avr-libc  2.2.0git
Standard C library for AVR-GCC

AVR Libc Home Page

AVRs

AVR Libc Development Pages

Main Page

User Manual

Library Reference

FAQ

Example Projects

boot.h
Go to the documentation of this file.
1/* Copyright (c) 2002,2003,2004,2005,2006,2007,2008,2009 Eric B. Weddington
2 All rights reserved.
3
4 Redistribution and use in source and binary forms, with or without
5 modification, are permitted provided that the following conditions are met:
6
7 * Redistributions of source code must retain the above copyright
8 notice, this list of conditions and the following disclaimer.
9 * Redistributions in binary form must reproduce the above copyright
10 notice, this list of conditions and the following disclaimer in
11 the documentation and/or other materials provided with the
12 distribution.
13 * Neither the name of the copyright holders nor the names of
14 contributors may be used to endorse or promote products derived
15 from this software without specific prior written permission.
16
17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 POSSIBILITY OF SUCH DAMAGE. */
28
29/* $Id$ */
30
31#ifndef _AVR_BOOT_H_
32#define _AVR_BOOT_H_ 1
33
34/** \file */
35/** \defgroup avr_boot <avr/boot.h>: Bootloader Support Utilities
36 \code
37 #include <avr/io.h>
38 #include <avr/boot.h>
39 \endcode
40
41 The macros in this module provide a C language interface to the
42 bootloader support functionality of certain AVR processors. These
43 macros are designed to work with all sizes of flash memory.
44
45 Global interrupts are not automatically disabled for these macros. It
46 is left up to the programmer to do this. See the code example below.
47 Also see the processor datasheet for caveats on having global interrupts
48 enabled during writing of the Flash.
49
50 \note Not all AVR processors provide bootloader support. See your
51 processor datasheet to see if it provides bootloader support.
52
53 \todo From email with Marek: On smaller devices (all except ATmega64/128),
54 __SPM_REG is in the I/O space, accessible with the shorter "in" and "out"
55 instructions - since the boot loader has a limited size, this could be an
56 important optimization.
57
58 \par API Usage Example
59 The following code shows typical usage of the boot API.
60
61 \code
62 #include <inttypes.h>
63 #include <avr/interrupt.h>
64 #include <avr/pgmspace.h>
65
66 void boot_program_page (uint32_t page, uint8_t *buf)
67 {
68 uint16_t i;
69 uint8_t sreg;
70
71 // Disable interrupts.
72
73 sreg = SREG;
74 cli();
75
76 eeprom_busy_wait ();
77
78 boot_page_erase (page);
79 boot_spm_busy_wait (); // Wait until the memory is erased.
80
81 for (i=0; i<SPM_PAGESIZE; i+=2)
82 {
83 // Set up little-endian word.
84
85 uint16_t w = *buf++;
86 w += (*buf++) << 8;
87
88 boot_page_fill (page + i, w);
89 }
90
91 boot_page_write (page); // Store buffer in flash page.
92 boot_spm_busy_wait(); // Wait until the memory is written.
93
94 // Reenable RWW-section again. We need this if we want to jump back
95 // to the application after bootloading.
96
97 boot_rww_enable ();
98
99 // Re-enable interrupts (if they were ever enabled).
100
101 SREG = sreg;
102 }\endcode */
103
104#include <avr/eeprom.h>
105#include <avr/io.h>
106#include <inttypes.h>
107#include <limits.h>
108
109/* Check for SPM Control Register in processor. */
110#if defined (SPMCSR)
111# define __SPM_REG SPMCSR
112#else
113# if defined (SPMCR)
114# define __SPM_REG SPMCR
115# else
116# error AVR processor does not provide bootloader support!
117# endif
118#endif
119
120
121/* Check for SPM Enable bit. */
122#if defined(SPMEN)
123# define __SPM_ENABLE SPMEN
124#elif defined(SELFPRGEN)
125# define __SPM_ENABLE SELFPRGEN
126#else
127# error Cannot find SPM Enable bit definition!
128#endif
129
130/** \ingroup avr_boot
131 \def BOOTLOADER_SECTION
132
133 Used to declare a function or variable to be placed into a
134 new section called .bootloader. This section and its contents
135 can then be relocated to any address (such as the bootloader
136 NRWW area) at link-time. */
137
138#define BOOTLOADER_SECTION __attribute__ ((section (".bootloader")))
139
140#ifndef __DOXYGEN__
141/* Create common bit definitions. */
142#ifdef ASB
143#define __COMMON_ASB ASB
144#else
145#define __COMMON_ASB RWWSB
146#endif
147
148#ifdef ASRE
149#define __COMMON_ASRE ASRE
150#else
151#define __COMMON_ASRE RWWSRE
152#endif
153
154/* Define the bit positions of the Boot Lock Bits. */
155
156#define BLB12 5
157#define BLB11 4
158#define BLB02 3
159#define BLB01 2
160#endif /* __DOXYGEN__ */
161
162/** \ingroup avr_boot
163 \def boot_spm_interrupt_enable()
164 Enable the SPM interrupt. */
165
166#define boot_spm_interrupt_enable() (__SPM_REG |= (uint8_t)_BV(SPMIE))
167
168/** \ingroup avr_boot
169 \def boot_spm_interrupt_disable()
170 Disable the SPM interrupt. */
171
172#define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)~_BV(SPMIE))
173
174/** \ingroup avr_boot
175 \def boot_is_spm_interrupt()
176 Check if the SPM interrupt is enabled. */
177
178#define boot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))
179
180/** \ingroup avr_boot
181 \def boot_rww_busy()
182 Check if the RWW section is busy. */
183
184#define boot_rww_busy() (__SPM_REG & (uint8_t)_BV(__COMMON_ASB))
185
186/** \ingroup avr_boot
187 \def boot_spm_busy()
188 Check if the SPM instruction is busy. */
189
190#define boot_spm_busy() (__SPM_REG & (uint8_t)_BV(__SPM_ENABLE))
191
192/** \ingroup avr_boot
193 \def boot_spm_busy_wait()
194 Wait while the SPM instruction is busy. */
195
196#define boot_spm_busy_wait() do{}while(boot_spm_busy())
197
198#ifndef __DOXYGEN__
199#define __BOOT_PAGE_ERASE (_BV(__SPM_ENABLE) | _BV(PGERS))
200#define __BOOT_PAGE_WRITE (_BV(__SPM_ENABLE) | _BV(PGWRT))
201#define __BOOT_PAGE_FILL _BV(__SPM_ENABLE)
202#define __BOOT_RWW_ENABLE (_BV(__SPM_ENABLE) | _BV(__COMMON_ASRE))
203#if defined(BLBSET)
204#define __BOOT_LOCK_BITS_SET (_BV(__SPM_ENABLE) | _BV(BLBSET))
205#elif defined(RFLB) /* Some devices have RFLB defined instead of BLBSET. */
206#define __BOOT_LOCK_BITS_SET (_BV(__SPM_ENABLE) | _BV(RFLB))
207#endif
208
209#define __boot_page_fill_normal(address, data) \
210(__extension__({ \
211 __asm__ __volatile__ \
212 ( \
213 "movw r0, %3\n\t" \
214 "sts %0, %1\n\t" \
215 "spm\n\t" \
216 "clr r1\n\t" \
217 : \
218 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
219 "r" ((uint8_t)(__BOOT_PAGE_FILL)), \
220 "z" ((uint16_t)(address)), \
221 "r" ((uint16_t)(data)) \
222 : "r0" \
223 ); \
224}))
225
226#define __boot_page_fill_alternate(address, data)\
227(__extension__({ \
228 __asm__ __volatile__ \
229 ( \
230 "movw r0, %3\n\t" \
231 "sts %0, %1\n\t" \
232 "spm\n\t" \
233 ".word 0xffff\n\t" \
234 "nop\n\t" \
235 "clr r1\n\t" \
236 : \
237 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
238 "r" ((uint8_t)(__BOOT_PAGE_FILL)), \
239 "z" ((uint16_t)(address)), \
240 "r" ((uint16_t)(data)) \
241 : "r0" \
242 ); \
243}))
244
245#define __boot_page_fill_extended(address, data) \
246(__extension__({ \
247 __asm__ __volatile__ \
248 ( \
249 "movw r0, %4\n\t" \
250 "movw r30, %A3\n\t" \
251 "sts %1, %C3\n\t" \
252 "sts %0, %2\n\t" \
253 "spm\n\t" \
254 "clr r1\n\t" \
255 : \
256 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
257 "i" (_SFR_MEM_ADDR(RAMPZ)), \
258 "r" ((uint8_t)(__BOOT_PAGE_FILL)), \
259 "r" ((uint32_t)(address)), \
260 "r" ((uint16_t)(data)) \
261 : "r0", "r30", "r31" \
262 ); \
263}))
264
265#define __boot_page_erase_normal(address) \
266(__extension__({ \
267 __asm__ __volatile__ \
268 ( \
269 "sts %0, %1\n\t" \
270 "spm\n\t" \
271 : \
272 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
273 "r" ((uint8_t)(__BOOT_PAGE_ERASE)), \
274 "z" ((uint16_t)(address)) \
275 ); \
276}))
277
278#define __boot_page_erase_alternate(address) \
279(__extension__({ \
280 __asm__ __volatile__ \
281 ( \
282 "sts %0, %1\n\t" \
283 "spm\n\t" \
284 ".word 0xffff\n\t" \
285 "nop\n\t" \
286 : \
287 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
288 "r" ((uint8_t)(__BOOT_PAGE_ERASE)), \
289 "z" ((uint16_t)(address)) \
290 ); \
291}))
292
293#define __boot_page_erase_extended(address) \
294(__extension__({ \
295 __asm__ __volatile__ \
296 ( \
297 "movw r30, %A3\n\t" \
298 "sts %1, %C3\n\t" \
299 "sts %0, %2\n\t" \
300 "spm\n\t" \
301 : \
302 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
303 "i" (_SFR_MEM_ADDR(RAMPZ)), \
304 "r" ((uint8_t)(__BOOT_PAGE_ERASE)), \
305 "r" ((uint32_t)(address)) \
306 : "r30", "r31" \
307 ); \
308}))
309
310#define __boot_page_write_normal(address) \
311(__extension__({ \
312 __asm__ __volatile__ \
313 ( \
314 "sts %0, %1\n\t" \
315 "spm\n\t" \
316 : \
317 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
318 "r" ((uint8_t)(__BOOT_PAGE_WRITE)), \
319 "z" ((uint16_t)(address)) \
320 ); \
321}))
322
323#define __boot_page_write_alternate(address) \
324(__extension__({ \
325 __asm__ __volatile__ \
326 ( \
327 "sts %0, %1\n\t" \
328 "spm\n\t" \
329 ".word 0xffff\n\t" \
330 "nop\n\t" \
331 : \
332 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
333 "r" ((uint8_t)(__BOOT_PAGE_WRITE)), \
334 "z" ((uint16_t)(address)) \
335 ); \
336}))
337
338#define __boot_page_write_extended(address) \
339(__extension__({ \
340 __asm__ __volatile__ \
341 ( \
342 "movw r30, %A3\n\t" \
343 "sts %1, %C3\n\t" \
344 "sts %0, %2\n\t" \
345 "spm\n\t" \
346 : \
347 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
348 "i" (_SFR_MEM_ADDR(RAMPZ)), \
349 "r" ((uint8_t)(__BOOT_PAGE_WRITE)), \
350 "r" ((uint32_t)(address)) \
351 : "r30", "r31" \
352 ); \
353}))
354
355#define __boot_rww_enable() \
356(__extension__({ \
357 __asm__ __volatile__ \
358 ( \
359 "sts %0, %1\n\t" \
360 "spm\n\t" \
361 : \
362 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
363 "r" ((uint8_t)(__BOOT_RWW_ENABLE)) \
364 ); \
365}))
366
367#define __boot_rww_enable_alternate() \
368(__extension__({ \
369 __asm__ __volatile__ \
370 ( \
371 "sts %0, %1\n\t" \
372 "spm\n\t" \
373 ".word 0xffff\n\t" \
374 "nop\n\t" \
375 : \
376 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
377 "r" ((uint8_t)(__BOOT_RWW_ENABLE)) \
378 ); \
379}))
380
381/* From the mega16/mega128 data sheets (maybe others):
382
383 Bits by SPM To set the Boot Loader Lock bits, write the desired data to
384 R0, write "X0001001" to SPMCR and execute SPM within four clock cycles
385 after writing SPMCR. The only accessible Lock bits are the Boot Lock bits
386 that may prevent the Application and Boot Loader section from any
387 software update by the MCU.
388
389 If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit
390 will be programmed if an SPM instruction is executed within four cycles
391 after BLBSET and SPMEN (or SELFPRGEN) are set in SPMCR. The Z-pointer is
392 don't care during this operation, but for future compatibility it is
393 recommended to load the Z-pointer with $0001 (same as used for reading the
394 Lock bits). For future compatibility It is also recommended to set bits 7,
395 6, 1, and 0 in R0 to 1 when writing the Lock bits. When programming the
396 Lock bits the entire Flash can be read during the operation. */
397
398#define __boot_lock_bits_set(lock_bits) \
399(__extension__({ \
400 uint8_t value = (uint8_t)(~(lock_bits)); \
401 __asm__ __volatile__ \
402 ( \
403 "ldi r30, 1\n\t" \
404 "ldi r31, 0\n\t" \
405 "mov r0, %2\n\t" \
406 "sts %0, %1\n\t" \
407 "spm\n\t" \
408 : \
409 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
410 "r" ((uint8_t)(__BOOT_LOCK_BITS_SET)), \
411 "r" (value) \
412 : "r0", "r30", "r31" \
413 ); \
414}))
415
416#define __boot_lock_bits_set_alternate(lock_bits) \
417(__extension__({ \
418 uint8_t value = (uint8_t)(~(lock_bits)); \
419 __asm__ __volatile__ \
420 ( \
421 "ldi r30, 1\n\t" \
422 "ldi r31, 0\n\t" \
423 "mov r0, %2\n\t" \
424 "sts %0, %1\n\t" \
425 "spm\n\t" \
426 ".word 0xffff\n\t" \
427 "nop\n\t" \
428 : \
429 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
430 "r" ((uint8_t)(__BOOT_LOCK_BITS_SET)), \
431 "r" (value) \
432 : "r0", "r30", "r31" \
433 ); \
434}))
435#endif /* __DOXYGEN__ */
436
437/*
438 Reading lock and fuse bits:
439
440 Similarly to writing the lock bits above, set BLBSET and SPMEN (or
441 SELFPRGEN) bits in __SPMREG, and then (within four clock cycles) issue an
442 LPM instruction.
443
444 Z address: contents:
445 0x0000 low fuse bits
446 0x0001 lock bits
447 0x0002 extended fuse bits
448 0x0003 high fuse bits
449
450 Sounds confusing, doesn't it?
451
452 Unlike the macros in pgmspace.h, no need to care for non-enhanced
453 cores here as these old cores do not provide SPM support anyway.
454 */
455
456/** \ingroup avr_boot
457 \def GET_LOW_FUSE_BITS
458 address to read the low fuse bits, using boot_lock_fuse_bits_get
459 */
460#define GET_LOW_FUSE_BITS (0x0000)
461/** \ingroup avr_boot
462 \def GET_LOCK_BITS
463 address to read the lock bits, using boot_lock_fuse_bits_get
464 */
465#define GET_LOCK_BITS (0x0001)
466/** \ingroup avr_boot
467 \def GET_EXTENDED_FUSE_BITS
468 address to read the extended fuse bits, using boot_lock_fuse_bits_get
469 */
470#define GET_EXTENDED_FUSE_BITS (0x0002)
471/** \ingroup avr_boot
472 \def GET_HIGH_FUSE_BITS
473 address to read the high fuse bits, using boot_lock_fuse_bits_get
474 */
475#define GET_HIGH_FUSE_BITS (0x0003)
476
477/** \ingroup avr_boot
478 \def boot_lock_fuse_bits_get(address)
479
480 Read the lock or fuse bits at \c address.
481
482 Parameter \c address can be any of GET_LOW_FUSE_BITS,
483 GET_LOCK_BITS, GET_EXTENDED_FUSE_BITS, or GET_HIGH_FUSE_BITS.
484
485 \note The lock and fuse bits returned are the physical values,
486 i.e. a bit returned as 0 means the corresponding fuse or lock bit
487 is programmed.
488 */
489#define boot_lock_fuse_bits_get(address) \
490(__extension__({ \
491 uint8_t __result; \
492 __asm__ __volatile__ \
493 ( \
494 "sts %1, %2\n\t" \
495 "lpm %0, Z\n\t" \
496 : "=r" (__result) \
497 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
498 "r" ((uint8_t)(__BOOT_LOCK_BITS_SET)), \
499 "z" ((uint16_t)(address)) \
500 ); \
501 __result; \
502}))
503
504#ifndef __DOXYGEN__
505#define __BOOT_SIGROW_READ (_BV(__SPM_ENABLE) | _BV(SIGRD))
506#endif
507/** \ingroup avr_boot
508 \def boot_signature_byte_get(address)
509
510 Read the Signature Row byte at \c address. For some MCU types,
511 this function can also retrieve the factory-stored oscillator
512 calibration bytes.
513
514 Parameter \c address can be 0-0x1f as documented by the datasheet.
515 \note The values are MCU type dependent.
516*/
517
518#define boot_signature_byte_get(addr) \
519(__extension__({ \
520 uint8_t __result; \
521 __asm__ __volatile__ \
522 ( \
523 "sts %1, %2\n\t" \
524 "lpm %0, Z" "\n\t" \
525 : "=r" (__result) \
526 : "i" (_SFR_MEM_ADDR(__SPM_REG)), \
527 "r" ((uint8_t)(__BOOT_SIGROW_READ)), \
528 "z" ((uint16_t)(addr)) \
529 ); \
530 __result; \
531}))
532
533/** \ingroup avr_boot
534 \def boot_page_fill(address, data)
535
536 Fill the bootloader temporary page buffer for flash
537 address with data word.
538
539 \note The address is a byte address. The data is a word. The AVR
540 writes data to the buffer a word at a time, but addresses the buffer
541 per byte! So, increment your address by 2 between calls, and send 2
542 data bytes in a word format! The LSB of the data is written to the lower
543 address; the MSB of the data is written to the higher address.*/
544
545/** \ingroup avr_boot
546 \def boot_page_erase(address)
547
548 Erase the flash page that contains address.
549
550 \note address is a byte address in flash, not a word address. */
551
552/** \ingroup avr_boot
553 \def boot_page_write(address)
554
555 Write the bootloader temporary page buffer
556 to flash page that contains address.
557
558 \note address is a byte address in flash, not a word address. */
559
560/** \ingroup avr_boot
561 \def boot_rww_enable()
562
563 Enable the Read-While-Write memory section. */
564
565/** \ingroup avr_boot
566 \def boot_lock_bits_set(lock_bits)
567
568 Set the bootloader lock bits.
569
570 \param lock_bits A mask of which Boot Loader Lock Bits to set.
571
572 \note In this context, a 'set bit' will be written to a zero value.
573 Note also that only BLBxx bits can be programmed by this command.
574
575 For example, to disallow the SPM instruction from writing to the Boot
576 Loader memory section of flash, you would use this macro as such:
577
578 \code
579 boot_lock_bits_set (_BV (BLB11));
580 \endcode
581
582 \note Like any lock bits, the Boot Loader Lock Bits, once set,
583 cannot be cleared again except by a chip erase which will in turn
584 also erase the boot loader itself. */
585
586/* Normal versions of the macros use 16-bit addresses.
587 Extended versions of the macros use 32-bit addresses.
588 Alternate versions of the macros use 16-bit addresses and require special
589 instruction sequences after LPM.
590
591 FLASHEND is defined in the ioXXXX.h file.
592 USHRT_MAX is defined in <limits.h>. */
593
594#if defined(__AVR_ATmega161__) || defined(__AVR_ATmega163__) \
595 || defined(__AVR_ATmega323__)
596
597/* Alternate: ATmega161/163/323 and 16 bit address */
598#define boot_page_fill(address, data) __boot_page_fill_alternate(address, data)
599#define boot_page_erase(address) __boot_page_erase_alternate(address)
600#define boot_page_write(address) __boot_page_write_alternate(address)
601#define boot_rww_enable() __boot_rww_enable_alternate()
602#define boot_lock_bits_set(lock_bits) __boot_lock_bits_set_alternate(lock_bits)
603
604#elif (FLASHEND > USHRT_MAX)
605
606/* Extended: >16 bit address */
607#define boot_page_fill(address, data) __boot_page_fill_extended(address, data)
608#define boot_page_erase(address) __boot_page_erase_extended(address)
609#define boot_page_write(address) __boot_page_write_extended(address)
610#define boot_rww_enable() __boot_rww_enable()
611#define boot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)
612
613#else
614
615/* Normal: 16 bit address */
616#define boot_page_fill(address, data) __boot_page_fill_normal(address, data)
617#define boot_page_erase(address) __boot_page_erase_normal(address)
618#define boot_page_write(address) __boot_page_write_normal(address)
619#define boot_rww_enable() __boot_rww_enable()
620#define boot_lock_bits_set(lock_bits) __boot_lock_bits_set(lock_bits)
621
622#endif
623
624/** \ingroup avr_boot
625
626 Same as boot_page_fill() except it waits for eeprom and spm operations to
627 complete before filling the page. */
628
629#define boot_page_fill_safe(address, data) \
630do { \
631 boot_spm_busy_wait(); \
632 eeprom_busy_wait(); \
633 boot_page_fill(address, data); \
634} while (0)
635
636/** \ingroup avr_boot
637
638 Same as boot_page_erase() except it waits for eeprom and spm operations to
639 complete before erasing the page. */
640
641#define boot_page_erase_safe(address) \
642do { \
643 boot_spm_busy_wait(); \
644 eeprom_busy_wait(); \
645 boot_page_erase (address); \
646} while (0)
647
648/** \ingroup avr_boot
649
650 Same as boot_page_write() except it waits for eeprom and spm operations to
651 complete before writing the page. */
652
653#define boot_page_write_safe(address) \
654do { \
655 boot_spm_busy_wait(); \
656 eeprom_busy_wait(); \
657 boot_page_write (address); \
658} while (0)
659
660/** \ingroup avr_boot
661
662 Same as boot_rww_enable() except waits for eeprom and spm operations to
663 complete before enabling the RWW mameory. */
664
665#define boot_rww_enable_safe() \
666do { \
667 boot_spm_busy_wait(); \
668 eeprom_busy_wait(); \
669 boot_rww_enable(); \
670} while (0)
671
672/** \ingroup avr_boot
673
674 Same as boot_lock_bits_set() except waits for eeprom and spm operations to
675 complete before setting the lock bits. */
676
677#define boot_lock_bits_set_safe(lock_bits) \
678do { \
679 boot_spm_busy_wait(); \
680 eeprom_busy_wait(); \
681 boot_lock_bits_set (lock_bits); \
682} while (0)
683
684#endif /* _AVR_BOOT_H_ */