (C) 2012-2015 Amit Aides
Copyright (C) 2015-2017 Matthias Kiimmerer
Copyright (C) 2017-2023 cyipopt developers
License: EPL 2.0
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