SDCC Compiler User Guide

SDCC 3.6.0
$Date:: 2016-06-04 #$
$Revision: 9615 $

Contents

1 Introduction

L1 About SDCC e e
1.2 SDCC Suite Licenses o o v i i i et e e e e e e e e e e
1.3 Documentationo it e e e e e e e e e e e e e e
1.4 Typographic CONVeNtions v v v vt i i it e e e e e e e e e e
1.5 Compatibility with previous Versions o v v v vt i e e e e e e
1.6 System Requirements e e
1.7 Other Resources o o i i e e e e e e e e e e
2 Installing SDCC
2.1 Configure Options o v v e e e e e e e e e e e e e e
2.2 Install paths L e e
2.3 SearchPaths e e
24 Building SDCC e e
24.1 Building SDCConLinux i et e e e
24.2 Building SDCConMacOS X e
2.4.3 Cross compiling SDCC on Linux for Windows
2.4.4 Building SDCC using Cygwin and Mingw32
2.4.5 Building SDCC Using Microsoft Visual C++ 2010 MSVC)
2.4.6 Windows Install Usinga ZIP Package
2.4.7 Windows Install Using the Setup Program
248 VPATHfeature e e e e e
2.5 Building the Documentation e
2.6 Reading the Documentation e e
2.7 Testingthe SDCC Compiler i i e e e e e e e e e
2.8 Install Trouble-shooting e e e e
2.8.1 IfSDCCdoesnotbuildcorrectly
2.8.2 What the ”./econfigure” does
2.8.3 Whatthe "make” does
2.8.4 What the “make install” command does. L.
2.9 Components of SDCC e e e e e e e
29.1 sdec-The Compiler e
2.9.2 sdepp - The C-Preprocessor o e
2.9.3 sdas, sdld - The Assemblers and Linkage Editors
294 s51,sz80, shc08, sstm8 - The Simulators
2.9.5 sdedb - Source Level Debugger e
3 Using SDCC
3.1 Standard-Compliance e e e e e e e
3.1.1 ISOC90and ANSICS89 e
3.1.2 ISOCOS . . e e
3.1.3 ISOC99 . .
3.1.4 ISOCLL . . e e
3.1.5 Embedded C e
32 Compiling o e e e e e e e e e e

—_
SO 00O NN

[y

CONTENTS CONTENTS

3.2.1 Single Source File Projects 25

3.2.2 Postprocessing the Intel Hex file 26

3.2.3 Projects with Multiple Source Files 26

3.24 Projects with Additional Libraries 27

3.2.5 Using sdar to Create and Manage Libraries 27

3.2.6 Using sdeclib to Create and Manage Libraries (deprecated)! 27

33 Command Line Options o oo ittt e e e e e 29
3.3.1 Processor Selection Options o o vt i i e e e e e e e e 29

3.3.2 Preprocessor Options v v v v it e e e e e e e e e 30

333 Optimization Optionsot i it e e e e e e e 30

334 OtherOptions L e e e 31

33,5 Linker Options oo ot e e e e e e e 33

33.6 MCSS1OPtions o v v i e et e e e e e e e e e 34
3.3.7 DS390/DS400 Options i e e e e e e e e e e 35

3.3.8 Options common to all z80-related ports (z80, z180, 2k, r3ka, gbz80) 35

3.3.9 Z80 Options (apply to z80, z180, r2k and r3kaport) 36
33,10 GBZBOOPLONS . . . v v v v e e e e e e e e e e 36
3.3.11 Intermediate Dump Options it e e 36
3.3.12 Redirecting output on Windows Shells, 36

3.4 Environment variables L 36
3.5 SDCC Language Extensions e 37
3.5.1 MCS51/DS390 intrinsic named address spaces 37
3.5.1.1 _data/__near e e e e e 37

3.5.1.2 _xdata/ __far. e e e e 37

3513 _ddata 37

35.14 _pdata ... e e e e e e 38

3515 _code . .. e 38

35.1.6 _bit . ..o e 38

3517 __sfr/_sfr16/ __sfr32/ __sbit e 39

3.5.1.8 Pointers to MCS51/DS390 intrinsic named address spaces 39

3.5.1.9 Notes on MCS51 memory layout 40

3.5.2 Z80/Z180 intrinsic named address spaceso 40
3.5.2.1 __sfr(infoutto 8-bitaddresses) 40

3.5.2.2 __banked __sfr (infout to 16-bitaddresses) 41

3.5.2.3 _ sfr (inO/outO to 8 bit addresses on Z180/HD64180) 41

3.5.3 HCO08/S08 intrinsic named address spaceso e e 41
3531 _data ... e 41

3.5.3.2 xdata ... e e e e e 41

3.5.4 Non-intrinsic named address spaceso e 41

3.5.5 Absolute Addressing e 42

3.5.6 Preserved register specification e e 43

3.5.7 BinaryconstantS L. e e e e e 43

35.8 Returningvoid e 43

3.5.9 Omitting promotion on arguments of vararg function 43

3.6 Parameters and Local Variables 43
3.7 0Overlayingo e e e e e e e e e e e e 44
3.8 Interrupt Service Routines L e e e 45
3.8.1 General Information e 45
3.8.1.1 Common interrupt pitfall: variable not declared volatile 45

3.8.1.2 Common interrupt pitfall: non-atomic access 45

3.8.1.3 Common interrupt pitfall: stack overflow 45

3.8.1.4 Common interrupt pitfall: use of non-reentrant functions 45

3.8.2 MCSS51/DS390 Interrupt Service Routines 46

3.8.3 HCOS8 Interrupt Service Routines Lo 46

'With sdcc version 3.2.0 the sdcclib utility is deprecated. Sdar utility should be used to create sdcc object file archives. Sdcclib utility will
become obsolete in one of next sdcc releases and will be removed from sdcc packages.

CONTENTS CONTENTS

3.8.4 780 and Z180 Interrupt Service Routines 46

3.8.5 Rabbit 2000, 3000, 3000A and 4000 Interrupt Service Routines 47

3.8.6 GBZ80 and TLCS-90 Interrupt Service Routines 47

3.9 Enabling and Disabling Interrupts o e e e e e 47
3.9.1 Critical Functions and Critical Statements 47

3.9.2 Enabling and Disabling Interrupts directly L. 47

3.9.3 Semaphore locking (mes51/ds390) Lo 48

3.10 Functions using private register banks (mcs51/ds390) Lo 48
3.11 Inline Assembler Code e 49
3.11.1 Inline Assemblere Code Formats 49
3.11.1.1 OId_asm...__endasm;Format 49

3.11.1.2 New __asm__ ("inline_assembler_code”) Format 49

3.11.2 A Stepby Step Introduction 49
3.11.3 Naked Functions e 51
3.11.4 Use of Labels within Inline Assembler 52

3.12 Interfacing with Assembler Code L 53
3.12.1 Global Registers used for Parameter Passing (8051) 53
3.12.2 Registers usage (8051) e 53
3.12.3 Assembler Routine (non-reentrant) (8051) 53
3.12.4 Assembler Routine (reentrant) (8051) o 54
3.12.5 Small-Ccallingconvention e 55

3.13 Support routines for integer multiplicative operators 55
3.14 Floating Point SUpport L . e e e e e e e 55
3.15 Library Routines e e e e e e e e e e e 56
3.15.1 Compiler support routines (_gptrget, _mulintetc.) 56
3.15.2 Stdclib functions (puts, printf, strcatetc.) L 56
3.15.2.1 <stdioh>. . . . L. 56

31522 <malloch>. o 57

3.15.3 Math functions (sinf, powf, sqrtfetc.) L 57
3.153.1 <mathh>. 0 e 57

3.15.4 Otherlibraries o e e e e e 57

3.16 Memory Models e 58
3.16.1 MCS51 Memory Models o . e 58
3.16.1.1 Small, Medium, Largeand Huge 58

3.16.1.2 External Stack 58

3.16.2 DS390 Memory Model e e e 58

307 Pragmas e e e e e e e e e e e e 58
3.18 Defines Created by the Compiler 61
4 Notes on supported Processors 63
4.1 MCSST variants o v v et e e e e e e e e e e e e e e e e 63
4.1.1 pdataaccessby SFR L 63

4.1.2 Other Features available by SFR L o 63

4.1.3 Bankswitching e e e e e e e e 63
4.13.1 Hardware e 64

4.1.3.2 Software oL e e e e e e 64

414 MCS51/DS390 Startup Code L 64

42 DS400 porto e e e 67
4.3 The Z80, Z180, Rabbit 2000/3000, Rabbit 3000A and GBZ80 ports 67
43.1 Startup Code e e e e e e e e 67

4.3.2 Complex inStructions o v v vt e e e e e e e e e e e e e e e e e 67

433 Callingconvention e 67

434 Unsafereads 67

44 The HCO8 and SO8 ports o i i i e e e e 68
4.4.1 Startup Code L e e e e e e e e 68

45 ThePICIAport o o o v e e e e e e e e e e e e e e e 68
4.5.1 PIC Code Pagesand Memory Banks 69

CONTENTS CONTENTS
452 Adding New DevicestothePort 69
453 Interrupt Code L. e 70
454 Configuration Bits L e e e e e 70
4.5.5 Linkingand Assembling 70
45.6 Command-Line Options e 71
4,577 Environment Variables e e e e e 71
45.8 TheLibrary L e 71

45.8.1 Enhancedcores 71

4.5.8.2 Accessing bits of special function registers, 72

4.5.8.3 Naming of special function registers 72

4.5.8.4 error: missing definition for symbol “__gptrget1” 72

4.5.8.5 Processor mismatchin file “XXX”.o ... 72

459 KnownBugs 72
4.59.1 Function arguments i i e e i e e e e e e e e e e e e e 72

459.2 Regressiontestsfail L L 72

4.6 ThePICIOPOIt o it e e e e e e 72
4.6.1 Global Options i e e 74
4.6.2 PortSpecific Options o oo e e e 74
4.6.2.1 Code Generation OptionS v v v v v v vt e e e e 74

4.6.2.2 Optimization Options o v vttt e e e e e e 75

4.6.23 Assembling Options 75

4.6.24 Linking Options oo v i it e 75

4.6.2.5 Debugging Options e e e 75

4.6.3 Environment Variables L. e 76
4.6.4 Preprocessor MacCros v v v v v v i e e e e e e e e e e e e e e e e e e 76
4.6.5 DIreCtOries . . . v v v v v i e e e e e e e e e e e e e e e e e e e 76
4.6.6 Pragmas. L e 76
4.6.7 Header Files and Libraries i it e e 78
4.6.8 HeaderFiles e 78
4.6.9 Libraries e e e 79
4.6.10 Adding New DevicestothePort 79
4.6.11 Memory Models e 80
4.6.12 Stack 80
4.6.13 Functions i i e e e 81
4.6.14 Functionreturn values e 81
4.6.15 INteIrupts v v i e 81
4.6.16 Generic Pointers L e e e e 82
4.6.17 Configuration Bits e 82
4.6.18 PICI6 CLIbraries v v v v v i o e 83
4.6.18.1 Standard I/O Streams 83
4.6.18.2 Printing functions L 84
4.6.183 Signalso e e e e e 84

4.6.19 PICI6Port —Tips. o o e e e e 85
4.6.19.1 StackSize e e e e e e e e e 85

4.6.20 KnownBugs 85
4.6.20.1 Extended Instruction Set. o 85
4.6.20.2 Regression Tests L L e e 85

5 Debugging 86
5.1 Debuggingwith SDCDB e 87
5.1.1 Compiling for Debugging e 87
5.1.2 How the Debugger Works e 87
5.1.3 Starting the Debugger SDCDB 87
5.1.4 SDCDB Command Line Optionsttt 88
5.1.5 SDCDB Debugger Commands e 88
5.1.6 Interfacing SDCDB withDDD 90
5.1.7 Interfacing SDCDB with XEmacs it 90

CONTENTS CONTENTS
6 TIPS 92
6.1 Porting code from or to other compilers L L 93
6.2 Tools included in the distribution L L 93

6.3 Documentation included in the distribution o oL 94
6.4 Communication online at SourceForge oL 95

6.5 Relatedopensourcetools L 95
6.6 Related documentation / recommended readingo o oL L. 95

6.7 Application notes specifically for SDCC e 96
6.8 Some QUESIONS e e e e e e e e e e e e e e e 96

7 Support 97
7.1 Reporting Bugs e e e 97
7.2 Requesting Features 98

7.3 Submitting patches e e e e e e e e 98
74 Getting Help. o 0 e e 98
7.5 Changelog e 98
7.6 Subversion Source Code Repository L 98
7.7 Release policy o e e e 98

7.8 Quality control e e e e e e e e e 98
7.9 Exampleso e e e e e e e e 99
7.10 Use of SDCCin Education i e e e e e e e e 99

8 SDCC Technical Data 100
8.1 Optimizations o e e e e 100
8.1.1 Sub-expression Elimination 100

8.1.2 Dead-Code Elimination e 100

8.1.3 Copy-Propagation e e e e e 101

8.1.4 Loop Optimizations o o vttt e e e e e 101

8.1.5 LoopReversing e 102

8.1.6 Algebraic Simplifications L 102

8.1.7 switch’ Statementso e e e e e e e 102

8.1.8 Bit-shifting Operations. i i e e e e 104

8.1.9 Bit-rotation e e e e e e e 104

8.1.10 Nibble and Byte Swapping e 105

8.1.11 Highest Order Bit/ Any Order Bit 105

8.1.12 Higher Order Byte / Higher Order Word 106

8.1.13 Placement of Bank-Selection Instructions 107

8.1.14 Lifetime-Optimal Speculative Partial Redundancy Elimination 107

8.1.15 Register Allocation L 107

8.1.16 Peephole Optimizer e 107

8.2 Cyclomatic Complexity o o i i i e e e e 109

8.3 Retargetting for other Processors e 109

9 Compiler internals 111
9.1 The anatomy of the compiler 111

9.2 A few words about basic block successors, predecessors and dominators 117

10 Acknowledgments 118

Chapter 1

Introduction

1.1 About SDCC

SDCC (Small Device C Compiler) is free open source, retargettable, optimizing standard (ISO C90, ISO C99, ISO
C11) C compiler suite by Sandeep Dutta designed for 8 bit Microprocessors. The current version targets Intel
MCSS51 based Microprocessors (8031, 8032, 8051, 8052, etc.), Dallas DS80C390 variants, Freescale (formerly
Motorola) HCOS8 based (hc08, s08), Zilog Z80 based MCUs (Z80, Z180, gbz80, Rabbit 2000/3000, Rabbit 3000A
) and STMicroelectronics STMS . It can be retargeted for other microprocessors, support for Microchip PIC and
Toshiba TLCS-90 is under development. The entire source code for the compiler is distributed under GPL. SDCC
uses a modified version of ASXXXX & ASLINK, free open source retargetable assembler & linker. SDCC has
extensive language extensions suitable for utilizing various microcontrollers and underlying hardware effectively.
You might also want to have a look at the wiki http://sdcc.sourceforge.net/wiki/.
In addition to the MCU specific optimizations SDCC also does a host of standard optimizations like:

* global sub expression elimination,

* loop optimizations (loop invariant, strength reduction of induction variables and loop reversing),

* constant folding & propagation,

* copy propagation,

¢ dead code elimination

* jump tables for switch statements.

For the back-end SDCC uses a global register allocation scheme which should be well suited for other 8 bit MCUs.
The peep hole optimizer uses a rule based substitution mechanism which is MCU independent.

Supported data-types are:

type width default signed range unsigned range
_Bool / bool 8 bits, 1 byte2 unsigned - 0,1
char 8 bits, 1 byte unsigned -128, +127 0, +255
short 16 bits, 2 bytes signed -32.768, +32.767 0, +65.535
int 16 bits, 2 bytes signed -32.768, +32.767 0, +65.535
long 32 bits, 4 bytes signed -2.147.483.648, +2.147.483.647 | 0, +4.294.967.295
long long® 64 bits, 8 bytes signed
float 4 bytes, similar to IEEE 754 signed 1.175494351E-38,
3.402823466E+38
’ pointer \ 1,2, 3 or 4 bytes \ generic \ \

The compiler also allows inline assembler code to be embedded anywhere in a function. In addition, routines

Incomplete support in the mcs51 and ds390 ports.

http://sdcc.sourceforge.net/wiki/

1.2. SDCC SUITE LICENSES CHAPTER 1. INTRODUCTION

developed in assembly can also be called.

SDCC also provides an option (--cyclomatic) to report the relative complexity of a function. These func-
tions can then be further optimized, or hand coded in assembly if needed.

SDCC also comes with a companion source level debugger SDCDB. The debugger currently uses ucSim, a
free open source simulator for 8051 and other micro-controllers.

The latest SDCC version can be downloaded from http://sdcc.sourceforge.net/snap.php.

Please note: the compiler will probably always be some steps ahead of this documentation®.

1.2 SDCC Suite Licenses

SDCC suite is a collection of several components derived from different sources with different licenses:

¢ executables:

— sdcc compiler:
sdcc compiler is licensed under the GPLv2.
The code or object files generated by SDCC suite are not licensed, so they can be used in FLOSS or
proprietary (closed source) applications.

— sdcpp preprocessor:
derived from GCC cpp preprocessor http://gcc.gnu.org/; GPLv3 license

— sdas assemblers and sdld linker:
derived from ASXXXX http://shop-pdp.kent.edu/ashtml/asxxxx.htm; GPLv3
license

— SDCC run-time libraries:

The great majority of SDCC run-time libraries are licensed under the GPLv2+LE which allows linking
of SDCC run-time libraries with proprietary (closed source) applications.

Exception are pic device libraries and header files which are derived from Microchip header (.inc) and
linker script (.lkr) files. Microchip requires that "The header files should state that they are only to
be used with authentic Microchip devices" which makes them incompatible with the GPL. Pic device
libraries and header files are located at non-free/lib and non-free/include directories respectively. Sdcc
should be run with the --use-non-free command line option in order to include non-free header files and
libraries.

— sdbinutils utilities (sdar, sdranlib, sdnm, sdobjcopy):
derived from GNU Binutils http://www.gnu.org/software/binutils/; GPLv3 license

— sdcclib librarian:
GPLvV2 license

— ucsim simulators:
GPLV2 license

— sdcdb debugger:
GPLv2 license

— gcc-test regression tests:
derived from gcc-testsuite; no license explicitely specified, but since it is a part of GCC is probably
GPLv3 licensed

— packihx:
public domain

— makebin:
zlib/libpng License

21 bit in the mes51 and ds390 ports.
3Incomplete support in the mcs51, ds390, ds400, picl4 and picl6 ports.
4Obviously this has pros and cons

http://sdcc.sourceforge.net/snap.php
http://gcc.gnu.org/
http://shop-pdp.kent.edu/ashtml/asxxxx.htm
http://www.gnu.org/software/binutils/

1.3. DOCUMENTATION CHAPTER 1. INTRODUCTION

L]

libraries:

— dbuf library:
zlib/libpng License

— Boost C++ libraries:
http://www.boost .org/; Boost Software License 1.0 (BSL-1.0)

— STX B+ Tree C++ Template Classes:
http://idlebox.net/2007/stx-btree/; LGPLv2.1

Links to licenses:

L]

L]

1.3

GPLvV2 license: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
LGPLv2.1 license: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
GPLv3 license: http://www.gnu.org/licenses/gpl.html

zlib/libpng License: http://www.opensource.org/licenses/Z1ib

Boost Software License 1.0 (BSL-1.0): http://www.opensource.org/licenses/BSL-1.0

Documentation

This documentation is maintained using a free open source word processor (LyX) http://www.lyx.org/.

14

Typographic conventions

Throughout this manual, we will use the following convention. Commands you have to type in are printed in "'sans
serif". Code samples are printed in typewriter font. Interesting items and new terms are printed in izalic.

1.5

Compatibility with previous versions

Newer versions have usually numerous bug fixes compared with the previous version. But we also sometimes
introduce some incompatibilities with older versions. Not just for the fun of it, but to make the compiler more
stable, efficient and standard compliant (see section 3.1 for Standard-Compliance).

short is now equivalent to int (16 bits), it used to be equivalent to char (8 bits) which is not ANSI compliant.
To maintain compatibility, old programs may be compiled using the --short-is-8bits commandline option (see
3.3.4 on page 33).

the default directory for gcc-builds where include, library and documentation files are stored is now in
/usr/local/share.

char type parameters to vararg functions are casted to int unless explicitly casted and --std-c89 and --std-c99
command line option are not defined, e.g.:

char a=3;

printf ("%d %c\n", a, (char)a);

will push a as an int and as a char resp if --std-c89 and --std-c99 command line options are not defined,

will push a as two ints if --std-c89 or --std-c99 command line option is defined.

pointer type parameters to vararg functions are casted to generic pointers on harvard architectures (e.g.
mcs51, ds390) unless explicitly casted and --std-c89 and --std-c99 command line option are not defined.

option --regextend has been removed.
option --noregparms has been removed.

option --stack-after-data has been removed.

http://www.boost.org/
http://idlebox.net/2007/stx-btree/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/gpl.html
http://www.opensource.org/licenses/Zlib
http://www.opensource.org/licenses/BSL-1.0
http://www.lyx.org/

1.5. COMPATIBILITY WITH PREVIOUS VERSIONS CHAPTER 1. INTRODUCTION

* bit and sbit types now consistently behave like the C99 _Bool type with respect to type conversion. The most
common incompatibility resulting from this change is related to bit toggling idioms, e.g.:
bit b;
b = ~b; /* equivalent to b=1 instead of toggling b */
b = !b; /* toggles b */
In previous versions, both forms would have toggled the bit.

* in older versions, the preprocessor was always called with --std-c99 regardless of the --std-xxx setting. This
is no longer true, and can cause compilation failures on code built with --std-c89 but using c99 preprocessor
features, such as one-line (/) comments

* in versions older than 2.8.4 the pic16 *printf() and printf_tiny() library functions supported undocumented
and not standard compliant ’b’ binary format specifier ("%b", "%hb" and "%Ib"). The ’b’ specifier
is now disabled by default. It can be enabled by defining BINARY_SPECIFIER macro in files de-
vice/lib/pic16/libc/stdio/viprintf.c and device/lib/pic16/libc/stdio/printf_tiny.c and recompiling the library.

* in versions older then 2.8.5 the unnamed bitfield structure members participated in initialization, which is
not conforming with ISO/IEC 9899:1999 standard (see section Section 6.7.8 Initialization, clause 9)

Old behavior, before version 2.8.5:

struct {

int a : 2;
char : 2;
int b : 2;

} s = {1, 2, 3};
/x s.a =1, s.b = 3 x/

New behavior:

struct {

int a : 2;
char : 2;
int b : 2;

}s = {1, 2};
/* s.a =1, s.b =2 %/

e libraries, included in sdcc packages, are in ar format in sdcc version 2.9.0 and higher. See section 3.2.5.
* targets for xaS1 and avr are disabled by default in version 3.0.0 and higher.

* in sdcc version 3.0.0 and higher sdldgb and sdldz80 don’t support generation of GameBoy binary image
format. The makebin utility can be used to convert Intel Hex format to GameBoy binary image format.

¢ in sdcc version 3.0.0 and higher sdldgb and sdldz80 don’t support generation of rrgb (GameBoy simulator)
map file and no$gmb symbol file formats. The as2gbmap utility can be used to convert sdld map format to
rrgb and no$gmb file formats.

« asranlib utility was renamed to sdranlib in sdcc version 3.1.0.

¢ in sdcc version 3.1.0 pic 14 traget, structured access to SFR via <sfrname>_bits.<bitname> is depre-
cated and replaced by <sfrname>bits.<bitname>. It will be obsoleted (removed) in one of next sdcc
releases. See section 4.5.8.3.

* sdar archive managing utility and sdnm utilityes were introduced in version 3.2.0. sdar, sdranlib and sdnm
are derived from GNU Binutils package.

 with sdcc version 3.2.0 the sdcclib utility is deprecated. Sdar utility should be used to create sdcc object file
archives. Sdcclib utility will become obsolete in one of next sdcc releases and will be removed from sdcc
packages.

 special sdcc keywords which are not preceded by a double underscore are obsoleted (removed) in version
3.2.0 and higher. See section 3.1 Standard-Compliance.

9

1.6. SYSTEM REQUIREMENTS CHAPTER 1. INTRODUCTION

¢ in sdcc version 3.2.0 compiler macro definitions not starting with double underscore characters are deprecated
if —std-cXX command line option is defined. They have been oboleted (removed) after the 3.4.0 release.

¢ in sdcc version 3.2.0 new compiler macros for processor definition were introduced for picl4 and picl6
targets: -D__SDCC_PIC16XXXX and -D__SDCC_PIC18FXXX respectively. The pic16 macro definition
-D__18fXXX is deprecated. It was obsoleted (removed) after the 3.4.0 release.

» pragma config for picl6 target was introduced in version 3.2.0. See section 4.6.6

e new inline assembler format __asm__ (inline_assembler_code”); as an addition to __asm
__endasem; format introduced in version 3.2.0. See section 3.11

» sdobjcopy utility was introduced in version 3.3.0. It is derived from GNU Binutils package.
» Up to the sdcc 3.4.0 release, intrinsic named address spaces were called “storage classes” in this manual.

* in sdcc version 3.6.0, the default for char changed from signed to unsigned.

1.6 System Requirements

What do you need before you start installation of SDCC? A computer, and a desire to compute. The preferred
method of installation is to compile SDCC from source using GNU gcc and make. For Windows some pre-compiled
binary distributions are available for your convenience. You should have some experience with command line tools
and compiler use.

1.7 Other Resources

The SDCC home page athttp://sdcc.sourceforge.net/ is a great place to find distribution sets. You can
also find links to the user mailing lists that offer help or discuss SDCC with other SDCC users. Web links to other
SDCC related sites can also be found here. This document can be found in the doc directory of the source package.
The latest snapshot build version of this document in pdf format is available at ht tp://sdcc.sourceforge.
net/doc/sdccman.pdf. Some of the other tools (simulator and assembler) included with SDCC contain their
own documentation and can be found in the source distribution. If you want the latest unreleased software, the
complete source package is available directly from Subversion on http://sourceforge.net/p/sdcc/
code/8805/tree/trunk/sdcc/.

10

http://sdcc.sourceforge.net/
http://sdcc.sourceforge.net/doc/sdccman.pdf
http://sdcc.sourceforge.net/doc/sdccman.pdf
http://sourceforge.net/p/sdcc/code/8805/tree/trunk/sdcc/
http://sourceforge.net/p/sdcc/code/8805/tree/trunk/sdcc/

Chapter 2

Installing SDCC

For most users it is sufficient to skip to either section 2.4.1 (Unix) or section 2.4.7 (Windows). More detailed
instructions follow below.

2.1 Configure Options

The install paths, search paths and other options are defined when running ’configure’. The defaults can be over-
ridden by:

--prefix see table below
--exec_prefix see table below
--bindir see table below
--datadir see table below

--datarootdir see table below

docdir environment variable, see table below
include_dir_suffix environment variable, see table below
non_free_include_dir_suffix environment variable, see table below
lib_dir_suffix environment variable, see table below
non_free_lib_dir_suffix environment variable, see table below

sdccconf_h_dir_separator environment variable, either / or \\ makes sense here. This character will only be used
in sdecconf.h; don’t forget it’s a C-header, therefore a double-backslash is needed there.

--disable-mcs51-port Excludes the Intel mcs51 port
--disable-z80-port Excludes the z80 port

--disable-z180-port Excludes the z180 port

--disable-r2k-port Excludes the 2k port

--disable-r3ka-port Excludes the r3ka port
--disable-gbz80-port Excludes the GameBoy gbz80 port
--disable-avr-port Excludes the AVR port (disabled by default)
--disable-ds390-port Excludes the DS390 port

11

2.1. CONFIGURE OPTIONS CHAPTER 2. INSTALLING SDCC

--disable-hc08-port Excludes the HCOS8 port

--disable-s08-port Excludes the SO8 port

--disable-stm8-port Excludes the STMS8 port

--disable-pic-port Excludes the PIC14 port

--disable-pic16-port Excludes the PIC16 port

--disable-xa51-port Excludes the XAS51 port (disabled by default)
--disable-ucsim Disables configuring and building of ucsim
--disable-device-lib Disables automatically building device libraries
--disable-packihx Disables building packihx

--enable-doc Build pdf, html and txt files from the lyx sources
--enable-libgc Use the Bohem memory allocator. Lower runtime footprint.
--without-ccache Do not use ccache even if available

Furthermore the environment variables CC, CFLAGS, ... the tools and their arguments can be influenced. Please
see ‘configure --help’ and the man/info pages of ‘configure’ for details.

The names of the standard libraries STD_LIB, STD_INT LIB, STD_LONG_LIB, STD_FP_LIB,
STD_DS390_LIB, STD_XAS51_LIB and the environment variables SDCC_DIR_NAME, SDCC_INCLUDE_NAME,
SDCC_LIB_NAME are defined by ‘configure’ too. At the moment it’s not possible to change the default settings
(it was simply never required).

These configure options are compiled into the binaries, and can only be changed by rerunning ’configure’
and recompiling SDCC. The configure options are written in italics to distinguish them from run time environment
variables (see section search paths).

The settings for "Win32 builds” are used by the SDCC team to build the official Win32 binaries. The
SDCC team uses Mingw32 to build the official Windows binaries, because it’s

1. open source,
2. a gec compiler and last but not least
3. the binaries can be built by cross compiling on SDCC Distributed Compile Farm.

See the examples, how to pass the Win32 settings to ’configure’. The other Win32 builds using VC or whatever
don’t use ’configure’, but a header file sdcc_vc.h.in is the same as sdccconf.h built by *configure’ for Win32.

These defaults are:

Variable \ default \ Win32 builds
PREFIX /usr/local \sdcc
EXEC_PREFIX $PREFIX $PREFIX
BINDIR $EXEC_PREFIX/bin SEXEC_PREFIX\bin
DATADIR SDATAROOTDIR $DATAROOTDIR
DATAROOTDIR $PREFIX/share $PREFIX
DOCDIR SDATAROOTDIR/sdcc/doc | $DATAROOTDIR\doc
INCLUDE_DIR_SUFFIX sdec/include include
NON_FREE_INCLUDE_DIR SUFFIX sdcc/non-free/include non-free/include
LIB_DIR _SUFFIX sdcc/lib lib
NON_FREE_LIB_DIR_SUFFIX sdcc/non-free/lib non-free/lib

12

2.2. INSTALL PATHS CHAPTER 2. INSTALLING SDCC

"configure’ also computes relative paths. This is needed for full relocatability of a binary package and to complete
search paths (see section search paths below):

Variable (computed) \ default Win32 builds

BIN2DATA_DIR ../share .
PREFIX2BIN_DIR bin bin
PREFIX2DATA_DIR | share/sdcc
Examples:
./configure
./configure —--prefix="/usr/bin” —--datarootdir="/usr/share”
./configure —--disable—-avr-port —--disable-xab5l-port

To cross compile on linux for Mingw32 (see also "sdcc/support/scripts/sdcc_mingw32’):

./configure \

CC="1586-mingw32msvc-gcc” CXX="1i586-mingw32msvc—g++” \
RANLIB="1586-mingw32msvc—-ranlib” \
STRIP="i586-mingw32msvc-strip” \
——prefix="/sdcc” \

-—datarootdir="/sdcc” \
docdir="\${datarootdir}/doc” \
include_dir_suffix="include” \
non_free_include_dir_suffix="non-free/include” \
1ib_dir suffix="1ib” \

non_free_ lib_dir suffix="non-free/lib” \
sdccconf_h_dir_separator="\\\\" \
——disable-device-1ib\

——host=1586-mingw32msvc\
—-build=unknown-unknown-linux-gnu

To cross”compile on Cygwin for Mingw32 (see also sdcc/support/scripts/sdec_cygwin_mingw32):

./configure -C \

—--prefix="/sdcc” \

——datarootdir="/sdcc” \
docdir="\${datarootdir}/doc” \
include_dir_suffix="include” \
non_free_include_dir_suffix="non-free/include” \
lib_dir suffix="1ib” \

non_free_ lib_dir_suffix="non-free/lib” \
sdccconf_h_dir_separator="\\\\" \
CC="gcc -mno-cygwin” \

CXX="g++ —-mno-cygwin”

"configure’ is quite slow on Cygwin (at least on windows before Win2000/XP). The option *--C’ turns on caching,
which gives a little bit extra speed. However if options are changed, it can be necessary to delete the config.cache
file.

2.2 Install paths

13

2.3. SEARCH PATHS

CHAPTER 2. INSTALLING SDCC

| Description | Path | Default | Win32 builds

Binary files* S$EXEC _PREFIX /usr/local/bin \sdcc\bin

Include files SDATADIR/ /usr/local/share/ \sdcc\include
SINCLUDE_DIR_SUFFIX sdcc/include

Non-free include files | $DATADIR/non-free/ /usr/local/share/ \sdcc\non-free\include
SINCLUDE_DIR SUFFIX sdcc/non-free/include

Library file** SDATADIR/ /usr/local/share/ \sdcc\lib
SLIB_DIR_SUFFIX sdcc/lib

Library file** $DATADIR/non-free/ /ust/local/share/ \sdcc\non-free\lib
$LIB_DIR_SUFFIX sdcce/non-free/lib

Documentation SDOCDIR /usr/local/share/ \sdcc\doc

sdcc/doc

*compiler, preprocessor, assembler, and linker
**the model is auto-appended by the compiler, e.g. small, large, z80, ds390 etc

The install paths can still be changed during ‘make install’ with e.g.:

make install prefix=$(HOME) /local/sdcc

Of course this doesn’t change the search paths compiled into the binaries.

Moreover the install path can be changed by defining DESTDIR:

make install DESTDIR=$ (HOME) /sdcc.rpm/

Please note that DESTDIR must have a trailing slash!

2.3 Search Paths

Some search paths or parts of them are determined by configure variables (in italics, see section above). Further
search paths are determined by environment variables during runtime.
The paths searched when running the compiler are as follows (the first catch wins):

1. Binary files (preprocessor, assembler and linker)

] Search path \ default | Win32builds |
$SDCC_HOME/$PPREFIX2BIN_DIR | $SDCC_HOME/bin | $SDCC_HOME\bin
Path of argv[0] (if available) Path of argv[0] Path of argv[0]
$PATH $PATH $PATH

2. Include files

14

2.3. SEARCH PATHS

CHAPTER 2. INSTALLING SDCC

’ # \ Search path \ default Win32 builds

1 --I dir --I dir --I dir

2 $SDCC_INCLUDE $SDCC_INCLUDE $SDCC_INCLUDE

3 $SDCC_HOME/ $SDCC_HOME/ $SDCC_HOME\include
SPREFIX2DATA_DIR/ share/sdcc/include
$INCLUDE_DIR_SUFFIX

4 path(argv[0])/ path(argv[0])/../ path(argv[O])\..\include
SBIN2DATADIR/ sdcc/include
SINCLUDE_DIR_SUFFIX

5 SDATADIR/ /usr/local/share/ (not on Win32)
$INCLUDE_DIR_SUFFIX sdec/include

6 $SDCC_HOME/ $SDCC_HOME/share/ $SDCC_HOME\non-free\include
SPREFIX2DATA_DIR/ sdcc/non-free/include
non-free/
SINCLUDE_DIR_SUFFIX

7 path(argv[0])/ path(argv[0])/../ path(argv[O])\..\non-free\include
SBIN2DATADIR/ sdcc/non-free/include
non-free/
SINCLUDE_DIR_SUFFIX

8 8DATADIR/ /usr/local/share/ (not on Win32)
non-free/ sdcc/non-free/include
SINCLUDE_DIR_SUFFIX

The option --nostdinc disables all search paths except #1 and #2.

3. Library files

With the exception of ”--L dir” the model is auto-appended by the compiler (e.g. small, large, z80, ds390 etc.).

15

2.4. BUILDING SDCC

CHAPTER 2. INSTALLING SDCC

’ # \ Search path \ default \ Win32 builds

1 --L dir --L dir --L dir

2 $SDCC_LIB/<model> $SDCC_LIB/<model> $SDCC_LIB/<model>

3 $SDCC_LIB $SDCC_LIB $SDCC_LIB

4 $SDCC_HOME/ $SDCC_HOME/ $SDCC_HOME\
SPREFIX2DATA_DIR/ share/sdcc/lib/<model> lib\<model>
SLIB_DIR_SUFFIX/
<model>

5 path(argv[0])/ path(argv[0])/../sdcc/ path(argv[O])\
$BIN2DATADIR/ lib/<model> .\lib\
SLIB_DIR_SUFFIX/ <model>
<model>

6 8DATADIR/non-free/ /usr/local/share/sdcc/ (not on Win32)

$LIB_DIR SUFFIX/
<model>

lib/<model>

7 $SDCC_HOME/
SPREFIX2DATA_DIR/
non-free/
SLIB_DIR_SUFFIX/
<model>

$SDCC_HOME/share/sdcc/
non-free/lib/<model>

$SDCC_HOME\
lib\non-free\<model>

8 path(argv[0])/
SBIN2DATADIR/
non-free/
$LIB_DIR_SUFFIX/
<model>

path(argv[0])/../sdcc/
non-free/lib/<model>

path(argv[0]\..\
lib\non-free\<model>

9 SDATADIR/non-free/
SLIB_DIR_SUFFIX/
<model>

/usr/local/share/sdcc/
non-free/lib/
<model>

(not on Win32)

The option --nostdlib disables all search paths except #1 and #2.

2.4 Building SDCC

2.4.1 Building SDCC on Linux

1. Download the source package either from the SDCC Subversion repository or from snapshot builds, it will
be named something like sdcc-sre-yyyymmdd-rrrr.tar.bz2 http://sdcc.sourceforge.net/snap.

php.

2. Bring up a command line terminal, such as xterm.

3. Unpack the file using a command like: "tar -xvjf sdcc-src-yyyymmdd-rrrr.tar.bz2”, this will create a
sub-directory called sdcc with all of the sources.

4. Change directory into the main SDCC directory, for example type: "cd sdcc".

5. Type "./configure". This configures the package for compilation on your system.

6. Type "make". All of the source packages will compile, this can take a while.

7. Type "make install" as root. This copies the binary executables, the include files, the libraries and the

documentation to the install directories. Proceed with section 2.7.

2.4.2 Building SDCC on Mac OS X

Follow the instruction for Linux.

16

http://sdcc.sourceforge.net/snap.php
http://sdcc.sourceforge.net/snap.php

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

On Mac OS X 10.2.x it was reported, that the default gcc (version 3.1 20020420 (prerelease)) fails to com-
pile SDCC. Fortunately there’s also gcc 2.9.x installed, which works fine. This compiler can be selected by running
"configure’ with:

./configure CC=gcc2 CXX=g++2
Universal (ppc and 1386) binaries can be produced on Mac OS X 10.4.x with Xcode. Run ’configure’ with:

./configure \

LDFLAGS="-W1, -syslibroot, /Developer/SDKs/Mac0SX10.4u.sdk —-arch 1386 -arch ppc" \

CXXFLAGS = "-02 -isysroot /Developer/SDKs/MacOSX10.4u.sdk —-arch 1386 —arch ppc" \

CFLAGS = "-02 -isysroot /Developer/SDKs/MacOSX10.4u.sdk -arch 1386 -arch ppc"
2.4.3 Cross compiling SDCC on Linux for Windows

With the Mingw32 gcc cross compiler it’s easy to compile SDCC for Win32. See section *Configure Options’.

2.4.4 Building SDCC using Cygwin and Mingw32

For building and installing a Cygwin executable follow the instructions for Linux.

On Cygwin a “native” Win32-binary can be built, which will not need the Cygwin-DLL. For the necessary
"configure’ options see section *configure options’ or the script *sdcc/support/scripts/sdec_cygwin_mingw32’.

In order to install Cygwin on Windows download setup.exe from www.cygwin.com http://www.cygwin.
com/. Run it, set the “default text file type” to “unix” and download/install at least the following packages. Some
packages are selected by default, others will be automatically selected because of dependencies with the manually
selected packages. Never deselect these packages!

* flex

* bison

e gcc ; version 3.x is fine, no need to use the old 2.9x

e binutils ; selected with gcc

* make

* libboost-dev

e rxvt ; a nice console, which makes life much easier under windoze (see below)

* man ; not really needed for building SDCC, but you’ll miss it sooner or later

¢ less ; not really needed for building SDCC, but you’ll miss it sooner or later

* svn ; only if you use Subversion access
If you want to develop something you’ll need:

* python ; for the regression tests

* gdb ; the gnu debugger, together with the nice GUI "insight”

* openssh ; to access the CF or commit changes

* autoconf and autoconf-devel ; if you want to fight with *configure’, don’t use autoconf-stable!
rxvt is a nice console with history. Replace in your cygwin.bat the line

bash --login -i

with (one line):

17

http://www.cygwin.com/
http://www.cygwin.com/

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

rxvt —-sl 1000 -fn "Lucida Console-12" -sr -cr red
-bg black -fg white —-geometry 100x65 -e bash --login

Text selected with the mouse is automatically copied to the clipboard, pasting works with shift-insert.

The other good tip is to make sure you have no //c/-style paths anywhere, use /cygdrive/c/ instead. Using //
invokes a network lookup which is very slow. If you think “cygdrive” is too long, you can change it with e.g.

mount —-s —-u —-c /mnt

SDCC sources use the unix line ending LF. Life is much easier, if you store the source tree on a drive which is
mounted in binary mode. And use an editor which can handle LF-only line endings. Make sure not to commit files
with windows line endings. The tabulator spacing used in the project is 8. Although a tabulator spacing of 8 is a
sensible choice for programmers (it’s a power of 2 and allows to display 8/16 bit signed variables without loosing
columns) the plan is to move towards using only spaces in the source.

2.4.5 Building SDCC Using Microsoft Visual C++ 2010 (MSVC)

Download the source package either from the SDCC Subversion repository or from the snapshot builds
http://sdcc.sourceforge.net/snap.php, it will be named something like sdcc-src-yyyymmdd-
rrrr.tar.bz2. SDCC is distributed with all the project, solution and other files you need to build it using Visual C++
2010 (except for ucSim). The solution name is ’sdcc.sln’. Please note that as it is now, all the executables are
created in a folder called sdcc\bin_vc. Once built you need to copy the executables from sdcc\bin_ve to sdec\bin
before running SDCC.

Apart from the SDCC sources you also need to have the BOOST libraries installed for MSVC. Get it here
http://www.boost.org/

In order to build SDCC with MSVC you need win32 executables of bison.exe, flex.exe, and gawk.exe. One
good place to get them is here http://unxutils.sourceforge.net

If UnxUtils didn’t work well, msys (http://www.mingw.org/wiki/msys) or msys2(https:
//msys2.github.i0) can be an alternative.

Download the file UnxUtils.zip. Now you have to install the utilities and setup MSVC so it can locate the
required programs. Here there are two alternatives (choose one!):

1. The easy way:

a) Extract UnxUtils.zip to your C:\ hard disk PRESERVING the original paths, otherwise bison won’t work.
(If you are using WinZip make certain that *Use folder names’ is selected)

b) Add ’C:\user\local\wbin’ to VC++ Directories / Executable Directories.

(As a side effect, you get a bunch of Unix utilities that could be useful, such as diff and patch.)

2. A more compact way:
This one avoids extracting a bunch of files you may not use, but requires some extra work:

a) Create a directory were to put the tools needed, or use a directory already present. Say for exam-
ple *C:\util’.

b) Extract ’bison.exe’, "bison.hairy’, ’bison.simple’, *flex.exe’, and gawk.exe to such directory WITHOUT
preserving the original paths. (If you are using WinZip make certain that *Use folder names’ is not selected)

¢) Rename bison.exe to ’_bison.exe’.

18

http://sdcc.sourceforge.net/snap.php
http://www.boost.org/
http://unxutils.sourceforge.net
http://www.mingw.org/wiki/msys
https://msys2.github.io
https://msys2.github.io

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

d) Create a batch file "bison.bat’ in *C:\util\’ and add these lines:
set BISON_SIMPLE=C:\util\bison.simple

set BISON_HAIRY=C:\util\bison.hairy

_bison %1 %2 %3 %4 %5 %6 %7 %8 %9

Steps ’c’ and ’d’ are needed because bison requires by default that the files ’bison.simple’ and ’bi-
son.hairy’ reside in some weird Unix directory, ’/ust/local/share/’ I think. So it is necessary to tell bison
where those files are located if they are not in such directory. That is the function of the environment
variables BISON_SIMPLE and BISON_HAIRY.

e) Add ’C:\util’ to VC++ Directories / Executable Directories. Note that you can use any other path
instead of *C:\util’, even the path where the Visual C++ tools are, probably: *C:\Program Files\Microsoft
Visual Studio\Common\Tools’. So you don’t have to execute step e’ :)

That is it. Open ’sdcc.sln’ in Visual Studio, click *build all’, when it finishes copy the executables from sdcc\bin_vc
to sdec\bin, and you can compile using SDCC.

2.4.6 Windows Install Using a ZIP Package

1. Download the binary zip package from http://sdcc.sf.net/snap.php and unpack it using your
favorite unpacking tool (gunzip, WinZip, etc). This should unpack to a group of sub-directories. An example
directory structure after unpacking the mingw32 package is: C:\sdcc\bin for the executables, C:\sdcc\include
and C:\sdcc\lib for the include and libraries.

2. Adjust your environment variable PATH to include the location of the bin directory or start sdcc using the
full path.

2.4.7 Windows Install Using the Setup Program

Download the setup program sdcc-x.y.z-setup.exe for an official release from
http://sourceforge.net/projects/sdcc/files/ orasetup program for one of the snapshots sdcc-
yyyymmdd-xxxx-setup.exe from http://sdcc.sourceforge.net/snap.php and execute it. A windows
typical installer will guide you through the installation process.

2.4.8 VPATH feature

SDCC supports the VPATH feature provided by configure and make. It allows to separate the source and build
trees. Here’s an example:

cd ~ # cd SHOME

tar -xjf sdcc-src-yyyymmdd-rrrr.tar.bz2 # extract source to directory
sdcc

mkdir sdcc.build # put output in sdcc.build

cd sdcc.build

../sdcc/configure # configure is doing all the
magic!

make

That’s it! configure will create the directory tree will all the necessary Makefiles in ~/sdcc.build. It automagically
computes the variables srcdir, top_srcdir and top_buildir for each directory. After running make the generated files
will be in ~/sdcc.build, while the source files stay in ~/sdcc.

This is not only usefull for building different binaries, e.g. when cross compiling. It also gives you a much better
overview in the source tree when all the generated files are not scattered between the source files. And the best
thing is: if you want to change a file you can leave the original file untouched in the source directory. Simply copy
it to the build directory, edit it, enter ‘make clean’, ‘rm Makefile.dep’ and ‘make’. make will do the rest for you!

19

http://sdcc.sf.net/snap.php
http://sourceforge.net/projects/sdcc/files/
http://sdcc.sourceforge.net/snap.php

2.5. BUILDING THE DOCUMENTATION CHAPTER 2. INSTALLING SDCC

2.5 Building the Documentation

Add --enable-doc to the configure arguments to build the documentation together with all the other stuff. You will
need several tools (LyX, IKTEX, ISIEX2HTML, pdflatex, dvipdf, dvips and makeindex) to get the job done. Another
possibility is to change to the doc directory and to type “make” there. You’re invited to make changes and additions
to this manual (sdcc/doc/sdeccman.lyx). Using LyX http: //www. lyx.org as editor is straightforward. Prebuilt
documentation is available from http://sdcc.sourceforge.net/snap.php.

2.6 Reading the Documentation

Currently reading the document in pdf format is recommended, as for unknown reason the hyperlinks are working
there whereas in the html version they are not'.

You’ll find the pdf version at http://sdcc.sourceforge.net/doc/sdccman. pdf.

This documentation is in some aspects different from a commercial documentation:

e Tt tries to document SDCC for several processor architectures in one document (commercially these probably
would be separate documents/products). This document currently matches SDCC for mes51 and DS390 best
and does give too few information about f.e. Z80, PIC14, PIC16 and HCOS.

e There are many references pointing away from this documentation. Don’t let this distract you. If there
f.e. was a reference like http://www.opencores.org together with a statement “some proces-
sors which are targetted by SDCC can be implemented in a field programmable gate array” or http:
//sourceforge.net/projects/fpgac/ “have you ever heard of an open source compiler that com-
piles a subset of C for an FPGA?” we expect you to have a quick look there and come back. If you read this
you are on the right track.

* Some sections attribute more space to problems, restrictions and warnings than to the solution.
» The installation section and the section about the debugger is intimidating.

¢ There are still lots of typos and there are more different writing styles than pictures.

2.7 Testing the SDCC Compiler

The first thing you should do after installing your SDCC compiler is to see if it runs. Type "sdcc --version" at
the prompt, and the program should run and output its version like:

SDCC : mcs51/2z80/avr/ds390/picl6/picld/ds400/hc08 2.5.6 #4169 (May 8 2006)
(UNIX)

If it doesn’t run, or gives a message about not finding sdcc program, then you need to check over your instal-
lation. Make sure that the sdcc bin directory is in your executable search path defined by the PATH environment
setting (see section 2.8 Install trouble-shooting for suggestions). Make sure that the sdcc program is in the bin
folder, if not perhaps something did not install correctly.

SDCC is commonly installed as described in section “Install and search paths”.

Make sure the compiler works on a very simple example. Type in the following test.c program using your
favorite ASCII editor:

char test;

void main (void) {
test=0;
}

Compile this using the following command: "sdcc -c test.c”. If all goes well, the compiler will generate a
test.asm and test.rel file. Congratulations, you’ve just compiled your first program with SDCC. We used the -c

UIf you should know why please drop us a note

20

http://www.lyx.org
http://sdcc.sourceforge.net/snap.php
http://sdcc.sourceforge.net/doc/sdccman.pdf
http://www.opencores.org
http://sourceforge.net/projects/fpgac/
http://sourceforge.net/projects/fpgac/

2.8. INSTALL TROUBLE-SHOOTING CHAPTER 2. INSTALLING SDCC

option to tell SDCC not to link the generated code, just to keep things simple for this step.

The next step is to try it with the linker. Type in "sdcc test.c". If all goes well the compiler will link
with the libraries and produce a test.ihx output file. If this step fails (no test.ihx, and the linker generates warnings),
then the problem is most likely that SDCC cannot find the /usr/local/share/sdcc/lib directory (see section 2.8 Install
trouble-shooting for suggestions).

The final test is to ensure SDCC can use the standard header files and libraries. Edit test.c and change it to
the following:

#include <string.h>
char strl1[10];

void main (void) {
strcpy (strl, "testing");
}

Compile this by typing "sdcc test.c”. This should generate a test.ihx output file, and it should give no warnings
such as not finding the string.h file. If it cannot find the string.h file, then the problem is that SDCC cannot find
the /usr/local/share/sdcc/include directory (see the section 2.8 Install trouble-shooting section for suggestions). Use
option --print-search-dirs to find exactly where SDCC is looking for the include and lib files.

2.8 Install Trouble-shooting
2.8.1 If SDCC does not build correctly

A thing to try is starting from scratch by unpacking the .tgz source package again in an empty directory. Configure
it like:

.J/configure 2>&1 | tee configure.log
and build it like:
make 2>&1 | tee make.log

If anything goes wrong, you can review the log files to locate the problem. Or a relevant part of this can
be attached to an email that could be helpful when requesting help from the mailing list.

2.8.2 What the ”./configure” does

The ”./configure” command is a script that analyzes your system and performs some configuration to ensure the
source package compiles on your system. It will take a few minutes to run, and will compile a few tests to determine
what compiler features are installed.

2.8.3 What the ’make” does

This runs the GNU make tool, which automatically compiles all the source packages into the final installed binary
executables.

2.8.4 What the ’make install” command does.

This will install the compiler, other executables libraries and include files into the appropriate directories. See
sections 2.2, 2.3 about install and search paths.
On most systems you will need super-user privileges to do this.

21

2.9. COMPONENTS OF SDCC

2.9

SDCC is not just a compiler, but a collection of tools by various developers. These include linkers, assemblers,
simulators and other components. Here is a summary of some of the components. Note that the included simulator
and assembler have separate documentation which you can find in the source package in their respective directories.
As SDCC grows to include support for other processors, other packages from various developers are included and

Components of SDCC

may have their own sets of documentation.

You might want to look at the files which are installed in <installdir>. At the time of this writing, we find

the following programs for gcc-builds:

In <installdir>/bin:

L]

L]

sdcc - The compiler.

sdepp - The C preprocessor.

sdas8051 - The assembler for 8051 type processors.
sdas390 - The assembler for DS80C390 processor.
sdasz80, sdasgb - The Z80 and GameBoy Z80 assemblers.
sdas6808 - The 6808 assembler.

sdasstm8 - The STMS8 assembler.

sdld -The linker for 8051 and STMS type processors.
sd1dz80, sdldgb - The Z80 and GameBoy Z80 linkers.
sd1ld6808 - The 6808 linker.

851 - The ucSim 8051 simulator.

$z80 - The ucSim Z80 simulator.

shc08 - The ucSim 6808 simulator.

sstm8 - The ucSim STM8 simulator.

sdcdb - The source debugger.

sdcclib - A tool for creating sdcc libraries (deprecated)

sdar, sdranlib, sdnm, sdobjcopy - The sdcc archive managing and indexing utilites.

packihx - A tool to pack (compress) Intel hex files.

makebin - A tool to convert Intel Hex file to a binary and GameBoy binary image file format.

In <installdir>/share/sdcc/include

the include files

In <installdir>/share/sdcc/non-free/include

the non-free include files

In <installdir>/share/sdcc/lib

the src and target subdirectories with the precompiled relocatables.

In <installdir>/share/sdcc/non-free/lib

the src and target subdirectories with the non-free precompiled relocatables.

In <installdir>/share/sdcc/doc

L]

the documentation

22

CHAPTER 2. INSTALLING SDCC

2.9. COMPONENTS OF SDCC CHAPTER 2. INSTALLING SDCC

2.9.1 sdcc - The Compiler

This is the actual compiler, it in turn uses the c-preprocessor and invokes the assembler and linkage editor.

2.9.2 sdcpp - The C-Preprocessor

The preprocessor is a modified version of the GNU cpp preprocessor http://gcc.gnu.org/. The C prepro-
cessor is used to pull in #include sources, process #ifdef statements, #defines and so on.

2.9.3 sdas, sdld - The Assemblers and Linkage Editors

This is a set of retargettable assemblers and linkage editors, which was developed by Alan Baldwin. John Hartman
created the version for 8051, and I (Sandeep) have made some enhancements and bug fixes for it to work properly
with SDCC.

SDCC used an about 1998 branch of asxxxx version 2.0 which unfortunately is not compatible with the more
advanced (f.e. macros, more targets) ASxxxx Cross Assemblers nowadays available from Alan Baldwin http:
//shop—pdp.kent.edu/. In 2009 Alan made his ASxxxx Cross Assemblers version 5.0 available under the
GPL licence (GPLv3 or later), so a reunion is now a work in progress. Thanks Alan!

2.9.4 s51, sz80, shc08, sstm8 - The Simulators

s51, sz80 shcO8 and sstm8 are free open source simulators developed by Daniel Drotos. The simulators are
built as part of the build process. For more information visit Daniel’s web site at: http://mazsola.iit.
uni-miskolc.hu/~drdani/embedded/s51. It currently supports the core mes51, the Dallas DS80C390,
the Phillips XA51 family, the Z80, 6808 and the STMS.

2.9.5 sdcdb - Source Level Debugger

SDCDB is the companion source level debugger. More about SDCDB in section 5.1. The current version of the
debugger uses Daniel’s Simulator S51, but can be easily changed to use other simulators.

23

http://gcc.gnu.org/
http://shop-pdp.kent.edu/
http://shop-pdp.kent.edu/
http://mazsola.iit.uni-miskolc.hu/~drdani/embedded/s51
http://mazsola.iit.uni-miskolc.hu/~drdani/embedded/s51

Chapter 3

Using SDCC

3.1 Standard-Compliance

SDCC aims to be a conforming freestanding implementation of the C programming language.

3.1.1 ISO C90 and ANSI C89

Use --std-c89 to compile in this mode.
The latest publicly available version of the standard ISO/IEC 9899 - Programming languages - C should be
available at: http://www.open—-std.org/jtcl/sc22/wgld/www/standards.html#9899.

Deviations from standard compliance:

* structures and unions cannot be assigned values directly, cannot be passed as function parameters or assigned
to each other and cannot be a return value from a function, e.g.:

struct s { ... I
struct s sl, s2;
foo ()
{
sl s2 ; /+ 1s invalid in SDCC although allowed in ANSI «*/

}
struct s fool (structs parms) /x invalid in SDCC although allowed
in ANSI «/

struct s rets;

return rets; /% 1s invalid in SDCC although allowed in ANSI
*/
}

* initialization of structure arrays must be fully braced.

struct s { char x } al[]l = {1, 2}; /* invalid in SDCC =%/
struct s { char x } al] {{1}, {2}}; /* OK =/

* ’double’ precision floating point not supported. Instead a warning is emitted, and float is used instead. long
double is not supported.

* Old K&R style function declarations are NOT allowed.

24

http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899

3.2. COMPILING CHAPTER 3. USING SDCC

foo(i,J) /* this old style of function declarations =/
int 1i,3J; /* is valid in ANSI but not valid in SDCC «/
{

}

Some features of this standard are not supported in some ports:

* Functions are not reentrant unless explicitly declared as such or —stack-auto is specified in the mcs51, ds390,
hc08 and s08 ports.

3.1.2 ISO C95

Use --std-c95 to compile in this mode.
Except for the issues mentioned in the section above, this standard is supported.

3.1.3 ISO C99

Use --std-c99 to compile in this mode.
In addition to what is mentioned in the section above, the following features of this standard are not supported
by sdcc:

 Declarations in places other than those where ISO C90 allows them, e.g.:

for (int i=0; 1<10; i++) /* 1s invalid in SDCC although allowed
in C99 «*/

e Compound literals.
e Variable-length arrays.
Some features of this standard are not supported in some ports:

 Support for _Bool / bool is incomplete (no pointers to bool, or bool inside a struct) in the mcs51 and ds390
ports.

e There is no support for data types long long, unsigned long long, int_fast64_t, int_least64_t, int64_t,
uint_fast64_t, uint_least64_t, uint64_t in the mcs51, ds390, ds400, pic14 and pic16 ports.

3.14 ISOC11

Use --std-c11 to compile in this mode.
Except for the issues mentioned in the section above, this standard is supported.

3.1.5 Embedded C

SDCC supports named address spaces. The support for fixed-point math in sdcc is inconsistent with the standard.
Other parts of the standard are not supported.

3.2 Compiling

3.2.1 Single Source File Projects

For single source file 8051 projects the process is very simple. Compile your programs with the following command
"sdcc sourcefile.c”. This will compile, assemble and link your source file. Output files are as follows:

* sourcefile.asm - Assembler source file created by the compiler

* sourcefile.Ist - Assembler listing file created by the Assembler

25

3.2. COMPILING CHAPTER 3. USING SDCC

* sourcefile.rst - Assembler listing file updated with linkedit information, created by linkage editor
* sourcefile.sym - symbol listing for the sourcefile, created by the assembler

* sourcefile.rel - Object file created by the assembler, input to Linkage editor

* sourcefile.map - The memory map for the load module, created by the Linker

¢ sourcefile.mem - A file with a summary of the memory usage

* sourcefile.ihx - The load module in Intel hex format (you can select the Motorola S19 format with --out-fmt-
s19. If you need another format you might want to use objdump or srecord - see also section 3.2.2). Both
formats are documented in the documentation of srecord

* sourcefile.adb - An intermediate file containing debug information needed to create the .cdb file (with --
debug)

* sourcefile.cdb - An optional file (with --debug) containing debug information. The format is documented in
cdbfileformat.pdf

* sourcefile.omf - An optional AOMF or AOMF51 file containing debug information (generated with option
--debug). The (Intel) absolute object module format is a subformat of the OMF51 format and is commonly
used by third party tools (debuggers, simulators, emulators).

* sourcefile.dump* - Dump file to debug the compiler it self (generated with option --dumpall) (see section

3.3.11 and section 9.1 ”Anatomy of the compiler”).

3.2.2 Postprocessing the Intel Hex file

In most cases this won’t be needed but the Intel Hex file which is generated by SDCC might include lines of
varying length and the addresses within the file are not guaranteed to be strictly ascending. If your toolchain or a
bootloader does not like this you can use the tool packihx which is part of the SDCC distribution:

packihx sourcefile.ihx >sourcefile.hex

The separately available srecord package additionally allows to set undefined locations to a predefined value, to
insert checksums of various flavours (crc, add, xor) and to perform other manipulations (convert, split, crop, offset,

)
srec_cat sourcefile.ihx -intel -o sourcefile.hex -intel
An example for a more complex command line! could look like:

srec_cat sourcefile.ihx -intel -fill 0x12 0x0000 Oxfffe -little-endian-checksum-negative Oxfffe 0x02 0x02 -o source-
file.hex -intel

The srecord package is available at http://sourceforge.net/projects/srecord/.

3.2.3 Projects with Multiple Source Files

SDCC can compile only ONE file at a time. Let us for example assume that you have a project containing the
following files:

fool.c (contains some functions)
foo2.c (contains some more functions)
foomain.c (contains more functions and the function main)

Ithe command backfills unused memory with 0x12 and the overall 16 bit sum of the complete 64 kByte block is zero. If the program counter
on an mcs51 runs wild the backfill pattern 0x12 will be interpreted as an 1call to address 0x1212 (where an emergency routine could sit).

26

http://sourceforge.net/projects/srecord/

3.2. COMPILING CHAPTER 3. USING SDCC

The first two files will need to be compiled separately with the commands:

sdcc -c fool.c
sdcc -¢c foo2.c

Then compile the source file containing the main() function and link the files together with the following command:
sdcc foomain.c foo1.rel foo2.rel
Alternatively, foomain.c can be separately compiled as well:

sdcc -c foomain.c
sdcc foomain.rel foo1.rel foo2.rel

The file containing the main() function MUST be the FIRST file specified in the command line, since the
linkage editor processes file in the order they are presented to it. The linker is invoked from SDCC using a script
file with extension .Ink. You can view this file to troubleshoot linking problems such as those arising from missing
libraries.

3.2.4 Projects with Additional Libraries

Some reusable routines may be compiled into a library, see the documentation for the assembler and linkage
editor (which are in <installdir>/share/sdcc/doc) for how to create a ./ib library file. Libraries created in this
manner can be included in the command line. Make sure you include the -L <library-path> option to tell the
linker where to look for these files if they are not in the current directory. Here is an example, assuming you have
the source file foomain.c and a library foolib.lib in the directory mylib (if that is not the same as your current project):

sdcc foomain.c foolib.lib -L mylib
Note here that mylib must be an absolute path name.
The most efficient way to use libraries is to keep separate modules in separate source files. The lib file

now should name all the modules.rel files. For an example see the standard library file libsdcc.lib in the directory
<installdir>/share/lib/small.

3.2.5 Using sdar to Create and Manage Libraries

Support for sdar format libraries was introduced in sdcc 2.9.0.
Both the GNU and BSD ar format variants are supported by sdld linkers.
To create a library containing sdas object files, you should use the following sequence:

sdar -rc <library names.lib <list of .rel files>

3.2.6 Using sdcclib to Create and Manage Libraries (deprecated)’

Alternatively, instead of having a .rel file for each entry on the library file as described in the preceding section,
sdcclib can be used to embed all the modules belonging to such library in the library file itself. This results in a
larger library file, but it greatly reduces the number of disk files accessed by the linker. Additionally, the packed
library file contains an index of all include modules and symbols that significantly speeds up the linking process.
To display a list of options supported by sdcclib type:

sdcclib -?

2With sdcc version 3.2.0 the sdcclib utility is deprecated. Sdar utility should be used to create sdcc object file archives. Sdcclib utility will
become obsolete in one of next sdcc releases and will be removed from sdcc packages.

27

3.2. COMPILING CHAPTER 3. USING SDCC

To create a new library file, start by compiling all the required modules. For example:

sdcc -c _divsint.c
sdcc -¢ _divuint.c
sdcc -c _modsint.c
sdcc -¢c _moduint.c
sdcc -¢c _mulint.c

This will create files _divsint.rel, _divuint.rel, _modsint.rel, _moduint.rel, and _mulint.rel. The next step is to
add the .rel files to the library file:

sdcclib libint.lib _divsint.rel
sdcclib libint.lib _divuint.rel
sdcclib libint.lib _modsint.rel
sdcclib libint.lib _moduint.rel
sdcclib libint.lib _mulint.rel

Or, if you preffer:
sdcclib libint.lib _divsint.rel _divuint.rel _modsint.rel _moduint.rel _mulint.rel

If the file already exists in the library, it will be replaced. If a list of .rel files is available, you can tell sdcclib to
add those files to a library. For example, if the file *'myliblist.txt” contains

_divsint.rel
_divuint.rel
_modsint.rel
_moduint.rel
_mulint.rel

Use
sdcclib -l libint.lib myliblist.txt

Additionally, you can instruct sdcclib to compile the files before adding them to the library. This is achieved
using the environment variables SDCCLIB_CC and/or SDCCLIB_AS. For example:

set SDCCLIB_CC=sdcc -c
sdcclib -I libint.lib myliblist.txt

To see what modules and symbols are included in the library, options -s and -m are available. For example:

sdcclib -s libint.lib
_divsint.rel:
__divsint_a_1_1
_ divsint_PARM_2
__divsint
_divuint.rel:
__divuint_a_1_1
__divuint_PARM 2
_ divuint_reste_1_1
_ divuint_count_1_1
_ divuint
_modsint.rel:
__modsint_a_1_1
__modsint_PARM_2

28

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

__modsint
_moduint.rel:

_ _moduint_a_1_1

_ _moduint_PARM_2

__moduint_count_1_1

__moduint
_mulint.rel:

_ _mulint_PARM_2

__mulint

If the source files are compiled using --debug, the corresponding debug information file .adb will be included
in the library file as well. The library files created with sdcclib are plain text files, so they can be viewed with a text
editor. It is not recommended to modify a library file created with sdcclib using a text editor, as there are file index
numbers located across the file used by the linker to quickly locate the required module to link. Once a .rel file (as
well as a .adb file) is added to a library using sdcclib, it can be safely deleted, since all the information required
for linking is embedded in the library file itself. Library files created using sdcclib are used as described in the
preceding sections.

3.3 Command Line Options

3.3.1 Processor Selection Options

-mmcs5S1
-mds390
-mds400
-mhc08
-ms08
-mz80
-mz180
-mr2k
-mr3ka
-mgbz80
-mstm8

-mpicl4

-mpicl6

Generate code for the Intel MCS51 family of processors. This is the default processor target.
Generate code for the Dallas DS80C390 processor.

Generate code for the Dallas DS80C400 processor.

Generate code for the Freescale/Motorola HC08 (aka 68HCO08) family of processors.
Generate code for the Freescale/Motorola S08 (aka 68HCS08, HCS08, CS08) family of processors.
Generate code for the Zilog Z80 family of processors.

Generate code for the Zilog Z180 family of processors.

Generate code for the Rabbit 2000 / Rabbit 3000 family of processors.

Generate code for the Rabbit 3000A family of processors.

Generate code for the LR35902 GameBoy Z80 processor.

Generate code for the STMicroelectronics STMS8 family of processors.

Generate code for the Microchip PIC 14-bit processors (p16f84 and variants. In development, not
complete).

Generate code for the Microchip PIC 16-bit processors (p18f452 and variants. In development, not
complete).

SDCC inspects the program name it was called with so the processor family can also be selected by renaming the
sdcc binary (to f.e. z80-sdcc) or by calling SDCC from a suitable link. Option -m has higher priority than setting
from program name.

29

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

3.3.2 Preprocessor Options

SDCC uses sdcpp, an adapted version of the GNU Compiler Collection preprocessor cpp (gcc http://gcc.
gnu.org/). If you need more dedicated options than those listed below please refer to the GCC CPP Manual at
http://www.gnu.org/software/gcc/onlinedocs/.

-I<path> The additional location where the preprocessor will look for <..h> or “..h” files.
-D<macro[=value]> Command line definition of macros. Passed to the preprocessor.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies of each object file.
For each source file, the preprocessor outputs one make-rule whose target is the object file name for
that source file and whose dependencies are all the files ‘#include’d in it. This rule may be a single line
or may be continued with ‘\’-newline if it is long. The list of rules is printed on standard output instead
of the preprocessed C program. ‘-M’ implies ‘-E’.

-C Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

-MM Like ‘-M’ but the output mentions only the user header files included with ‘#include “file"’. System
header files included with ‘#include <file>’ are omitted.

-Aquestion(answer) Assert the answer answer for question, in case it is tested with a preprocessor conditional
such as ‘#if #question(answer)’. ‘-A-’ disables the standard assertions that normally describe the target
machine.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’ options, but before any ‘-include’ and
‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at the end of
preprocessing. Used with the ‘-E’ option.

-dD Tell the preprocessor to pass all macro definitions into the output, in their proper sequence in the rest
of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are omitted. Only ‘#define name’ is included
in the output.

-pedantic-parse-number Pedantic parse numbers so that situations like Oxfe-LO_B(3) are parsed properly and the
macro LO_B(3) gets expanded. See also #pragma pedantic_parse_number on page 60 in section3.17
Note: this functionality is not in conformance with C99 standard!

-Wp preprocessorOption[,preprocessorOption]... Pass the preprocessorOption to the preprocessor sdcpp.

3.3.3 Optimization Options

--nogese Will not do global common subexpression elimination, this option may be used when the compiler
creates undesirably large stack/data spaces to store compiler temporaries (spill locations, sloc). A
warning message will be generated when this happens and the compiler will indicate the number of
extra bytes it allocated. It is recommended that this option NOT be used, #pragma nogcse can be used
to turn off global subexpression elimination for a given function only.

--noinvariant Will not do loop invariant optimizations, this may be turned off for reasons explained for the previ-
ous option. For more details of loop optimizations performed see Loop Invariants in section 8.1.4. It
is recommended that this option NOT be used, #pragma noinvariant can be used to turn off invariant
optimizations for a given function only.

--noinduction Will not do loop induction optimizations, see section strength reduction for more details. It is
recommended that this option is NOT used, #pragma noinduction can be used to turn off induction
optimizations for a given function only.

--nojtbound Will not generate boundary condition check when switch statements are implemented using jump-
tables. See section 8.1.7 Switch Statements for more details. It is recommended that this option is
NOT used, #pragma nojtbound can be used to turn off boundary checking for jump tables for a given
function only.

30

http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.gnu.org/software/gcc/onlinedocs/

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--noloopreverse Will not do loop reversal optimization.
--nolabelopt Will not optimize labels (makes the dumpfiles more readable).

--no-xinit-opt Will not memcpy initialized data from code space into xdata space. This saves a few bytes in code
space if you don’t have initialized data.

--nooverlay The compiler will not overlay parameters and local variables of any function, see section Parameters
and local variables for more details.

--no-peep Disable peep-hole optimization with built-in rules.

--peep-file <filename> This option can be used to use additional rules to be used by the peep hole optimizer. See
section 8.1.16 Peep Hole optimizations for details on how to write these rules.

--peep-asm Pass the inline assembler code through the peep hole optimizer. This can cause unexpected changes
to inline assembler code, please go through the peephole optimizer rules defined in the source file tree
"<target>/peeph.def’ before using this option.

--peep-return Let the peep hole optimizer do return optimizations. This is the default without --debug.
--no-peep-return Do not let the peep hole optimizer do return optimizations. This is the default with --debug.

--opt-code-speed The compiler will optimize code generation towards fast code, possibly at the expense of code
size.

--opt-code-size The compiler will optimize code generation towards compact code, possibly at the expense of code
speed.

--fomit-frame-pointer Frame pointer will be omitted when the function uses no local variables. On the z80-related
ports this option will result in the frame pointer always being omitted.

--max-allocs-per-node Setting this to a high value will result in increased compilation time and more optimized
code being generated. Setting it to lower values speed up compilation, but does not optimize as much.
The default value is 3000. This option currently only affects the hc08, s08, z80, z180, r2k, r3ka and
gbz80 ports.

--nolospre Disable lospre. lospre is an advanced redundancy elimination technique, essentially an improved vari-
ant of global subexpression elimination.

--allow-unsafe-read Allow optimizations to generate unsafe reads. This will enable additional optimizations, but
can result in spurious reads from undefined memory addresses, which can be harmful if the target
system uses certain ways of doing memory-mapped I/O.

3.3.4 Other Options
-v --version displays the sdcc version.
-c --compile-only will compile and assemble the source, but will not call the linkage editor.

--clmode reads the preprocessed source from standard input and compiles it. The file name for the assembler
output must be specified using the -o option.

-E Run only the C preprocessor. Preprocess all the C source files specified and output the results to
standard output.

-o <path/file> The output path where everything will be placed or the file name used for all generated output
files. If the parameter is a path, it must have a trailing slash (or backslash for the Windows bina-
ries) to be recognized as a path. Note for Windows users: if the path contains spaces, it should be
surrounded by quotes. The trailing backslash should be doubled in order to prevent escaping the fi-
nal quote, for example: -o "F:\Projects\test3\output I\” or put after the final quote, for example: -o
"F:\Projects\test3\output 1”\. The path using slashes for directory delimiters can be used too, for
example: -o "F:/Projects/test3/output 1/”.

31

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--stack-auto All functions in the source file will be compiled as reentrant, i.e. the parameters and local variables

will be allocated on the stack. See section 3.6 Parameters and Local Variables for more details. If
this option is used all source files in the project should be compiled with this option. It automatically
implies --int-long-reent and --float-reent.

--callee-saves functionl[,function2][,function3].... The compiler by default uses a caller saves convention for

register saving across function calls, however this can cause unnecessary register pushing and popping
when calling small functions from larger functions. This option can be used to switch the register
saving convention for the function names specified. The compiler will not save registers when calling
these functions, no extra code will be generated at the entry and exit (function prologue and epilogue)
for these functions to save and restore the registers used by these functions, this can SUBSTANTIALLY
reduce code and improve run time performance of the generated code. In the future the compiler (with
inter procedural analysis) will be able to determine the appropriate scheme to use for each function
call. DO NOT use this option for built-in functions such as _mulint..., if this option is used for a library
function the appropriate library function needs to be recompiled with the same option. If the project
consists of multiple source files then all the source file should be compiled with the same --callee-saves
option string. Also see #pragma callee_saves on page 59.

--all-callee-saves Function of --callee-saves will be applied to all functions by default.

--debug

-S

When this option is used the compiler will generate debug information. The debug information col-
lected in a file with .cdb extension can be used with the SDCDB. For more information see documenta-
tion for SDCDB. Another file with a .omf extension contains debug information in AOMF or AOMF51
format which is commonly used by third party tools.

Stop after the stage of compilation proper; do not assemble. The output is an assembler code file for
the input file specified.

--int-long-reent Integer (16 bit) and long (32 bit) libraries have been compiled as reentrant. Note by default these

libraries are compiled as non-reentrant. See section Installation for more details.

--cyclomatic This option will cause the compiler to generate an information message for each function in the

source file. The message contains some important information about the function. The number of
edges and nodes the compiler detected in the control flow graph of the function, and most importantly
the cyclomatic complexity see section on Cyclomatic Complexity for more details.

--float-reent Floating point library is compiled as reentrant. See section Installation for more details.

--fsigned-char By default char is unsigned. To set the signess for characters to signed, use the option --fsigned-

--nostdinc

--nostdlib
--verbose

-V

char. If this option is set and no signedness keyword (unsigned/signed) is given, a char will be unsigned.
All other types are unaffected.

This will prevent the compiler from passing on the default include path to the preprocessor.
This will prevent the compiler from passing on the default library path to the linker.
Shows the various actions the compiler is performing.

Shows the actual commands the compiler is executing.

--no-c-code-in-asm Hides your ugly and inefficient c-code from the asm file, so you can always blame the compiler

2

--no-peep-comments Don’t include peep-hole comments in the generated asm files even if --fverbose-asm option

is specified.

--i-code-in-asm Include i-codes in the asm file. Sounds like noise but is helpful for debugging the compiler itself.

--less-pedantic Disable some of the more pedantic warnings. For more details, see the less_pedantic pragma on

page 59.

--disable-warning <nnnn> Disable specific warning with number <nnnn>.

32

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--Werror Treat all warnings as errors.
--print-search-dirs Display the directories in the compiler’s search path

--ve Display errors and warnings using MSVC style, so you can use SDCC with the visual studio IDE.
With SDCC both offering a GCC-like (the default) and a MSVC-like output style, integration into
most programming editors should be straightforward.

--use-stdout Send errors and warnings to stdout instead of stderr.

-Wa asmOption[,asmOption]... Pass the asmOption to the assembler. See file sdcc/sdas/doc/asmlnk.txt for as-
sembler options.cd

--std-sdcc89 Generally follow the ANSI C89 / ISO C90 standard, but allow some SDCC behaviour that conflicts
with the standard.

--std-c89 Follow the ANSI C89 / ISO C90 standard.

--std-sdcc99 Generally follow the ISO C99 standard, but allow some SDCC behaviour that conflicts with the
standard (default).

--std-c99 Follow the ISO C99 standard.
--std-c11 Follow the ISO C11 standard.

--codeseg <Name> The name to be used for the code segment, default CSEG. This is useful if you need to tell the
compiler to put the code in a special segment so you can later on tell the linker to put this segment in
a special place in memory. Can be used for instance when using bank switching to put the code in a
bank.

--constseg <Name> The name to be used for the const segment, default CONST. This is useful if you need to tell
the compiler to put the const data in a special segment so you can later on tell the linker to put this
segment in a special place in memory. Can be used for instance when using bank switching to put the
const data in a bank.

--fdollars-in-identifiers Permit ’$’ as an identifier character.

--more-pedantic Actually this is not a SDCC compiler option but if you want more warnings you can use a sepa-
rate tool dedicated to syntax checking like splint http://www.splint .org. To make your source
files parseable by splint you will have to include lint.h in your source file and add brackets around ex-
tended keywords (like ”__at (Oxab)” and ”__interrupt (2)”).

Splint has an excellent on line manual at http://www.splint.org/manual/ and it’s capabili-
ties go beyond pure syntax checking. You’ll need to tell splint the location of SDCC’s include files so
a typical command line could look like this:

splint -l /usr/local/share/sdcc/include/mcs51/ myprogram.c

--short-is-8bits Treat short as 8-bit (for backward compatibility with older versions of compiler - see section 1.5).
This option is deprecated.

--use-non-free Search / include non-free licensed libraries and header files, located under the non-free directory -
see section 2.3

3.3.5 Linker Options

-L --lib-path <absolute path to additional libraries> This option is passed to the linkage editor’s additional libraries
search path. The path name must be absolute. Additional library files may be specified in the command
line. See section Compiling programs for more details.

--xram-loc <Value> The start location of the external ram, default value is 0. The value entered can be in Hex-
adecimal or Decimal format, e.g.: --xram-loc 0x8000 or --xram-loc 32768.

33

http://www.splint.org
http://www.splint.org/manual/

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--code-loc <Value> The start location of the code segment, default value 0. Note when this option is used the
interrupt vector table is also relocated to the given address. The value entered can be in Hexadecimal
or Decimal format, e.g.: --code-loc 0x8000 or --code-loc 32768.

--stack-loc <Value> By default the stack is placed after the data segment. Using this option the stack can be
placed anywhere in the internal memory space of the 8051. The value entered can be in Hexadecimal
or Decimal format, e.g. --stack-loc 0x20 or --stack-loc 32. Since the sp register is incremented before
a push or call, the initial sp will be set to one byte prior the provided value. The provided value should
not overlap any other memory areas such as used register banks or the data segment and with enough
space for the current application. The --pack-iram option (which is now a default setting) will override
this setting, so you should also specify the --no-pack-iram option if you need to manually place the
stack.

--xstack-loc <Value> By default the external stack is placed after the _ pdata segment. Using this option the
xstack can be placed anywhere in the external memory space of the 8051. The value entered can be
in Hexadecimal or Decimal format, e.g. --xstack-loc 0x8000 or --stack-loc 32768. The provided value
should not overlap any other memory areas such as the pdata or xdata segment and with enough space
for the current application.

--data-loc <Value> The start location of the internal ram data segment. The value entered can be in Hexadecimal
or Decimal format, eg. --data-loc 0x20 or --data-loc 32. (By default, the start location of the internal
ram data segment is set as low as possible in memory, taking into account the used register banks and
the bit segment at address 0x20. For example if register banks 0 and 1 are used without bit variables,
the data segment will be set, if --data-loc is not used, to location 0x10.)

--idata-loc <Value> The start location of the indirectly addressable internal ram of the 8051, default value is 0x80.
The value entered can be in Hexadecimal or Decimal format, eg. --idata-loc 0x88 or --idata-loc 136.

--bit-loc <Value> The start location of the bit addressable internal ram of the 8051. This is not implemented yet.
Instead an option can be passed directly to the linker: -W1 -bBSEG=<Value>.

--out-fmt-ihx The linker output (final object code) is in Intel Hex format. This is the default option. The format
itself is documented in the documentation of srecord.

--out-fmt-s19 The linker output (final object code) is in Motorola S19 format. The format itself is documented in
the documentation of srecord.

--out-fmt-elf The linker output (final object code) is in ELF format. (Currently only supported for the HCO8 and
S08 processors)

-WI1 linkOption[,linkOption]... Pass the linkOption to the linker. If a bootloader is used an option like ”-WI -
bCSEG=0x1000" would be typical to set the start of the code segment. Either use the double quotes
around this option or use no space (e.g. -WI-bCSEG=0x1000). See also #pragma constseg and
#pragma codeseg in section3.17. File sdcc/sdas/doc/asmlnk.txt has more on linker options.

3.3.6 MCSS51 Options

--model-small Generate code for Small model programs, see section Memory Models for more details. This is the
default model.

--model-medium Generate code for Medium model programs, see section Memory Models for more details. If
this option is used all source files in the project have to be compiled with this option. It must also be
used when invoking the linker.

--model-large Generate code for Large model programs, see section Memory Models for more details. If this
option is used all source files in the project have to be compiled with this option. It must also be used
when invoking the linker.

--model-huge Generate code for Huge model programs, see section Memory Models for more details. If this
option is used all source files in the project have to be compiled with this option. It must also be used
when invoking the linker.

34

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--xstack Uses a pseudo stack in the __pdata area (usually the first 256 bytes in the external ram) for allocating
variables and passing parameters. See section 3.16.1.2 External Stack for more details.

--iram-size <Value> Causes the linker to check if the internal ram usage is within limits of the given value.
--xram-size <Value> Causes the linker to check if the external ram usage is within limits of the given value.
--code-size <Value> Causes the linker to check if the code memory usage is within limits of the given value.
--stack-size <Value> Causes the linker to check if there is at minimum <Value> bytes for stack.

--pack-iram Causes the linker to use unused register banks for data variables and pack data, idata and stack
together. This is the default and this option will probably be removed along with the removal of --no-
pack-iram.

--no-pack-iram (deprecated) Causes the linker to use old style for allocating memory areas. This option is now
deprecated and will be removed in future versions.

--acall-ajmp Replaces the three byte instructions Icall/ljmp with the two byte instructions acall/ajmp. Only use
this option if your code is in the same 2k block of memory. You may need to use this option for some
8051 derivatives which lack the Icall/ljmp instructions.

--no-ret-without-call Causes the code generator to insert an extra lcall or acall instruction whenever it needs to
use a ret instruction in a context other than a function returning. This option is needed when using the
Infineon XC800 series microcontrollers to keep its Memory Extension Stack balanced.

3.3.7 DS390/DS400 Options

--model-flat24 Generate 24-bit flat mode code. This is the one and only that the ds390 code generator supports
right now and is default when using -mds390. See section Memory Models for more details.

--protect-sp-update disable interrupts during ESP:SP updates.

--stack-10bit Generate code for the 10 bit stack mode of the Dallas DS80C390 part. This is the one and only that
the ds390 code generator supports right now and is default when using -mds390. In this mode, the
stack is located in the lower 1K of the internal RAM, which is mapped to 0x400000. Note that the
support is incomplete, since it still uses a single byte as the stack pointer. This means that only the
lower 256 bytes of the potential 1K stack space will actually be used. However, this does allow you to
reclaim the precious 256 bytes of low RAM for use for the DATA and IDATA segments. The compiler
will not generate any code to put the processor into 10 bit stack mode. It is important to ensure that
the processor is in this mode before calling any re-entrant functions compiled with this option. In
principle, this should work with the --stack-auto option, but that has not been tested. It is incompatible
with the --xstack option. It also only makes sense if the processor is in 24 bit contiguous addressing
mode (see the --model-flat24 option).

--stack-probe insert call to function __stack_probe at each function prologue.
--tini-libid <nnnn> LibraryID used in -mTININative.

--use-accelerator generate code for DS390 Arithmetic Accelerator.

3.3.8 Options common to all zZ80-related ports (z80, z180, r2k, r3ka, ghz80)

--no-std-crt0 When linking, skip the standard crt0.rel object file. You must provide your own crt0.rel for your
system when linking.

--callee-saves-bc Force a called function to always save BC.
--codeseg <Value> Use <Value> for the code segment name.

--constseg <Value> Use <Value> for the const segment name.

35

3.4. ENVIRONMENT VARIABLES CHAPTER 3. USING SDCC

3.3.9 Z80 Options (apply to z80, z180, r2k and r3ka port)
--portmode=<Value> Determinate PORT I/O mode (<Value> is z80 or z180).
--asm=<Value> Define assembler name (<Value> is rgbds, sdasz80, isas or z80asm).

--reserve-regs-iy This option tells the compiler that it is not allowed to use register pair iy. The option can be useful
for systems where iy is reserved for the OS. This option is incompatible with --fomit-frame-pointer.

--oldralloc Use old register allocator. The old register allocator typically is faster than the current one, but the
current one generates better code. This differences are the strongest, when a high value for --max-
allocs-per-node is used.

--fno-omit-frame-pointer Never omit the frame pointer.

3.3.10 GBZS80 Options
-bo <Num> Use code bank <Num>.

-ba <Num> Use data bank <Num>.

3.3.11 Intermediate Dump Options

The following options are provided for the purpose of retargetting and debugging the compiler. They provide a
means to dump the intermediate code (iCode) generated by the compiler in human readable form at various stages
of the compilation process. More on iCodes see chapter 9.1 ”The anatomy of the compiler”.

--dum-ast This option will cause the compiler to dump the abstract syntax tree to the econsole.
--dump-i-code Will dump iCodes at various stages into files named <source filename>.dump<stage>.

--dump-graphs Will dump internal representations as graphviz .dot files. Depending on other options, this can
include the control-flow graph at lospre, insertion of bank selection instructions or register allcoation
and the conflict graph and tree-decomposition at register allocation.

--fverbose-asm Include code generator and peep-hole comments in the generated asm files.

3.3.12 Redirecting output on Windows Shells

By default SDCC writes its error messages to “standard error”. To force all messages to “standard out-
put” use --use-stdout. Additionally, if you happen to have visual studio installed in your windows machine, you
can use it to compile your sources using a custom build and the SDCC --vc option. Something like this should work:

c:\sdcc\bin\sdcc.exe --ve --model-large -¢ $(InputPath)

3.4 Environment variables

SDCC recognizes the following environment variables:

SDCC_LEAVE _SIGNALS SDCC installs a signal handler to be able to delete temporary files after an user break
("C) or an exception. If this environment variable is set, SDCC won’t install the signal handler in order
to be able to debug SDCC.

TMP, TEMP, TMPDIR Path, where temporary files will be created. The order of the variables is the search order.
In a standard *nix environment these variables are not set, and there’s no need to set them. On Windows
it’s recommended to set one of them.

SDCC_HOME Path, see section 2.2 ” Install Paths”.
SDCC_INCLUDE Path, see section 2.3 ’Search Paths”.
SDCC_LIB Path, see section 2.3 ”Search Paths”..

36

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

There are some more environment variables recognized by SDCC, but these are mainly used for debugging pur-
poses. They can change or disappear very quickly, and will never be documented®.

3.5 SDCC Language Extensions

SDCC supports some language extensions useful for embedded systems. These include named address spaces (see
also section 5.1 of the Embedded C standard). SDCC supports both intrinsic named address spaces (which ones are
supported depends on the target architecture) and non-intrinsic named address spaces (defined by the user using the
keyword __addressmod, they are particularly useful with custom bank-switching hardware). Unlike the Embedded
C standard, sdcc allows local variables to have an intrinsic named address space even when not explicitly declared
as static or extern.

3.5.1 MCS51/DS390 intrinsic named address spaces
SDCC supports the following MCS51-specific intrinsic address spaces:

__idata __xdata __code
2568 64KB 64KB
__data __pdata

1288 2568

3.51.1 _ data/_ near

This is the default (generic) address space for the Small Memory model. Variables in this address space will be
allocated in the directly addressable portion of the internal RAM of a 8051, e.g.:

_ data unsigned char test_data;
Writing 0x01 to this variable generates the assembly code:

75%x00 01 mov _test_data, #0x01

3.5.1.2 _ xdata/__ far

Variables in this address space will be placed in the external RAM. This is the default (generic) address space for
the Large Memory model, e.g.:

__xdata unsigned char test_xdata;
Writing 0x01 to this variable generates the assembly code:

90s00r00 mov dptr, #_test_xdata
74 01 mov a,#0x01
FO movx @dptr,a

3.5.1.3 _ _idata

Variables in this address spacewill be allocated into the indirectly addressable portion of the internal ram of a 8051,
e.g.

__idata unsigned char test_idata;

3if you are curious search in SDCC’s sources for ”"getenv”

37

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

Writing 0x01 to this variable generates the assembly code:

78r00 mov r0,#_test_idata
76 01 mov Qr0, #0x01

Please note, the first 128 byte of idata physically access the same RAM as the data memory. The original 8051 had
128 byte idata memory, nowadays most devices have 256 byte idata memory. The stack is located in idata memory
(unless —xstack is specified).

3.5.14 _ pdata

Paged xdata access is just as straightforward as using the other addressing modes of a 8051. It is typically located
at the start of xdata and has a maximum size of 256 bytes. The following example writes 0x01 to the pdata variable.
Please note, pdata access physically accesses xdata memory. The high byte of the address is determined by port
P2 (or in case of some 8051 variants by a separate Special Function Register, see section 4.1). This is the default
(generic) address space for the Medium Memory model, e.g.:

__pdata unsigned char test_pdata;

Writing 0x01 to this variable generates the assembly code:

78r00 mov r0, #_test_pdata
74 01 mov a, #0x01
F2 movx @r0,a

If the --xstack option is used the pdata memory area is followed by the xstack memory area and the sum of their
sizes is limited to 256 bytes.

3.5.1.5 __code

"Variables’ in this address space will be placed in the code memory:
__code unsigned char test_code;

Read access to this variable generates the assembly code:

90s00r6F mov dptr, #_test_code
E4 clr a
93 movc a,@at+dptr

char indexed arrays of characters in code memory can be accessed efficiently:
_ code char test_array[] = {’c’,’h’,’e’,"a’,’'p'};
Read access to this array using an 8-bit unsigned index generates the assembly code:

E5%00 mov a,_index
90s00r41l mov dptr, #_test_array
93 movc a,@a+dptr

3.5.1.6 _ bit

This is a data-type and an address space. When a variable is declared as a bit, it is allocated into the bit addressable
memory of 8051, e.g.:

_ _bit test_bit;
Writing 1 to this variable generates the assembly code:
D2x00 setb _test_bit

The bit addressable memory consists of 128 bits which are located from 0x20 to 0x2f in data memory.
Apart from this 8051 specific intrinsic named address space most architectures support ANSI-C bitfields*. In
accordance with ISO/IEC 9899 bits and bitfields without an explicit signed modifier are implemented as unsigned.

“Not really meant as examples, but nevertheless showing what bitfields are about: device/include/mc68hc908qy.h and sup-
port/regression/tests/bitfields.c

38

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

3.5.1.7 __sfr/__sfr16/ _ sfr32/_ sbit

Like the __bit keyword, __sfr/__sfrl6 / __sfr32 / __sbit signify both a data-type and named address space, they
are used to describe the special function registers and special __bir variables of a 8051, eg:

__sfr __at (0x80) PO; /* special function register PO at location
0x80 «/

/* 16 bit special function register combination for timer O
with the high byte at location 0x8C and the low byte at location
O0x8A %/

__sfrl6e _ _at (0x8C8A) TMRO;

_ sbit __at (0xd7) CY; /* CY (Carry Flag) =/

Special function registers which are located on an address dividable by 8 are bit-addressable, an __sbit addresses a
specific bit within these sft.

16 Bit and 32 bit special function register combinations which require a certain access order are better not declared
using __sfr16 or __sfr32. Allthough SDCC usually accesses them Least Significant Byte (LSB) first, this is not
guaranteed.

Please note, if you use a header file which was written for another compiler then the __sfr/ __sfr16 / __sfr32
/ __sbit intrinsic named address spaces will most likely be not compatible. Specifically the syntax sfr PO =
0x80; is compiled without warning by SDCC to an assignment of 0x80 to a variable called PO. Nevertheless
with the file compiler.h it is possible to write header files which can be shared among different compilers
(see section 6.1).

3.5.1.8 Pointers to MCS51/DS390 intrinsic named address spaces

SDCC allows (via language extensions) pointers to explicitly point to any of the named address spaces of the 8051.
In addition to the explicit pointers, the compiler uses (by default) generic pointers which can be used to point to
any of the memory spaces.

Pointer declaration examples:

/* pointer physically in internal ram pointing to object in external
ram x/
_ xdata unsigned char x= _ _data p;

/* pointer physically in external ram pointing to object in internal
ram */
__data unsigned char x __xdata p;

/* pointer physically in code rom pointing to data in xdata space
*/

__xdata unsigned char % __code p;
/* pointer physically in code space pointing to data in code space
*/

__code unsigned char x ___code p;

/* generic pointer physically located in xdata space x/
unsigned char * __xdata p;

/* generic pointer physically located in default memory space */
unsigned char * p;

/+ the following is a function pointer physically located in data
space x/

39

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

char (x __data fp) (void);

Well you get the idea.
All unqualified pointers are treated as 3-byte (4-byte for the ds390) generic pointers.

The highest order byte of the generic pointers contains the data space information. Assembler support rou-
tines are called whenever data is stored or retrieved using generic pointers. These are useful for developing
reusable library routines. Explicitly specifying the pointer type will generate the most efficient code.

3.5.1.9 Notes on MCS51 memory layout

The 8051 family of microcontrollers have a minimum of 128 bytes of internal RAM memory which is structured
as follows:

- Bytes 00-1F - 32 bytes to hold up to 4 banks of the registers RO to R7,
- Bytes 20-2F - 16 bytes to hold 128 bit variables and,
- Bytes 30-7F - 80 bytes for general purpose use.

Additionally some members of the MCS51 family may have up to 128 bytes of additional, indirectly address-
able, internal RAM memory (__idata). Furthermore, some chips may have some built in external memory (__xdata)
which should not be confused with the internal, directly addressable RAM memory (__data). Sometimes this built
in __xdata memory has to be activated before using it (you can probably find this information on the datasheet of
the microcontroller your are using, see also section ?? Startup-Code).

Normally SDCC will only use the first bank of registers (register bank 0), but it is possible to specify that
other banks of registers (keyword __using) should be used for example in interrupt routines. By default, the
compiler will place the stack after the last byte of allocated memory for variables. For example, if the first
2 banks of registers are used, and only four bytes are used for data variables, it will position the base of the
internal stack at address 20 (0x14). This implies that as the stack grows, it will use up the remaining register
banks, and the 16 bytes used by the 128 bit variables, and 80 bytes for general purpose use. If any bit variables
are used, the data variables will be placed in unused register banks and after the byte holding the last bit
variable. For example, if register banks 0 and 1 are used, and there are 9 bit variables (two bytes used), data
variables will be placed starting from address 0x10 to 0x20 and continue at address 0x22. You can also use --data-
loc to specify the start address of the data and --iram-size to specify the size of the total internal RAM (data+idata).

By default the 8051 linker will place the stack after the last byte of (i)data variables. Option --stack-loc allows
you to specify the start of the stack, i.e. you could start it after any data in the general purpose area. If your
microcontroller has additional indirectly addressable internal RAM (idata) you can place the stack on it. You may
also need to use --xdata-loc to set the start address of the external RAM (xdata) and --xram-size to specify its size.
Same goes for the code memory, using --code-loc and --code-size. If in doubt, don’t specify any options and see if
the resulting memory layout is appropriate, then you can adjust it.

The linker generates two files with memory allocation information. The first, with extension .map shows all the
variables and segments. The second with extension .mem shows the final memory layout. The linker will complain
either if memory segments overlap, there is not enough memory, or there is not enough space for stack. If you get
any linking warnings and/or errors related to stack or segments allocation, take a look at either the .map or .mem
files to find out what the problem is. The .mem file may even suggest a solution to the problem.

3.5.2 7Z80/7Z180 intrinsic named address spaces
3.5.2.1 __ sfr (in/out to 8-bit addresses)

The Z80 family has separate address spaces for memory and input/output memory. I/O memory is accessed with
special instructions, e.g.:

__sfr __at 0x78 IoPort; /+ define a var in I/O space at 78h called
IoPort =*/

Writing 0x01 to this variable generates the assembly code:

40

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

3E 01 1d a, #0x01
D3 78 out (_IoPort),a

3.5.2.2 _ banked __sfr (in/out to 16-bit addresses)
The keyword __banked is used to support 16 bit addresses in I/O memory e.g.:

sfr _ banked _ _at 0x123 IoPort;

Writing 0x01 to this variable generates the assembly code:

01 23 01 1d bc, #_IoPort
3E 01 1d a, #0x01
ED 79 out (c),a

3.5.2.3 __ sfr (in0/out0 to 8 bit addresses on Z180/HD64180)

The compiler option --portmode=180 (80) and a compiler #pragma portmode z180 (z80) is used to turn on (off)
the Z180/HD64180 port addressing instructions in0/out 0 instead of in/out. If you include the file z180.h this
will be set automatically.

3.5.3 HCO08/S08 intrinsic named address spaces
3.53.1 __data

Variables int the address space __data resides in the first 256 bytes of memory (the direct page). The HCOS is most
efficient at accessing variables (especially pointers) stored here.

3.5.3.2 _ xdata

Variables in the address space__xdata can reside anywhere in memory. This is the default (generic address space).

3.5.4 Non-intrinsic named address spaces

SDCC supports user-defined non-intrinsic named address spaces. So far SDCC only supports them for bank-
switching. You need to have a function that switches to the desired memory bank and declare a corresponding
named address space:

void setb0(void); // The function that sets the currently active
memory bank to b0

void setbl (void); // The function that sets the currently active
memory bank to bl

__addressmod setb0 spaceb0; // Declare a named address space called
spaceb0 that uses setbO()

__addressmod setbl spacebl; // Declare a named address space called
spacebl that uses setbl ()

spaceb0 int x; // An int in address space spacebl

spacebl int xy; // A pointer to an int in address space spacebl

spaceb0 int *spacebl z; // A pointer in address space spacebl that
points to an int in address space spaceb0

Non-intrinsic named address spaces for data in ROM are declared using the const keyword:

void setb0(void); // The function that sets the currently active
memory bank to b0

void setbl (void); // The function that sets the currently active
memory bank to bl

__addressmod setb0 const spacebl; // Declare a named address space
called spaceb0 that uses setb0() and resides in ROM

41

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

__addressmod setbl spacebl; // Declare a named address space called
spacebl that uses setbl () and resides in RAM

const spaceb0 int x = 42; // An int in address space spacebO

spacebl int xy; // A pointer to an int in address space spacebl

const spaceb(0 int xspacebl z; // A pointer in address space spacebl
that points to a constant int in address space spacebO

Variables in non-intrinsic named address spaces will be placed in areas of the same name (this can be used for the
placement of named address spaces in memory by the linker).

SDCC will automatically insert calls to the corresponding function before accessing the variable. SDCC inserts
the minimum possible number calls to the bank selection functions. See Philipp Klaus Krause, ”Optimal Placement
of Bank Selection Instructions in Polynomial Time” for details on how this works.

3.5.5 Absolute Addressing

Data items can be assigned an absolute address with the __ar <address> keyword, whch can also be used in addition
to a named address space, e.g.:

_ _xdata __at (0x7ffe) unsigned int chksum;

In the above example the variable chksum will be located at Ox7ffe and Ox7fff of the external ram. The compiler
does not reserve any space for variables declared in this way (they are implemented with an equate in the assembler).
Thus it is left to the programmer to make sure there are no overlaps with other variables that are declared without
the absolute address. The assembler listing file (.1st) and the linker output files (.rst) and (.map) are good places to
look for such overlaps.

If however you provide an initializer actual memory allocation will take place and overlaps will be detected by
the linker. E.g.:

__code __at (0x7ff0) char Id[5] = "SDCC”;

In the above example the variable Id will be located from 0x7{f0 to 0x7ff4 in code memory.
In case of memory mapped I/O devices the keyword volatile has to be used to tell the compiler that accesses
might not be removed:

volatile __xdata __at (0x8000) unsigned char PORTA_8255;

For some architectures (mcs51) array accesses are more efficient if an (xdata/far) array starts at a block (256 byte)
boundary (section 3.11.2 has an example).
Absolute addresses can be specified for variables in all named address spaces, e.g.:

bit _ _at (0x02) bvar;

The above example will allocate the variable at offset 0x02 in the bit-addressable space. There is no real advantage
to assigning absolute addresses to variables in this manner, unless you want strict control over all the variables
allocated. One possible use would be to write hardware portable code. For example, if you have a routine that uses
one or more of the microcontroller I/O pins, and such pins are different for two different hardwares, you can declare
the I/O pins in your routine using:

extern volatile _ bit MOSI; /* master out, slave in x/
extern volatile _ bit MISO; /* master in, slave out x/
extern volatile _ bit MCLK; /* master clock */

/+ Input and Output of a byte on a 3-wire serial bus.
If needed adapt polarity of clock, polarity of data and bit
order
*/
unsigned char spi_io(unsigned char out_byte)
{
unsigned char i=8;
do {

4

3.6. PARAMETERS AND LOCAL VARIABLES CHAPTER 3. USING SDCC

MOSI = out_byte & 0x80;
out_byte <<= 1;

MCLK = 1;
/* __asm nop __endasm; */ /* for slow peripherals =*/
if (MISO)
out_byte += 1;
MCLK = 0;

} while (—-1);
return out_byte;

}

Then, someplace in the code for the first hardware you would use

__bit __at (0x80) MOSI; /+* I/0 port 0, bit 0 =/
__bit __at (0x81l) MISO; /+* I/0 port 0, bit 1 =/
__bit __at (0x82) MCLK; /+* I/0 port 0, bit 2 =/

Similarly, for the second hardware you would use

__bit __at (0x83) MOSI; /+x I/0 port 0, bit 3 x/
__bit __at (0x91) MISO; /+* I/0 port 1, bit 1 =/
__bit __at (0x92) MCLK; /+* I/0 port 1, bit 2 =/

and you can use the same hardware dependent routine without changes, as for example in a library. This is somehow
similar to sbit, but only one absolute address has to be specified in the whole project.

3.5.6 Preserved register specification

SDCC allows to specify preserved registers in function declarations, to enable further optimizations on calls to
functions implemented in assembler. Example for the Z80 architecture specifying that a function will preserve
register pairs bc and iy:

void f (void) __ preserves_regs (b, c, iyl, iyh);

3.5.7 Binary constants

SDCC supports the use of binary constants, such as 0b01100010. This feature is only enabled when the compiler
is invoked using —std-sdccxx.

3.5.8 Returning void

SDCC allows functions to return expressions of type void. This feature is only enabled when the compiler is
invoked using —std-sdccxx.

3.5.9 Omitting promotion on arguments of vararg function

Arguments to vararg functions are not promoted when explicitly cast. This feature is only enabled when the com-
piler is invoked using —std-sdccxx. This breaks compability with the C standards, so linking code compiled with
—std-sdccxx with code compiled using —std-cxx can result in failing programs when arguments to vararg functions
are explicitly cast.

3.6 Parameters and Local Variables

Automatic (local) variables and parameters to functions are placed on the stack for most targets. For
MCS51/DS390/HC08/S08 they can either be placed on the stack or in data-space. The default action of the
compiler is to place these variables in the internal RAM (for small model) or external RAM (for medium or large
model). This in fact makes them similar to static so by default functions are non-reentrant.

They can be placed on the stack by using the --stack-auto option, by using #pragma stackauto or by using
the __reentrant keyword in the function declaration, e.g.:

43

3.7. OVERLAYING CHAPTER 3. USING SDCC

unsigned char foo(char i) __ _reentrant

{

}

Since stack space on 8051 is limited, the __reentrant keyword or the --stack-auto option should be used sparingly.
Note that the reentrant keyword just means that the parameters & local variables will be allocated to the stack, it
does not mean that the function is register bank independent.

Local variables can be assigned intrinsic named address spaces and absolute addresses, e.g.:

unsigned char foo(__xdata int parm)
{
_ _xdata unsigned char i;
__bit bvar;
__data __at (0x31) unsigned char j;

}

In the above example the parameter parm and the variable i will be allocated in the external ram, bvar in bit ad-
dressable space and j in internal ram. When compiled with --stack-auto or when a function is declared as reentrant
this should only be done for static variables.

It is however allowed to use bit parameters in reentrant functions and also non-static local bit variables are
supported. Efficient use is limited to 8 semi-bitregisters in bit space. They are pushed and popped to stack as a
single byte just like the normal registers.

3.7 Overlaying

For non-reentrant functions SDCC will try to reduce internal ram space usage by overlaying parameters and local
variables of a function (if possible). Parameters and local variables of a function will be allocated to an overlayable
segment if the function has no other function calls and the function is non-reentrant and the memory model is small.
If an explicit intrinsic named address space is specified for a local variable, it will NOT be overlaid.

Note that the compiler (not the linkage editor) makes the decision for overlaying the data items. Functions that
are called from an interrupt service routine should be preceded by a #pragma nooverlay if they are not reentrant.

Also note that the compiler does not do any processing of inline assembler code, so the compiler might incor-
rectly assign local variables and parameters of a function into the overlay segment if the inline assembler code calls
other c-functions that might use the overlay. In that case the #pragma nooverlay should be used.

Parameters and local variables of functions that contain 16 or 32 bit multiplication or division will NOT be
overlaid since these are implemented using external functions, e.g.:

#pragma save
#pragma nooverlay
void set_error (unsigned char errcd)

{

P3 = errcd;
}

#pragma restore

void some_isr () __interrupt (2)

{
set_error (10);

}

In the above example the parameter errcd for the function set_error would be assigned to the overlayable segment
if the #pragma nooverlay was not present, this could cause unpredictable runtime behavior when called from an
interrupt service routine. The #pragma nooverlay ensures that the parameters and local variables for the function
are NOT overlaid.

44

3.8. INTERRUPT SERVICE ROUTINES CHAPTER 3. USING SDCC

3.8 Interrupt Service Routines

3.8.1 General Information
SDCC allows interrupt service routines to be coded in C, with some extended keywords.

void timer_isr (void) __ _interrupt (1) __using (1)

{

}

The optional number following the __interrupt keyword is the interrupt number this routine will service. When
present, the compiler will insert a call to this routine in the interrupt vector table for the interrupt number specified.
If you have multiple source files in your project, interrupt service routines can be present in any of them, but a
prototype of the isr MUST be present or included in the file that contains the function main. The optional (8051
specific) keyword __using can be used to tell the compiler to use the specified register bank when generating code
for this function.

Interrupt service routines open the door for some very interesting bugs:

3.8.1.1 Common interrupt pitfall: variable not declared volatile

If an interrupt service routine changes variables which are accessed by other functions these variables have to be
declared volatile. See http://en.wikipedia.org/wiki/Volatile_variable.

3.8.1.2 Common interrupt pitfall: non-atomic access

If the access to these variables is not atomic (i.e. the processor needs more than one instruction for the access
and could be interrupted while accessing the variable) the interrupt must be disabled during the access to avoid
inconsistent data.

Access to 16 or 32 bit variables is obviously not atomic on 8 bit CPUs and should be protected by disabling
interrupts. You’re not automatically on the safe side if you use 8 bit variables though. We need an example here:
f.e. on the 8051 the harmless looking "flags |= 0x80;” is not atomic if £lags resides in xdata. Setting
“flags |= 0x40;” from within an interrupt routine might get lost if the interrupt occurs at the wrong time.
“counter += 8;”isnot atomic on the 8051 even if counter is located in data memory.

Bugs like these are hard to reproduce and can cause a lot of trouble.

3.8.1.3 Common interrupt pitfall: stack overflow

The return address and the registers used in the interrupt service routine are saved on the stack so there must be
sufficient stack space. If there isn’t variables or registers (or even the return address itself) will be corrupted. This
stack overflow is most likely to happen if the interrupt occurs during the ’deepest” subroutine when the stack is
already in use for f.e. many return addresses.

3.8.1.4 Common interrupt pitfall: use of non-reentrant functions

A special note here, integer multiplicative operators and floating-point operations might be implemented using
external support routines, depending on the target architecture. If an interrupt service routine needs to do any of
these operations on a target where functions are non-reentrent by default, then the support routines (as mentioned
in a following section) will have to be recompiled using the --stack-auto option and the source file will need to be
compiled using the --int-long-reent compiler option.

Note, the type promotion required by ANSI C can cause 16 bit routines to be used without the programmer being
aware of it. See f.e. the cast (unsigned char) (tail-1) within the if clause in section 3.11.2.

Calling other functions from an interrupt service routine on a target where functions are non-reentrent by default
is not recommended, avoid it if possible. Note that when some function is called from an interrupt service routine it
should be preceded by a #pragma nooverlay if it is not reentrant. Furthermore nonreentrant functions should not be
called from the main program while the interrupt service routine might be active. They also must not be called from
low priority interrupt service routines while a high priority interrupt service routine might be active. You could use
semaphores or make the function critical if all parameters are passed in registers.

Also see section 3.7 about Overlaying and section 3.10 about Functions using private register banks.

45

http://en.wikipedia.org/wiki/Volatile_variable

3.8. INTERRUPT SERVICE ROUTINES CHAPTER 3. USING SDCC

3.8.2 MCS51/DS390 Interrupt Service Routines

Interrupt numbers and the corresponding address & descriptions for the Standard 8051/8052 are listed below.
SDCC will automatically adjust the to the maximum interrupt number specified.

Interrupt # | Description Vector Address
0 External 0 0x0003
1 Timer 0 0x000b
2 External 1 0x0013
3 Timer 1 0x001b
4 Serial 0x0023
5 Timer 2 (8052) | 0x002b
n 0x0003 + 8*n

If the interrupt service routine is defined without __using a register bank or with register bank 0 (__using 0), the
compiler will save the registers used by itself on the stack upon entry and restore them at exit, however if such an
interrupt service routine calls another function then the entire register bank will be saved on the stack. This scheme
may be advantageous for small interrupt service routines which have low register usage.

If the interrupt service routine is defined to be using a specific register bank then only a, b, dptr & psw are saved
and restored, if such an interrupt service routine calls another function (using another register bank) then the entire
register bank of the called function will be saved on the stack. This scheme is recommended for larger interrupt
service routines.

3.8.3 HCO08 Interrupt Service Routines

Since the number of interrupts available is chip specific and the interrupt vector table always ends at the last byte
of memory, the interrupt numbers corresponds to the interrupt vectors in reverse order of address. For example,
interrupt 1 will use the interrupt vector at Oxfffc, interrupt 2 will use the interrupt vector at Oxfffa, and so on.
However, interrupt O (the reset vector at Oxfffe) is not redefinable in this way; instead see section ?? for details on
customizing startup.

3.8.4 780 and Z180 Interrupt Service Routines

The Z80 uses several different methods for determining the correct interrupt vector depending on the hardware
implementation. Therefore, SDCC does not attempt to generate an interrupt vector table.

By default, SDCC generates code for a maskable interrupt, which uses a RETI instruction to return from the
interrupt. To write an interrupt handler for the non-maskable interrupt, which needs a RETN instruction instead,
leave out the interrupt number:

voilid nmi_isr (void) __critical __interrupt

{

}

Since interrupts on the Z80 and Z180 are level-triggered (except for the NMI), interruptible interupt handlers
shouldonly be used where hardware acknowledge is available.

’ Type \ Syntax \ Behaviour

Interruptible interrupt handler void f(void) __interrupt Interrupt handler can be
interrupted by further interrupts

Non-interruptible interrupt handler | void f(void) __critical __interrupt(0) | Interrupt handler can be
interrupted by NMI only

NMI handler void f(void) __critical __interrupt Interrupt handler can be
interrupted by NMI only

46

3.9. ENABLING AND DISABLING INTERRUPTS

CHAPTER 3. USING SDCC

3.8.5 Rabbit 2000, 3000, 3000A and 4000 Interrupt Service Routines

SDCC does not attempt to generate an interrupt vector table.

[Type

| Syntax

Behaviour

Interruptible interrupt handler

void f(void) __interrupt

Interrupt handler can be
interrupted by further interrupts of
same priority

Non-interruptible interrupt handler

void f(void) __critical __interrupt(0)

Interrupt handler can be
interrupted by interrupts of higher
priority only

3.8.6 GBZ80 and TLCS-90 Interrupt Service Routines

SDCC does not attempt to generate an interrupt vector table.

| Type

| Syntax

Behaviour

Interruptible interrupt handler

void f(void) __interrupt

Interrupt handler can be
interrupted by further interrupts

Non-interruptible interrupt handler

void f(void) __critical __interrupt(0)

Interrupt handler cannot be
interrupted by further interrupts

3.9 Enabling and Disabling Interrupts

3.9.1 Critical Functions and Critical Statements

A special keyword may be associated with a block or a function declaring it as __critical. SDCC will generate code
to disable all interrupts upon entry to a critical function and restore the interrupt enable to the previous state before
returning. Nesting critical functions will need one additional byte on the stack for each call.

int foo

{

0

__critical

}

The critical attribute maybe used with other attributes like reentrant.
The keyword __critical may also be used to disable interrupts more locally:

__critical{ i++; }

More than one statement could have been included in the block.

3.9.2 Enabling and Disabling Interrupts directly

Interrupts can also be disabled and enabled directly (8051):

EA = 0; or:

1;

EA_SAVE = EA;
EA = 0;
EA = EA_SAVE;

On other architectures which have separate opcodes for enabling and disabling interrupts you might want to make
use of defines with inline assembly (HCOS):

#define CLI
#define SEI

__asm cli

__asm sei

endasm;

endasm;

or for SDCC version 3.2.0 or newer:

#define CLI asm
#define SEI asm

("Cli") .

14

("Sei") ;

47

3.10. FUNCTIONS USING PRIVATE REGISTER BANKS (MCS51/DS390) CHAPTER 3. USING SDCC

Note: it is sometimes sufficient to disable only a specific interrupt source like f.e. a timer or serial interrupt by
manipulating an interrupt mask register.

Usually the time during which interrupts are disabled should be kept as short as possible. This minimizes both
interrupt latency (the time between the occurrence of the interrupt and the execution of the first code in the interrupt
routine) and interrupt jitter (the difference between the shortest and the longest interrupt latency). These really are
something different, f.e. a serial interrupt has to be served before its buffer overruns so it cares for the maximum
interrupt latency, whereas it does not care about jitter. On a loudspeaker driven via a digital to analog converter
which is fed by an interrupt a latency of a few milliseconds might be tolerable, whereas a much smaller jitter will
be very audible.

You can reenable interrupts within an interrupt routine and on some architectures you can make use of two
(or more) levels of interrupt priorities. On some architectures which don’t support interrupt priorities these can
be implemented by manipulating the interrupt mask and reenabling interrupts within the interrupt routine. Check
there is sufficient space on the stack and don’t add complexity unless you have to.

3.9.3 Semaphore locking (mcs51/ds390)

Some architectures (mcs51/ds390) have an atomic bit test and clear instruction. These type of instructions are
typically used in preemptive multitasking systems, where a routine f.e. claims the use of a data structure ("acquires
a lock on it”), makes some modifications and then releases the lock when the data structure is consistent again. The
instruction may also be used if interrupt and non-interrupt code have to compete for a resource. With the atomic bit
test and clear instruction interrupts don’t have to be disabled for the locking operation.

SDCC generates this instruction if the source follows this pattern:

volatile bit resource_is_free;

if (resource_is_free)
{

resource_is_free=0;

resource_is_free=1;

}

Note, mcs51 and ds390 support only an atomic bit test and clear instruction (as opposed to atomic bit test and sez).

3.10 Functions using private register banks (mcs51/ds390)

Some architectures have support for quickly changing register sets. SDCC supports this feature with the __using
attribute (which tells the compiler to use a register bank other than the default bank zero). It should only be applied
to interrupt functions (see footnote below). This will in most circumstances make the generated ISR code more
efficient since it will not have to save registers on the stack.

The __using attribute will have no effect on the generated code for a non-interrupt function (but may occasion-
ally be useful anyway”).
(pending: Note, nowadays the __using attribute has an effect on the generated code for a non-interrupt function.)

An interrupt function using a non-zero bank will assume that it can trash that register bank, and will not save
it. Since high-priority interrupts can interrupt low-priority ones on the 8051 and friends, this means that if a high-
priority ISR using a particular bank occurs while processing a low-priority ISR using the same bank, terrible and
bad things can happen. To prevent this, no single register bank should be used by both a high priority and a low
priority ISR. This is probably most easily done by having all high priority ISRs use one bank and all low priority
ISRs use another. If you have an ISR which can change priority at runtime, you’re on your own: I suggest using
the default bank zero and taking the small performance hit.

It is most efficient if your ISR calls no other functions. If your ISR must call other functions, it is most efficient
if those functions use the same bank as the ISR (see note 1 below); the next best is if the called functions use bank
zero. It is very inefficient to call a function using a different, non-zero bank from an ISR.

Spossible exception: if a function is called ONLY from "interrupt’ functions using a particular bank, it can be declared with the same using’
attribute as the calling ’interrupt’ functions. For instance, if you have several ISRs using bank one, and all of them call memcpy(), it might make
sense to create a specialized version of memcpy() "using 1°, since this would prevent the ISR from having to save bank zero to the stack on entry
and switch to bank zero before calling the function

48

3.11. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

3.11 Inline Assembler Code

3.11.1 Inline Assemblere Code Formats

SDCC supports two formats for inline assembler code definition:

3.11.1.1 OIld __asm ... _ endasm; Format

Most of inline assembler code examples in this manual use the old inline assembler code format, but the new format
could be used equivalently.
Example:

__asm
; This is a comment
label:

nop
__endasm;

3.11.1.2 New __asm__ (Pinline_assembler_code’’) Format

The __asm__ inline assembler code format was introduced in SDCC version 3.2.0.
Example:

asm__ (”; This is a comment\nlabel:\n\tnop”);

3.11.2 A Step by Step Introduction

Starting from a small snippet of c-code this example shows for the MCS51 how to use inline assembly, access
variables, a function parameter and an array in xdata memory. The example uses an MCSS51 here but is easily
adapted for other architectures. This is a buffer routine which should be optimized:

unsigned char __ far __at (0x7£00) buf[0x100];
unsigned char head, tail; /+ if interrupts are involved see

section 3.8.1.1 about volatile */

void to_buffer(unsigned char c)

{
if(head != (unsigned char) (tail-1)) /% cast needed to avoid promotion to integer
*/

buf[head++] = c; /* access to a 256 byte aligned array =*/
}

If the code snippet (assume it is saved in buffer.c) is compiled with SDCC then a corresponding buffer.asm file is
generated. We define a new function to_buffer_asm () in file buffer.c in which we cut and paste the generated
code, removing unwanted comments and some *:*. Then add ”__asm” and ”__endasm;”° to the beginning and the
end of the function body:

/* With a cut and paste from the .asm file, we have something to start with.
The function is not yet OK! (registers aren’t saved) =x/
void to_buffer_ asm(unsigned char c)
{
__asm
mov r2,dpl
;jbuffer.c if(head != (unsigned char) (tail-1)) /+ cast needed to avoid promotion to
integer =/
mov a,_tail

dec a

SNote, that the single underscore form (_asm and _endasm) are not C99 compatible, and for C99 compatibility, the double-underscore form
(__asm and __endasm) has to be used. The latter is also used in the library functions.

49

3.11. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

mov r3,a
mov a,_head
cjne a,ar3,00106%
ret
00106$:
;buffer.c buf[head++] = c; /% access to a 256 byte aligned array =/
mov r3,_head
inc _head
mov dpl,r3
mov dph, # (_buf >> 8)
mov a,r2
movx @dptr,a
00103$:
ret

endasm;

}

The new file buffer.c should compile with only one warning about the unreferenced function argument 'c’. Now
we hand-optimize the assembly code and insert an #define USE_ASSEMBLY (1) and finally have:

unsigned char __ far __at (0x7£00) buf[0x100];
unsigned char head, tail;
#define USE_ASSEMBLY (1)

#if !USE_ASSEMBLY

void to_buffer (unsigned char c)
{
if(head != (unsigned char) (tail-1))
buf[head++] = c;

#else

void to_buffer(unsigned char c)
{
c; // to avoid warning: unreferenced function argument
__asm
; save used registers here.
; If we were still using r2,r3 we would have to push them here.
; 1f(head != (unsigned char) (tail-1))
mov a,_tail
dec a
xrl a,_head
; we could do an ANL a,#0x0f here to use a smaller buffer (see below)
jz t_b_end$

’

; buf[head++] = c;
mov a,dpl ; dpl holds lower byte of function argument
mov dpl,_head ; buf is 0x100 byte aligned so head can be used directly

mov dph, # (_buf>>8)
movx @dptr,a
inc _head

; we could do an ANL _head, #0x0f here to use a smaller buffer (see above)
t_b_end$:

; restore used registers here

endasm;

50

3.11. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

#endif

The inline assembler code can contain any valid code understood by the assembler, this includes any assembler
directives and comment lines. The assembler does not like some characters like *:> or ”” in comments. You’ll
find an 100+ pages assembler manual in sdcc/sdas/doc/asmlnk.txt or online at http://svn.code.sf.net/
p/sdcc/code/trunk/sdcc/sdas/doc/asmlnk.txt

The compiler does not do any validation of the code within the __asm ... __endasm; keyword pair.
Specifically it will not know which registers are used and thus register pushing/popping has to be done manually.

It is required that each assembly instruction be placed on a separate line. This is also recommended for labels (as
the example shows). This is especially important to note when the inline assembler is placed in a C preprocessor
macro as the preprocessor will normally put all replacing code on a single line. Only when the macro has each
assembly instruction on a single line that ends with a line continuation character will it be placed as separate lines
in the resulting .asm file.

#define DELAY \
__asm \
nop \

nop \
___endasm

When the --peep-asm command line option is used, the inline assembler code will be passed through the peephole
optimizer. There are only a few (if any) cases where this option makes sense, it might cause some unexpected
changes in the inline assembler code. Please go through the peephole optimizer rules defined in file peeph.def
before using this option.

3.11.3 Naked Functions

A special keyword may be associated with a function declaring it as __naked. The _naked function modifier
attribute prevents the compiler from generating prologue and epilogue code for that function. This means that the
user is entirely responsible for such things as saving any registers that may need to be preserved, selecting the
proper register bank, generating the return instruction at the end, etc. Practically, this means that the contents of the
function must be written in inline assembler. This is particularly useful for interrupt functions, which can have a
large (and often unnecessary) prologue/epilogue. For example, compare the code generated by these two functions:

volatile data unsigned char counter;

void simpleInterrupt (void) __ _interrupt (1)
{
counter++;
}
void nakedInterrupt (void) __ _interrupt (2) __ naked
{
__asm
inc _counter ; does not change flags, no need to save psw
reti ; MUST explicitly include ret or reti in _naked
function.
__endasm;

}
For an 8051 target, the generated simplelnterrupt looks like:

Note, this is an outdatedexample, recent versions of SDCC generate
the same code for simpleInterrupt () and nakedInterrupt ()!

_simpleInterrupt:
push acc
push b
push dpl

51

http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/sdas/doc/asmlnk.txt
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/sdas/doc/asmlnk.txt

3.11. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

push dph

push Psw

mov psw, #0x00
inc _counter
pop psw

pop dph

pop dpl

pop b

pop acc

reti

whereas nakedInterrupt looks like:

_nakedInterrupt:
inc _counter ; does not change flags, no need to save psw
reti ; MUST explicitly include ret or reti in _naked
function

The related directive #pragma exclude allows a more fine grained control over pushing & popping the registers.
While there is nothing preventing you from writing C code inside a _naked function, there are many ways to
shoot yourself in the foot doing this, and it is recommended that you stick to inline assembler.

3.11.4 Use of Labels within Inline Assembler

SDCC allows the use of in-line assembler with a few restrictions regarding labels. All labels defined within inline
assembler code have to be of the form nnnnn$ where nnnnn is a number less than 100 (which implies a limit of
utmost 100 inline assembler labels per function).’

__asm
mov b, #10
00001s:
djnz b,00001%
__endasm ;

Inline assembler code cannot reference any C-labels, however it can reference labels defined by the inline assembler,
e.g.

foo () |
/* some c code x/
__asm
; some assembler code
1jmp 0003S
__endasm;
/+ some more c code =/
clabel: /+ inline assembler cannot reference this label x/ 8
__asm
00035: ;label (can be referenced by inline assembler only)
__endasm ;

/* some more c code =*/

}

In other words inline assembly code can access labels defined in inline assembly within the scope of the function.
The same goes the other way, i.e. labels defines in inline assembly can not be accessed by C statements.

TThis is a slightly more stringent rule than absolutely necessary, but stays always on the safe side. Labels in the form of nnnnn$ are local
labels in the assembler, locality of which is confined within two labels of the standard form. The compiler uses the same form for labels within
a function (but starting from nnnnn=00100); and places always a standard label at the beginning of a function, thus limiting the locality of labels
within the scope of the function. So, if the inline assembler part would be embedded into C-code, an improperly placed non-local label in the
assembler would break up the reference space for labels created by the compiler for the C-code, leading to an assembling error.

The numeric part of local labels does not need to have 5 digits (although this is the form of labels output by the compiler), any valid integer
will do. Please refer to the assemblers documentation for further details.

8Here, the C-label clabel is translated by the compiler into a local label, so the locality of labels within the function is not broken.

52

3.12. INTERFACING WITH ASSEMBLER CODE CHAPTER 3. USING SDCC

3.12 Interfacing with Assembler Code

3.12.1 Global Registers used for Parameter Passing (8051)

The compiler always uses the global registers DPL, DPH, B and ACC to pass the first (non-bit) parameter to a
function, and also to pass the return value of function; according to the following scheme: one byte return value
in DPL, two byte value in DPL (LSB) and DPH (MSB). three byte values (generic pointers) in DPH, DPL and B,
and four byte values in DPH, DPL, B and ACC. Generic pointers contain type of accessed memory in B: 0x00 —
xdata/far, 0x40 — idata/near — , 0x60 — pdata, 0x80 — code.

The second parameter onwards is either allocated on the stack (for reentrant routines or if --stack-auto is used)
or in data/xdata memory (depending on the memory model).

Bit parameters are passed in a virtual register called ’bits’ in bit-addressable space for reentrant functions or
allocated directly in bit memory otherwise.

Functions (with two or more parameters or bit parameters) that are called through function pointers must there-
for be reentrant so the compiler knows how to pass the parameters.

3.12.2 Registers usage (8051)

Unless the called function is declared as _naked, or the --callee-saves/--all-callee-saves command line option or
the corresponding callee_saves pragma are used, the caller will save the registers (RO-R7) around the call, so the
called function can destroy they content freely.

If the called function is not declared as _naked, the caller will swap register banks around the call, if caller
and callee use different register banks (having them defined by the ___using modifier).

The called function can also use DPL, DPH, B and ACC observing that they are used for parameter/return value
passing.

3.12.3 Assembler Routine (non-reentrant) (8051)
In the following example the function c_func calls an assembler routine asm_func, which takes two parameters.

extern int asm_func (unsigned char, unsigned char);

int c_func (unsigned char i, unsigned char j)

{

return asm_func (i, j);

}

int main ()

{

return c_func (10, 9);

}
The corresponding assembler function is:

.globl _asm_func_PARM_2
.globl _asm_func

.area OSEG
_asm_func_PARM_2:

.ds 1

.area CSEG
_asm_func:

mov a,dpl

add a,_asm_func_PARM 2

mov dpl, a

mov dph, #0x00

ret

The parameter naming convention is _<function_name>_PARM_<n>, where n is the parameter number starting
from 1, and counting from the left. The first parameter is passed in DPH, DPL, B and ACC according to the

53

3.12. INTERFACING WITH ASSEMBLER CODE CHAPTER 3. USING SDCC

description above. The variable name for the second parameter will be _<function_name>_PARM_2.
Assemble the assembler routine with the following command:

sdas8051 -losg asmfunc.asm

Then compile and link the assembler routine to the C source file with the following command:

sdcc cfunc.c asmfunc.rel

3.12.4 Assembler Routine (reentrant) (8051)

In this case the second parameter onwards will be passed on the stack, the parameters are pushed from right to left
i.e. before the call the second leftmost parameter will be on the top of the stack (the leftmost parameter is passed in
registers). Here is an example:

extern int asm_func (unsigned char, unsigned char, unsigned char)
reentrant;

int c_func (unsigned char i, unsigned char j, unsigned char k)
reentrant

return asm_func (i, j,k);

int main ()
{
return c_func (10,9, 8);

}
The corresponding (unoptimized) assembler routine is:

.globl _asm_func
_asm_func:
push _bp
mov _bp, sp ;stack contains: _bp, return address, second
parameter, third parameter
mov r2,dpl
mov a,_bp
add a,#0xfd ;jcalculate pointer to the second parameter
mov r0,a
mov a,_bp
add a, #0xfc ;calculate pointer to the rightmost parameter
mov rl,a
mov a,Qro0

add a,@rl

add a,r2 ;calculate the result (= sum of all three
parameters)

mov dpl,a ;return value goes into dptr (cast into int)

mov dph, #0x00
mov sp,_bp
pop _bp

ret

The compiling and linking procedure remains the same, however note the extra entry & exit linkage required for
the assembler code, _bp is the stack frame pointer and is used to compute the offset into the stack for parameters
and local variables.

54

3.13. SUPPORT ROUTINES FOR INTEGER MULTIPLICATIVE OPERATORS CHAPTER 3. USING SDCC

3.12.5 Small-C calling convention

Functions declared as __smallc are called using the Small-C calling convention. This way assembler routines
orginally written for Small-C or code genrated by Small-C can be called from sdcc. Currently variable arguments
are not supported and neither are function definitions using __smallc (as would be useful for calling sdcc-generated
functions from Small-C.

3.13 Support routines for integer multiplicative operators

Depending on the target architecture, some integer multiplicative operators might be implemented by support
routines. These support routines exist in portable C versions to facilitate porting to other MCUs, although
depending on the target, assembler routines might be used instead. The following files contain some of the
described routines, all of them can be found in <installdir>/share/sdcc/lib.

| Function | Description ‘
_mulint.c 16 bit multiplication
_divsint.c signed 16 bit division (calls _divuint)
_divuint.c unsigned 16 bit division
_modsint.c signed 16 bit modulus (calls _moduint)
_moduint.c unsigned 16 bit modulus
_mullong.c 32 bit multiplication
_divslong.c signed 32 division (calls _divulong)
_divulong.c | unsigned 32 division
_modslong.c | signed 32 bit modulus (calls _modulong)
_modulong.c | unsigned 32 bit modulus

In the mcs51, ds390, hc08, s08, pic14 and pic16 backends they are by default compiled as non-reentrant; when
targeting on of these architectures, interrupt service routines should not do any of the above operations. If this is
unavoidable then the above routines will need to be compiled with the --stack-auto option, after which the source
program will have to be compiled with --int-long-reent option. Notice that you don’t have to call these routines
directly. The compiler will use them automatically every time an integer operation is required.

3.14 Floating Point Support

SDCC supports (single precision 4 bytes) floating point numbers; the format is somewhat similar to IEEE, but
it is not IEEE; in particular, denormalized floating -point numbers are not supported. The floating point support
routines are derived from gcc’s floatlib.c and consist of the following routines:

Function Description

_fsadd.c add floating point numbers

_fssub.c subtract floating point numbers
_fsdiv.c divide floating point numbers
_fsmul.c multiply floating point numbers
_fs2uchar.c | convert floating point to unsigned char
_fs2char.c convert floating point to signed char
_fs2uint.c convert floating point to unsigned int
_fs2int.c convert floating point to signed int
_fs2ulong.c | convert floating point to unsigned long
_fs2long.c convert floating point to signed long
_uchar2fs.c | convert unsigned char to floating point
_char2fs.c convert char to floating point number
_uint2fs.c convert unsigned int to floating point
_int2fs.c convert int to floating point numbers
_ulong2fs.c | convert unsigned long to floating point number
_long2fs.c convert long to floating point number

55

3.15. LIBRARY ROUTINES CHAPTER 3. USING SDCC

3.15 Library Routines

<pending: this is messy and incomplete - a little more information is at http://sdcc.sourceforge.net/
wiki/index.php/List_of_the_SDCC_library>

3.15.1 Compiler support routines (_gptrget, _mulint etc.)
3.15.2 Stdclib functions (puts, printf, strcat etc.)
3.15.2.1 <stdio.h>

getchar(), putchar() As usual on embedded systems you have to provide your own getchar () and
putchar () routines. SDCC does not know whether the system connects to a serial line with or without
handshake, LCD, keyboard or other device. And whether a 1f to crlf conversion within putchar () is
intended. You’ll find examples for serial routines f.e. in sdcc/device/lib. For the mcs51 this minimalistic polling
putchar () routine might be a start:

void putchar (char c) {

while (!TI) /x assumes UART is initialized */
7

TI = 0;

SBUF = c;

printf() The default printf () implementation in printf large.c does not support float (except on
ds390), only <NO FLOAT> will be printed instead of the value. To enable floating point output, recompile it
with the option -DUSE_FLOATS=1 on the command line. Use --model-large for the mcs51 port, since this uses a
lot of memory. To enable float support for the pic16 targets, see 4.6.9.

If you’re short on code memory you might want to use printf_small () instead of printf () . For the
mes51 there additionally are assembly versions printf_tiny () (subset of printf using less than 270 bytes)
and printf_fast () and printf_fast_f () (floating-point aware version of printf_fast) which should fit
the requirements of many embedded systems (printf_fast() can be customized by unsetting #defines to not support
long variables and field widths). Be sure to use only one of these printf options within a project.

Feature matrix of different printf options on mcs51.

mcs51 printf printf printf_small | printf_fast printf_fast_f printf_tiny
USE_FLOATS=1
filename printf_large.c printf_large.c printfl.c printf_fast.c printf_fast_f.c printf_tiny.c
”Hello World”
size 1.7k / 2.4k 4.3k / 5.6k 1.2k / 1.8k 1.3k / 1.3k 1.9k / 1.9k 0.44k / 0.44k
small / large
code size 1.4k / 2.0k 2.8k / 3.7k 0.45k / 1.2k / 1.2k 1.6k/1.6k | 0.26k/0.26k
small / large
0.47k (+
_ltoa)
formats cdiopsux cdfiopsux cdosx cdsux cdfsux cdsux
long (32 bit)
sup%)ort X X X X X -
byte arguments b b)) i i
on stack
float format - %t - - %f’ -
float formats
Yoe g))))))
field width X X - X X -

9Range limited to +/- 4294967040, precision limited to 8 digits past decimal

56

http://sdcc.sourceforge.net/wiki/index.php/List_of_the_SDCC_library
http://sdcc.sourceforge.net/wiki/index.php/List_of_the_SDCC_library

3.15. LIBRARY ROUTINES CHAPTER 3. USING SDCC

mcs51 printf printf printf_small | printf_fast printf_fast_f printf_tiny
USE_FLOATS=1
filename printf_large.c printf_large.c printfl.c printf_fast.c printf_fast_f.c printf_tiny.c
”Hello World”
size 1.7k / 2.4k 43k/5.6k | 12k/1.8k | 1.3k/1.3k 1.9k / 1.9k 0.44k / 0.44k
small / large
zfn‘iils;?zr . 1.4k / 2.0k 2.8k / 3.7k 0.45k / 1.2k / 1.2k 1.6k / 1.6k 0.26k / 0.26k
& 0.47k (+
_ltoa)
. 10
Sm“ﬁ; /Sfeed © | 152/259ms | 1.53/2.62 | 0.92/093 | 045/045ms | 0.46/0.46 | 0.45/0.45ms
sma arge ms ms ms
. 1
;ﬁ:ﬁiﬁir " 301/3.61ms | 3.01/3.61 3.51/ 0.22/022ms | 023/023 | 0.25/0.25ms'?
g ms 18.13 ms ms

I3
l‘r’r‘l‘gusfferd : 537/631ms | 5.37/631 871/ 0.40/0.40ms | 0.40/0.40 -
sma arge ms 40.65 ms ms

1S
ﬂ"atusffed ’ ; 749 /2247 - ; 1.04/1.04 ;
small / large ms ms

3.15.2.2 <malloc.h>

As of SDCC 2.6.2 you no longer need to call an initialization routine before using dynamic memory allocation and
a default heap space of 1024 bytes is provided for malloc to allocate memory from. If you need a different heap
size you need to recompile _heap.c with the required size defined in HEAP_SIZE. It is recommended to make a
copy of this file into your project directory and compile it there with:

sdcc —-c _heap.c -D HEAP_SIZE=2048

And then link it with:

sdcc main.rel _heap.rel

3.15.3 Math functions (sinf, powf, sqrtf etc.)
3.15.3.1 <math.h>

See definitions in file <math.h>.

3.15.4 Other libraries

Libraries included in SDCC should have a license at least as liberal as the GPLv2+LE. Exception are pic device
libraries and header files which are derived from Microchip header (.inc) and linker script (.1kr) files. Microchip
requires that "The header files should state that they are only to be used with authentic Microchip devices" which
makes them incompatible with GPL.

If you have ported some library or want to share experience about some code which f.e. falls into any of
these categories Busses (I2C, CAN, Ethernet, Profibus, Modbus, USB, SPI, JTAG ...), Media (IDE, Memory cards,
eeprom, flash...), En-/Decryption, Remote debugging, Realtime kernel, Keyboard, LCD, RTC, FPGA, PID then the
sdcc-user mailing list http://sourceforge.net/p/sdcc/mailman/sdcc—-user/ would certainly like
to hear about it.

Programmers coding for embedded systems are not especially famous for being enthusiastic, so don’t expect
a big hurray but as the mailing list is searchable these references are very valuable. Let’s help to create a climate
where information is shared.

10Execution time of printf("%s%c%s%ocPcPc", "Hello", > *, "World", °I’, °\r’, "\n’); standard 8051 @ 22.1184 MHz, empty putchar()
"TExecution time of printf("%d", -12345); standard 8051 @ 22.1184 MHz, empty putchar()

printf_tiny integer speed is data dependent, worst case is 0.33 ms

3Execution time of printf("%Id", -123456789); standard 8051 @ 22.1184 MHz, empty putchar()

4Execution time of printf("%.3f", -12345.678); standard 8051 @ 22.1184 MHz, empty putchar()

57

http://sourceforge.net/p/sdcc/mailman/sdcc-user/

3.16. MEMORY MODELS CHAPTER 3. USING SDCC

3.16 Memory Models

3.16.1 MCS51 Memory Models
3.16.1.1 Small, Medium, Large and Huge

SDCC allows four memory models for MCS51 code, small, medium, large and huge. Modules compiled with
different memory models should never be combined together or the results would be unpredictable. The library
routines supplied with the compiler are compiled as small, medium and large. The compiled library modules are
contained in separate directories as small, medium and large so that you can link to the appropriate set.

When the medium, large or huge model is used all variables declared without specifying an intrinsic named
address space will be allocated into the external ram, this includes all parameters and local variables (for non-
reentrant functions). Medium model uses pdata and large and huge models use xdata. When the small model is
used variables without an explicitly specified intrinsic named address space are allocated in the internal ram.

The huge model compiles all functions as banked4.1.3 and is otherwise equal to large for now. All other models
compile the functions without bankswitching by default.

Judicious usage of the processor specific intrinsic named address spaces and the "reentrant’” function type will
yield much more efficient code, than using the large model. Several optimizations are disabled when the program
is compiled using the large model, it is therefore recommended that the small model be used unless absolutely
required.

3.16.1.2 External Stack

The external stack (--xstack option) is located in pdata memory (usually at the start of the external ram segment)
and uses all unused space in pdata (max. 256 bytes). When --xstack option is used to compile the program, the
parameters and local variables of all reentrant functions are allocated in this area. This option is provided for
programs with large stack space requirements. When used with the --stack-auto option, all parameters and local
variables are allocated on the external stack (note: support libraries will need to be recompiled with the same
options. There is a predefined target in the library makefile).

The compiler outputs the higher order address byte of the external ram segment into port P2 (see also section
4.1), therefore when using the External Stack option, this port may not be used by the application program.

3.16.2 DS390 Memory Model

The only model supported is Flat 24. This generates code for the 24 bit contiguous addressing mode of the Dallas
DS80C390 part. In this mode, up to four meg of external RAM or code space can be directly addressed. See the
data sheets at www.dalsemi.com for further information on this part.

Note that the compiler does not generate any code to place the processor into 24 bitmode (although tinibios
in the ds390 libraries will do that for you). If you don’t use finibios, the boot loader or similar code must ensure
that the processor is in 24 bit contiguous addressing mode before calling the SDCC startup code.

Like the --model-large option, variables will by default be placed into the XDATA segment.
Segments may be placed anywhere in the 4 meg address space using the usual --*-loc options. Note that if
any segments are located above 64K, the -r flag must be passed to the linker to generate the proper segment

relocations, and the Intel HEX output format must be used. The -r flag can be passed to the linker by using the
option -WI-r on the SDCC command line. However, currently the linker can not handle code segments > 64k.

3.17 Pragmas

Pragmas are used to turn on and/or off certain compiler options. Some of them are closely related to corresponding
command-line options (see section 3.3 on page 29).

Pragmas should be placed before and/or after a function, placing pragmas inside a function body could have

unpredictable results.

SDCC supports the following #pragma directives:

58

3.17. PRAGMAS CHAPTER 3. USING SDCC

* save - this will save most current options to the save/restore stack. See #pragma restore.

* restore - will restore saved options from the last save. saves & restores can be nested. SDCC uses a
save/restore stack: save pushes current options to the stack, restore pulls current options from the stack. See
#pragma save.

callee_saves function1[,function2[,function3...]] - The compiler by default uses a caller saves convention for
register saving across function calls, however this can cause unnecessary register pushing and popping when
calling small functions from larger functions. This option can be used to switch off the register saving con-
vention for the function names specified. The compiler will not save registers when calling these functions,
extra code need to be manually inserted at the entry and exit for these functions to save and restore the regis-
ters used by these functions, this can SUBSTANTIALLY reduce code and improve run time performance of
the generated code. In the future the compiler (with inter procedural analysis) may be able to determine the
appropriate scheme to use for each function call. If --callee-saves command line option is used (see page on
page 32), the function names specified in #pragma callee_saves is appended to the list of functions specified
in the command line.

exclude none | {acc[,b[,dpl[,dph[,bits]]]]} - The exclude pragma disables the generation of pairs of push/pop
instructions in Interrupt Service Routines. The directive should be placed immediately before the ISR func-
tion definition and it affects ALL ISR functions following it. To enable the normal register saving for ISR
functions use #pragma exclude none. See also the related keyword __naked.

less_pedantic - the compiler will not warn you anymore for obvious mistakes, you’re on your own now ;-(.
See also the command line option --less-pedantic on page 32.

More specifically, the following warnings will be disabled: comparison is always [true/false] due to limited
range of data type (94); overflow in implicit constant conversion (158); [the (in)famous] conditional flow
changed by optimizer: so said EVELYN the modified DOG (110); function ’[function name]” must return
value (59).

Furthermore, warnings of less importance (of PEDANTIC and INFO warning level) are disabled, too,
namely: constant value ’[]’, out of range (81); [left/right] shifting more than size of object changed to zero
(116); unreachable code (126); integer overflow in expression (165); unmatched #pragma save and #pragma
restore (170); comparison of ’signed char’ with 'unsigned char’ requires promotion to int (185); ISO C90
does not support flexible array members (187); extended stack by [number] bytes for compiler temp(s) :in
function ’[function name]’: [] (114); function ’[function name]’, # edges [number] , # nodes [number] ,
cyclomatic complexity [number] (121).

disable_warning <nnnn> - the compiler will not warn you anymore about warning number <nnnn>.

nogcse - will stop global common subexpression elimination.

L]

noinduction - will stop loop induction optimizations.

noinvariant - will not do loop invariant optimizations. For more details see Loop Invariants in section8.1.4.

* noiv - Do not generate interrupt vector table entries for all ISR functions defined after the pragma. This
is useful in cases where the interrupt vector table must be defined manually, or when there is a secondary,
manually defined interrupt vector table (e.g. for the autovector feature of the Cypress EZ-USB FX?2). More
elegantly this can be achieved by omitting the optional interrupt number after the __interrupt keyword, see
section 3.8 about interrupts.

L]

nojtbound - will not generate code for boundary value checking, when switch statements are turned into
jump-tables (dangerous). For more details see section 8.1.7.

noloopreverse - Will not do loop reversal optimization

L]

nooverlay - the compiler will not overlay the parameters and local variables of a function.

stackauto- See option --stack-auto and section 3.6 Parameters and Local Variables.

opt_code_speed - The compiler will optimize code generation towards fast code, possibly at the expense of
code size.

59

3.17. PRAGMAS CHAPTER 3. USING SDCC

* opt_code_size - The compiler will optimize code generation towards compact code, possibly at the expense
of code speed.

* opt_code_balanced - The compiler will attempt to generate code that is both compact and fast, as long as
meeting one goal is not a detriment to the other (this is the default).

e std_sdcc89 - Generally follow the C89 standard, but allow SDCC features that conflict with the standard.
¢ std_c89 - Follow the C89 standard and disable SDCC features that conflict with the standard.
¢ std_sdcc99 - Generally follow the C99 standard, but allow SDCC features that conflict with the standard.
¢ std_c99 - Follow the C99 standard and disable SDCC features that conflict with the standard.
* codeseg <name>- Use this name (max. 8 characters) for the code segment. See option --codeseg.
* constseg <name>- Use this name (max. 8 characters) for the const segment. See option --constseg.

The preprocessor SDCPP supports the following #pragma directives:

* pedantic_parse_number (+ | -) - Pedantic parse numbers so that situations like Oxfe-LO_B(3) are parsed
properly and the macro LO_B(3) gets expanded. Default is off. See also the --pedantic-parse-number com-
mand line option on page 30.

Below is an example on how to use this pragma. Note: this functionality is not in conformance with standard!

#pragma pedantic_parse_number +
#define LO_B(x) ((x) & Oxff)

unsigned char foo (void)

{
unsigned char c=0xfe-LO_B(3);

return c;

}

e preproc_asm (+ | -) - switch the __asm __endasm block preprocessing on / off. Default is on. Below is an
example on how to use this pragma.

#pragma preproc_asm -
/* this is a ¢ code nop =*/
#define NOP ;

void foo (void)

{

while (—-1)
NOP

__asm

; this is an assembler nop instruction

; 1t i1s not preprocessed to ’;’ since the asm preprocessing is
disabled

NOP

__endasm;

}

The pragma preproc_asm should not be used to define multilines of assembly code (even if it supports
it), since this behavior is only a side effect of sdcpp __asm __endasm implementation in combi-
nation with pragma preproc_asm and is not in conformance with the C standard. This behavior

60

3.18. DEFINES CREATED BY THE COMPILER

CHAPTER 3. USING SDCC

might be changed in the future sdcpp versions. To define multilines of assembly code you have to
include each assembly line into it’s own __asm __endasm block. Below is an example for multiline

assembly defines.

#define Nop __asm \
nop \
___endasm

#define ThreeNops Nop; \
Nop; \
Nop

void foo (void)

{
ThreeNops;

}

¢ sdcc_hash (+ | -) - Allow "naked" hash in macro definition, for example:

#define DIR_LO(x) #(x & Oxff)

Default is off. Below is an example on how to use this pragma.

#pragma preproc_asm +
#pragma sdcc_hash +

#define ROMCALL (x) \
mov R6_B3, #(x & Oxff) \

mov R7_B3, #((x >> 8) & Oxff)

lcall _ romcall

__asm
ROMCALL (72)
__endasm;

Some of the pragmas are intended to be used to turn-on or off certain optimizations which might cause the compiler
to generate extra stack and/or data space to store compiler generated temporary variables. This usually happens
in large functions. Pragma directives should be used as shown in the following example, they are used to control

options and optimizations for a given function.

#pragma save /* save the current settings */

#pragma nogcse /+ turnoff global subexpression elimination =/
#pragma noinduction /x turn off induction optimizations =/

int foo ()
{

/+ large code «/

}

#pragma restore /* turn the optimizations back on x/

The compiler will generate a warning message when extra space is allocated. It is strongly recommended that the

save and restore pragmas be used when changing options for a function.

3.18 Defines Created by the Compiler

The compiler creates the following #defines:

3.18. DEFINES CREATED BY THE COMPILER

CHAPTER 3. USING SDCC

| #define

Description

_SDCC

Always defined. Version number string (e.g.
SDCC_3_2_0 for sdcc 3.2.0). In older versions SDCC
was always defined instead. From version 2.5.6
SDCC was the version number as an int (ex. 256).

_ SDCC_mcs51 or __SDCC_ds390 or __SDCC_z80,
etc.

depending on the model used (e.g.: -mds390). Older
versions used SDCC_mcs51, etc instead.

_ SDCC_STACK_AUTO

when --stack-auto option is used

_ SDCC_MODEL_SMALL

when --model-small is used

_ SDCC_MODEL_MEDIUM

when --model-medium is used

_ SDCC_MODEL_LARGE

when --model-large is used

_ SDCC_MODEL_HUGE

when --model-huge is used

_ SDCC_USE_XSTACK

when --xstack option is used

_ SDCC_STACK_TENBIT

when -mds390 is used

_ SDCC_MODEL_FLAT24

when -mds390 is used

__SDCC_VERSION_MAJOR

Always defined. SDCC major version number. E.g. 3
for SDCC 3.5.0

_ SDCC_VERSION_MINOR

Always defined. SDCC minor version number. E.g. 5
for SDCC 3.5.0

_ SDCC_VERSION_PATCH

Always defined. SDCC patchlevel version number.
E.g. 0 for SDCC 3.5.0

__SDCC_REVISION

Always defined. SDCC svn revision number. Older
versions of sdcc used SDCC_REVISION instead.

SDCC_PARMS_IN_BANKI1

when --parms-in-bankl is used

_ SDCC_ALL_CALLEE_SAVES

when --all-callee-saves is used

_ SDCC_FLOAT_REENT

when --float-reent is used

_ SDCC_INT_LONG_REENT

when --int-long-reent is used

62

Chapter 4

Notes on supported Processors

4.1 MCS51 variants

MCSS51 processors are available from many vendors and come in many different flavours. While they might differ
considerably in respect to Special Function Registers the core MCS51 is usually not modified or is kept compatible.

4.1.1 pdata access by SFR

With the upcome of devices with internal xdata and flash memory devices using port P2 as dedicated I/O port is
becoming more popular. Switching the high byte for __pdata access which was formerly done by port P2 is then
achieved by a Special Function Register. In well-established MCS51 tradition the address of this sfr is where the
chip designers decided to put it. Needless to say that they didn’t agree on a common name either. So that the startup
code can correctly initialize xdata variables, you should define an sfr with the name _XPAGE at the appropriate
location if the default, port P2, is not used for this. Some examples are:

__sfr __at (0x85) _XPAGE; /+ Ramtron VRS51 family a.k.a. MPAGE =/

__sfr __at (0x92) _XPAGE; /% Cypress EZ-USB family, Texas Instruments
(Chipcon) a.k.a. MPAGE x/

__sfr __at (0x91) _XPAGE; /* Infineon (Siemens) C500 family a.k.a.
XPAGE */

_ sfr _ _at (Oxaf) _XPAGE; /* some Silicon Labs (Cygnal) chips
a.k.a. EMIOCN =/

__sfr __at (Oxaa) _XPAGE; /» some Silicon Labs (Cygnal) chips
a.k.a. EMIOCN =/

There are also devices without anything resembling _XPAGE, but luckily they usually have dual data-pointers. For
these devices a different method can be used to correctly initialize xdata variables. A default implementation is
already in crtxinit.asm but it needs to be assembled manually with DUAL_DPTR set to 1.

For more exotic implementations further customizations may be needed. See section ?? for other possibilities.

4.1.2 Other Features available by SFR

Some MCS51 variants offer features like Dual DPTR, multiple DPTR, decrementing DPTR, 16x16 Multiply. These
are currently not used for the MCS51 port. If you absolutely need them you can fall back to inline assembly or
submit a patch to SDCC.

4.1.3 Bankswitching

Bankswitching (a.k.a. code banking) is a technique to increase the code space above the 64k limit of the 8051.

63

4.1. MCS51 VARIANTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.1.3.1 Hardware

8000-FFFF | bankl bank2 | bank3 |
0000-7FFF | common
SiLabs C8051F120 example

Usually the hardware uses some sfr (an output port or an internal sfr) to select a bank and put it in the
banked area of the memory map. The selected bank usually becomes active immediately upon assignment to this
sfr and when running inside a bank it will switch out this code it is currently running. Therefor you cannot jump
or call directly from one bank to another and need to use a so-called trampoline in the common area. For SDCC
an example trampoline is in crtbank.asm and you may need to change it to your 8051 derivative or schematic. The
presented code is written for the C8051F120.

When calling a banked function SDCC will put the LSB of the functions address in register RO, the MSB
in R1 and the bank in R2 and then call this trampoline __sdcc_banked_call. The current selected bank is saved on
the stack, the new bank is selected and an indirect jump is made. When the banked function returns it jumps to
__sdcc_banked_ret which restores the previous bank and returns to the caller.

4.1.3.2 Software

When writing banked software using SDCC you need to use some special keywords and options. You also need to
take over a bit of work from the linker.

To create a function that can be called from another bank it requires the keyword __banked. The caller
must see this in the prototype of the callee and the callee needs it for a proper return. Called functions within the
same bank as the caller do not need the __banked keyword nor do functions in the common area. Beware: SDCC
does not know or check if functions are in the same bank. This is your responsibility!

Normally all functions you write end up in the segment CSEG. If you want a function explicitly to reside
in the common area put it in segment HOME. This applies for instance to interrupt service routines as they should
not be banked.

Functions that need to be in a switched bank must be put in a named segment. The name can be mostly
anything up to eight characters (e.g. BANK1). To do this you either use --codeseg BANKI1 (See 3.3.4) on the
command line when compiling or #pragma codeseg BANKI1 (See 3.17) at the top of the C source file. The segment
name always applies to the whole source file and generated object so functions for different banks need to be
defined in different source files.

When linking your objects you need to tell the linker where to put your segments. To do this you use the
following command line option to SDCC: -WI1-b BANK1=0x18000 (See 3.3.5). This sets the virtual start address
of this segment. It sets the banknumber to 0x01 and maps the bank to 0x8000 and up. The linker will not check for
overflows, again this is your responsibility.

4.1.4 MCS51/DS390 Startup Code

The compiler triggers the linker to link certain initialization modules from the runtime library called
crt<something>. Only the necessary ones are linked, for instance crtxstack.asm (GSINIT1, GSINITS) is
not linked unless the --xstack option is used. These modules are highly entangled by the use of special
segments/areas, but a common layout is shown below:

(main.asm)

.area HOME (CODE)

__interrupt_vect:
l1jmp __sdcc_gsinit_startup

(crtstart.asm)

.area GSINITO (CODE)

__sdcc_gsinit_startup::
mov sp,#__start__stack - 1

(crtxstack.asm)

64

4.1. MCS51 VARIANTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

.area GSINIT1 (CODE)
_ sdcc_init_xstack::
; Need to initialize in GSINIT1 in case the user’s __sdcc_external_startup uses the
xstack.

mov __ XPAGE, # (__start_ xstack >> 8)
mov _spx,#__start_ _xstack

(crtstart.asm)

.area GSINIT2 (CODE)
lcall ___sdcc_external_startup
mov a,dpl
jz __sdcc_init_data
1jmp ___sdcc_program_startup
_ sdcc_init_data:

(crtxinit.asm)

.area GSINIT3 (CODE)
__mcs51_genXINIT::

mov rl,#1_XINIT

mov a,rl

orl a,# (1_XINIT >> 8)

jz 00003$%

mov r2,# ((1_XINIT+255) >> 8)

mov dptr, #s_XINIT

mov r0, #s_XISEG

mov __ XPAGE, # (s_XISEG >> 8)
00001$: clr a

movc a,@a+dptr

movx @r0,a

inc dptr

inc rO

cjne r0,#0,00002$

inc ___XPAGE
00002$: djnz rl,00001$

djnz r2,00001$

mov __ XPAGE, #0xFF
00003s:

(crtclear.asm)

.area GSINIT4 (CODE)
__mcs51_genRAMCLEAR: :

clr a

mov r0,# (1_IRAM-1)
00004$: mov Qr0,a

djnz r0,00004$
; _mcs51_genRAMCLEAR() end

(crtxclear.asm)

.area GSINIT4 (CODE)
__mcs51_genXRAMCLEAR: :
mov r0, #1_PSEG
mov a,r0
orl a,#(1_PSEG >> 8)
jz 000063
mov rl, #s_PSEG
mov __ XPAGE, # (s_PSEG >> 8)
clr a
00005$: movx @rl,a
inc rl
djnz r0,00005%

65

4.1. MCS51 VARIANTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

00006$:
mov r0, #1_XSEG
mov a,r0
orl a,#(1_XSEG >> 8)
jz 00008$
mov rl,# ((1_XSEG + 255) >> 8)
mov dptr, #s_XSEG
clr a

00007$: movx @dptr,a
inc dptr
djnz r0,00007$

djnz rl,00007$
000085s:

(crtxstack.asm)

.area GSINITS (CODE)
; Need to initialize in GSINITS because __mcs51_genXINIT modifies __ XPAGE
; and __mcs51_genRAMCLEAR modifies _spx.

mov __ XPAGE, #(__start_ xstack >> 8)
mov _spx,#__start_ xstack

(application modules)
.area GSINIT (CODE)

(main.asm)

.area GSFINAL (CODE)

ljmp ___sdcc_program_startup

.area HOME (CODE)

.area CSEG (CODE)
__sdcc_program_startup:

lcall _main

; return from main will lock up
sjmp .

One of these modules (crtstart.asm) contains a call to the C routine _sdcc_external_startup() at the start of the
CODE area. This routine is also in the runtime library and returns O by default. If this routine returns a non-
zero value, the static & global variable initialization will be skipped and the function main will be invoked.
Otherwise static & global variables will be initialized before the function main is invoked. You could add an
_sdcc_external_startup() routine to your program to override the default if you need to setup hardware or perform
some other critical operation prior to static & global variable initialization. On some mcs51 variants __xdata mem-
ory has to be explicitly enabled before it can be accessed or if the watchdog needs to be disabled, this is the place
to do it. The startup code clears all internal data memory, 256 bytes by default, but from O to n-1 if --iram-sizen is
used. (recommended for Chipcon CC1010).
See also the compiler option --no-xinit-opt and section 4.1 about MCS51-variants.

While these initialization modules are meant as generic startup code there might be the need for customiza-
tion. Let’s assume the return value of _sdcc_external_startup() in crtstart.asm should not be checked (or
_sdcc_external_startup() should not be called at all). The recommended way would be to copy crtstart.asm (f.e.
from http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/lib/mecs51/crtstart.
asm) into the source directory, adapt it there, then assemble it with sdas8051 -plosgff' crtstart.asm and when
linking your project explicitly specify crtstart.rel. As a bonus a listing of the relocated object file crtstart.rst is
generated.

1”_plosgff” are the assembler options used in http://sdcc.svn.sourceforge.net /viewve/sdec/trunk/sdec/device/

lib/mcs51/Makefile.in?view=markup

66

http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/lib/mcs51/crtstart.asm
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/lib/mcs51/crtstart.asm
http://sdcc.svn.sourceforge.net/viewvc/sdcc/trunk/sdcc/device/lib/mcs51/Makefile.in?view=markup
http://sdcc.svn.sourceforge.net/viewvc/sdcc/trunk/sdcc/device/lib/mcs51/Makefile.in?view=markup

4.2. DS400 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.2 DS400 port

The DS80C400 microcontroller has a rich set of peripherals. In its built-in ROM library it includes functions to
access some of the features, among them is a TCP stack with IP4 and IP6 support. Library headers (currently
in beta status) and other files are provided at ftp://ftp.dalseni.com/pub/tini/ds80c400/c_libraries/sdcc/
index.html.

4.3 The 780, Z180, Rabbit 2000/3000, Rabbit 3000A and GBZS80 ports

SDCC can target the Z80, Z180, Rabbit 2000/3000, Rabbit 3000A and LR35902, the Nintendo GameBoy’s Z80-
like gbz80.

When a frame pointer is used, it resides in IX. Register A, B, C, D, E, H, L and IY are used as a temporary
registers for holding variables. Return values for the Z80 port are stored in L (one byte), HL (two bytes), or
DEHL (four bytes). The gbz80 port use the same set of registers for the return values, but in a different order of
significance: E (one byte), DE (two bytes), or HLDE (four bytes).

When enabling optimizations using —opt-code size and a sufficiently high value for —max-allocs-per-node sdcc
typically generates much better code for these architectures than many other compilers. A comparison of com-
pilers for these architecture can be found at http://sdcc.sourceforge.net/wiki/index.php/280_
code_size.

4.3.1 Startup Code

On the Z80 the startup code is inserted by linking with crt0O.rel which is generated from sdcc/device/lib/z80/crt0.s.
If you need a different startup code you can use the compiler option --no-std-crtO and provide your own crt0.rel.
When using a custom crt0.rel it needs to be listed first when linking.

4.3.2 Complex instructions

The Z80 and some derivatives support complex instructions, such as 1dir, cpir, SDCC only emits these instruc-
tions for functions in the standard library. Thus, e.g. copying one array into another is more efficient when using
memcpy() than by using a a user-written loop.

Depending on the target, code generation options and the parameters to the call, SDCC emits Idir for memcpy(),
1dir or Isidr for memset(), 1di for strcpy(), 1di for strncpy(). Other library functions use the complex instructions as
well, but for those, function calls are generated.

4.3.3 Calling convention

By default, all parameters are passed on the stack, right-to-left. 8-bit return values are passed in 1, 16-bit values
in hl, 32-bit values in dehl. Except for the GBZ80, where 8-bit values are passed in e, 16-bit values in de, 32-bit
values in hlde. Larger return values are passed in memory in a location specified by the caller through a hidden
pointer argument.

There are three other calling conventions supported, which can be specified using the keywords __smallc,
__788dk_fastcall (not on GBZ80) and __z88dk_callee. They are primarily intended for compability with libraries
written for other compilers. For __smallc, the parameters are passed on the stack, left-to-right, but variable ar-
guments are currently not supported. For _ z88dk_fastcall, there may be only one parameter of at most 32 bits,
which is passed the same way as the return value. For __z88dk_callee, parameters are passed on the stack, but the
stack is not adjusted for the parameters after the call (thus the callee has to do this instead). __z88dk_callee can be
combined with __smallc.

4.3.4 Unsafe reads

Usually, Z80-based systems (except for the Gameboy) have separate I/O and memory spaces, and any memory
location can be read without side-effects. For such systems, the option —allow-unsafe-reads can be used to enable
some extra optimizations.

67

ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/sdcc/index.html
ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/sdcc/index.html
http://sdcc.sourceforge.net/wiki/index.php/Z80_code_size
http://sdcc.sourceforge.net/wiki/index.php/Z80_code_size

4.4. THE HCO8 AND S08 PORTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.4 The HC08 and S08 ports

The port to the Freescale/Motorola HCO8 and SO8 does not yet generate code as compact as that generated by
some non-free compilers. A comparison of compilers for these architecture can be found at http://sdcc.
sourceforge.net/wiki/index.php/Hc08_code_size.

4.4.1 Startup Code

The HCOS startup code follows the same scheme as the MCS51 startup code.

4.5 The PIC14 port

The PIC14 port adds support for Microchip™ PIC™ MCUs with 14 bit wide instructions. This port is not yet
mature and still lacks many features. However, it can work for simple code.
Currently supported devices include:

10F320, 10F322, 10LF320, 10LF322

12F609, 12F615, 12F617, 12F629, 12F635, 12F675, 12F683

12F752

12HV752

16C62, 16C63A, 16C65B

16C71, 16C72, 16C73B, 16C74B

16C432, 16C433

16C554, 16C557, 16C558

16C620, 16C620A, 16C621, 16C621A, 16C622, 16C622A

16C710, 16C711, 16C715, 16C717, 16C745, 16C765, 16C770, 16C771, 16C773, 16C774, 16C781, 16C782
16C925, 16C926

16CR73, 16CR74, 16CR76, 16CR77

16CR620A

16F72 ,16F73, 16F74, 16F76, 16F77

16F84, 16F84A, 16F87, 16F88

16F610, 16F616, 16F627, 16F627A, 16F628, 16F628A, 16F630, 16F631, 16F636, 16F639, 16F648A
16F676, 16F677, 16F684, 16F685, 16F687, 16F688, 16F689, 16F690

16F707, 16F716, 16F720, 16F721, 16F722, 16F722A, 16F723, 16F723A, 16F724, 16F726, 16F727
16F737, 16F747, 16F753, 16F767, 16F777, 16F785

16F818, 16F819, 16F870, 16F871, 16F872, 16F873, 16F873A, 16F874, 16F874A, 16F876, 16F876A
16F877, 16F877A, 16F882, 16F883, 16F884, 16F886, 16F887

16F913, 16F914, 16F916, 16F917, 16F946

16LF74, 16LF76, 16LF77

16LF84, 16LF84A, 16LF87, 16LF88

16LF627, 16LF627A, 16LF628, 16LF628A, 16LF648A

16LF707, 16LF720, 16LF721, 16LF722, 16LF722A, 16LF723, 16LF723A, 16LF724, 16LF726, 16LF727
16LF747, 16LF767, 16LF777

16LF818, 16LF819, 16LF870, 16LF871, 16LF872, 16LF873, 16LF873A, 16LF874, 16LF874A
16LF876, 16LF876A, 16LF877, 16LF877A

16HV610, 16HV616, 16HV753, 16HV785

Supported devices with enhanced cores:

12F1501, 12F1571, 12F1572, 12F1612, 12F1822, 12F1840

12LF1501, 12LF1552, 12LF1571, 12LF1572, 12LF1612, 12LF1822, 12LF1840, 12LF1840T39A,
12LF1840T48A

16F1454, 16F1455, 16F1458, 16F1459

16F1503, 16F1507, 16F1508, 16F1509, 16F1512, 16F1513, 16F1516, 16F1517, 16F1518, 16F1519

16F1526, 16F1527, 16F1574, 16F1575, 16F1578, 16F1579

16F1613, 16F1614, 16F1615, 16F1618, 16F1619

68

http://sdcc.sourceforge.net/wiki/index.php/Hc08_code_size
http://sdcc.sourceforge.net/wiki/index.php/Hc08_code_size

4.5. THE PIC14 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

16F1703, 16F1704, 16F1705, 16F1707, 16F1708, 16F1709, 16F1713, 16F1716, 16F1717, 16F1718, 16F1719

16F1764, 16F1765, 16F1768, 16F1769, 16F1773, 16F1776, 16F1777, 16F1778, 16F1779

16F1782, 16F1783, 16F1784, 16F1786, 16F1787, 16F1788, 16F1789

16F1823, 16F1824, 16F1825, 16F1826, 16F1827, 16F1828, 16F1829, 16F1829LIN, 16F1847

16F1933, 16F1934, 16F1936, 16F1937, 16F1938, 16F1939, 16F1946, 16F1947

16F18313, 16F18323, 16F18324, 16F18325, 16F18344, 16F18345,

16F18855, 16F18875

16LF1454, 16LF1455, 16LF1458, 16LF1459

16LF1503, 16LF1507, 16LF1508, 16LF1509, 16LF1512, 16LF1513, 16LF1516, 16LF1517, 16LF1518,
16LF1519,

16LF1526, 16LF1527

16LF1554, 16LF1559, 16LF1566, 16LF1567, 16LF1574, 16LF1575, 16LF1578, 16LF1579

16LF1613, 16LF1614, 16LF1615, 16LF1618, 16LF1619

16LF1703, 16LF1704, 16LF1705, 16LF1707, 16LF1708, 16LF1709, 16LF1713, 16LF1716, 16LF1717,
16LF1718, 16LF1719

16LF1764, 16LF1765, 16LF1768, 16LF1769, 16LF1773, 16LF1776, 16LF1777, 16LF1778, 16LF1779

16LF1782, 16LF1783, 16LF1784, 16LF1786, 16LF1787, 16LF1788, 16LF1789,

16LF1823, 16LF1824, 16LF1824T39A

16LF1825, 16LF1826, 16LF1827, 16LF1828, 16LF1829, 16LF1847

16LF1902, 16LF1903, 16LF1904, 16LF1906, 16LF1907

16LF1933, 16LF1934, 16LF1936, 16LF1937, 16LF1938, 16LF1939, 16LF1946, 16LF1947

16LF18313, 16LF18323, 16LF18324, 16LF18325, 16LF18344, 16LF18345

16LF18855, 16LF18875

An up-to-date list of currently supported devices can be obtained via sdcc -mpicl4d -phelp foo.c (foo.c
must exist...).

4.5.1 PIC Code Pages and Memory Banks

The linker organizes allocation for the code page and RAM banks. It does not have intimate knowledge of the code
flow. It will put all the code section of a single .asm file into a single code page. In order to make use of multiple
code pages, separate asm files must be used. The compiler assigns all static functions of a single .c file into the
same code page.

To get the best results, follow these guidelines:

1. Make local functions static, as non static functions require code page selection overhead.
Due to the way sdcc handles functions, place called functions prior to calling functions in the file wherever
possible: Otherwise sdcc will insert unnecessary pagesel directives around the call, believing that the called
function is externally defined.

2. For devices that have multiple code pages it is more efficient to use the same number of files as pages: Use
up to 4 separate .c files for the 16F877, but only 2 files for the 16F874. This way the linker can put the code
for each file into different code pages and there will be less page selection overhead.

3. And as for any 8 bit micro (especially for PIC14 as they have a very simple instruction set), use ‘unsigned
char’ wherever possible instead of ‘int’.
4.5.2 Adding New Devices to the Port
Adding support for a new 14 bit PIC MCU requires the following steps:

1. Create a new device description.
Each device is described in two files: pic16f*.h and pic16f*.c. These files primarily define SFRs, structs
to access their bits, and symbolic configuration options. Both files can be generated from gputils’ .inc files
using the perl script support/scripts/inc2h.pl. This file also contains further instructions on how
to proceed.

69

4.5. THE PIC14 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

2. Copy the .h file into SDCC’s include path and either add the .c file to your project or copy it to
device/lib/pic/1libdev. Afterwards, rebuild and install the libraries.

3. Edit picl4devices.txt in SDCC’s include path (device/include/pic/ in the source tree or
/usr/local/share/sdcc/include/pic after installation).
You need to add a device specification here to make the memory layout (code banks, RAM, aliased memory
regions, ...) known to the compiler. Probably you can copy and modify an existing entry. The file format is
documented at the top of the file.

4.5.3 Interrupt Code

For the interrupt function, use the keyword __interrupt with level number of 0 (PIC14 only has 1 interrupt so this
number is only there to avoid a syntax error - it ought to be fixed). E.g.:

void Intr(void) __interrupt O

{
TOIF = 0; /x Clear timer interrupt x/

}

4.5.4 Configuration Bits

Configuration bits (also known as fuses) can be configured using ‘°___code’ and °__at’ modifiers. Possible options
should be ANDed and can be found in your processor header file. Example for PIC16F88:

#include <picl6f88.h> //Contains config addresses and options
#include <stdint.h> //Needed for uintlé_t

static __ _code uintlé6_t __ _at (_CONFIGl) configwordl = _INTRC_IO &
_CP_ALL & _WDT_OFF & [...];
static __code uintl6_t _ _at (_CONFIG2) configword2

[...1;

Although data type is ignored if the address (__at ()) refers to a config word location, using a type large enough
for the configuration word (uint16_t in this case) is recommended to prevent changes in the compiler (implicit,
early range check and enforcement) from breaking the definition.

If your processor header file doesn’t contain config addresses you can declare it manually or use a literal
address:

static __code uintl6_t __at (0x2007) configwordl = _INTRC_IO &
_CP_ALL & _WDT_OFF & [...];

4.5.5 Linking and Assembling

For assembling you can use either GPUTILS’ gpasm.exe or MPLAB’s mpasmwin.exe. GPUTILS are available
from http://sourceforge.net/projects/gputils. For linking you can use either GPUTILS’ gplink
or MPLAB’s mplink.exe. If you use MPLAB and an interrupt function then the linker script file vectors section
will need to be enlarged to link with mplink.

Pic device specific header and c source files are automatically generated from MPLAB include files, which
are published by Microchip with a special requirement that they are only to be used with authentic Microchip
devices. This reqirement prevents to publish generated header and c source files under the GPL compatible license,
so they are located in non-free directory (see section 2.3). In order to include them in include and library search
paths, the --use-non-free command line option should be defined.

NOTE: the compiled code, which use non-free pic device specific libraries, is not GPL compatible!

Here is a Makefile using GPUTILS:

70

http://sourceforge.net/projects/gputils

4.5. THE PIC14 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

sdcc -V —--use-non-free -mpicl4d -pl6f877 -c $<
$(PRJ) .hex: $(0OBJS)
gplink -m -s $(PRJ).lkr -o $(PRJ).hex $(OBJS) libsdcc.lib

Here is a Makefile using MPLAB:

.Cc.0:
sdcc =S -V —--use-non-free -mpicl4 -pl6f877 $<
mpasmwin /g /o $*.asm

$ (PRJ) .hex: $(OBJS)
mplink /v $(PRJ).lkr /m $(PRJ).map /o $(PRJ).hex $(OBJS)
libsdcc.1lib

Please note that indentations within a Makefile have to be done with a tabulator character.

4.5.6 Command-Line Options

Besides the switches common to all SDCC backends, the PIC14 port accepts the following options (for an updated
list see sdcc --help):

--debug-xtra emit debug info in assembly output
--no-pcode-opt disable (slightly faulty) optimization on pCode

--stack-loc sets the lowest address of the argument passing stack (defaults to a suitably large shared databank to
reduce BANKSEL overhead)

--stack-size sets the size if the argument passing stack (default: 16, minimum: 4)

--use-non-free make non-free device headers and libraries available in the compiler’s search paths (implicit -I and
-L options)

--no-extended-instructions forbid use of the extended instruction set (e.g., ADDFSR)

4.5.7 Environment Variables

The PIC14 port recognizes the following environment variables:

SDCC_PIC14_SPLIT _LOCALS If set and not empty, sdcc will allocate each temporary register (the ones called
rOxNNNN) in a section of its own. By default (if this variable is unset), sdcc tries to cluster registers in
sections in order to reduce the BANKSEL overhead when accessing them.

4.5.8 The Library

The PIC14 library currently only contains support routines required by the compiler to implement multiplication,
division, and floating point support. No libc-like replacement is available at the moment, though many of the
common sdcc library sources (in device/11ib) should also compile with the PIC14 port.

4.5.8.1 Enhanced cores

SDCC/PIC14 has experimental support for devices with the enhanced 14-bit cores (such as pic12f1822). Due to dif-
ferences in required code, the libraries provided with SDCC (1ibm.1lib and 1ibsdcc.1ib) are now provided in
two variants: 1ibm.1lib and 1ibsdcc.1lib are compiled for the regular, non-enhanced devices. 1ibme.1lib
and libsdcce.1lib (note the trailing ’e’) are compiled for enhanced devices. When linking manually, make
sure to select the proper variant!

When SDCC is used to invoke the linker, SDCC will automatically select the 1ibsdcc . 1ib-variant suitable
for the target device. However, no such magic has been conjured up for 1ibm. 1ib!

71

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.5.8.2 Accessing bits of special function registers

Individual bits within SFRs can be accessed either using <sfrname>bits.<bitname> or using a shorthand
<bitname>, which is defined in the respective device header for all <bitname>s. In order to avoid polluting
the global namespace with the names of all the bits, you can #define NO_BIT_DEFINES before inclusion of
the device header file.

4.5.8.3 Naming of special function registers

If NO_BIT_DEFINES is used, individual bits of the SFRs can be accessed as <sfrname>bits.<bitname>.
With the 3.1.0 release, the previously used <sfrname>_bits.<bitname> (note the underscore) is depre-
cated. This was done to align the naming conventions with the PIC16 port and competing compiler vendors. To
avoid polluting the global namespace with the legacy names, you can prevent their definition using #define
NO_LEGACY_NAMES prior to the inclusion of the device header.

Youmust also #define NO_BIT_DEFINES in order to access SFRs as <sfrname>bits.<bitname>,
otherwise <bitname> will expand to <sfrname>bits.<bitname>, yielding the undefined expression
<sfrname>bits.<sfrname>bits.<bitname>.

4.5.8.4 error: missing definition for symbol ¢“__gptrgetl”

The PIC14 port uses library routines to provide more complex operations like multiplication, division/modulus
and (generic) pointer dereferencing. In order to add these routines to your project, you must link with PIC14’s
libsdcc.lib. For single source file projects this is done automatically, more complex projects must add
libsdcc.1lib to the linker’s arguments. Make sure you also add an include path for the library (using the -I
switch to the linker)!

4.5.8.5 Processor mismatch in file “XXX”.

This warning can usually be ignored due to the very good compatibility amongst 14 bit PIC devices.

You might also consider recompiling the library for your specific device by changing the ARCH=p16f877
(default target) entry in device/lib/pic/Makefile.in and device/lib/pic/Makefile to reflect
your device. This might even improve performance for smaller devices as unnecessary BANKSELs might be
removed.

4.5.9 Known Bugs
4.5.9.1 Function arguments

Functions with variable argument lists (like printf) are not yet supported. Similarly, taking the address of the first
argument passed into a function does not work: It is currently passed in WREG and has no address...

4.5.9.2 Regression tests fail

Though the small subset of regression tests in src/regression passes, SDCC regression test suite does not, indicating
that there are still major bugs in the port. However, many smaller projects have successfully used SDCC in the
past...

4.6 The PIC16 port

The PIC16 port adds support for Microchip™ PIC™ MCUs with 16 bit wide instructions. This port is not yet ma-

ture and still lacks many features. However, it can work for simple code. Currently this family of microcontrollers
contains the PIC18Fxxx and PIC18Fxxxx; devices supported by the port include:

18F13K22 18F13K50

18F14K22 18F14K50

18F23K20 18F23K22

18F24J10 18F24J11 18F24J50 18F24K20 18F24K22 18F24K50

18F25J10 18F25J11 18F25J50 18F25K20 18F25K22 18F25K50 18F25K80

72

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

18F26J11 18F26J13 18F26J50 18F26J53 18F26K20 18F26K22 18F26K80
18F27J13 18F27153

18F43K20 18F43K22

18F44J10 18F44J11 18F44J50 18F44K20 18F44K22

18F45J10 18F45J11 18F45J50 18F45K20 18F45K22 18F45K50 18F45K80
18F46J11 18F46J13 18F46J50 18F46J53 18F46K20 18F46K22 18F46K80
18F47J13 18F47153

18F63J11 18F63190

18F64J11 18F64190

18F65J10 18F65J11 18F65J15 18F65J50 18F65J90 18F65194 18F65K22 18F65K80 18F65K90
18F66J10 18F66J11 18F66J15 18F66J16 18F66J50 18F66]55 18F66J60 18F66]65
18F66J90 18F66J93 18F66J94 18F66J99 18F66K22 18F66K80 18F66K90
18F67J10 18F67J11 18F67J50 18F67J60 18F67J90 18F67J93 18F67J94 18F67K22 18F67K90
18F83J11 18F83J90

18F84J11 18F84J90

18F85J10 18F85J11 18F85J15 18F85J50 18F85J90 18F85J94 18F85K22 18F85K90
18F86J10 18F86J11 18F86J15 18F86J16 18F86J50 18F86J55 18F86J60 18F86J65
18F86J72 18F86J90 18F86J93 18F86J94 18F86J99 18F86K22 18F86K90

18F87J10 18F87J11 18F87J50 18F87J60 18F87J72 18F87J90 18F87J93 18F87J94 18F87K22 18F87K90
18F95J94 18F96J60 18F96J65 18F96J94 18F96J99

18F97J60 18F97J94

18F242 18F248 18F252 18F258

18F442 18F448 18F452 18F458

18F1220 18F1230

18F1320 18F1330

18F2220 18F2221

18F2320 18F2321 18F2331

18F2410 18F2420 18F2423 18F2431 18F2439 18F2450 18F2455 18F2458 18F2480
18F2510 18F2515 18F2520 18F2523 18F2525 18F2539 18F2550 18F2553 18F2580 18F2585
18F2610 18F2620 18F2680 18F2682 18F2685

18F4220 18F4221

18F4320 18F4321 18F4331

18F4410 18F4420 18F4423 18F4431 18F4439 18F4450 18F4455 18F4458 18F4480
18F4510 18F4515 18F4520 18F4523 18F4525 18F4539 18F4550 18F4553 18F4580 18F4585
18F4610 18F4620 18F4680 18F4682 18F4685

18F6310 18F6390 18F6393

18F6410 18F6490 18F6493

18F6520 18F6525 18F6527 18F6585

18F6620 18F6621 18F6622 18F6627 18F6628 18F6680

18F6720 18F6722 18F6723

18F8310 18F8390 18F8393

18F8410 18F8490 18F8493

18F8520 18F8525 18F8527 18F8585

18F8620 18F8621 18F8622 18F8627 18F8628 18F8680

18F8720 18F8722 18F8723

18LF13K22 18LF13K50

18LF14K22 18LF14K50

18LF23K22 18LF24J10 18LF24J11 18LF24J50 18LF24K22 18LF24K50
18LF25J10 18LF25J11 18LF25J50 18LF25K22 18LF25K50 18LF25K80
18LF26J11 18LF26J13 18LF26J50 18LF26J53 18LF26K22 18LF26K80

18LF27J13 18LF27153

18LF43K22

18LF44J10 18LF44J11 18LF44J50 18LF44K22

18LF45J10 18LF45J11 18LF45J50 18LF45K22 18LF45K50 18LF45K80
18LF46J11 18LF46J13 18LF46J50 18LF46J53 18LF46K22 18LF46K80

18LF47J13 18LF47]53

73

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

18LF65K80

18LF66KS80

18LF242 18LF248 18LF252 18LF258

18LF442 18LF448 18LF452 18LF458

18LF1220 18LF1230

18LF1320 18LF1330

18LF2220 18LF2221

18LF2320 18LF2321 18LF2331

18LF2410 18LF2420 18LF2423 18LF2431 18LF2439 18LF2450 18LF2455 18LF2458 18LF2480
18LF2510 18LF2515 18LF2520 18LF2523 18LF2525 18LF2539 18LF2550 18LF2553 18LF2580 18LF2585
18LF2610 18LF2620 18LF2680 18LF2682 18LF2685

18LF4220 18LF4221

18LF4320 18LF4321 18LF4331

18LF4410 18LF4420 18LF4423 18LF4431 18LF4439 18LF4450 18LF4455 18LF4458 18LF4480
18LF4510 18LF4515 18LF4520 18LF4523 18LF4525 18LF4539 18LF4550 18LF4553 18LF4580 18LF4585
18LF4610 18LF4620 18LF4680 18LF4682 18LF4685

18LF6310 18LF6390 18LF6393

18LF6410 18LF6490 18LF6493

18LF6520 18LF6525 18LF6527 18LF6585

18LF6620 18LF6621 18LF6622 18LF6627 18LF6628 18LF6680

18LF6720 18LF6722 18LF6723

18LF8310 18LF8390 18LF8393

18LF8410 18LF8490 18LF8493

18LF8520 18LF8525 18LF8527 18LF8585

18LF8620 18LF8621 18LF8622 18LF8627 18LF8628 18LF8680

18LF8720 18LF8722 18LF8723

An up-to-date list of supported devices is also available via’sdcc -mpiclé -plist’.

4.6.1 Global Options

PIC16 port supports the standard command line arguments as supposed, with the exception of certain cases that
will be mentioned in the following list:

--callee-saves See --all-callee-saves

--use-non-free Make non-free device headers and libraries available in the compiler’s search paths (implicit -I and
-L options).

4.6.2 Port Specific Options

The port specific options appear after the global options in the sdcc --help output.

4.6.2.1 Code Generation Options
These options influence the generated assembler code.

--pstack-model=[model] Used in conjunction with the command above. Defines the stack model to be used, valid
stack models are:

small Selects small stack model. 8 bit stack and frame pointers. Supports 256 bytes stack size.

large Selects large stack model. 16 bit stack and frame pointers. Supports 65536 bytes stack size.

--pno-banksel Do not generate BANKSEL assembler directives.

--extended Enable extended instruction set/literal offset addressing mode. Use with care!

74

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.6.2.2 Optimization Options

--obanksel=n Set optimization level for inserting BANKSELSs.

0 no optimization
checks previous used register and if it is the same then does not emit BANKSEL, accounts only
for labels.

2 tries to check the location of (even different) symbols and removes BANKSELSs if they are in the
same bank.

Important: There might be problems if the linker script has data sections across bank borders!

--denable-peeps Force the usage of peepholes. Use with care.
--no-optimize-goto Do not use (conditional) BRA instead of GOTO.
--optimize-cmp Try to optimize some compares.

--optimize-df Analyze the dataflow of the generated code and improve it.

4.6.2.3 Assembling Options

--asm= Sets the full path and name of an external assembler to call.

--mplab-comp MPLAB compatibility option. Currently only suppresses special gpasm directives.

4.6.2.4 Linking Options
--link= Sets the full path and name of an external linker to call.

--preplace-udata-with=[kword] Replaces the default udata keyword for allocating unitialized data variables with

[kword]. Valid keywords are: "udata_acs", "udata_shr", "udata_ovr".
--ivt-loc=n Place the interrupt vector table at address n. Useful for bootloaders.
--nodefaultlibs Do not link default libraries when linking.

--use-crt= Use a custom run-time module instead of the default (crt0Oi).

--no-crt Don’t link the default run-time modules

4.6.2.5 Debugging Options
Debugging options enable extra debugging information in the output files.
--debug-xtra Similar to --debug, but dumps more information.

--debug-ralloc Force register allocator to dump <source>.d file with debugging information. <source> is the name
of the file being compiled.

--pcode-verbose Enable pcode debugging information in translation.
--calltree Dump call tree in .calltree file.

--gstack Trace push/pops for stack pointer overflow.

75

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.6.3 Environment Variables

There is a number of environmental variables that can be used when running SDCC to enable certain optimiza-
tions or force a specific program behaviour. these variables are primarily for debugging purposes so they can be
enabled/disabled at will.

Currently there is only two such variables available:

OPTIMIZE_BITFIELD_POINTER_GET When this variable exists, reading of structure bitfields is optimized
by directly loading FSRO with the address of the bitfield structure. Normally SDCC will cast the bitfield
structure to a bitfield pointer and then load FSRO. This step saves data ram and code space for functions
that make heavy use of bitfields. (i.e., 80 bytes of code space are saved when compiling malloc.c with this
option).

NO_REG_OPT Do not perform pCode registers optimization. This should be used for debugging purposes. If
bugs in the pcode optimizer are found, users can benefit from temporarily disabling the optimizer until the
bug is fixed.

4.6.4 Preprocessor Macros

PIC16 port defines the following preprocessor macros while translating a source.

Macro Description
__SDCC_picl6 Port identification
pic18fxxxx MCU Identification. xxxx is the microcontrol identification number, i.e. 452, 6620, etc
_ 18Fxxxx MCU Identification (same as above)
STACK_MODEL_nnn nnn = SMALL or LARGE respectively according to the stack model used

In addition the following macros are defined when calling assembler:

’ Macro \ Description
__18Fxxxx MCU Identification. xxxx is the microcontrol identification number, i.e. 452, 6620, etc
__ SDCC_MODEL_nnn | nnn = SMALL or LARGE respectively according to the memory model used for SDCC
STACK_MODEL_nnn nnn = SMALL or LARGE respectively according to the stack model used

4.6.5 Directories

PIC16 port uses the following directories for searching header files and libraries.

’ Directory \ Description \ Target Command prefix ‘
PREFIX/sdcc/include/pic16 | PIC16 specific headers | Compiler -1
PREFIX/sdcc/lib/picl6 PIC16 specific libraries Linker -L

If the --use-non-free command line option is specified, non-free directories are searched:

Directory Description Target Command prefix
PREFIX/sdcc/non-free/include/picl6 | PIC16 specific non-free headers | Compiler -1
PREFIX/sdcc/non-free/lib/pic16 PIC16 specific non-free libraries Linker -L

4.6.6 Pragmas

The PIC16 port currently supports the following pragmas:

76

4.6. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

stack This forces the code generator to initialize the stack & frame pointers at a specific address. This is an ad
hoc solution for cases where no STACK directive is available in the linker script or gplink is not instructed to
create a stack section.
The stack pragma should be used only once in a project. Multiple pragmas may result in indeterminate
behaviour of the program.”
The format is as follows:

#pragma stack bottom_address [stack_size]

bottom_address is the lower bound of the stack section. The stack point