

Xar Format Specification

An open standard file format for vector graphics on the Web.

Abstract

The Xar file format, previously known as the Flare file format, is an ultra-compact, open,
vector graphic format. It is also the native graphics format for Xara X application (and also
its predecessors such as CorelXARA).

This document describes the format in detail and provides information for third parties
interested in converting to or from this graphics format.

Why another vector graphics format? The Xar file format is not new. It dates back nearly
ten years and so it predates more recent formats such as SVG. It is not designed to compete
with SVG, but Xar files are considerably simpler to understand (the SVG spec is 700
pages) and more compact (often one tenth the size). However the primary reason for the
existence of the open file format specification is to enable third parties to read and write the
Xara X native files.

Background

The Xar vector graphic structure is that of modern vector programs, based on the Adobe
Postscript rendering model, but with additional features. The graphic primitives are broadly
similar to those available in Postscript, PDF and SVG. However Xara X, and thus the .xar
file format, support more advanced graphic primitives and effects, for example a greater
range of graduated fill types, graduated transparency, feathered vector shapes (soft edges),
soft shadows and more. These enable the talented artist to create highly realistic and more
‘painterly’ effects with Xara X than is possible with traditional vector graphics solutions.
See http://www.xara.com/gallery/

The format is designed so that rendering can be started before the entire file is available.
The format is extendible, with a degree of forwards and backwards compatibility (this
means older version of the software can still read files produced by newer version of the
authoring software – they simply ignore the objects or parts they do not understand).

Part of the reason for this compactness is that Xar files are binary, rather than plain text as
is SVG (which is XML). But with the recent movement towards a binary XML format, in

 - 1 -

http://www.xara.com/gallery/

order to overcome the verbose nature of XML (and SVG), it seems things might come full
circle. On the other hand Xara X offers a plain text variant of the .xar file (file extension
.wix) which can help in understanding the structure of .xar files.

Status of this Document

This format was previously known as the Flare format but is now called Xar format. This
document has been updated to describe the format as implemented by versions of XaraX up
to and including Xara Xtreme 3.0.

Change log

This log lists all updates made to this specification from 1 November 2004.

Date Change Description

2nd November 2004
(Gerry Iles)

Added Change Log page

Updated definition of MATRIX structure and transformation
functions in description of Transformed Path records

4th November 2004
(Gerry Iles)

Removed broken links from TAG_VARIABLEWIDTHFUNC,
TAG_STROKEDEFINITION and TAG_STROKEAIRBRUSH in
Appendix A and labelled them as not currently used.

3rd December 2004
(Gerry Iles)

Clarified description of path verb values.
Added download link for XarLib library.

11th January 2005
(Gerry Iles)

Moved download link for XarLib library.
Added download link for XPFilter archive.
Updated the guidelines for implementors.

13th January 2005
(Gerry Iles)

New XaraX import/export filters page.
Moved link to XPFilter archive.

25th February 2005
(Gerry Iles)

Added detailed description of transparency types.

30th June 2005
(Gerry Iles)

Corrected values for line cap and line join attributes.
Corrected order of coordinates in all bitmap and fractal fill and
transparency attributes.
Added note about inversion of alpha in 32 bpp RGBA PNGs.

 - 2 -

4th July 2005
(Gerry Iles)

Replaced diagrams of fill attributes.
Added bevel type descriptions and examples.
Added more detail to XPE bitmap definition records.
Added copyright and usage requirements to XarLib sections and
XaraX filter sections.

1st Nov 2005
(Phil Martin)

Details of Xara Xtreme group transparency.

4th Nov 2005
(Charles Moir)

Edited general descriptions and background material to be more
up-to-date.
Expanded description of embedded bitmap records and XPE
Expanded description of Import / Export filters / converters

10th Nov 2005
(Gerry Iles)

Added details of object bounds record.
Added descriptions of bitmap effects

23rd Nov 2005
(Phil Martin)

Expanded details of effect attributes, live effects, locked effects,
feather effects and group transparency.
Updated Contents table.

1st December 2005 Fixed TAG_PATH_FLAGS and TAG_PATH_RELATIVE
descriptions to not include a count of the items in the record.

4th January 2006 Improved description of colour component values.
Improved description of path record variants.

13th June 2006
(Gerry Iles)

Removed Plugin Filter specific information.

24th July 2006 Added details of documents containing multiple spreads
TAG_CURRENTATTRIBUTES_PHASE2,
TAG_SPREAD_PHASE2 and
TAG_PRINTERSETTINGS_PHASE2.

Added notes about attribute optimisation in Xara programs.

Added details of TAG_SPREAD_FLASHPROPS

2nd August 2006 Modified note concerning use of path record variants.

2nd August 2006 Added details of TAG_DOCUMENTINFORMATION record.

8th August 2006 Changed names of bitmap object records from
TAG_(CONTONE)BITMAP_OBJECT to
TAG_NODE_(CONTONED)BITMAP to match source code.

 - 3 -

10th August 2006 Corrected bitmap definition records to use Unicode string for
bitmap name.

4th September 2006 Corrected values for winding rule attribute.

19th October 2006 Corrected descriptions of simple ellipse and rectangle records.

9th January 2007 Added details of new records:
TAG_DEFINEBITMAP_PNG_REAL
TAG_CLIPVIEW_PATH
TAG_TEXT_STRING_POS
TAG_TEXT_LINESPACE_LEADING
TAG_TEXT_TAB
TAG_TEXT_LEFT_INDENT
TAG_TEXT_FIRST_INDENT
TAG_TEXT_RIGHT_INDENT
TAG_TEXT_RULER
TAG_TEXT_STORY_HEIGHT_INFO
TAG_TEXT_STORY_LINK_INFO
TAG_TEXT_STORY_TRANSLATION_INFO

Added details of new flags in TAG_SPREADINFORMATION.

Copyright

Copyright 1997-2007 Xara Group Ltd.

Permission is granted to reproduce this specification in complete and unaltered form.
Excerpts may be printed with the following notice: "excerpted from the Xar format
specification." No notice is required in software that follows this specification; notice is
only required when reproducing or excerpting from the specification itself.

 - 4 -

Contents
Abstract... 1

Background... 1

Status of this Document.. 2

Change log.. 2

Copyright .. 4

Contents .. 5

Introduction .. 13

Why a new format? .. 13

Bitmaps are dumb... 13

Are current Vector formats the answer?... 14

Xar format - one step beyond ... 15

What the Xar format can't do (yet) ... 15

Design goals ... 15

Design background... 16

Xar format overview... 17

Feature List ... 17

Feature notes... 18

Current Implementations .. 18

Technical overview... 19

Records ... 19

Record families... 19

Streams and Compression .. 20

 - 5 -

Conventions.. 24

Data Types.. 24

Record Description... 25

The meaning of the symbols used in record definitions... 25

File structure ... 27

Byte ordering .. 27

High-level Structure ... 27

Records ... 28

The Tag Guarantee ... 28

Using Diverse Tags to Aid Compression ... 29

Tree Structure ... 29

Rendering Order ... 31

Attributes in the Tree.. 32

Scope .. 32

Precedence .. 33

Effect Attributes ... 33

Rendering Attributes .. 35

The Rendering Context... 35

Rendering Attribute Scope ... 36

Default Attributes ... 36

Notes about Common Data Types.. 37

Co-ordinates ... 37

Strings... 37

 - 6 -

Profiles.. 37

Compression ... 38

The Record Refiner .. 38

Refinement Methods .. 39

Refinement Methods Flags Word... 39

ZLib Compression .. 40

Application of Zlib compression .. 40

Reusable Data Records... 41

Sequence Numbers ... 41

Writing Reusable Data Records ... 42

Reading Reusable Data Records... 42

Default Reusable Data Records.. 43

Document Structure.. 43

Document Structure Records.. 43

Other information in Xar files .. 46

Application Records ... 46

Extension Records .. 46

Guidelines for implementers .. 47

The XarLib Library .. 47

Suggestions for implementing a Xar Reader.. 47

Suggested stages of Development .. 48

Attribute stack .. 48

"Un-refining" Paths .. 49

 - 7 -

Reading large records ... 49

Suggestions for Implementing a Xar Writer .. 49

Layout of a legal Xar file.. 50

Algorithms.. 50

Attribute scoping .. 50

Writing large records .. 50

Files don't have to be compressed .. 51

Navigation Records .. 52

Framework Records.. 53

File delimiters ... 53

Compression records .. 55

Document Structure Objects... 56

View records... 65

Paths ... 68

Path Refinement ... 70

Relative Path Co-ordinates ... 71

Attributes .. 75

Fills ... 75

Fill Effects .. 95

Fill Repeat Methods ... 96

Transparency attributes... 96

Transparency Type ... 98

Transparent Fills ... 101

 - 8 -

Transparent Fill Repeat Methods ... 111

Winding Rule Attribute .. 112

Line Attributes.. 112

Dash Patterns .. 117

Arrowheads... 120

Colour records .. 121

Fields in a TAG_DEFINECOMPLEXCOLOUR record ... 123

Colour parentage .. 128

User Attributes.. 128

Feather .. 130

Imagesetting Attributes .. 131

Current Attributes ... 132

QuickShapes ... 134

Upright Rectangles and Ellipses... 135

Non-upright Rectangles and Ellipses ... 137

Polygons ... 138

Explanations of all the fields in QuickShape records... 142

Number of sides.. 142

Centre point .. 143

Matrix ... 143

Major axis ... 143

Minor axis... 143

Curvature, PrimaryCurvature and SecondaryCurvature... 143

 - 9 -

EdgePath, EdgePath1 and EdgePath2 .. 145

StellationRadius and StellationOffset... 147

How the shape is built up ... 148

Building a path for an ellipse.. 149

Building a path for a Polygon... 150

Blends ... 151

Overview .. 151

The structure ... 151

Blend record ... 152

Blender record .. 152

Mapping Values.. 155

Blending ... 159

Moulds .. 160

Overview .. 160

The structure ... 160

Mould ... 161

Mould Path ... 161

Mould Group .. 161

Moulder .. 161

Envelope Mould Algorithm.. 164

Perspective Mould Algorithm .. 165

Bevels ... 166

Contours ... 170

 - 10 -

Shadows.. 172

Brushes ... 174

ClipView... 194

Text... 196

Overview .. 196

Text structure.. 196

Text structure records ... 197

Text Attributes.. 207

Fonts and Typeface attributes... 215

Introduction .. 215

Some terminology .. 215

Information required by a text story ... 216

The PANOSE font classification system.. 217

Font Matching .. 218

Fitting Text to Paths ... 219

Reflective variants .. 221

Bitmaps... 223

Bitmap references ... 225

Bitmap Definition Records... 226

Unknown bitmaps... 230

Contone Bitmap Objects... 230

Document Bitmap Objects.. 231

Bitmap Effect Records ... 233

 - 11 -

Other Image Records .. 238

Application Records ... 245

Spread information ... 245

Extra Document Information.. 250

Printing information ... 255

Units ... 262

Defining units in terms of other units... 262

Extendibility ... 265

Depreceated Records .. 269

Records deprecated in Version 1.0 ... 269

Appendix A .. 276

Complete List of Xar Tags ... 276

Appendix B... 293

Lists of Default Values ... 293

Default Attributes ... 293

Default arrowheads and tails .. 294

Default dash patterns .. 300

Default colours ... 311

Default Units .. 312

Default Print Marks .. 317

Glossary.. 322

 - 12 -

Introduction
This document describes a graphical metafile format that is designed to hold rich, size-
efficient vector graphics along with compressed, industry-standard bitmaps. The Xar format
is simple to understand and at the same time is powerful and extendible.

The primary function of this format is to hold graphics that are transmitted across the
Internet. For this to be a practical application of the format, the resultant files have to be
very compact, with as little redundant, non-renderable information as possible. The Xar
format achieves much of its compactness through the use of two stages of compression, as
well as 'rich' data types that encode high level graphical information in small amounts of
data.

The Xar format also defines a set of high-level structures that make the format ideal as a
multi-page, or even a multi-document format. These structural elements have been defined
as optional elements to increase the compactness of render-only web graphic files.

The format is progressively renderable; that is, a program reading a Xar format file can
begin to render it before the entire file is available to the program. This enables Xar format
readers to show the user something as early as possible.

Why a new format?

Bitmaps are dumb

One of the overriding goals has been to design a format that allows intelligence to be
embedded into the rendering and display engine, and so reduce the amount of detail that
need be included in the graphic file. Bitmap file formats make little or not attempt to
represent their images intelligently. For instance, at the simplest level, a rectangle with a
simple colour gradient going across it has, at present , to be represented as a bitmap where
every single picture element (pixel) is described. The bigger the rectangle the more pixels
need to be described and so the larger the file. JPEG and GIF bitmap compression schemes
attempt to reduce the file size but, even in a case as simple as this, they are not very
successful. JPEG encoding produces quite visible artefacts on such images unless used with
relatively poor compression settings. Since GIF files can only represent 256 colours they
are typically dithered to increase the display quality (and with diffusion dithering and the
use of optimised palettes, it can do very well). But dithering an image unfortunately wrecks
the effectiveness of GIF file compression - and PNG is little better in this respect.

It's clear that the graphical information needs to be held at a higher level of abstraction than
raw pixel data, so that it describes precise colours and precise colour changes within
shapes. Then, a program on the client's computer could interpret that description in the best
possible way, using local knowledge of the client computer such as the colour depth and

 - 13 -

resolution of the display device. Vector graphic file formats already work at this level of
abstraction.

Are current Vector formats the answer?

Vector graphics files describe shapes in terms of co-ordinates and instructions about how to
draw lines connecting those co-ordinates. The geometric nature of vector graphic
descriptions means that they can be transformed easily before they are plotted - they can be
scaled and rotated on the client computer without any loss of quality. This means that,
unlike bitmaps, vector graphics are independent of the resolution of the display device - the
image is only committed to pixels when the vector graphic is rendered on the client
computer. The ability to scale the image means that the format is well suited to displaying
the same information on a wide range of different display types, ranging from low
resolution TV displays to very high resolution graphics workstations. There's no need to
create different graphics files for each target system - the same file will produce high-
quality results on all systems.

But the richness of established vector graphis standards leaves a lot to be desired. Very few
vector graphics files get close to realistic, photo-like nature that you can get with bitmaps.
This is mostly down to the pretty basic nature of the graphic primitives supported by these
systems.

Xara has tended to be ahead of the curve in this respect. When the easrliest versions of
Adobe illustrator and CorelDRAW appeared 10 years ago or more, they offered only only
flat colours with no anti-alasing, while Xara was offering graduated colour fills and vector
anti-alasing. When others offered graduated colour fills Xara was offering vector
transparency. When others started to offer vector transparency Xara had moved onto
graduated transparency, vector brushing and vector feather effects. The results has been that
Xara users can create more realistic, more rich vector graphics, more easily with fewer
shapes than from any other product.

So as a consequence no vector standard has ever been rich enough to support the Xara
requirements. In fact it’s fair to say there is no clear vector standard at all.

There are two competeing formats that could claim to be standards. Flash and SVG. Flash
is great for animation, but has pretty basic support for rich vector types. It doesn’t support
graduated transparency has very limited vector fill types. The result is the classic Flash
‘cartoon’ look. With the recent (2005) aquisistion of Macromedia by Adobe the future
direction of Flash remains unclear. What’s more it’s a proprietry standard. SVG on the
other is an open standard designed to compete with Flash, and recommended by the W3C,
and initially supported by Adobe (then a competitor of Macromedia). SVG has not been
successful in the wider world (it’s popular on the Linux platform). We believe this is
largely because of its complexity and because it never had a reference implementation.
There are several implementations of the SVG standard from Corel to Adobe and on the
Linux platform. None of them are 100% compatible.

 - 14 -

Xar format - one step beyond

The Xar format steps up to an even higher level of abstraction. It describes colour changes
in an image by specifying the colours that are applied at various co-ordinates along with the
smoothing process that controls colour between and around those points. The colours are
specified very accurately thus avoiding unnecessary dithering on high colour-depth devices.
The co-ordinates are also specified at a high resolution. Such a colour description only
requires a few dozen bytes of information.

Descriptions of colour changes like this are typically used to fill shapes, which are specified
using the same high-resolution co-ordinate system as for the objects themselves. Given the
description of a shape and details of the way the colour changes within it, a Xar format
display program can draw the colour-filled shape in a browser window, or any other display
surface, dithering the colours only if the display device can't represent the specified colours
directly.

What the Xar format can't do (yet)

The Xar format encodes a set of 10 types of basic colour changes at the time of writing
(with many sub-options) and, while that set is very powerful, it obviously can't describe the
complex colour changes seen in real world photographic images. JPEG is designed for that
very purpose and does it very well. However photographic real world images only represent
a small portion of the typical imagery found on web sites. A very large proportion of
typical web graphics are things like simple graduated backgrounds, buttons, banners,
graphs, charts, and company logos, all of which are ideally suited to representation in Xar
format.

Design goals

Here are the goals that drove the design of the Xar format:

• Designed for vector graphics: The format should be designed to hold vector-style
graphical elements, such as lines, curves, circles, etc. Also efficient support for
attributes is needed. Attributes include line & fill colours, font typeface, and dash
pattern.

• Compactness: The final file must be as compact as possible without sacrificing the
power and richness of the format. Small files sizes not only help productivity
(usually meaning much faster save / load times), but save disc space and, perhaps
most importantly, bandwidth and download times. The Xar format has very

 - 15 -

successfully achieved this goal and is demonstrably more efficient than other vector
formats such as PDF, AI, and SVG.

• Progressively renderable: It is important to be able to render as much of the file as
possible as it is read in, without having to wait for the entire file to be read. This
quality is primarily for Internet use, allowing maximum visual feedback to be given
to the user while the file is being read.

• Forward/Backward compatibility: Applications that understand old versions of
the format must be able to read new format versions (as sensibly as possible). Also,
applications that understand new versions of the format must be able to read old
versions.

• Implied information: If the format contains implied information, then less data
will be required in the final file. For example, a graduated fill between two colours
only needs two co-ordinates and two colours - the intermediate stages of the
graduated fill can be produced when the file is rendered. Another way of looking at
this is that by embedding intelligence into the client renderer you can produce a
much more compact file format.

• Open standard: The format must an open standard that is easy to understand by the
Computing and Internet communities. If the format is easy to understand, the
chances are it is also easy to implement Readers and Writers for it. This will result
in more robust and reliable implementations and thus make the format more
attractive to webmasters and users.

• Platform independent: The format must be platform independent.

Note: The Xar format predates XML and, although our tree structure could very easily be
represented in XML, it was not a design goal to make the Xar format plain text and human
readable. It would be relatively straightforward to produce an XML representation of the
the Xar file format.

Design background

The team at Xara Group Ltd. that designed and implemented the Xar format have been
creating leading edge vector-based illustration and DTP programs for over 15 years.

 - 16 -

http://www.xara.com/

Xar format overview
Feature List

Here is a list of the major features supported by the Xar format.

• Bezier paths The fundamental graphical object in vector formats.
• Rectangles, Circles and Ellipses Compact representations of these common

shapes.
• Quickshapes Mathematical descriptions of rotationally symmetric polygons.
• Blends Compact representation of the smooth transition of one shape to another

either in a straight line or along a curve. Only the two end shapes are recorded - the
intermediate steps are computed at load or render time.

• Moulds Modify objects by warping them or applying perspective projection at load
or render time.

• Bitmaps PNG and JPEG bitmaps which can be scaled, rotated, skewed, squashed
and tiled, and used to fill shapes in any of those forms.

• Text Single line text, paragraph text and text-along-a-curve. Text is expressed in
Unicode to allow text in any language.

• Fill types 10 types of colour change including graduated fills, multistage graduated
fills, bitmap fills and fractals with sub-options controlling repeat and how colours
are mixed.

• Fractals Algorithmically generated "naturalistic" colour changes.
• Transparency types 10 types of Transparency change (transparency changing

across a shape), once again with many sub-options including fractal transparencies.
• Bevels 15 types of bevel with control over lighting and colour of the bevel.
• Contours Inner and outer contour paths with sub-options including number of

steps, spacing and colour transition.
• Shadows Floor, wall and "glow" shadows with control over transparency and blur.
• Brushes Lines can be drawn using brushes to simulate real drawing tools (airbrush,

crayon, chalk etc) or to produce special effects (chain, footprints etc).
• Variable width lines Lines can be made variable width either by selecting

predefined width profiles or using a pressure sensitive tablet.
• ClipView Restrict the parts of objects that are drawn to those parts "inside" another

object.
• Feathers Fades the edges of objects with control over the size and profile of the

feathered edge.
• High-resolution co-ordinates 72000dpi.
• Extendibility New record types can be added without breaking existing Readers.
• Paper publishable Optional document structuring records make Xar format

documents suitable for traditional paper publishing.
• Bitmap effects Apply bitmap effects to any part of a Xar format document

including all the object types listed above and groups of objects.

 - 17 -

• Group Transparency Makes a group of objects be opaque to each other while the
whole group is transparent to the rest of the drawing.

(Xara Group Ltd are already planning powerful new features for future versions.)

Feature notes

This feature set is highly orthogonal - there are very few special cases. For instance, any
type of transparency can be applied to any type of graphical object.

The format allows large objects, such as bitmaps and colours, to be transmitted just before
they are required, minimizing the effects of possible delays while these large objects are
transmitted over a low-bandwidth channel. This is in contrast to other vector formats where
all colours and bitmaps are transmitted right at the start (or sometimes the end) of the
reading/writing process.

The format is extendible by anyone and allows existing readers to deal sensibly with
records they don’t understand. This mechanism also allows for automatic upgrade of the
reader: Unknown record types can trigger the reader to try to find a suitably updated
version of itself on the Internet, download the update and install it.

The format is progressively renderable. What that means is that at any point in a Xar format
file, everything needed to render the current Record has already been seen. This allows the
graphic to be rendered while it is still being downloaded - another feature designed to
improve performance on low-bandwidth channels.

The general data structure represented by a Xar format file is a tree structure - a structure
that is commonly used in Illustration software. Within the file format, standard data formats
are used where applicable: Bitmaps are stored as JPEGs or PNGs. Paths are stored in the
standard format used by both Windows and Postscript. Thus, it should be an easy format
for existing illustration program to deal with.

The file format describes some features that are not, yet, implemented in Xara X, such as
text sub and superscript or chapters.

Current Implementations

The current Xar format readers implemented by Xara Group Ltd. add to the above feature
set by rendering Xar format graphics using the Xara display engine, a fast graphics engine,
which can anti-alias on the fly to increase the apparent resolution of the image.

 - 18 -

Technical overview

What follows is a brief summary of the important concepts of the Xar format. All of these
subjects are covered in full detail in the following chapters.

Records

The Xar format consists of a small, fixed-size identification structure followed by a stream
of Record structures.

Figure 2.1. The file format consists of a small ID followed by a stream of records.

To parse a Xar format file a reader simply needs to check that the identification structure is
correct and then repeatedly fetch Records from the Record stream until it encounters the
"End of Stream" Record. All Records have a simple, standard 8-byte header that makes this
process very easy.

All of the Records have a common header that consists of a 32-bit "Tag" field and a 32-bit
size field. The Tag identifies the contents of the record and the Size field gives the size of
the record in bytes. Thus, it's a simple matter to use the Tag to pass the record on to an
appropriate piece of code to deal with it and to get the correct amount of data. The Size
field also allows the record to be skipped if the reader doesn't understand the Tag.

Record families

The records fall into five informal groups; Navigation, Image, Framework, Application,
Extension.

Navigation Records are the records that impose the tree structure onto the Record stream.

Image Records are all those records concerned with rendering the user's data - his graphic.
Shapes, bitmaps and attributes such as colour and line width are all Image Records.

Framework Records are all those records concerned with holding the user's data in place.
The number of Framework records in the file depends on the intended use of the Xar format

 - 19 -

file. For graphics that are intended for traditional paper publishing there will be a complete
set of Framework records describing Chapters of several Spreads, Spreads of one or more
Pages, Page records describing paper size and orientation and Layers on those Pages.
For simple graphics intended just for use on the Web only Layer records will be present.

Application Records are records placed in the file by applications for their own use when
the file is reloaded. They are typically used to store information about user preferences,
print settings, etc.

Extension Records are used to help code deal with unknown records. They declare new
record types and give details of the importance of those records to the correct rendering of
the image. They also provide a mechanism for Xar format readers to upgrade themselves
via the Internet.

Streams and Compression

This is what goes on inside the Record-streaming module. The Record stream is not
directly stored in the file - there are two levels of compression between the Record stream
and the raw data that's stored in the file, called the Byte stream.

Figure 2.2. The flow of data when reading data from a Xar file.

The byte stream is the raw data, as held in a Xar file or transmitted along a communication
channel. There are two further stream layers on top of that. This layering is analogous to the
TCP/IP stack where high-level protocols are built on top of simpler protocols.

To explain the streams a little more easily, let's consider the process of reading a Xar file
and extracting useful records from it.

Byte Stream

Normally receiving the raw Byte Stream is the Zlib decompressor. This can be switched on
or off by the reader when it receives compression control records in the Record stream. The
output from the Zlib decompressor is a stream of Refined Records.

 - 20 -

Refined Record Stream

The Refined Record Stream is passed into the Record Refiner which "un-refines" the
records (it gets the name "Record Refiner" from the job it does when writing a Xar file) to
produce the normal Record Stream described above in Records. The Record Refiner
operates on records in a number of ways:

1. By altering records to compress better in Zlib.
2. By changing or removing records whose information is redundant for one reason or

another.

The ability to use different Refining techniques on individual Xar files is built into the
format.

Record Stream

Each record is dispatched according to its Tag to the appropriate record handler.

These two stages of compression and decompression are the key to the compact size of the
Xar format. Zlib performs byte-level, "micro"-compression and the Record Refiner
performs record-level, "macro"-compression. On top of those stages there's also a level of
human compression in which the designers of the records have ensured that Records are
size-efficient.

Zlib is a licence-free public domain library that performs LZW-like compression. The use
of this library allows the Record stream to use "wide" fields, making them easy to parse and
future-proof. The 32-bit Tag field of the Record header is a good example: Parsers don’t
have to worry about escape sequences being used in the future to make the field bigger,
since the 4 Billion possible values it can hold will supply all the Tags that can possibly be
required in the lifetime of the format.

Note: The ability to control whether the first Zlib compression stage does anything or not
means that Xar files consisting entirely of an open Record Stream are legal. They wouldn't
normally be used in the real world because they will be significantly bigger than their
compressed equivalent. However, they are very useful when debugging Xar format readers
and writers.

The format is designed so that no look-ahead is needed - when implementing either Readers
or Writers you shouldn't need to seek through Byte Streams or Record Streams. This
fundamental feature is one of the things that make progressive rendering possible.

Trees and subtrees

The Record Stream includes Navigation Records that conceptually organise the records into
a tree structure. (Readers that are used to prepare Xar documents for editing by users should

 - 21 -

use this information to create a tree data structure in memory. Readers that intend simply to
render Xar files don't need to do this.)

The tree structure is the fundamental data structure used by all illustration programs (that is,
programs that create vector graphics). Vector graphics images gain their richness by
arranging and overlaying a number of simple graphical objects. The best real world analogy
to this is the collage. The user creates many arrangements of objects in the process of
drawing an image and the illustration program creates some itself. It is convenient for many
of these arrangements of objects to behave as single entities and the tree structure allows
several objects to be collected together as children of a root object. The root object can then
be manipulated as a single object and it instructs its children how to behave.

This composition of objects is very convenient both for the user and for programs that have
to deal with the graphic. The user can draw a boat and group all the objects that make up
that drawing, naming the group "Boat". He can now treat that group of many simple objects
as if it were one simple "Boat" object. The act of grouping creates a subtree whose root is
an object called a Group.

The program uses the tree structure to hold complex objects together. For instance a text
object might be the root of a subtree that contains one or more lines of text. Further, each
Line might be a subtree that contains one or more characters.

The tree structure extends much further than just representing composite objects for the
user. In the Xar format, what the user sees as being simple graphical objects are usually, in
fact, composite objects. The user's simple objects, such as rectangles and ellipses, need to
be given individual colours, line widths, arrowheads, etc. if the image is going to be at all
interesting. In the Xar format, the description of each of these Attributes is a separate
Record and they are most frequently held in the subtree of the object they affect.

For example, here is the subtree that describes a green rectangle with a 4pt outline.

Figure 2.3. A subtree describing a green rectangle with 4pt outline.

Thinking more expansively, the entire document (or file) is a tree whose root is a
"Document" Record. For example here are the records that you might find in a Xar format
document which includes document-structure information.

 - 22 -

Figure 2.4. Document-structure records in a Document tree.

Note that even the tree structure itself contributes to the compactness of the Xar format!
Because attributes such as colour are not held inside the shape records, they can be placed
in the tree where they have the best effect. For instance, a group consisting of 100 green
circles does not put 100 "Green" records in the file - there is only one "Green" record,
which applies to the whole group. The tree structure determines the scope within which the
effect of the attribute applies.

The tree structure has other technical benefits for programs editing and rendering Xar files,
which are outside the scope of this document.

The tree data structure can extend as much as it needs to, to encode the complexity of the
graphic. Each Tree consists of a root Record and a list of zero or more Trees. The list of
Trees is called the "child list" - those Trees are thought of as being the "children" of the
Root record and they are often called "subtrees". You can see the recursive nature of this
data structure: a tree can hold a tree can hold a tree, etc., etc…

 - 23 -

Conventions

Data Types

Below is a list of the basic data types used in the file format:

BYTE Unsigned integer. 1 byte

UINT16 Unsigned integer. 2 bytes

INT16 Signed integer. 2 bytes

INT32 Signed Integer. 4 Bytes

UINT32 Unsigned integer. 4 bytes

FIXED16 Fixed point value with the binary point between bits 15 & 16. 4 bytes

DOUBLE Double-precision floating-point number in IEEE format. 8 bytes

FLOAT Single-precision floating-point number in IEEE format. 4 bytes

STRING Sequence of Unicode (2 byte) characters, terminated by two 0x0 bytes.

ASCII_STRING Sequence of ASCII characters, terminated by one 0x0 byte.

MILLIPOINT An INT32 defining a millipoint measurement (1/72000 inch)

COORD Two MILLIPOINT values defining a co-ordinate

DATAREF An INT32 that references data that's either defined by another record
in the file (if the value >= 1), or is a default data item (< 1).
This is how reusable data records are referenced (see Reusable Data
Records)

COLOURREF A DATAREF item that references a colour record, or a default colour
setting

BITMAPREF A DATAREF item that references a bitmap record, or a default bitmap

UNITSREF A DATAREF item that references a unit record, or a default unit.

BIT(N) A single bit within a BYTE, UINT16 or UINT32 at position N.

 - 24 -

BITS(M-N) A range of bits within a BYTE, UINT16 or UINT32 between, and
including, positions M and N.

PROFILE Two DOUBLE values defining the bias and gain of a profile.

Record Description

A Record is described by the following standard layout:

Name Name of Record or group of Records

Purpose Short description of the purpose of the record(s).

Tag Tag Identifier(s)

Size Size of record if fixed or "variable" if not

Usage What group the record belongs to and the conditions under which it should be
used.
Navigation: It's a Navigation record
Framework: It's a Framework record
Image: It's an Image record
Application: it's an Application record
Extension: It's an Extension record.
Compulsory: A Xar Reader or Writer must understand this type of record
(under qualified conditions).

Data: <This part only appears when the record has a data section.>

Field name and type Field details, including legal possible values

Comments: <This part is optional.>

Further comments about the record.

The meaning of the symbols used in record definitions

Data sections within the record are defined using the following symbols.

 - 25 -

Notation Description

<Name> An element in the file, usually broken down into more primitive
elements

<Name : TYPE> An element and its type. The most primitive elements in the file are
given a type (defined in the table above) and are not broken down
any further.

[<Name>] Optional Element

<Name>* Zero or more occurrences of the element

<Name>+ One or more occurrences of the element

::= "Is composed of". Used to define one element in terms of more
primitive elements

 - 26 -

File structure

Byte ordering

Byte ordering is little-endian - the least significant byte of any size of word is stored first
followed by the next least significant, etc…

So, a 16-bit word, 0xBBAA, appears in the (uncompressed) file as two bytes, 0xAA
followed by 0xBB.

A 32-bit word 0xDDCCBBAA appears as four bytes, 0xAA, 0xBB, 0xCC, 0xDD.

Code to read or write Xar files on platforms which order bytes differently will have to swap
the bytes around.

High-level Structure

The file format is very simple at the top level. It consists of an 8-byte ID at the start of the
file (for quick identification), followed by a contiguous stream of records. The first record
in the file is always guaranteed to be the file header record, and the last record is always
guaranteed to be the End Of File record. This EOF record is present purely for file
validation purposes, i.e., if you don't find one something has gone wrong.

Figure 4.1. The format of the file.

The 8-byte ID consists of two 32-bit numbers, 0x41524158 and 0x0a0dA3A3. The first
number contains the characters "XARA". The second contains two top-bit-set characters
(two '£' characters), plus a CR-LF combination. This second word will allow us to detect
file corruption through the intervention of a text editor (which would affect the CR-LF
sequence) or 7-bit encoding (which would remove top-bit-set characters) very quickly and
safely.

 - 27 -

Records

At its simplest, the Xar format is made up of a flat sequence of elements called Records.
Each record is made up of the same three fields.

Figure 4.2. The fields of a record.

The fields of a record have the following meanings:

• Record Tag: A 32-bit unsigned integer that uniquely identifies the record, and its
contents.

• Record Size: A 32-bit unsigned integer specifying the size of the data section. A
size of zero means there is no associated data with this record. The size of the data
section can be fixed or variable. The size is measured in bytes.

• Data (Optional): The data associated with the record. The content of this section
depends on the Tag of the record.

With this structure it is possible for the format to be backward compatible. Format readers
that don't understand a given record Tag can skip the entire record by using the value of the
Size field.

The Tag Guarantee

The Tag determines the type or class of the record. The size of the Tag field has been
defined as a 32-bit unsigned integer in order to give the format a practically inexhaustible
range of tag values (about 4 billion of them). With this huge range of possible tags, the
format guarantees that the contents of a data section of a given record Tag will remain fixed
forever. This helps the format to be forward compatible. Once a record with a given Tag
has been defined, its content is guaranteed to be fixed, allowing readers of future versions
of the format to still recognise and read old records.

 - 28 -

You may be wondering how, in that case, records are updated to carry new information - a
common requirement because graphics programs are being continually developed. The
answer is that a completely new Tag is defined whose record carries the same information
as its predecessor along with whatever new information is required.

Using Diverse Tags to Aid Compression

The other advantage of having such a wide range of tags is that it allows the Data sections
of records to avoid holding optional fields that might not always contain useful
information. Instead, separate Tags define separate record types, each of which contains a
different set of the optional fields. This feature helps to improve the compactness of the
format.

A good example is a rounded rectangle record (i.e. a rectangle that has rounded corners).
As a rectangle and a rounded rectangle are almost identical, you might, at first think it
logical to define one record that describes both types of object. However, rectangles are far
more common than rounded rectangles and this approach would mean every rectangle
would contain redundant roundness data - adding wasted data to the Xar file. A more space-
efficient approach is to define separate rectangle and rounded rectangle records, eliminating
the need to store redundant data for simple rectangles.

Tree Structure

A mechanism has been defined that organises the records into a tree structure. The tree
structure is used to make composite objects out of simpler objects. For instance, a
Document is made out of one or more Chapters. In this example, the Document is the root
of the tree and the Chapters are its children. Each Chapter can itself be a tree (when a tree is
a child of a higher tree it's often called a "subtree").

The order in which objects are organised in this tree structure determines the order in which
they are rendered.

 - 29 -

Figure 4.3. How records are named within the tree structure.

The above illustration shows several records organised in a tree structure. It details how
records are named in relation to the record that's highlighted by the dotted line.

A record can have siblings. Left siblings appear before it in the file. Right siblings appear
after it.

A record can have a parent. A record can only have one parent, which appears before it in
the file.

A record can have children. A record can be the parent of one or more child records. Child
records appear after it in the file.

Special records are defined that impose this tree structure onto the flat sequence of records.
These are called Navigation records and they consist of an Up record and a Down record.
They control the "level" of the records in the tree. The top level is numbered 1, the next
level down is numbered 2, etc. For each Down record there must be a matching Up record
later in the file.

Here is a set of records, labelled A to F, organised within a tree structure:

Figure 4.4. A tree of records, and the level on which each record lies.

 - 30 -

Using the Navigation records, the above tree can be defined using the following flat
sequence of records:

A Down C D Up B Down E Down F Up Up

When reading the file, the interpretation of this sequence of records is this:

Record
read in What to do

A Interpret record A. The first record is always on level 1

Down Go down to level 2. The following record is a child of A

C Interpret record C

D
Interpret record D. This record must be a sibling of the previous record (and
therefore a child of record A), because a navigation record has not been
encountered prior to it.

Up Go up to level 1. The following record is a sibling of record A (i.e. a sibling of
the last record on this level).

B Interpret record B

Down Go down to level 2. The following record is a child of B

E Interpret record E

Down Go down to level 3. The following record is a child of E

F Interpret record F

Up Go up to level 2. The following record is a sibling of record E

Up Go up to level 1. The following record is a sibling of record B

The navigation records thus describe a tree, informing the Reader of the file how the tree is
built up. The tree structure is an important aspect of the format, determining the order in
which objects are rendered, and controlling the way attributes are applied to objects.

Rendering Order

A subset of records within the format defines the renderable elements of the file. These
renderable elements are either objects (i.e. graphical elements such as rectangles and
curves) or attributes that effect the appearance of the objects (such as the colour of the

 - 31 -

rectangle, or the line width of the curve). These records are sometimes called Image
Records.

The tree is rendered in a left-to-right, depth first order. In other words, starting from a given
object, you render the object's children, followed by the object itself, followed by its right
sibling. Using this algorithm, the rendering order of the tree in the above diagram, Fig. 4.4,
is C, D, A, F, E, B.

Attributes in the Tree

Attributes are Image records that don't render anything directly - they just define some
information which Image records will use to alter their appearance. The most typical
example of an attribute is a record that sets the colour of an object.

Scope

Attributes have a well-defined scope within which they can affect the objects being
rendered. The basic rule that determines an attribute's scope is this: An attribute can only
affect objects in the same subtree as itself including its parent object. Outside of that
subtree the attribute has no effect whatsoever. (In reality the depth-first rendering algorithm
causes the rule to be a little bit stricter than this. See Rendering Attributes below.)

Returning to the example tree in Fig. 4.4, objects C and F might typically be attributes. In
that case their scope of influence would be as shown below:

Figure 4.5. The scopes of Attribute C and Attribute F.

Attribute C affects objects D and A. Attribute F affects object E. Neither attribute affects
object B because it is outside both of their subtrees.

 - 32 -

Precedence

There are often cases where there are two or more attribute records in the tree, both trying
to set the same type of rendering value, such as fill colour. Because of the rule given above,
the only case where their scopes can overlap is when one attribute is inside a subtree that is
already in the scope of another attribute. In that condition, the rule is the attribute in the
inner subtree always takes precedence:

Figure 4.6. The precedence of attributes in nested subtrees.

Attribute B affects objects A and D. Attribute E affects objects C, F, G, H and I.

Effect Attributes

Xara Xtreme introduces the concept of “compound rendering”, where a collection of
objects are not rendered directly into the document but are rendered into a bitmap instead
and then that bitmap is rendered into the document. This opens up two new possibilities for
rendering:
1. The bitmap can be processed by applying bitmap effects to it (e.g. Photoshop plugins)
before it is rendered into the document.
2. The bitmap can be rendered into the document using different attributes than were
applied to the original objects.

The attributes in the second case are called “effect attributes”. They are normal attributes,
they use the scoping rules described above but they are stored in the document tree in a
different position than normal attributes. Looking at figure 4.6.1 below B is a normal
attribute and D is an effect attribute. D is stored at the right hand end of the sibling list,

 - 33 -

after all other objects and attributes. Thus, according to the scoping rules it only affects its
parent object, object A.

Figure 4.6.1 The position and scope of an effect attribute.

Effect attributes are only applied to those objects that understand them, for instance
LiveEffects and Groups. These objects look for effect attributes in the tree, to the right of
all other children of the object, and use them when rendering bitmaps back into the
document.

Attributes in Xara Programs

Xara Xtreme and all earlier versions of the Xara programs apply stricter rules to documents
than the file format requirements set out above. This is done to ensure that attributes are
stored optimally in the document tree for quicker rendering and easier editing:

• Where the scopes of several identical attributes fill an encompassing scope they are
removed and replaced by a single attribute that applies to that larger scope.

• Attributes of the same type are not allowed to have overlapping scopes.

For example: If all the objects in a group have green fill colour attributes then those
attributes are removed and the group itself is given a green fill attribute. The scoping rules
mean that this one new attribute has the same effect as all the original ones. If the user then
selects one object inside the group and gives it a red colour attribute the group’s green
attribute is removed and individual green attributes are applied to all the objects in the
group except the new red one. (See fig. 4.6.2.)

 - 34 -

Figure 4.6.2 Attribute optimisation in Xara programs.

The editing functions of the Xara programs assume that records in XAR format files will
have been optimised in this way. If they are not you may see odd effects when you edit the
document, such as colour changes.

See the “Attribute Application, Optimisation and Integrity” document for more
information.

Rendering Attributes

The Rendering Context

During rendering, a Rendering Context is maintained which describes all the current
attribute values. This is similar to the Device Context found in windows programming
environments and the current graphics state in Postscript. This Rendering Context can be
saved and restored on a stack of contexts using a similar technique to Postscript's gsave and
grestore commands.

 - 35 -

When an object is rendered all of the graphical attributes it needs, such as line width, dash
pattern, fill colour, etc., are fetched from the Rendering Context and used to render the
object.

Rendering Attribute Scope

During the normal depth first rendering scan of the tree each Attribute record is
encountered and is asked to render itself like any normal Image record. To render itself an
Attribute sets its value to be current in the Rendering Context. Thus any objects that are
subsequently rendered will pick up that attribute's value and use it.

The Scope of the Attribute is implemented using the ability to save and restore the
rendering Context.

When the parent of a subtree is entered in the depth first scan the current attribute context is
saved onto a stack before any of it's children are rendered (c.f. Postscript's "gsave"
command).

Next all of its children are rendered, including any attributes, which set their values in the
current Rendering Context.

Once all the children have been rendered the parent of the subtree is rendered, using any
attribute values set by its direct children.

Finally, before moving on to another subtree the Rendering Context that was preserved on
the way into that subtree is restored (c.f. Postscript's "grestore" command). Thus, any
attribute values that were set inside the subtree are wiped away by the preserved values and
the attribute context for the next subtree is unaffected by anything done inside this subtree.

As you can probably see, the fact that the attributes are rendered in strict tree order adds a
small condition to the Attribute Scope rule given above: An attribute can only affect objects
in the same subtree as itself and which follow the object in left-to-right depth first scanning
order including its parent object

By convention, attributes are always stored as the first records in any child list so that in
practice they are the first records rendered in any subtree and so do affect all of the visible
objects in the subtree.

Default Attributes

To be truly self-contained, every document should contain a list of default attributes in the
child list of the Document object. These Default attributes would cause default values, such

 - 36 -

as DashPattern:None, to be rendered early in the rendering process so that all attributes are
given well-defined values before the first visible object is rendered.

However, to save space, the Xar format doesn't do this. If it did, every Xar file would carry
inside it an identical list of 20-or-more attribute records. Instead, the default attributes are
defined to have fixed values in Appendix B of this specification and all Xar readers should
set these values up in their rendering systems before starting to scan the tree.

 Notes about Common Data Types

Co-ordinates

The majority of records in Xar files carry some sort of positional information in them.
Positions are specified by Cartesian co-ordinates with origin (0,0) and where x increases to
the right and y increases upwards. The resolution of these co-ordinates is 72000 dpi. These
units are sometimes referred to as "millipoints" because each one is one thousandth of a
Point.

At 72,000 dpi a 32-bit co-ordinate can represent sizes of up to 1.5 kilometres. There are
technical limitations which prevent that theoretical size ever being used. You are unlikely
to find documents whose extent is greater than about 2m square.

Strings

All Strings that are visible to the user are stored as Unicode. This allows text in any
language/script system to be stored in Xar files. The Zlib compression stage deals with the
efficient storage of the two-byte Unicode character values.

Profiles

A profile is a mapping function for numbers in the range 0 to 1 that allow effects that
usually change linearly to change in a number of more useful ways. The profile is defined
by two DOUBLE values between the values -1.0 and 1.0 called "bias" and "gain". The
actual functions used to perform the mapping are as follows.

Firstly the supplied bias and gain parameters are mapped to lie between 0.0 and 1.0
exclusive with the following function:

newvalue = ((oldvalue + 1) * 0.49999) + 0.00001

Then the mapping function is defined as:

 - 37 -

map(x) = gain(bias(x))

Bias and Gain values of 0 (0.5 after the conversion to 0 to 1 range) result in both the bias
and gain functions reducing to identity functions.

Compression

Two stages of compression are applied to the Record Stream before it is written to file.
Record Refinement works on the record level, removing redundant information and
preparing records for the second stage, ZLib compression, which works on the byte level.

The Record Refiner

The Record Refiner is the compression stage that processes records before they reach the
ZLib code in an attempt to improve the overall compression. The Record Refiner operates
at a higher level of abstraction than the Zlib library. It operates on Records and uses it's
knowledge of them and the Xar format to "refine" the record stream before passing it on to
Zlib.

 - 38 -

Figure 4.7. How record data is compressed and decompressed.

The above diagram shows how the Record Refiner sits between the format's Record Stream
and the ZLib compression stage.

Refinement Methods

Refinement methods are designed to work at the record level. They take a single record as
input, and produce zero or more records as output. If a Refinement method alters a record's
data section, the resultant record will have a different record tag. This maintains the Tag
Guarantee. There is a small set of specialised Records which only appear in the Refined
Record Stream that communicates between Zlib and the Record Refiner - never in the
normal Records Stream.

The Record Refiner can perform some generic work on all records passing through it but
many methods of Refinement are very specific to the type of Record. For instance, the co-
ordinates stored in Path records can be adjusted so that each co-ordinate is relative to the
one before it. This makes the format of that Record much more suitable for compression by
the Zlib stage. Specialised Refinement methods like this are described in the chapters of the
appropriate Records.

Refinement Methods Flags Word

To allow new Record Refinement Methods to be used in future, the format defines a
Refinement Flags Word that identifies which Refinement Methods have been applied to the
Record Stream. This 32-bit word is held in the File Header record and at the time of writing
it is defined to always be 0.

 - 39 -

ZLib Compression

This is a form of compression that is similar to LZW compression in its technique and in its
performance. It is available for use royalty-free, via a C library. It provides the final level of
compression before data is written to the byte stream.

The compression scheme used is based around the Zlib specification that is used for the
PNG (portable network graphic) file format. This is designed to get around the patent
problems with the GIF and TIFF bitmap format compression code. Source code and formal
definitions are available from http://www.gzip.org/zlib/ and the PNG format homepage at
http://www.libpng.org/pub/png/.

The compression scheme is a lossless format which uses a combination of the LZ77
algorithm and Huffman coding to provide a scheme which is as efficient and effective as
other present similar forms. It is designed to be stream based rather than requiring the entire
set of data to be present. It uses a 32k sliding window, where a duplicate entry can be made
to reference the original entry up to 32k input bytes beforehand.

Each block has an independent set of Huffman trees that consists of two parts: the
definition of the compressed part and the compressed part itself and are output at the start
of each block. The compressed part has either strings that are not duplicated (literals) or a
length, backward distance pair which point to the original string. The lengths are limited to
258 bytes, the distances to 32k bytes.

Uncompressed blocks are limited to 65,535 bytes in size. Huffman encoding is used to then
compress these trees. This is done by representing all the literal strings, the distance and
length values as a Huffman code, one code for the literals and lengths and another for the
distances.

Application of Zlib compression

ZLib never compresses the file header and EOF records. Zlib compression can be turned on
(via a Start Compression record) any time after the file header record, but it is not
guaranteed to be the next record after the file header. The data immediately following the
Start Compression record is a ZLib compressed stream containing compressed records. The
data should be decompressed and interpreted as records in the normal way (a 4 byte tag and
a 4 byte size field). The last record in the compressed section will be an End Compression
record but only the record header is in the compressed stream. The record data itself (the
CRC and length values) is uncompressed hence this record requires some special handling.
Compression is based on the public domain Zlib compression libraries. By making
compression optional in this way it means that valid files can be written and understood by
all Xar file readers. In some cases the added complexity of writing compressed .web files
may not be warranted, and it often makes debugging easy to have non-compressed records.
Secondly this system allows records that do not compress well (e.g. already compressed

 - 40 -

http://www.gzip.org/zlib/
http://www.libpng.org/pub/png/

bitmaps such as JPEG and PNG) to stay out of the system, and hence not mess up
compression dictionaries etc.

Reusable Data Records

The Xar format has a very simple mechanism that allows an item of data to be specified
once, and then to be referred back to many times instead of duplicating the data over and
over again. The format contains many elements that are reusable in this way and this is
another feature that contributes to the compact nature of Xar files.

Here is a list of some of them:

• Bitmaps
• Colours
• Fonts
• Arrowheads

Reusable data is stored in the file in the same way as everything else, in a record. It is up to
the Xar reader to convert reusable data records into a form that allows the reconstruction of
the Xar graphic. For example, bitmaps are reusable but the bitmap record may not be in a
directly renderable form - it may be stored in JPEG format. It is the Xar reader's job to
convert these bitmap records into a form that's appropriate for rendering on the local
system. In the case of a Xar reader implemented to run on Windows, it would have to
convert the JPEG data into a DIB.

The important point when importing reusable records is that, once any conversions into
local format have taken place, that data should be preserved so that further records in the
file can use it again. Records later the in the record stream may refer back to the records
which originally created this data using a Sequence Number.

Sequence Numbers

As you know, the Xar format is made up of a contiguous stream of records. Thus, each
record has an implicit, unique Sequence Number. The Sequence Number of the first record
in the file is 1, the second is number 2, and so on. Sequence Numbers can be computed
automatically by Xar readers and writers simply by counting the Records as they pass in or
out of the Record Stream - so Sequence Numbers don't need to be saved in the records and
this saves a little space.

Sequence Numbers are used by one record to refer to another. A record can only reference
a record that appears earlier than it. This ensures that the file remains progressively
renderable because it disallows forward references to records might take a long time to
become available.

 - 41 -

Sequence Numbers are signed, 32-bit integers.

Writing Reusable Data Records

The writing of reusable records is driven by references to the data item rather than by the
data itself. It works like this:

Each type of reusable data item has a Manager that maintains a database (or dictionary)
describing which data items it has written during a Write session. This Manager can be
called to hand out references to its data items for use inside other records. When asked for a
reference, the Manager first looks up it's database to see whether that item has already been
output and, if so, it returns a reference to that reusable data record. If not, it writes the
Reusable data item out there and then, and returns a reference to it.

From the point of view of the code which is asking for references, all it sees is the one
"give me a reference to this item" call - the fact that that call sometimes writes records of
it's own is transparent.

This system ensures that reusable data items only occur once in a Xar file and that they
only occur just before they're needed.

The reference to a reusable data record is its Sequence number. Since this is a signed 32-bit
number (see below to understand why it is signed), this means that all Reusable Data
Records must appear in the first 2 billion records of a file. This is unlikely to be a great
limitation.

Reading Reusable Data Records

Reading reusable data is straightforward too. The only restriction is the obvious one that a
reusable data record must appear in the file before it is referenced.

The reusable data item Manager receives a data item and stores it away ready for later
references to it. At the same time it adds an entry to its database, linking the Sequence
number to the data item stored in memory. The Manager provides a function call that takes
a Sequence number and returns information about the reusable data item in memory to the
caller.

Now, a routine interpreting a record which contains a reference to a reusable data item
simply calls the appropriate data Manager simply calls that function, passing in the
reference that it's extracted from the record. It should always get back the information it
needs about the referred data item because the Writing process defined above guarantees
that the data item is placed in the file before the first reference to it.

 - 42 -

Default Reusable Data Records

Some classes of data item may have a number of defaults - predefined data items that are
commonly used. These defaults are bound into Readers and Writers so that they don’t need
to be included in Xar files, saving a little more space. They are used by special Reusable
Data references.

To signal that a reference refers to a Default Reusable Data item it is negative. All
references >= 1 refer to a Reusable Data record within the file. All numbers < 1 refer to a
Default Reusable Data Item.

The nice thing about this method is that a record that uses the reference has no idea whether
it is a default item or not. For example, a flat fill colour record would ask the colour system
for the reference value for a particular colour - it is not concerned what the value is, as long
as the system can dereference the value during Reading.

The legal ranges of reference numbers for Default Reusable Data items are given in the
sections describing the data.

Document Structure

So far we have seen that the records that appear in the file can represent a tree structure.
Also, the idea of renderable records (namely objects and attributes) has been introduced,
describing how the tree structure defines the way in which the records are rendered.

This section describes how the format uses those systems to encode the graphical
environment within which the images themselves reside - the framework that holds the
graphics in place. It introduces the ideas of Documents, Chapters, Spreads, Pages and
Layers and explains why they are not always required.

Document Structure Records

The illustration below shows how the elements that define the document structure (i.e. the
document structure records) are organised:

 - 43 -

Figure 4.8. Diagram of the document structure hierarchy.

As the diagram shows, the elements of a document are defined using a set of records within
the file. Each record type defines the head of a sub tree of records. (The tree structure is
controlled using the Up and Down navigational records, as described earlier).

The document element records have the following meaning:

• Document This record defines that all records in its sub tree belong to the same
document. There can be more than one Document record in a file, allowing for
multiple documents within one Xar file.

• Chapter This groups a series of spreads together as a single unit. Each document
can have multiple chapters.

• Spread Each chapter can have multiple spreads. A spread simply defines a set of
renderable objects that make up a single illustration. It can be thought of as a page,
within a word processor. It is not called a page because it does not impose a single
page size. A spread can be made up of several pages that are linked together. A
good example of this idea is a double-page spread (DPS). This is two pages that are
connected down one edge, representing a single area where objects can live,
possibly overlapping the join of the pages. The spread will be shown on screen as a
single drawing surface and when bound in a publication it will look that way.
However, during the printing process each Page is printed separately.

• Layer A spread can contain more than one layer. Each layer contains renderable
objects. The most powerful aspect of a layer is that it can control the visibility of all
the renderable objects within it. Think of layers as acetate sheets laid over the

 - 44 -

drawing. You can draw on each acetate separately, you can remove acetate sheets
temporarily, put them back or change their order.

These records are known as the Framework Records. C.f. Image Records.

The document structure imposes rules on the order in which records can legally appear in
the file. For example, a Document record cannot be a child of a Chapter, a Spread cannot be
the child of an object, and so on.

When considering very simple files, this structure can be seen as a wasteful overhead. For a
file that just contains one circle, the hierarchy would account for the majority of the file,
without adding any renderable information. This is clearly not desirable for a graphic that is
to be sent across the Internet.

It is therefore defined that the records used to structure the document are optional. When
you encounter a record that is defined lower in the document hierarchy, you can assume the
parent document structure records are implied. For example, if you read a Spread record
before a Chapter or Document record, you can assume that it is part of a single document
that contains a single chapter. Likewise, if you read an object or an attribute before any
document structure records, the complete hierarchy is implied.

Once a higher level document structure record is implied, no records of that type can be
legally present in the file. This means that if you come across a Spread record as your first
record in the document hierarchy then later encountered a Chapter record, the Chapter
record would be illegal (and the rest of the file should be ignored from that point on).

A Document record is required to delimit the start of the document if multiple documents
are present in the file. If a Document record is implied then it is assumed that there's only
one document in the file. At least one Layer record is required to hold the renderable
objects.

This implied hierarchy approach gives the file format a rich, multiple document structure,
without increasing the size of the file for simple web graphics.

Multi-spread documents

Note that up until July 2006 the Xara Xtreme application and its predecessors could only
save documents containing single Spreads. After that date versions of Xara Xtreme can
save documents containing more than one spread. See TAG_SPREAD and
TAG_SPREAD_PHASE2 for details of back compatibility arrangements.

 - 45 -

 Other information in Xar files

Application Records

The editing application may wish to preserve information about the editing state of the file.
Any such information will appear in the record stream after the Document record (if
present) but before the first Framework record. A typical example of this type of record is a
Print Settings record that defines how the document is to be printed. It would include
information such as whether to print all layers or just the visible ones, whether the
document has to be rotated to fit it on the paper, the number of copies to print, etc.

Extension Records

A set of records is defined which help a Xar Reader to deal with records that were not
defined when the Reader was written. These Extension Records supply the Reader with
information about possible new Record tags which tell it how to deal with them if it
encounters them and some information about the Records that can be presented to the user.
Extension records will also usually be placed early in a Xar file, before the first Framework
Record.

 - 46 -

Guidelines for implementers
This chapter offers a few suggestions about implementing Xar Readers and Writers. A
Reader is a program that loads a Xar file and interpret the records within it. A Writer is a
program that creates Xar files.

The XarLib Library

When using C++ (or any other language that allows linking to C++ static libraries) the
easiest way to implement a Xar file Reader or Writer is to use the XarLib library. The
library provides access to a Xar file at the record level for both the reading and writing of
Xar format files. The library is responsible for handling the ZLib compression and certain
other features of the format (e.g. atomic and essential records) leaving you to deal with
interpreting or writing the records without having to worry about the low-level details.

The library is currently only available as header files and static libraries built with
Microsoft Visual C++ 6 (multi-threaded C runtime versions for debug and release). Other
versions, including source code that can be built on other platforms, should be made
available shortly.

Download the XarLib Library (660 KB)

All of the files in this download are copyright Xara Group Ltd 2005. You are free to use
them for any purpose.

Suggestions for implementing a Xar Reader

To implement a Xar file Reader you first need to set up the two levels of compression. The
best way to do this is to create three streams, which feed data from one into the other; byte
stream to refined record stream to record stream. The Records stream, at the top of the
stack, is what the Xar parser reads records from, one by one.

The Xar Parser requests the next record from the Record stream. The Record stream, in
turn, requests the next record from the Refined Record Stream, the Refined record stream
requests bytes from the Zlib decompressor which, finally, requests bytes from the raw byte
stream.

Once you've got the stream stack set up, you can start work on the Parser. To see results
quickly, pick out the simplest graphical objects, paths, since paths are very familiar objects
and their description in the file format is relatively straightforward. You can insert the paths
into your data structure or render them (without worrying about attributes at this stage).

 - 47 -

http://www.xara.com/support/docs/webformat/spec/XarLib.zip

Beyond this stage there are several directions in which development could continue. We
recommend that you set up a handler to deal with unknown records fairly early in the
development process as a safety net and so that it can be tested on unimplemented records.

Suggested stages of Development

When using the XarLib library stages 1, 2 and 7 are handled for you leaving you to deal
with the parsing of the required records.

Stage 1 - Obtain Zlib from http://www.gzip.org/zlib/ and implement the Zlib
decompression stage.

Stage 2 - Implement code to deal with the Record Stream and the Refined Record Stream.

Stage 3 - Parse Path Records (includes some record Refining due to Path Similarity and
relative coordinates)

Stage 4 - Parse Up and Down Records

Stage 5 - Set up default attribute values and parse simple attributes

Stage 6 - Now implement a renderer to see what you get

Stage 7 - Implement your handling of unknown records

Stage 8 - Now do all the remaining records that you need to understand

Here are some issues to be aware of:

Attribute stack

To implement the scopes of attributes correctly (see Attributes in the Tree) you need to
implement some system which preserves the state of all attributes when a Down record is
encountered and restores it when the matching Up is encountered. Obviously, you are free
to implement this in whatever way you see fit but if you're rendering the drawing directly
from the Xar format data structure the performance of such a system is very important.
Down and Up records are the most common records in the file format so you need to think
about the speed and efficiency of actually storing the attribute state every time a Down
record is encountered.

 - 48 -

http://www.gzip.org/zlib/

"Un-refining" Paths

One element of the Path Record Refiner looks for paths that are similar to paths that it has
already written and saves space by writing a back reference to the original path. Therefore,
a Xar file Reader must keep track of all path records that it encounters so that when one of
the back references is encountered it can repeat the appropriate path in the illustration.

The same kind of advice applies to the other re-usable records: bitmaps, colours, font
specifications, etc.

Reading large records

Some records, for example bitmap records, can be very large. Creating a full Bitmap record
can require a large amount of temporary memory - especially if you need to convert the
bitmap data into a different format before you can use it. (For example, reading a large
JPEG record and converting it into a DIB before being able to render it in Windows.) If
that's a problem for your implementation, consider creating a system that allows the data
section of large records to be read directly from the byte stream and streamed into the
format converter so that a much smaller amount of temporary memory is needed.

Coordinates

Coordinates in Image Records are stored either relative to the bottom left of the Page or the
bottom left of the Spread pasteboard.

The Reader can derive the size of a spread and the position of pages within it from the
TAG_SPREADINFORMATION record.

Note that none of the Framework Records store any absolute coordinates – it’s up to the
XAR Reader to set a position in space for the Chapters and Spreads that it reads. If the
Reader handles more than one spread it is recommended that spreads are assigned
coordinates that don’t overlap with each other.

Suggestions for Implementing a Xar Writer

It is more difficult to offer suggestions about implementing a Writer because that very
much depends on the data structures from which the file must be constructed. It is likely
that Xar Writers will be implemented in existing programs where data structures are well
established and those data structures will fit the Xar graphics model to a greater or lesser
extent. The closer the existing data structure is to the Xar model, the easier it will be to
implement a Xar Writer.

 - 49 -

Using the XarLib library will still reduce the development time considerably as it handles
the compression and output layers and allows the Xar format to be created at the record
level leaving you to concentrate on which records should be output.

Here are some issues to be aware of:

Layout of a legal Xar file

A legal Xar file must start with an eight-byte ID block, followed by a TAG_FILEHEADER
record. The last record in the file must be a TAG_ENDOFFILE record.

Algorithms

This spec describes many of the algorithms required to convert the data contained in Xar
records into rendered graphics but not all of them. The following programs are available
which load Xar format files:

• Xara X and related family of products, such as X1 and Xara Xtreme, are fully
featured illustration programs able to render and edit all parts of a Xar file.
Commercial application.

• Xara plug-in. This is a Netscape plug-in that allows Xar format files to be displayed
in web browsers. It does not support the full range of records in the Xar format
(anything with a tag number of 4050 or higher will be ignored). It is only available
for Windows and does not work in recent versions of Microsoft Internet Explorer
(versions 5.5 and above). It can be downloaded from the Xara web site.

You can investigate the visual effects of the algorithms these programs use by loading Xar
files created by your own Writer. The Xara plug-in is based on significantly different code
from Xara X¹ and can thus provide useful additional test results.

Attribute scoping

Use the attribute scoping rules to control the area of effect of attributes. Place attributes in
the subtrees in which their effect is required by using Down and Up records rather than
placing them alongside the objects they're intended to affect.

Writing large records

Some records, for example, bitmap records, can be very large. Creating a full Bitmap
record can require a large amount of temporary memory. If that's a problem for your
implementation, consider creating a system that allows the record header to be created and

 - 50 -

http://www.xara.com/downloads/plugin/

written to the byte stream separately from the data section of that record, which can be
written directly to the byte stream, bypassing the record streams.

Files don't have to be compressed

Xar files don't have to be compressed. You can leave out the Start Compression and End
Compression records, don't run Zlib compression between them and the output file will be
perfectly legal. This isn't very useful for transmitting the file over the Web but it can be
very useful for debugging purposes.

 - 51 -

Navigation Records
Navigation records impose a tree structure on the Record Stream. The tree structure is
essential to the correct interpretation of the image and so cannot be ignored. It gives scope
to attribute application and determines the composition of complex objects from simpler
ones.

Name Down

Purpose This record defines that the following records are one level down in the tree
structure - they are children of the previous record.

Tag TAG_DOWN

Size 0

Usage Navigation, Compulsory

Comments:

This record says that everything after this record will be a child of the previous record in
the data stream until an Up record is found. An Up record further on in the stream should
always accompany it.

Name Up

Purpose This record defines that the context should move up to the previous level in the
tree.

Tag TAG_UP

Size 0

Usage Navigation, Compulsory

Comments:

This record defines that the context should move to where the previous Down record was
encountered. It should always be accompanied by a preceding down record.

 - 52 -

Framework Records
This chapter describes all the Framework Records - those records which don't contribute
directly to the definition of the image but which describe the context within which the
image exists.

Many of these records are optional and are used more frequently in paper-publishable files
than in files intended purely for Web use.

File delimiters
Name File Header

Purpose This record gives useful information about the file. This should always be the
first record in any file produced.

Tag TAG_FILEHEADER

Size Variable

Usage Compulsory, Framework

Data:

<FileType : 3 BYTES> The type of information this file contains. This field backs
up the information given by the file extension and is a more
reliable indicator than the extension.

File type := CXW | CXN

CXW = Web file

CXN = Paper-publishable file

All other values are reserved for future use.

<FileSize : UINT32> The uncompressed size of this file, 0 if unknown.

<WebLink : UINT32 > Always 0x0. Reserved for future use.

<RefinementFlags :
UINT32>

A flags word that describes which Refinement methods
have been applied to this file.

 - 53 -

<Producer :
ASCII_STRING>

The name of the program that produced this file e.g.
'CorelXARA'.

<ProducerVersion :
ASCII_STRING>

The version number of the program that produced this file
e.g. '1.1'.

<ProducerBuild :
ASCII_STRING>

The build number of the program that produced this file
e.g. '650'

Comments:

This record gives useful information about the current file such as the name, version and
build of the producer program and what type of document is contained within this file:
native, web or template. This should always be the first record in the file, and is not
compressed by the Zlib compression stage.

• FileType: This contains three characters that describe the type of file. This is so that
the file can be identified even if the file extension (i.e. type ID) gets lost.

• FileSize: This is an estimate of the uncompressed file size of the file, in bytes. Zero
means that there is no estimate. This is here purely for progress bar display.

• RefinementFlags: These flags define which Refinement methods have been applied
to this file (see the section on Refinement for more details).

• Producer strings: These three strings combine to identify which program produced
the file. They are stored as ASCII rather than Unicode in order to save file space
(remember this record is not compressed).

Name End Of File

Purpose This record indicates that there are no more records in this file. This should
always be the last record in any file produced.

Tag TAG_ENDOFFILE

Size 0

Usage Compulsory, Framework

Comments:

The record is for validation purposes only. If the end of the byte stream is reached before
reading this record, then the file is corrupt in some way.

 - 54 -

Compression records

These define the start and end of Zlib compressed sections in the file. Compression can be
turned on and off multiple times in the file. Each Start Compression record must be
matched by an End Compression record.

The Start Compression record also starts Record Refinement. This imposes the restriction
that Record Refinement can never be applied without ZLib compression, although it is
thought that this is not a significant restriction. (The Record Refinement methods that are to
be applied are defined in the file header record by the Refinement Flags field.)

Name Start Compression

Purpose This record defines the start of a compressed set of data.

Tag TAG_STARTCOMPRESSION

Size 4

Usage Framework. Compulsory for Readers

Data:

<CompressionVersion : 3
BYTEs>

The version of the compression used.

<CompressionType :
BYTE>

The format of the compression used.

Comments:

This record indicates that all data after this record will be ZLib compressed (and refined by
the methods defined by RefinementFlags in the file header) until the End Compression
token is found in the compressed stream.

At present the compression type is zero and this defines the use of ZLib.

The compression version is the version number of the compression system in use,
multiplied by 100. It is stored as three ASCII number characters. E.g. v0.94 is stored as
094.

 - 55 -

http://www.xara.com/support/docs/webformat/spec/Framework.html#EndCompression#EndCompression

Name End Compression

Purpose This record defines the end of a compressed set of data.

Tag TAG_ENDCOMPRESSION

Size 8

Usage Framework. Compulsory for Readers

Data:

<CompressionCRC :
UINT32>

A checksum or CRC for the compressed section.

<NumBytes : UINT32> Number of compressed bytes

Comments:

This record stops compression. It will only be found in the compressed stream. This always
comes sometime after a matching Start Compression record.

The data section is actually stored outside the compressed stream. For this reason, the
record needs some special handling.

Document Structure Objects

These are the objects that define the document structure, i.e. the document, chapter, spread,
page and layer records.

Name Document

Purpose This record defines the start of a new document.

Tag TAG_DOCUMENT

Size 0

Usage Framework, not required in Web files.

 - 56 -

Comments:

This record defines the start of a new document. It is not required by default. Always found
before a chapter record, it is usually the first object record as opposed to a header record in
the file.

Name Chapter

Purpose This record defines the start of a new chapter.

Tag TAG_CHAPTER

Size 0

Usage Framework, not required in Web files.

Comments:

This record defines the start of a new chapter. It is not required by default. It is always
found after a document record and before a spread record.

Name Spread

Purpose This record defines the start of a new spread.

Tag TAG_SPREAD
TAG_SPREAD_PHASE2

Size 0

Usage Framework, not required in Web files.

Comments:

This record defines the start of a new spread. It is always found before a page record and
after chapter and document records, if they are present in the file.

TAG_SPREAD is used in documents containing just a single spread.

 - 57 -

TAG_SPREAD_PHASE2 is used to represent spreads after the first spread in the multi-
spread documents. So, the list of Spreads in a 3-spread document would be written into the
XAR file using these tags:
 TAG_SPREAD
 TAG_SPREAD_PHASE2
 TAG_SPREAD_PHASE2

This combination of tags allows old XAR Readers that may be unaware of multi-spread
documents to load those documents successfully, retaining just the first spread in the
document and skipping the others.

Name Spread Information

Purpose This record defines information about the current spread.

Tag TAG_SPREADINFORMATION

Size 17

Usage Framework, not required in Web files.

Data:

<Width : MILLIPOINT> The width of the page.

<Height : MILLIPOINT> The height of the page.

<Margin : MILLIPOINT> The margin to add around all four sides of the pages in the
spread to make up the pasteboard.

<Bleed : MILLIPOINT> Bleed margin to add around all pages in this spread. (0 means
none)

<SpreadFlags : BYTE> Flags for the current spread.

SpreadFlags ::= <DoublePageSpread : BIT(0)>
<ShowDropShadow : BIT(1)>
<SelectedSpread : BIT(2)>
<PrintWholeSpread : BIT(3)>
<NegateX : BIT(4)>
<NegateY : BIT(5)>

 - 58 -

DoublePageSpread flag to say whether the spread consists of one page or two pages butted
together beside each other.

ShowDropShadow flag to say whether we apply a page shadow behind the page.

SelectedSpread flag marks the spread that the user last clicked on. Note that it’s possible for
none of the spread records in a XAR file to be marked with this flag. In this case, if the
XAR Reader takes note of this flag at all, it should select one of the spreads by default
(typically the first spread).

PrintWholeSpread flag to say if a double page spread should always be treated as a single
page. E.g. if you have a double page spread and you ask for just page 1 to be printed, if this
flag is set then both pages of the spread should be printed.

NegateX and NegateY flags to say if the coordinates displayed to the user for this spread
should have there sense reversed (usually positive is to the right and upwards).

Comments:

This record defines extra information for the current spread. Always found after a spread
record. It is not required by default. The same bleed and drop shadow style is applied to all
objects in the spread. The margin is applied around the sides of the bounding box for all the
pages in the spread.

Name Spread Animation Properties

Purpose This record defines animation properties for the current spread.

Tag TAG_SPREAD_ANIMPROPS

Size 28

Usage Framework, not required in Web files.

Data:

<Loop : UINT32> Number of times the animation should loop. (0 means loop
indefinitely)

<GlobalDelay : UINT32> Default frame delay in milliseconds.

 - 59 -

<Dither : UINT32> Dither type.

<WebPalette : UINT32> Class of palette (0 - global, 1 - local)

<ColoursPalette :
UINT32>

Type of palette (0 - browser, 1 - optimised, 2 - standard).

<NumCols : UINT32> Number of colours wanted in palette.

<Flags : UINT32> Animation flags.

Flags ::= <SystemColours : BIT(0)> <OpaqueBackground : BIT(1)>

SystemColours flag to say whether the palette should include the system colours.

OpaqueBackground flag to say whether the frames should have transparent backgrounds.

Comments:

This record defines extra information for the current spread. Always found after a spread
record. It is not required by default.

Name Flash Animation Properties

Purpose This record defines Flash animation properties for the current spread.

Tag TAG_SPREAD_FLASHPROPS

Size 12

Usage Framework, not required in Web files.

Data:

<FramesPerSec : UINT32> Numbr of frames per second

<FlashVersion : UINT32> Flash version number (4, 5, 6 or 8. All other values are
reserved.)

<Flags : UINT32> Flash animation flags

 - 60 -

Flags ::= <ZLIBCompression : BIT(0)>
ZLIBCompression flag to say whether ZLIB compression is enabled in the flash file.
All other bits are reserved and should be set to 0.

Comments:

This record defines extra information for the current spread specifically for use when
exporting the document as a Flash animation. Only present when Flash animation
properties have been altered and then always found after a spread record. It is not required
by default.

Name Page

Purpose This record defines a page within the current spread

Tag TAG_PAGE

Size 20

Usage Framework

Data:

<BottomLeft : COORD> The bottom-left co-ordinate of the page

<TopRight : COORD> The top-right co-ordinate of the page.

<Colour : COLOURREF> The Sequence Number of the record that defines the page’s
colour

Comments:

This record defines a page that is associated with the current spread. The colour is defined
by the colour record referenced by the ‘Colour’ field.

Name Layer

 - 61 -

Purpose This record defines the start of a new layer.

Tag TAG_LAYER

Size 0

Usage Framework. Compulsory.

Comments:

This record is the parent of all the records in that layer.

Name Layer Details

Purpose This record defines aspects of the following layer in the file.

Tag TAG_LAYERDETAILS

Size Variable

Usage Framework. Compulsory for Readers. Not required in Web files.

Data:

<LayerFlags : BYTE> Flags defining aspects of the layer.

<LayerName : STRING> The name given to the layer.

LayerFlags::= <IsVisible : BIT(0)> <IsLocked> : BIT(1)> <IsPrintable> : BIT(2)>
<IsActive> : BIT(3)>

IsVisible is set if the layer is visible by default.

IsLocked is set if the layer cannot be selected by default (it’s locked against editing).

IsPrintable is set if the layer can be printed by default.

IsActive is set if the layer can have new objects created in it by default.

Comments:

 - 62 -

This record defines more detailed information about a layer. Always found after a spread or
a page object (if a page is present).

Name Guide Layer Details

Purpose This record defines aspects of the following layer. It also defines the layer to
be a guide layer

Tag TAG_GUIDELAYERDETAILS

Size Variable

Usage Framework. Compulsory for Readers. Not required in Web files.

Data:

<LayerFlags : BYTE> Flags defining aspects of the layer.

<LayerName : STRING> The name given to the layer.

<LayerColour :
COLOURREF>

The colour used to display this guide layer.

LayerFlags::= <IsVisible : BIT(0)> <IsLocked : BIT(1)> <IsPrintable : BIT(2)> <IsActive :
BIT(3)>

IsVisible is set if the layer is visible by default.

IsLocked is set if the layer cannot be selected by default (it’s locked against editing).

IsPrintable is set if the layer can be printed by default.

IsActive is set if the layer can have new objects created in it by default.

Comments:

This record defines detailed information about a guide layer. Always found after a spread
or a page object (if a page is present). The guide layer is special in that this is where all the
guide-lines are placed. There is usually only one, it is never printed and it can have a
display colour defined to it. It can act like another layer, as in other objects can be placed

 - 63 -

onto it, but these objects are only displayed in outlines using the guide layer colour and
dash pattern.

Name Guide-line

Purpose This record defines vertical and horizontal guide-lines.

Tag TAG_GUIDELINE

Size 5

Usage Framework. Compulsory for Readers. Not required in Web files.

Data:

<Type : BYTE> Whether the guide-line is vertical (1) or horizontal (2).

<Ordinate : MILLIPOINT> The guide-line’s offset from the spread origin.

Comments:

Although the same effect can be achieved by creating horizontal and vertical lines in the
guide layer, this record offers a shortcut and saves file space for these commonly defined
guide-lines.

Name Layer Frame Properties

Purpose This record defines animation properties for the current layer/frame.

Tag TAG_LAYER_FRAMEPROPS

Size 5

Usage Framework, not required in Web files.

Data:

 - 64 -

<Delay : UINT32> Time this frame should be displayed for in milliseconds.

<Flags : UINT32> Animation flags.

Flags ::= <Solid : BIT(0)> <Overlay : BIT(1)> <Hidden : BIT(2)>

Solid flag to say whether this frame should completely obscure those before.

Overlay flag to say whether this frame should be overlayed.

Hidden flag to say whether this frame should not be shown.

Comments:

This record defines the animation properties of the current layer/frame. It is not required by
default.

View records

These are records which define the views onto the document and their status information.

Name View Port

Purpose This record describes the viewing area that should be shown by default.

Tag TAG_VIEWPORT

Size 16

Usage Framework. Compulsory.

Data:

<BottomLeft : COORD> Bottom-left co-ordinate of the view area

<TopRight: COORD> Top-right co-ordinate of the view area

Comments:

This defines the viewing area onto the illustration. This allows any area of the spread to be
viewed independently of the bounds of the objects in the spread. Its primary use is to allow
a viewing area to be defined that a stand-alone renderer or web-browser plug-in can use.

 - 65 -

There should only be one of these records per spread. It is recommended that one of these
records is present if the file is to be displayed by a stand-alone renderer. This record is
compulsory for Web files to allow it them be progressively renderable. It is optional in
paper-printable files where the Document View records can be used to determine similar
information.

If there is no View Port record found before the first object in the spread, the viewed area
should default to be the enclosing bounds of all visible Image objects in the file.

Name View Quality

Purpose This record describes the quality information for the view.

Tag TAG_VIEWQUALITY

Size 4

Usage Framework. Optional.

Data:

<View quality :
BYTE>

View quality setting.

Comments:

This record stores the quality setting for the current view in the document. This is stored as
a value between 0 – 110 where 110 = full quality and 0 = lowest possible quality, usually
outlines only.

The default quality value is 110 – this value is used if the View Quality record is not
present in a Xar file.

This record defines the view quality of the next view record in the file (either a View Port,
or a Document View record.)

Aside: The quality range of 0-110 may seem a bit peculiar. There are historical reasons for
this range. In one of Xara Group Ltd.’s earlier drawing programs the range was 0-100
where 100 represented the highest possible output quality at that time. The company then
implemented on-the-fly anti-aliasing, which was one stage better. So the range was
extended to leave the previous high quality output at 100 and to enable anti-aliasing at 110.

 - 66 -

(The user interface was then a knob that went from 0 up to 11, because 11 is “one louder”
than 10.)

 - 67 -

Paths
The path is the fundamental Image object. It describes a line or a filled shape in the image
by specifying one or more straight lines and/or bezier curves in any combination.

Name Path

Purpose This record represents a path object.

Tag TAG_PATH,
TAG_PATH_FILLED,
TAG_PATH_STROKED,
TAG_PATH_FILLED_STROKED

Size Variable

Usage Image, Compulsory

Data :

<Number Of Coords : UINT32> The number of coords in the path

<Verb List> A list of all the Verbs in the path.

<Coord List> A list of all the co-ordinates in the path.

<Verb List> ::= <Verb : BYTE>+

<Coord List> ::= <COORD>+

Possible values for Verb:

Name Value Meaning

PT_MOVETO 0x6 Move the current position to the co-ordinate that this verb
is associated with.

PT_LINETO 0x2 Draw a line from the current position to the co-ordinate
that this verb is associated with.

PT_BEZIERTO 0x4 Draw a Bezier curve from the current position. These
always come in groups of threes, with the three co-

 - 68 -

ordinates representing the 2 control points and the end
point of the Bezier curve. The start point of the Bezier
curve is always the current position.

The bottom bit of the Verb value is special. When set (only valid for PT_LINETO or
PT_CURVETO) it indicates that the current sub-path should be closed with a straight line
segment from this verb’s co-ordinate to the co-ordinate of the previous PT_MOVETO.

This implies that the valid values for a verb are 2, 3, 4, 5 and 6.

Comments:

This storage format for paths is the format used by GDI32 on Windows NT and is
fundamentally the same format used by PostScript.

Editing applications often need to attach more information to the points on a path to make
them easier to edit. This information usually takes the forms of a set of flags for each point.
The Path flags are stored in a separate Path Flags record so that they can be omitted from
files that are intended for display on the web.

The four tags, TAG_PATH, TAG_PATH_FILLED, TAG_PATH_STROKED and
TAG_PATH_FILLED_STROKED, describe whether the path is filled and or stroked or
not. If it is filled (TAG_PATH_FILLED or TAG_PATH_FILLED_STROKED) then the
fill attributes that are in scope apply to that path. If it is stroked (TAG_PATH_STROKED
or TAG_PATH_FILLED_STROKED) then the stroke attributes that are in scope apply to
that path. Defining separate tags to encode this information saves space (see Using Diverse
Tags to Aid Compression).

Important Note: the filled and stroked “flags” control all rendering of the path object so a
TAG_PATH_FILLED object will not appear at all when the display quality is set to outline
mode. All “normal” path objects must therefore be stored as a STROKED variant as they
must render an outline. A closed path (a “shape” in Xtreme terminology) is always stored
as a TAG_PATH_FILLED_STROKED and an open path (a “line” in Xtreme) is stored as a
TAG_PATH_STROKED. If a path object should not have an outline or a fill then it should
have a relevant “no color” attribute applied rather than be stored as one of the other record
variants. The other variants are intended only for special purposes where the path in
question should not be rendered.

Name Path Flags

Purpose This record describes the flags associated with the next path in the file

 - 69 -

Tag TAG_PATH_FLAGS

Size Variable

Usage Image, Not required in web files (recommended for editors)

Data:

<Flags List> A list of flags

<Flags List> ::= <Flags : BYTE>+

Flags := <IsSmooth : BIT(0)> <IsRotate : BIT(1)> <IsEndPoint: BIT(2)>

IsSmooth: Set when the two Bezier control points on either side of this point must be
recalculated if the point is edited.

IsRotate: Set to tell the Bezier editing software that if the opposite control point is edited,
this control point will rotate to keep the curve smooth.

IsEndPoint: Set for every point that isn’t a Bezier control point, including Moveto and
Lineto points.

All other flags are 0 and are reserved for future use.

Comments:

This contains a list of flags bytes defining the flags associated with each co-ordinate in the
next path record in the file. The number of entries is implied by the size of the record.

Path Refinement

The Record Refinement stage of Xar file compression operates on Path records to make
them more “digestible” by the Zlib compression stage. It does this by altering the way in
which the co-ordinates are stored in the Points array so that there are longer runs of similar
bytes which Zlib can detect and compress more frequently.

 - 70 -

Figure 8.1. How record data is compressed and decompressed.

The above diagram shows how the Record Refiner sits between the normal record stream
and the Zlib compression system.

Relative Path Co-ordinates

The co-ordinates in a path can contain arbitrary values which are unlikely to be similar or to
contain long runs of similar bytes. This means that the Zlib compression stage is unlikely to
be able to compress them efficiently.

The Record refiner deals with this by storing each co-ordinate as relative to the previous
one. For most paths, relative storage will result in the top two bytes of each ordinate to be
either 0x0000 or 0xFFFF. These common sequences should result in higher compression,
compared with compressing a list of arbitrary absolute co-ordinates, which would typically
only have the top byte that is common.

All co-ordinates of a path, except for the first co-ordinate, will be converted to relative
values. The first co-ordinate is absolute and defines the starting point. The next is the
relative distance from the next absolute co-ordinate to the previous absolute co-ordinate.

Here’s an example:

Verbs Absolute Coords Relative Coords

PT_MOVETO (X1,Y1) (X1,Y1) – first coord is always absolute

PT_BEZIERTO (X2,Y2) (X1-X2,Y1-Y2)

 - 71 -

PT_BEZIERTO (X3,Y3) (X2-X3,Y2-Y3)

PT_BEZIERTO (X4,Y4) (X3-X4,Y3-Y4)

PT_LINETO (X5,Y5) (X4-X5,Y4-Y5)

A further change is made to the co-ordinates by interleaving the X and Y ordinates. This
has the effect of producing long runs of 0x0 and 0xFF bytes which Zlib can detect and
compress efficiently.

The relative co-ordinate is stored most-significant bytes first unlike other multi-byte values.
E.g. the relative co-ordinate (0x11223344, 0xAABBCCDD) will be stored as the following
stream of bytes:

0x11, 0xAA, 0x22, 0xBB, 0x33, 0xCC, 0x44, 0xDD

Name Relative Path

Purpose This record represents a refined path object.

Tag TAG_PATH_RELATIVE,
TAG_PATH_RELATIVE_FILLED,
TAG_PATH_RELATIVE_STROKED,
TAG_PATH_RELATIVE_FILLED_STROKED

Size Variable

Usage Image, Compulsory

Data :

<Verb and Coord List> A list of all the Verbs and co-ordinates in the path.

<Verb and Coord List> ::= (<Verb : BYTE> <COORD>)+

(NOTE: These are refined coordinates as described above)

Comments:

 - 72 -

This record is the refined version of the TAG_PATH record. Its general layout is identical
to that of TAG_PATH except that the co-ordinates and verbs are stored differently as
explained in the Path Refinement section above and the number of entries is implied by the
size of the record (9 bytes per entry). See Paths for more information.

Similar Paths

Documents often contain similar paths: duplicate paths may be located in different
positions or a path may be copied and then undergo some distortion, such as being scaled.
Similar transformations can also be achieved by “Cloning”. In any case, the similar paths
can be described as transformations of the original path. These transformations are most
easily described using matrices and linear algebra.

Name Transformed Path

Purpose This record represents a refined path object.

Tag TAG_PATHREF_TRANSFORM

Size 28

Usage Image. Optional

Data :

<Path Reference : REF> The sequence number of the path to transform.

<Transformation : MATRIX> The matrix to apply to the referenced path.

<MATRIX> ::= <a : FIXED16> <b : FIXED16> <c : FIXED16> <d : FIXED16> <e :
INT32> <f : INT32>

Comments:

MATRIX is an abbreviated 3 x 3 matrix with other elements zero and one as is consistent
with homogeneous co-ordinates. To transform a point (x,y) in the reference path to the
corresponding point in the similar path (s,t), apply the following calculations,

s = ax + cy + e

t = bx + dy + f

 - 73 -

Thus by transforming each point in the reference path the new path is obtained.

NOTE: This record is inherently “lossy” due to the limited accuracy obtainable from the
FIXED16 elements when transforming the reference path. A trade-off between space and
accuracy is possible: by allowing greater flexibility in what constitutes a similar path, more
paths can be represented using this record and occupy less space in the data stream.

 - 74 -

Attributes
This section defines all the general attribute records. Text-specific attributes are defined in
the Text chapter.

Fills

The Xar format supports 11 basic types, or geometries of solid and graduated colour fill
styles. The simplest is a solid (flat) fill colour. The 10 other varieties of more complex
graduated colour fills:

• Linear, and linear multi-stage,
• Circular, and circular multi-stage
• Elliptical and elliptical multi-stage
• Conical and Conical multi-stage
• Bitmap, and Contone bitmap
• Fractal clouds
• Fractal Noise
• 3 colour graduated
• 4 colour graduated
• Diamond multi-stage fill

In addition to the fill style, the fill tiling can be defined, which controls whether the fill
repeats.

Finally for the graduated colours fills there is an addition fill effect which controls the
manner in which colours fade form one to another. The 3 options are fade, rainbow and alt
rainbow. The normal fade, just is a direct fade from one colour to another (it’s not always a
linear fade as it can be altered by a profile (link to profiles page). Rainbow and Alt-rainbow
take a tour through the spectrum of colors from the start colour to the end colour.

These records define the attributes that can be applied as fills to objects in the tree. This
first section covers simple and graduated fills.

See Appendix B for a list of the default values for these attributes.

Name Flat Fill Colour

Purpose This record sets the current fill to a flat fill of the specified colour.

Tag TAG_FLATFILL

 - 75 -

Size 4

Usage Image. Compulsory

Data:

< Colour : COLOURREF > A reference to a colour.

Comments:

This record sets the current fill to a flat fill of the specified colour.

 Name Standard Fill Colours

Purpose These records set the current fill to be none, uniform black or uniform white.

Tag TAG_FLATFILL_NONE
TAG_FLATFILL_BLACK
TAG_FLATFILL_WHITE

Size 0

Usage Image. Compulsory

Comments:

TAG_FLATFILL_NONE

This record sets the current fill to be “none” – in other words it instructs objects not to be
filled with anything. Any closed objects that exist in the scope of this attribute will be
“hollow”.

TAG_FLATFILL_BLACK

This record sets the current fill to be black, RGB(0,0,0). It is defined as a separate record
from TAG_FLATFILL because it’s so common.

TAG_FLATFILL_WHITE

 - 76 -

This record sets the current fill to be white, RGB(0xFF,0xFF,0xFF). It is defined as a
separate record from TAG_FLATFILL because it’s so common.

Name Linear Graduated Fill

Purpose This record sets the current fill to be a linear fill.

Tag TAG_LINEARFILL
TAG_ LINEARFILL3POINT

Size 40 (24)
48 (32)

Usage Image. Compulsory.

Data:

< Start Point : COORD > The point that the linear fill will start from

< End Point : COORD > The point that the linear fill will end at

< End Point 2 : COORD > The other point that controls the shear of the fill
(only present in 3 point variant)

< Start Colour : COLOURREF > A reference to the colour to use at the start point

< End Colour : COLOURREF > A reference to the colour to use at the end point

< FillProfile : PROFILE > The profile applied to the fill
Note: this item may not be present in older Xar
format documents

Comments:

The direction of a linear fill is actually controlled by the position of the second end point.
In the first type of record with only two points, the second end point is at right angles to the
supplied end point. The second type of record allows the definition of fills that are not
perpendicular to the line joining the start and end points. The diagram below shows two
linear fills, the first is a two point one where the third point is implied and the second is a
three point one where the third point specifies that the fill is sheared.

 - 77 -

Figure 9.1. Linear fills.

Name Linear Multistage Fill

Purpose This record sets the current fill to be a linear, multistage fill.

Tag TAG_LINEARFILLMULTISTAGE
TAG_LINEARFILLMULTISTAGE3POINT

Size Variable

Usage Image. Compulsory.

Data:

< Start Point : COORD > The point that the linear fill will start from

< End Point : COORD > The point that the linear fill will end at

< End Point 2 : COORD > The other point that controls the shear of the fill
(only present in 3 point variant)

< Start Colour : COLOURREF > A reference to the colour to use at the start point

< End Colour : COLOURREF > A reference to the colour to use at the end point

< NumCols : UINT32 > The number of extra colours in this fill. The
following Position and Colour elements are
repeated for each extra colour

< Position : DOUBLE > The “position” of this colour. This value is
between 0.0 and 1.0 indicating the start and end of

 - 78 -

the fill

< Colour : COLOURREF > A reference to the colour to use at this point

Name Circular Graduated fill

Purpose This record sets the current fill to be a circular fill.

Tag TAG_CIRCULARFILL

Size 40 (24)

Usage Image. Compulsory.

Data:

< Centre Point : COORD > The centre of the circle that the fill will radiate
from

< Edge Point : COORD > A point that lies at the edge of the circle.

< Start Colour : COLOURREF > A reference to the colour to use at the centre

< End Colour : COLOURREF > A reference to the colour to use at the edge

< FillProfile : PROFILE > The profile applied to the fill
Note: this item may not be present in older Xar
format documents

Comments:

Here is an example of a circular fill:

 - 79 -

Figure 9.2. A circular fill.

Name Circular Multistage fill

Purpose This record sets the current fill to be a circular multistage fill.

Tag TAG_CIRCULARFILLMULTISTAGE

Size Variable

Usage Image. Compulsory.

Data:

< Centre Point : COORD > The centre of the circle that the fill will radiate
from

< Edge Point : COORD > A point that lies at the edge of the circle.

< Start Colour : COLOURREF > A reference to the colour to use at the centre

< End Colour : COLOURREF > A reference to the colour to use at the edge

< NumCols : UINT32 > The number of extra colours in this fill. The
following Position and Colour elements are
repeated for each extra colour

< Position : DOUBLE > The “position” of this colour. This value is
between 0.0 and 1.0 indicating the start and end of
the fill

< Colour : COLOURREF > A reference to the colour to use at this point

 - 80 -

Name Elliptical Graduated fill

Purpose This record sets the current fill to be a elliptical fill.

Tag TAG_ELLIPTICALFILL

Size 48 (32)

Usage Image. Compulsory.

Data:

< CentrePoint : COORD > The position of the centre that the fill will radiate
from.

< MajorAxes : COORD > The position of the major axis point.

< MinorAxes : COORD > The position of the minor axis point.

< Start Colour : COLOURREF > A reference to the colour to use at the centre

< End Colour : COLOURREF > A reference to the colour to use at the edge

< FillProfile : PROFILE > The profile applied to the fill
Note: this item may not be present in older Xar
format documents

Comment:

Here are two elliptical fills, the first has the control points at right angles and the second has
been sheared:

Figure 9.3. Elliptical fills.

 - 81 -

Name Elliptical Multistage fill

Purpose This record sets the current fill to be a elliptical multistage fill.

Tag TAG_ELLIPTICALFILLMULTISTAGE

Size Variable

Usage Image. Compulsory.

Data:

< CentrePoint : COORD > The position of the centre that the fill will radiate
from.

< MajorAxes : COORD > The position of the major axis point.

< MinorAxes : COORD > The position of the minor axis point.

< Start Colour : COLOURREF > A reference to the colour to use at the centre

< End Colour : COLOURREF > A reference to the colour to use at the edge

< NumCols : UINT32 > The number of extra colours in this fill. The
following Position and Colour elements are
repeated for each extra colour

< Position : DOUBLE > The “position” of this colour. This value is
between 0.0 and 1.0 indicating the start and end of
the fill

< Colour : COLOURREF > A reference to the colour to use at this point

Name Conical Graduated fill

Purpose This record sets the current fill to be a conical fill.

Tag TAG_CONICALFILL

 - 82 -

Size 40 (24)

Usage Image. Compulsory.

Data:

< Centre Point : COORD > The centre of the cone that the fill will radiate
from

< Edge Point : COORD > A point that lies at the edge of the cone.

< Start Colour : COLOURREF > A reference to the colour to use at the centre

< End Colour : COLOURREF > A reference to the colour to use at the edge

< FillProfile : PROFILE > The profile applied to the fill
Note: this item may not be present in older Xar
format documents

Comment:

Here’s a conical fill:

Figure 9.4. A conical fill.

Name Conical Multistage fill

Purpose This record sets the current fill to be a conical multistage fill.

 - 83 -

Tag TAG_CONICALFILLMULTISTAGE

Size Variable

Usage Image. Compulsory.

Data:

< Centre Point : COORD > The centre of the cone that the fill will radiate
from

< Edge Point : COORD > A point that lies at the edge of the cone.

< Start Colour : COLOURREF > A reference to the colour to use at the centre

< End Colour : COLOURREF > A reference to the colour to use at the edge

< NumCols : UINT32 > The number of extra colours in this fill. The
following Position and Colour elements are
repeated for each extra colour

< Position : DOUBLE > The “position” of this colour. This value is
between 0.0 and 1.0 indicating the start and end of
the fill

< Colour : COLOURREF > A reference to the colour to use at this point

Name Bitmap Fill

Purpose This record sets the current fill type to be a bitmap fill.

Tag TAG_BITMAPFILL

Size 44 (28)

Usage Image. Compulsory.

Data:

< BottomLeft : COORD > The position of the bottom left hand corner of the

 - 84 -

parallelogram.

< BottomRight : COORD > The position of the bottom right hand corner of
the parallelogram.

< TopLeft : COORD > The position of the top left hand corner of the
parallelogram.

< Bitmap : BITMAPREF> The bitmap reference to use as the fill.

< FillProfile : PROFILE > The profile applied to the fill
Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be a bitmap fill. This fill applies a bitmap to the object
using the control points to define how the fill is transformed and positioned. The control
points define a parallelogram by the bottom left, top left and bottom right points and the
bitmap is then plotted inside this parallelogram.

The fill can be non-repeating, repeating or inverted-repeating.
When not repeating, the filled area does not extend beyond the parallelogram defined in the
record.
When repeating, the entire shape is filled by tessellated parallelograms.
When inverted-repeating, the bitmap is flipped over so that one corner is near the
equivalent corners of the three other parallelograms touching it before being fitted into the
tessellated parallelograms. This often makes the join between parallelograms less visible.
These features are controlled by a separate attribute records, TAG_FILL_REPEATING,
TAG_FILL_NONREPEATING and TAG_FILL_REPEATINGINVERTED.

Here are two bitmap fills, one non-repeating with a slight rotation and the other repeating
with a more complex transformation:

Figure 9.5. Bitmap fills.

 - 85 -

Name Contone Bitmap Fill

Purpose This record describes a contone bitmap fill.

Tag TAG_CONTONEBITMAPFILL

Size 52 (36)

Usage Image. Compulsory.

Data:

< BottomLeft : COORD > The position of the bottom left hand corner of the
parallelogram.

< BottomRight : COORD > The position of the bottom right hand corner of
the parallelogram.

< TopLeft : COORD > The position of the top left hand corner of the
parallelogram.

< Start colour : COLOURREF > A reference to the colour to use at the centre.

< End colour : COLOURREF > A reference to the colour to use at the edge.

< Bitmap : BITMAPREF> The bitmap reference to use as the fill.

< FillProfile : PROFILE > The profile applied to the fill
Note: this item may not be present in older Xar
format documents

Comments:

This specifies a fill type that is very similar to the standard bitmap fill described above. The
only difference is that two colours are specified, defining a contone (“continuous tone”)
onto which the intensities of the bitmap are mapped. This is used to restrict the colours of a
displayed bitmap fill.

The colours allows a greyscale bitmap’s palette to be overridden and plotted such that the
black and white end colours are plotted using the start and end colours. The grey levels
between black and white are generated by computing the appropriate mix between the start
and end contone colours. If the bitmap is not greyscale then the colour intensities are used
to pick new colours from the contone.

 - 86 -

The fill can be non-repeating, repeating or inverted-repeating.
When not repeating, the filled area does not extend beyond the parallelogram defined in the
record.
When repeating, the entire shape is filled by tessellated parallelograms.
When inverted-repeating, the bitmap is flipped over so that one corner is near the
equivalent corners of the three other parallelograms touching it before being fitted into the
tessellated parallelograms. This often makes the join between parallelograms less visible.
These features are controlled by a separate attribute records, TAG_FILL_REPEATING,
TAG_FILL_NONREPEATING and TAG_FILL_REPEATINGINVERTED.

Here are two contone bitmap fills (it’s the contoned version of figure 9.5):

Figure 9.6. Contoned bitmap fills where the contone is from blue to white.

Name Fractal Clouds Fill

Purpose This record describes a fractal clouds fill.

Tag TAG_FRACTALFILL

Size 69 (53)

Usage Image. Compulsory.

Data:

< BottomLeft : COORD > The position of the bottom left hand corner of the
parallelogram.

< BottomRight : COORD > The position of the bottom right hand corner of
the parallelogram.

 - 87 -

< TopLeft : COORD > The position of the top left hand corner of the
parallelogram.

< Start colour : COLOURREF > A reference to the colour to use at the centre.

< End colour : COLOURREF > A reference to the colour to use at the edge.

< Seed : INT32 > The seed applied to the fractal fill.

< Graininess : FIXED16 > The graininess of the fractal fill.

< Gravity : FIXED16 > The gravity to apply to the fill.

< Squash : FIXED16 > The squash to apply to the fill.

< Resolution : UINT32 > The resolution of this fill (DPI).

< Tileable : BYTE > Flag to say if tileable or not.

< FillProfile : PROFILE > The profile applied to the fill
Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be a fractal cloud fill. This record describes a fractal fill
and all the required parameters to be able to regenerate the fractal pattern when the fill is
loaded. This fractal is regenerated as a bitmap and then applied to the object using the
control points in the same way that they are used for bitmap fills. The control points define
a parallelogram by the bottom left, top left and bottom right points and the bitmap is then
plotted inside this parallelogram.

The fill can be non-repeating, repeating or inverted-repeating.
When not repeating, the filled area does not extend beyond the parallelogram defined in the
record.
When repeating, the entire shape is filled by tessellated parallelograms.
When inverted-repeating, the bitmap is flipped over so that one corner is near the
equivalent corners of the three other parallelograms touching it before being fitted into the
tessellated parallelograms. This often makes the join between parallelograms less visible.
These features are controlled by a separate attribute records, TAG_FILL_REPEATING,
TAG_FILL_NONREPEATING and TAG_FILL_REPEATINGINVERTED.

The fractal is generated as a greyscale bitmap but then is plotted using the defined start and
end colours.

Here are two fractal clouds fills:

 - 88 -

Figure 9.7. Fractal clouds fills.

Name Fractal Noise Fill

Purpose This record describes a fractal noise (plasma) fill.

Tag TAG_NOISEFILL

Size 61

Usage Image. Compulsory.

Data:

< BottomLeft : COORD > The position of the bottom left hand corner of the
parallelogram.

< BottomRight : COORD > The position of the bottom right hand corner of the
parallelogram.

< TopLeft : COORD > The position of the top left hand corner of the
parallelogram.

< Start colour : COLOURREF > A reference to the colour to use at the centre.

< End colour : COLOURREF > A reference to the colour to use at the edge.

< Graininess : FIXED16 > The graininess of the fractal fill.

< Seed : INT32 > The seed applied to the fractal fill.

 - 89 -

< Resolution : UINT32 > The resolution of this fill (DPI).

< Tileable : BYTE > Flag to say if tileable or not.

< FillProfile : PROFILE > The profile applied to the fill
Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be a fractal plasma fill. This record describes a fractal fill
and all the required parameters to be able to regenerate the fractal pattern when the fill is
loaded. This fractal is regenerated as a bitmap and then applied to the object using the
control points in the same way that they are used for bitmap fills. The control points define
a parallelogram by the bottom left, top left and bottom right points and the bitmap is then
plotted inside this parallelogram.

The fill can be non-repeating, repeating or inverted-repeating.
When not repeating, the filled area does not extend beyond the parallelogram defined in the
record.
When repeating, the entire shape is filled by tessellated parallelograms.
When inverted-repeating, the bitmap is flipped over so that one corner is near the
equivalent corners of the three other parallelograms touching it before being fitted into the
tessellated parallelograms. This often makes the join between parallelograms less visible.
These features are controlled by a separate attribute records, TAG_FILL_REPEATING,
TAG_FILL_NONREPEATING and TAG_FILL_REPEATINGINVERTED.

The fractal is generated as a greyscale bitmap but then is plotted using the defined start and
end colours.

Here are two fractal plasma fills:

Figure 9.7. Fractal plasma fills.

 - 90 -

Name Three-colour Graduated Fill

Purpose This record sets the current fill to be a three-colour fill.

Tag TAG_THREECOLFILL

Size 36

Usage Image. Compulsory.

Data:

< Point1 : COORD > The co-ordinate of Colour1.

< Point2 : COORD > The co-ordinate of Colour2.

< Point3 : COORD > The co-ordinate of Colour3.

< Colour1 : COLOURREF > A reference to the colour to use at Point1.

< Colour2 : COLOURREF > A reference to the colour to use at Point2.

< Colour3 : COLOURREF > A reference to the colour to use at Point3.

Comments:

Here’s an example three-colour fill:

Figure 9.8. A three-colour fill.

 - 91 -

Name Four-colour Graduated Fill

Purpose This record sets the current fill to be a four-colour fill.

Tag TAG_FOURCOLFILL

Size 40

Usage Image. Compulsory.

Data:

< Point1 : COORD > The co-ordinate of Colour1.

< Point2 : COORD > The co-ordinate of Colour2.

< Point3 : COORD > The co-ordinate of Colour3.

< Colour1 : COLOURREF > A reference to the colour to use at Point1.

< Colour2 : COLOURREF > A reference to the colour to use at Point2.

< Colour3 : COLOURREF > A reference to the colour to use at Point3.

< Colour4 : COLOURREF > A reference to the colour to use at the implied Point4.

Comments:

The three points define a parallelogram – in a similar way to the bitmap fill record. Thus,
the fourth point is implied and can be computed given the other three points.

Here’s an example four-colour fill:

Figure 9.9. A four-colour fill.

 - 92 -

Name Diamond Graduated Fill

Purpose This record sets the current fill to be a diamond fill.

Tag TAG_SQUAREFILL

Size 48 (32)

Usage Image. Compulsory.

Data:

< Centre Point : COORD > The co-ordinate of the centre of the diamond.

< Right Point : COORD > The co-ordinate of the middle of the right edge of
the diamond.

< Top Point : COORD > The co-ordinate of the middle of the top edge of
the diamond.

< Colour1 : COLOURREF > A reference to the colour to use at the centre of
the diamond.

< Colour2 : COLOURREF > A reference to the colour to use at the edges of the
diamond.

< FillProfile : PROFILE > The profile applied to the fill
Note: this item may not be present in older Xar
format documents

Comments:

Here are two example diamond fills:

 - 93 -

Figure 9.10. A diamond fill.

 Name Diamond Multistage Fill

Purpose This record sets the current fill to be a diamond multistage fill.

Tag TAG_SQUAREFILLMULTISTAGE

Size Variable

Usage Image. Compulsory.

Data:

< Centre Point : COORD > The co-ordinate of the centre of the diamond.

< Right Point : COORD > The co-ordinate of the middle of the right edge of
the diamond.

< Top Point : COORD > The co-ordinate of the middle of the top edge of
the diamond.

< Colour1 : COLOURREF > A reference to the colour to use at the centre of
the diamond.

< Colour2 : COLOURREF > A reference to the colour to use at the edges of the
diamond.

< NumCols : UINT32 > The number of extra colours in this fill. The
following Position and Colour elements are
repeated for each extra colour

< Position : DOUBLE > The “position” of this colour. This value is
between 0.0 and 1.0 indicating the start and end of
the fill

< Colour : COLOURREF > A reference to the colour to use at this point

 - 94 -

Fill Effects

Fill effects defines how one colour is transformed into another colour in all of the basic fill
types described above. The current fill effect applies to any of the fills that contain two
colours, defining which colours are rendered between the start and end colours. (Three and
four colour fills always use the “Fade” fill effect.)

There are three fill effects: Fade, Rainbow and Alternative Rainbow.

Name Fill Effects

Purpose Determine how one colour is transformed into another in all two-colour fills.

Tag TAG_FILLEFFECT_FADE,
TAG_FILLEFFECT_RAINBOW,
TAG_FILLEFFECT_ALTRAINBOW

Size 0

Usage Image. Compulsory.

Comment:

TAG_FILLEFFECT_FADE: Transform the start colour into the end colour by taking the
shortest route between the 2 colours, in RGB colour space.

TAG_FILLEFFECT_RAINBOW: Transform the start colour into the end colour by taking
the shortest route in the H dimension of the HSV colour space.

TAG_FILLEFFECT_ALTRAINBOW: Transform the start colour into the end colour by
taking the longest route in the H dimension of the HSV colour space.

Figure 9.11. The three fill effects on a red to green linear fill: Left-to-right, Fade, Rainbow and
Alternative Rainbow.

 - 95 -

 Fill Repeat Methods

Fill repeat methods apply to all of the fill types except flat and conical. Not all of the repeat
types apply to all of the fills.

The fill repeat records are:

Name Fill Repeating

Purpose Determines how the fill is tessellated.

Tag TAG_FILL_REPEATING,
TAG_FILL_NONREPEATING,
TAG_FILL_REPEATINGINVERTED,
TAG_FILL_REPEATING_EXTRA

Size 0

Usage Image. Compulsory.

Comments:

TAG_FILL_REPEATING: The fill is repeated throughout the object, i.e. it is tessellated
continuously. This can apply to bitmap, fractal, 3-colour and 4-colour fills.
TAG_FILL_NONREPEATING: The fill is not repeated at all, and thus might not cover the
whole shape that it is applied to. This can apply to all fill types.
TAG_FILL_INVERTEDREPEATING: The fill is repeatedly tessellated, except that each
time it is repeated, the bitmap is inverted so that one of its corners touches the equivalent
corner on the three other bitmaps touching it. This can apply to bitmap and fractal fills.
TAG_FILL_REPEATING_EXTRA: The fill is repeated with the start point being the start
colour and a point half-way through the fill being the end colour. The fill then fades back
to the start colour at the end point and then repeats indefinitely. This can apply to linear,
circular, elliptical and diamond fills.

If a fill has an unsupported repeat type (e.g. a linear fill with a TAG_FILL_REPEATING)
then it is rendered as non-repeating.

Transparency attributes

The transparency attributes are very similar to the fill attributes described above. In fact, for
every type of colour fill there is an equivalent transparency “fill” which has similar
geometric properties. The main difference between a fill attribute and a transparency
attribute is that, where the fill attribute controls the colour of a filled shape, the

 - 96 -

transparency attribute controls the opacity of the shape – how much of the image beneath it
can be seen through the shape.

It is important to understand that for any object in a Xar file, it can contain both a fill
attribute and separate transparency attribute. The geometry of the transparency is
independent of the geometry of the fill style.

This is an example of a simple shape with a horizontal linear graduated fill and a vertical
linear graduated transparency. Note that the start and end points of the graduated fill (or
transparency) can be outside the bounds of the object being filled.

There are 11 styles or geometries of the transparency (referred to in Xara X as transparency
shapes). These are a similar set of fill geometries listed above: Flat, linear, circular,
elliptical, conical, diamond, three point, 4 point, bitmap, and two types of fractal
transparency.

In addition the method by which the transparency effect is composited on the page (i.e.
combined with the colours below) is determined by one of 10 possible transparency types.
This is sometimes referred to in other programs as a blending mode. The transparency types
supported are (in our terminology); mix, stain, bleach, contrast, saturation, darken, lighten,
brightness, luminosity and hue.

Finally, as with graduated colour fills, there are tiling modes that control how the geometry
repeats, which can be a simple, ‘one-off’ graduated fill, or a repeating style.

This is a more complex example of an ellipse combining graduated fill attribute of one style
and a different graduated transparency attribute.

 - 97 -

Transparency Type

The transparency records all have a field called Transparency Type. This defines the
composition or blending model used to combine the colours of the object underneath with
this object. The ‘mix’ transparency is the most common type and the equivalent of the
common form of transparency as defined by most applications that support transparency or
translucency.

Transparency Type ::= < Transparency Type Value : BYTE >

The allowable values for the transparency type are described in the following table. The
background colour is represented by lower case letters and the colour of the object being
rendered is represented by upper case letters. The formulae are applied three times, once for
each of the R, G and B components. The component value is represented by the letter C (or
c). The transparency value is represented by T. Some of the formulae use the greyscale
intensity of the colour represented by U (or u) where U = (77R + 151G + 28B) / 256

Transparency
Type

Description Formula

0 – None Transparency is not used,
i.e. the current fill is
completely opaque.

C = C

1 – Mix Gives the effect of mixing
the colour of the transparent
object with the colours
underneath it, like mixing
two paints in a pot.

C = Tc + (1-T)C

2 – Stained glass Gives the impression that C = c(C+(1-T)C)

 - 98 -

the transparent object is
made of coloured stained
glass overlaying the colours
underneath.

3 – Bleach Gives the effect that the
objects underneath the
transparent object are having
the colours bleached out of
them.

C = Tc+(1-T)(C+c-Cc)

4 – Contrast Changes the contrast of
underlying objects.

C = c(T+2U-2TU) when U < 0.5
c = Tc+(1-T)Uc when U >= 0.5

5 – Saturation Changes the saturation of
underlying objects.

C = u+(c-u)(T+2U(1-T)) for U < 0.5
c = u+(c-u)(T+U(2U+1)(1-T)) for U >=
0.5

6 – Darken This is a greyscale version
of the Stained glass type.

C = c(U+(1-T)U)

7 – Lighten This is a greyscale version
of the Bleach type.

C = (1-T)U+c(1-(1-T)U)

8 – Brightness Makes the colours of
underlying objects lighter or
darker.

C = c(T+2U-2TU) for U < 0.5
c = (1-T)(2U-1)+c(1-(1-T)(2U-1)) for U
>= 0.5

9 – Luminosity This uses the �ezier�l�
equivalent of the color to
control the luminosity (or
Value) of underlying
objects.

C = c(T+(1-T)U/max(r,g,b))

10 – Hue This shifts the hue of
underlying objects toward
the hue of this object.

C = c+SaturationI(1-T)(RGB[
HSV(HueI,SaturationI,ValueI)]-c)

When rendering to a 32 bit RGBA bitmap the formulae are different. M = (R+G+B)/3

Transparency
Type

Description Formula

0 – None Transparency is not used, i.e.
the current fill is completely

C = C
t = 0

 - 99 -

opaque.

1 – Mix Gives the effect of mixing
the colour of the transparent
object with the colours
underneath it, like mixing
two paints in a pot.

C = Tc + (1-T)C
t = Tt

2 – Stained glass Gives the impression that the
transparent object is made of
coloured stained glass
overlaying the colours
underneath.

C = c(T+C-TC)+t(T+C-TC)/2-t(T+M-
TM)/2
t = (T+M-TM)t

3 – Bleach Gives the effect that the
objects underneath the
transparent object are having
the colours bleached out of
them.

C = 1-(1-c)(1-C+TC)+t(1-C+TC)/2-
t(1-M+TM)/2
t = (1-M+TM)t

4 – Contrast Changes the contrast of
underlying objects.

C = ½+(c-1/2)(T+2U-2UT)
t = (T+2U-2UT)t for U < 0.5
c = Tc+(1-T)L[U,c/(1-t)](1-t)
t = t for U >= 0.5

5 – Saturation Changes the saturation of
underlying objects.

C = u+(c-u)(T+2U(1-T))
t = t for U < 0.5
c = u+(c-u)(T+U(2U+1)(1-T))
t = t for U >= 0.5

6 – Darken This is a greyscale version of
the Stained glass type.

C = c(T+U-TU)
t = (T+U-TU)t

7 – Lighten This is a greyscale version of
the Bleach type.

C = c(1-U+TU)+(U-TU)
t = (1-U+UT)t

8 – Brightness Makes the colours of
underlying objects lighter or
darker.

C = c = c(T+2U-2TU)
t = (T+2U-2TU)t for U < 0.5
c = (1-T)(2U-1)+c(1-(1-T)(2U-1))
t = (1-(1-T)(2U-1))t for U >= 0.5

9 – Luminosity This uses the �ezier�l�
equivalent of the color to
control the luminosity (or
Value) of underlying objects.

C = c(T+(1-T)(1-t)U/max(r,g,b))
t = t

 - 100 -

10 – Hue This shifts the hue of
underlying objects toward
the hue of this object.

C = c + (1-t)Sat(C)(1-T)(RGB[
HSV(Hue(C),Sat(c),Val(c))]-c)
t = t

 Transparent Fills

These define the transparent fills that can be applied as attributes to objects in the tree.

These fills are along the same lines as graduated fills but instead of filling from the start to
the end colour in a predetermined fashion, the fill is from the start transparency level to the
end transparency level. The transparency level is in a range 0 – 255 where 0 is fully opaque
and 255 is fully transparent.

See Appendix B for a list of the default values for these attributes.

Name Flat Transparent Fill

Purpose This record sets the current fill to a uniform transparent fill of the specified
transparency level.

Tag TAG_FLATTRANSPARENTFILL

Size 2

Usage Image. Compulsory.

Data:

< Transparency : BYTE > The transparency level to apply.

< Transparency Type : BYTE > The transparency type to apply.

Comments:

This record sets the current fill to a flat transparent fill of the specified transparency level.

Name Linear Transparent Fill

 - 101 -

Purpose This record sets the current fill to be a linear transparent fill.

Tag TAG_LINEARTRANSPARENTFILL
TAG_LINEARTRANSPARENTFILL3POINT

Size 35 (19)
43 (27)

Usage Image. Compulsory.

Data:

< Start Point : COORD > The point that the linear fill will start from

< End Point : COORD > The point that the linear fill will end at

< End Point 2 : COORD > The other point that controls the shear of the fill
(only present in 3 point variant)

< Start Transparency : BYTE > The transparency level at the start point

< End Transparency : BYTE > The transparency level at the end point

< Transparency Type : BYTE > The transparency type to apply.

< TransProfile : PROFILE > The profile applied to the transparency
Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be a linear transparent fill. The transparency level
interpolates from the start transparency level at the start point, to the end transparency level
at the end point.

Name Circular Transparent fill

Purpose This record sets the current fill to be a circular transparent fill.

Tag TAG_CIRCULARTRANSPARENTFILL

 - 102 -

Size 35 (19)

Usage Image. Compulsory.

Data:

< Centre Point : COORD > The centre of the circle that the fill will radiate
from

< Edge Point : COORD > A point that lies at the edge of the circle.

< Start Transparency : BYTE > The transparency level at the start point

< End Transparency : BYTE > The transparency level at the end point

< Transparency Type : BYTE > The transparency type to apply.

< TransProfile : PROFILE > The profile applied to the transparency
Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be a circular transparent fill. The transparency level
interpolates from the start transparency level at the centre of the circle, to the end
transparency level at the edges of the circle.

Name Elliptical Transparent fill

Purpose This record sets the current fill to be a elliptical transparent fill.

Tag TAG_ELLIPTICALTRANSPARENTFILL

Size 43 (27)

Usage Image. Compulsory.

Data:

< CentrePoint : COORD > The position of the centre that the fill will radiate

 - 103 -

from.

< MajorAxes : COORD > The position of the major axis point.

< MinorAxes : COORD > The position of the minor axis point.

< Start Transparency : BYTE > The transparency level at the start point

< End Transparency : BYTE > The transparency level at the end point

< Transparency Type : BYTE > The transparency type to apply.

< TransProfile : PROFILE > The profile applied to the transparency
Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be an elliptical transparent fill. The transparency level
interpolates from the start colour at the centre of the ellipse, to the end transparency level at
the edges of the ellipse.

Name Conical Transparent fill

Purpose This record sets the current fill to be a conical transparent fill.

Tag TAG_CONICALTRANSPARENTFILL

Size 35 (19)

Usage Image. Compulsory.

Data:

< Centre Point : COORD > The centre of the “cone”

< Edge Point : COORD > A point that lies at the edge of the “cone”.

< Start Transparency : BYTE > The transparency level at the edge point.

< End Transparency : BYTE > The transparency level at the point on the circle
180 degrees away from the edge point.

< Transparency Type : BYTE > The transparency type to apply.

 - 104 -

< TransProfile : PROFILE > The profile applied to the transparency
Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be a conical transparent fill. The transparency level
interpolates between the start and end transparencies as an imaginary line whose length is
the radius of the circle defined by Centre and Edge points sweeps around the circle through
180 degrees. It then interpolates between the end and the start transparencies as the line
sweeps out the remaining 180 degrees.

Name Bitmap Transparent Fill

Purpose This record describes a transparent bitmap fill.

Tag TAG_BITMAPTRANSPARENTFILL

Size 47 (31)

Usage Image. Compulsory.

Data:

< BottomLeft : COORD > The position of the bottom left hand corner of the
parallelogram.

< BottomRight : COORD > The position of the bottom right hand corner of
the parallelogram.

< TopLeft : COORD > The position of the top left hand corner of the
parallelogram.

< Start Transparency : BYTE > The transparency level at the start point

< End Transparency : BYTE > The transparency level at the end point

< Transparency Type : BYTE > The transparency type to apply.

< Bitmap : BITMAPREF> The bitmap reference to use as the fill.

< TransProfile : PROFILE > The profile applied to the transparency

 - 105 -

Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be a transparent bitmap fill. The geometry of the
transparent bitmap is applied in the same way as a normal bitmap fill geometry.

The transparency levels are computed from the intensity of the pixels in the bitmap. Dark
pixels are less transparent, light pixels are more transparent.

Name Fractal Clouds Transparent Fill

Purpose This record describes a transparent fractal clouds fill.

Tag TAG_FRACTALTRANSPARENTFILL

Size 64 (48)

Usage Image. Compulsory.

Data:

< BottomLeft : COORD > The position of the bottom left hand corner of the
parallelogram.

< BottomRight : COORD > The position of the bottom right hand corner of
the parallelogram.

< TopLeft : COORD > The position of the top left hand corner of the
parallelogram.

< Start Transparency: BYTE > The transparency level at the start point

< End Transparency: BYTE > The transparency level at the end point

< Transparency Type : BYTE > The transparency type to apply.

< Seed : INT32 > The seed applied to the fractal fill.

< Graininess : FIXED16 > The graininess of the fractal fill.

 - 106 -

< Gravity : FIXED16 > The gravity to apply to the fill.

< Squash : FIXED16 > The squash to apply to the fill.

< Resolution : UINT32 > The resolution of this fill (DPI).

< Tileable : BYTE > Flag to say if tileable or not.

< TransProfile : PROFILE > The profile applied to the transparency
Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be a transparent fractal cloud fill. This record describes
the transparent fractal fill and all the required parameters to be able to regenerate the fractal
pattern when the fill is loaded. The fill geometry is applied in the same way as the Fractal
colour fill. Transparency levels are computed from the intensity of the pixels in the fractal.

 Name Fractal Noise Transparent Fill

Purpose This record describes a transparent fractal noise (plasma) fill.

Tag TAG_NOISETRANSPARENTFILL

Size 56

Usage Image. Compulsory.

Data:

< BottomLeft : COORD > The position of the bottom left hand corner of the
parallelogram.

< BottomRight : COORD > The position of the bottom right hand corner of
the parallelogram.

< TopLeft : COORD > The position of the top left hand corner of the
parallelogram.

< Start Transparency: BYTE > The transparency level at the start point

 - 107 -

< End Transparency: BYTE > The transparency level at the end point

< Transparency Type : BYTE > The transparency type to apply.

< Graininess : FIXED16 > The graininess of the fractal fill.

< Seed : INT32 > The seed applied to the fractal fill.

< Resolution : UINT32 > The resolution of this fill (DPI).

< Tileable : BYTE > Flag to say if tileable or not.

< TransProfile : PROFILE > The profile applied to the transparency
Note: this item may not be present in older Xar
format documents

Comments:

This record sets the current fill to be a transparent fractal plasma fill. This record describes
the transparent fractal fill and all the required parameters to be able to regenerate the fractal
pattern when the fill is loaded. The fill geometry is applied in the same way as the Fractal
plasma colour fill. Transparency levels are computed from the intensity of the pixels in the
fractal.

Name Three-level Transparent Fill

Purpose This record sets the current fill to be a three-level transparent fill.

Tag TAG_THREECOLTRANSPARENTFILL

Size 28

Usage Image. Compulsory.

Data:

< Point1 : COORD > The co-ordinate of Level1.

< Point2 : COORD > The co-ordinate of Level2.

< Point3 : COORD > The co-ordinate of Level3.

 - 108 -

< Level1 : BYTE > The transparency level at Point1.

< Level2 : BYTE > The transparency level at Point2.

< Level3 : BYTE > The transparency level at Point3.

< Transparency Type : BYTE > The transparency type to apply.

Comments:

This transparency is analogous to the three-colour colour fill attribute. It sets three co-
ordinates to specific transparency values and interpolates between those points.

 Name Four-level Transparent Fill

Purpose This record sets the current fill to be a four-level transparent fill.

Tag TAG_FOURCOLTRANSPARENTFILL

Size 29

Usage Image. Compulsory.

Data:

< Point1 : COORD > The co-ordinate of Level1.

< Point2 : COORD > The co-ordinate of Level2.

< Point3 : COORD > The co-ordinate of Level3.

< Level1 : BYTE > The transparency level at Point1.

< Level2 : BYTE > The transparency level at Point2.

< Level3 : BYTE > The transparency level at Point3.

< Level4 : BYTE > The transparency level at the implied Point4.

< Transparency Type : BYTE > The transparency type to apply.

 - 109 -

Comments:

This transparency is analogous to the four-colour colour fill attribute. It sets four co-
ordinates to specific transparency values and interpolates between those points.

 Name Diamond Transparent Fill

Purpose This record sets the current fill to be a transparent diamond fill.

Tag TAG_DIAMONDTRANSPARENTFILL

Size 43 (27)

Usage Image. Compulsory.

Data:

< Centre Point : COORD > The co-ordinate of the centre of the diamond.

< Right Point : COORD > The co-ordinate of the middle of the right edge of
the diamond.

< Top Point : COORD > The co-ordinate of the middle of the top edge of
the diamond.

< Level1 : BYTE > The transparency level to use at the centre of the
diamond.

< Level2 : BYTE > The transparency level to use at the edges of the
diamond.

< Transparency Type : BYTE > The transparency type to apply.

< TransProfile : PROFILE > The profile applied to the transparency
Note: this item may not be present in older Xar
format documents

Comments:

This record defines a “diamond” (parallelogram) transparency fill.

 - 110 -

Transparent Fill Repeat Methods

Transparent fill repeat methods apply to all of the transparent fill types except flat and
conical. They perform the same role for the transparent fills that the Fill Repeat Method
attributes do for the colour fills.

The transparent fill repeat records are:

Name Transparent Fill Repeating

Purpose Determines how the transparent fill is tessellated

Tag TAG_TRANSPARENTFILL_REPEATING,
TAG_TRANSPARENTFILL_NONREPEATING,
TAG_TRANSPARENTFILL_REPEATINGINVERTED
TAG_TRANSPARENTFILL_REPEATING_EXTRA

Size 0

Usage Image. Compulsory.

Comments:

TAG_TRANSPARENTFILL_REPEATING: The transparency is repeated throughout the
object, i.e. it is tessellated continuously. This can apply to bitmap, fractal, 3-colour and 4-
colour transparencies.
TAG_TRANSPARENTFILL_NONREPEATING: The transparency is not repeated at all,
and thus might not cover the whole shape that it is applied to. This can apply to all
transparency types.
TAG_TRANSPARENTFILL_INVERTEDREPEATING: The transparency is repeatedly
tessellated, except that each time it is repeated, the bitmap is inverted so that one of its
corners touches the equivalent corner on the three other bitmaps touching it. This can apply
to bitmap and fractal transparencies.
TAG_TRANSPARENTFILL_REPEATING_EXTRA: The transparency is repeated with
the start point being the start transparency and a point half-way through the transparency
being the end transparency. The transparency then fades back to the start transparency at
the end point and then repeats indefinitely. This can apply to linear, circular, elliptical and
diamond transparencies.

If a transparency has an unsupported repeat type (e.g. a linear transparency with a
TAG_TRANSPARENTFILL_REPEATING) then it is rendered as non-repeating.

 - 111 -

Winding Rule Attribute

The winding rule attribute controls which parts of a shape will be filled. It affects both the
colour fill and the transparency fill of a shape. The effect of the winding rule becomes most
apparent when a path is self-intersecting.

Name Winding Rule

Purpose This record sets the current winding rule.

Tag TAG_WINDINGRULE

Size 1

Usage Image. Compulsory.

Data:

< WindingRule : BYTE > The winding rule for the line.

Winding Rule Value

NonZero 0

EvenOdd 2

Reserved for future use All other values

Comment:

Sets the current winding rule for use when filling shapes. NonZero fills all regions of the
shape, no matter how many times the shape covers any region. EvenOdd fills those regions
of the shape that are covered by the shape an odd number of times.

 Line Attributes

Line attributes affect the way in which lines and the outlines of shapes are rendered
(technically: the way in which paths are stroked).

 - 112 -

The set of attributes is very similar to those which are available in Postscript.

See Appendix B for a list of the default values for these attributes.

Name Line Colour

Purpose This record sets the current line colour to the colour specified.

Tag TAG_LINECOLOUR

Size 4

Usage Image. Compulsory.

Data:

< Colour : COLOURREF > A reference to a colour.

Comments:

This record sets the current line colour.

Name Standard Line Colours

Purpose These records set the current line colour to be none, uniform black or uniform
white.

Tag TAG_LINECOLOUR_NONE
TAG_ LINECOLOUR BLACK
TAG LINECOLOUR _WHITE

Size 0

Usage Image. Compulsory

Comments:

Although the same results can be achieved using the TAG_LINECOLOUR record, these
records exist purely because the line colours they define are so common.

 - 113 -

TAG_LINECOLOUR_NONE

This record sets the current line colour to be “none”, i.e., indicates that objects should not
have a distinct border around them.

TAG_LINECOLOUR_BLACK

This record sets the current line colour to be black, RGB(0,0,0).

TAG_LINECOLOUR_WHITE

This record sets the current line colour to be white, RGB(0xFF,0xFF,0xFF).

 Name Line Transparency

Purpose This record sets the current line transparency level

Tag TAG_LINETRANSPARENCY

Size 2

Usage Image. Compulsory.

Data:

< Transparency : BYTE > The transparency level to apply.

< Transparency Type : BYTE > The transparency type to apply.

Comments:

This record sets the current line transparency using the level and type specified.

 Name Line Width

Purpose This record sets the current line width.

 - 114 -

Tag TAG_LINEWIDTH

Size 4

Usage Image. Compulsory.

Data:

< Line Width : MILLIPOINT > The width of the line in millipoints.

Name Line Caps

Purpose Sets the current cap style.

Tag TAG_STARTCAP

TAG_ENDCAP

Size 1

Usage Image. Compulsory.

Data:

< CapStyle : BYTE > The cap style of the line.

Style Value

Butt 0

Round 1

Square 2

Comments:

This record sets the current line cap style to either butt, round or square.

 - 115 -

NOTE: No currently implemented Readers support a separate “End Caps” attribute. The
Start Caps attribute applies its value to both the start and end caps of paths.

Figure 9.12. The three possible line Cap styles.

 Name Join Style

Purpose Sets the current join style.

Tag TAG_JOINSTYLE

Size 1

Usage Image. Compulsory.

Data:

< JoinStyle : BYTE > The start cap style of the line.

JoinStyle Value

Mitre 0

Round 1

Bevelled 2

Comments:

This record sets the current line join style to mitred, round or bevelled.

 - 116 -

Figure 9.13. The three possible line Join styles.

 Name Mitre Limit

Purpose Sets the current mitre limit

Tag TAG_MITRELIMIT

Size 4

Usage Image. Compulsory.

Data:

< MitreLimit : MILLIPOINT > The maximum distance between the join point and
the mitre point.

Comments:

The mitre limit defines a cut-off point for mitre join rendering. If the distance between the
point of the mitre join and the path point that causes the mitre join is greater than this value,
a bevelled join will be rendered instead.

Dash Patterns

Dash patterns can be applied to any path, open or closed. They specify a regular, repeating
sequence of gaps in the line. The relative lengths of the gaps and the drawn sections of line
between them can be controlled. A number of commonly-used dash patterns are defined in
the Xar format and are just referred to by numbers so that these definitions do not have to
be transmitted with each file. The default dash patterns are defined in Appendix B.

There are two types of dash pattern record in the Xar format. Dash Pattern Attributes,
which apply a dash pattern to a subtree, and Dash Pattern Definitions that define new
patterns and apply them to subtrees.

 - 117 -

Note that the current records do not allow newly defined dash patterns to be referred back
to and used again. This limitation will hopefully be removed in future revisions of the
format.

All the default dash patterns can be seen in the line gallery in CorelXARA.

Name Dash Style

Purpose This record describes a dash style which is always applied to a line element or
path

Tag TAG_DASHSTYLE

Size 4

Usage Image. Compulsory.

Data:

< DashID : INT32 > The id of the dash style to use from the dash style dictionary

Comments:

The dash style id specifies which of the dash styles from the default dash dictionary to use.
Note that this ID cannot be a sequence number and so it cannot refer to a dash pattern
defined by TAG_DEFINEDASH.

Name Define Dash Style

Purpose This record defines a new dash pattern style and applies it as the current dash
pattern.

Tag TAG_DEFINEDASH,
TAG_DEFINEDASH_SCALED

Size Variable

Usage Image. Compulsory.

Data:

 - 118 -

< DashStart : MILLIPOINT > The offset to apply at the start of this pattern.

< Design LineWidth :
MILLIPOINT >

The line width this style is designed relative to. (When
the dash pattern scales with the width of the line it’s
applied to the scale factor is the ratio between the line
width and this, design line width.)

< Elements : UINT32 > The number of elements that make up this dash style
definition.

< DashDef : MILLIPOINT >* The array of mark and space lengths starting with a
mark.

Comments:

Defines a new style of dash pattern and applies it as the current dash pattern attribute. The
definition consists of an array of interleaved Mark and Space dash lengths. The first
distance is drawn in the line colour, the second in the no colour line style and so on; Mark,
Space, Mark, Space... The dash start distance allows an extra offset to be applied at the start
of the dash pattern of the first element to be drawn.

Note: this dash pattern definition applies its result to the subtree as an attribute. It cannot be
referred back to by later TAG_DASHSTYLE records.

The TAG_DEFINEDASH_SCALED variant indicates that its dash pattern should be scaled
so that its proportions to the actual line width are the same as its proportions to the design
line width.

An illustration of how the data relates to one of the definitions is shown below.

Figure 9.14. A Dash Pattern Definition.

A list of the Default Dash Patterns is given in Appendix B

 - 119 -

Arrowheads

Arrowheads are attributes that cause small paths to be drawn tangentially on the ends of
open paths. They don’t affect the rendering of the path itself.

The Xar format only supports predefined arrowheads at this time.

Name Arrowheads

Purpose Describe the start and end arrow heads which apply to a open paths.

Tag TAG_ARROWHEAD
TAG_ARROWTAIL

Size 12

Usage Image. Compulsory.

Data:

< ArrowID : INT32 > The id of the arrowhead to use from the arrowheads
dictionary.

< ScaleWidth : FIXED16 > The scaling to apply to the width of the arrow

< ScaleHeight : FIXED16 > The scaling to apply to the height of the arrow

Comments:

An arrow head attribute record specifies an arrow head by either referring to the arrow head
definition record (i.e. the record number of the arrow head definition), or by specifying a
default arrow head (see Appendix B).

A negative ArrowID specifies one of the default arrowheads.

A positive ArrowID specifies the sequence number of a record that defines a new
arrowhead. The specified record must be an arrowhead definition record,
TAG_DEFINEARROW. This feature is not implemented in the current version of the Xar
format.

The arrowhead path will automatically be scaled proportionally to the current line width.
(See the Arrowhead definitions in Appendix B for more information about how arrowheads
are defined and scaled.) The Width and Height Scale factors in this record allow the scaling
of an individual arrowhead to be adjusted.

 - 120 -

TAG_ARROWHEAD defines the arrow that should be drawn tangentially to the first point
in an open path.

TAG_ARROWTAIL defines the arrow that should be drawn tangentially to the last point in
an open path.

Colour records

Colours are used in all of the fill attributes described above and in other attributes such as
LineColour. The form they take in those records is just single word that refers to a full
colour definition somewhere else, a COLOURREF.

Colour references

All records that reference a colour do so using a COLOURREF value. This value is either
the sequence number of the record that defines the colour or a reference to a default colour.
This mechanism is described in the section Reusable Data Records.

The default colours are defined in Appendix B.

Colour Definition Records

The following records define new colours:

Name Define RGB Colour

Purpose This record defines a simple RGB colour to the system.

Tag TAG_DEFINERGBCOLOUR

Size 3

Usage Image. Compulsory.

Data:

<Simple RGBColour> A RGB representation of the colour.

<Simple RGBColour> ::= <Red : BYTE> <Green : BYTE> <Blue : BYTE>

Comments:

 - 121 -

This record holds a simple RGB colour definition. It is intended for use in Web-publishable
files – it contains enough information to define a colour for screen display but not enough
for use in paper publishing. The TAG_DEFINECOMPLEXCOLOUR record contains more
detailed information suitable for paper publishing.

Name Define Complex Colour

Purpose This record defines a complex colour to the system.

Tag TAG_DEFINECOMPLEXCOLOUR

Size Variable

Usage Image. Compulsory for readers.

Data:

<Simple RGBColour> The RGB definition of the colour.

<ColourModel : BYTE> The colour model that this colour is defined in. See
below for possible values.

<ColourType : BYTE> The type of colour, and extra type-dependent values.
See below for possible values.

<EntryIndex : UINT32> The position of this colour in any colour list, starting
with 0 for the first.

<ParentColour : COLOURREF> A reference to a parent colour. This is only relevant
for some ColourTypes; other types should set this
value to 0.

<ColourDescription> The actual data for the colour. (see below)

<ColourName : STRING> The name of the colour. Can be an empty string (see
below).

<Simple RGBColour> ::= <Red : BYTE> <Green : BYTE> <Blue : BYTE>

<ColourDescription>::= <Component1 : UINT32> <Component2 : UINT32>
<Component3 : UINT32> <Component4 : UINT32>

 - 122 -

 Comments:

This record defines a colour in terms that are suitable for further editing and for paper
publishing. Such definitions are not normally used in files intended for publishing on the
Web because of their large size overhead.

Fields in a TAG_DEFINECOMPLEXCOLOUR record

Simple RGB Colour

The Simple RGB Colour field holds the RGB colour value that the Writing application
computed based on all the other information in the definition.

It can be used as fallback information for Readers which don’t understand the full
definition of the colour:
Rendering modules which only render to screen just need to use this information and can
ignore the remainder of the definition.
Editing programs, which don’t support the full complex colour definition (e.g. the colour
model is unknown), should at least be able to deal with the simple RGB information.

This field also helps to make Complex colours backwards compatible: if new colour
models are added some time in the future, existing Readers can still use the RGB
information.

Colour Models

A colour model describes the way in which three or more fundamental components can be
mixed together to represent a spectrum of colours. Illustration typically offer their users
several of these models and it is important that the colour definitions created by the user are
stored in their original form rather than converting them to some standard format because
conversions between colour models usually results in a small loss of accuracy.

The colour models defined in the Xar format and their related Colour Description fields are
described in the following sections.

The Colour Model field determines how the Colour Description, Colour Type and Parent
Colour fields should be interpreted.

All colour models use the Colour description. This is generic across all colour models and
always holds four colour components regardless of the colour model and type. The use of
four colour components gives consistency across the various colour models and colour
types, and may provide some scope for future expansion. Note that the use of 32-bit fields
for these components means that complex colour definition is very accurate. At the moment
most video cards maximum colour depth is 8 bits per RGB component but some graphics

 - 123 -

experts claim that this isn’t accurate enough and there are video cards available which have
16 bits per gun.

Colour component values are always stored in a 32 bit integer but generally this represents
a value from 0.0 to 1.0 as a fixed point number with the binary point between bits 23 and
24 (a fixed24 value). This is scaled into the full integer range of the Component item (i.e.
even Hue, which is normally represented in degrees between 0 and 360, is represented in
this form). However, there are the following exceptions to this rule: in the Pantone model,
the Pantone colour number is a full range integer and in the Shades model, the components
must store a number between -1.0 and +1.0.

RGB (ColourModel 2)

This is the colour model that most people are familiar with. It is the model used by
computer screens to display colours. The colour description contains three components,
describing the amounts of Red, Green and Blue in this colour. 0 means no colour
component present, 1.0 means the full amount of this colour component is present.

< Red : UINT32> Red

< Green : UINT32> Green

< Blue : UINT32> Blue

< Reserved : UINT32> 0x0

CMYK (ColourModel 3)

This is the colour model used by commercial printers and most ink-jet printers. The CMY
coloured inks can be mixed on the normally white printed page to reproduce most colours.
The K “Key” component is used to print pure black graphics and reinforces dark colours
and grey shades, which would otherwise appear very “muddy”.

The colour description contains four components, describing the amounts of Cyan,
Magenta, Yellow and Key for this colour. 0 means no colour component present, 1.0 means
the full amount of this colour component is present.

< Cyan : UINT32> Red

< Magenta : UINT32> Green

< Yellow : UINT32> Blue

< Key : UINT32> Key

 - 124 -

 HSV (ColourModel 4)

This is the colour model familiar to Artists. Hue is the pure pigment, represented by the
angle around an imaginary circle which has the full spectrum of pigments wrapped around
it. Saturation controls the amount of white added to the pigment, the smaller the saturation
the greater the amount of added white. The Value controls the amount of black added, the
greater the value the greater the amount of black added.

The colour description contains three components, describing the amounts of Hue,
Saturation and Value for this colour. 0 Hue means red, 1.0 means red again. 0 Saturation
means the full amount of white added, 1.0 means no white added. 0 Value means the full
amount of black added, 1.0 means no black has been added.

< Hue : UINT32> Hue

< Saturation : UINT32> Saturation

< Value : UINT32> Value

< Reserved : UINT32> 0x0

Greyscale (ColourModel 5)

The greyscale model is very simple and just describes the grey tonal value for this colour in
a range from white to black. The colour description therefore only contains one component,
the value of the greyscale. 0 means no colour is present, hence fully black, 1.0 means the
full amount of grey is present, hence fully white.

< Grey : UINT32> Grey

< Reserved : UINT32> 0x0

< Reserved : UINT32> 0x0

< Reserved : UINT32> 0x0

ParentColour

Where required, the parent colour is specified by its sequence number. The parent colour
record must appear before the record that references it. See Colour Parentage below for
rules to follow when using parent colours.

ColourType

 - 125 -

The colour type describes whether the colour is a normal colour, a spot colour, a tint, a
shade or a linked colour. These types are independent of the colour model.

Normal (ColourType 0)

This is just a normal, plain and simple colour. It can also be referred to as a “process”
colour in the user interface. In a colour separation process, the normal colour is split into
the required components, usually Cyan, Magenta, Yellow and Key (Black), and sent out to
the printer.

ParentColour is ignored.

ColourDescription simply describes the colour in the specified colour model.

Spot (ColourType 1)

A Spot colour behaves like a Normal colour in most respects except when colour separating
the image. In that case it defines that a separate printing plate should be devoted to this
colour. The plate will be printed using a special ink, often defined by the Pantone colour
system which is capable of describing such inks as are not easily represented on-screen
such as metallic or scratch-off ink.

ParentColour is ignored.

ColourDescription simply describes the colour in the specified colour model.

Tint (ColourType 2)

This colour is a tint of another, “parent” colour. That means that it is a whiter version of the
parent colour.

ColourModel is ignored, as Tint Colours automatically inherit the colour model of their
parent.

ParentColour references the parent colour to inherit from.

ColourDescription specifies a tinting value, which defines how the colour is tinted from the
parent colour. This is a mixing coefficient, where 0 produces the parent colour, 0.5
produces a 50% mix of the parent colour and white, and 1.0 produces white.

Linked (ColourType 3)

This colour takes some of its components from its parent colour and specifies the rest itself.
This type of colour is very similar to Tints and Shades except that there is no relative
linkage between itself and its parent – the components it takes from its parent are used
exactly as the parent defines them.

 - 126 -

ColourModel is ignored, since Linked Colours automatically inherit the colour model of
their parent.

ParentColour references the parent colour to inherit from.

ColourDescription contains the same number of components as the parent colour. Where a
component is inherited from the parent, the corresponding component contains the magic
number F8000000.

Shade (ColourType 4)

This colour is a combined tint and shade of the specified Parent Colour.

ColourModel is ignored, since Shade Colours automatically inherit the colour model of
their parent.

ParentColour references the parent colour to inherit from.

ColourDescription contains two shading values defined in HSV space: the relative
Saturation for this shade and the relative Value for this shade. These are mixing
coefficients, in the range -1.0 to +1.0. These are the only components that can go negative.
The saturation coefficient specifies mixing in the Saturation axis, while the value
coefficient specifies mixing in the Value axis, of the HSV colour space. Negative values
indicate a mixing between 0.0 and the parent component, while positive values indicate a
mixing between the parent component and 1.0, such that a shading value of 0.0 results in
the parent component being directly inherited by the shade colour. For example, as shown
in this illustration (laid out just as the Xara colour editor shows shades), the shading values
would be S=0.7, V=-0.25 in order to place the shade colour in the given position relative to
its parent colour.

Figure 9.15. The relationship between a shade and its parent colour.

 - 127 -

ColourName

The colour name can be blank and the presence of a colour name or the lack of it can be
used to control the behaviour of the colour in the UI of editing applications.

A colour with a blank ColourName is called a Local Colour. In XaraX¹, local colours are
not shown in the various colour lists and cannot be used as parent colours.

A colour with a name is called a Named Colour (bet that surprised you!). In XaraX¹, named
colours are listed with other colours and can be used as parent colours.

EntryIndex

This is 0 for Local colours. For a Named colour it dictates the position in which the colour
will be displayed in any colour lists in the editor’s user interface, where 0 is the first entry
in the list, usually the leftmost or topmost item. This number allows the user to re-arrange
the colour lists in his editor and to have his arrangement preserved when he edits the
document in future.

Colour parentage

The rules describing how colours are linked to their parent colours are:

1. Parent colours must be Named.
2. Colour types Normal and Spot cannot have a Parent colour.
3. Colour types Linked, Tint and Shade must have a Parent colour.
4. All descendants of a Spot colour must be Tints.
5. There must not be a circular reference of parents. A colour cannot be its own parent.
6. There is no limit to the depth of colour “family trees”, i.e. A colour may have any

number of children, grandchildren, etc.

 The statically defined colours are listed in Appendix B.

 User Attributes

User Attributes allow the user to associate data, a “Value”, with an object through a “Key”.
The key effectively defines a new attribute. Since there is an extra level of indirection in
determining the attribute’s type, User Attributes should be used judiciously to ensure
efficient processing of the file. New key values will be allocated by Xara Group Ltd.

 - 128 -

Name User Value

Purpose Provides user defined attributes.

Tag TAG_USERVALUE

Size Variable

Usage Image. Optional.

Data:

< Key : String > The key defining the type of user attribute.

< Value : String > The value associated with the object and key.

Comments:

At present there is only one Key recognized in the Xar format, “Web address”. The Value
associated with this key is a URL of the user’s choice. This method of specifying web
addresses has been superseded by TAG_WEBADDRESS and
TAG_WEBADDRESS_BOUNDINGBOX below.

Name Web Address and Web Address Bounded

Purpose Represents a web address attribute.

Tag TAG_WEBADDRESS
TAG_WEBADDRESS_BOUNDINGBOX

Size Variable

Usage Image. Optional.

Data:

If BOUNDINGBOX
< BottomLeft : COORD >

The bottom left of the clickable rectangle. Note: this is an
interleaved coordinate

 - 129 -

If BOUNDINGBOX
< TopRight : COORD >

The top right of the clickable rectangle. Note: this is an
interleaved coordinate

< URL : String > The URL associated with the object.

< Frame : String > The target frame associated with the object.

Comments:

These records have superseded the use of TAG_USERVALUE records. They allow the
target frame to be specified and TAG_WEBADDRESS_BOUNDINGBOX allows the
clickable area to be set to the bounds of the object that has the attribute applied. Note: the
bounding rectangle is only stored so readers that cannot calculate the bounding rectangle of
the object can read it. Any reader that can calculate the bounding rectangle should do so.

Feather

The feather attribute fades the edge of the object using transparency. The size and
transparency profile of the feathered edge can be controlled.

Name Feather

Purpose Defines a feather attribute.

Tag TAG_FEATHER

Size 20

Usage Image. Compulsory.

Data:

< Size : MILLIPOINT > The size of the feathered region.

< TransProfile : PROFILE
>

The profile applied to the transparency

Comments:

This attribute causes the object to be rendered with a graduated transparent edge. It is
commonly used when compositing bitmaps allowing a very smooth join to be made.

 - 130 -

Imagesetting Attributes

These records define the attributes that can be used to provide correct images when printing
to multiple printers’ plates.

Overprinting the fill is most commonly used to overprint dark coloured text.

Overprinting the line overcomes possible misregistration problems.

Objects with the PRINTONALLPLATESON attribute appear on all separations. Its main
use is creating custom printers’ marks.

See Appendix B for a list of the default values for these attributes.

Name Imagesetting Attributes On

Purpose These records determine whether objects exhibit imagesetting characteristics.

Tag TAG_OVERPRINTLINEON, TAG_OVERPRINTFILLON,
TAG_PRINTONALLPLATESON

Size 0

Usage Image. Optional.

Comments:

The effects of these records can be cancelled by the equivalent “OFF” records.

Name Imagesetting Attributes Off

Purpose These records determine whether objects exhibit imagesetting characteristics.

Tag TAG_OVERPRINTLINEOFF, TAG_OVERPRINTFILLOFF,
TAG_PRINTONALLPLATESOFF

Size 0

Usage Image. Optional.

Comments:

 - 131 -

These records cancel the effects of the equivalent “ON” records.

Current Attributes

Current Attributes are the attributes that will be used when creating new objects in the
drawing. Different current attributes can be defined for different types of object though at
present only text objects can be controlled independently. This means that new text objects
can have one set of attributes and all other types of object can have a different set. The
current attributes are stored as children of the current attribute record. Any attributes that
should be �ezier�l�ed when being applied to a new object (e.g. fills, transparencies etc)
also have a current attribute bounds record written out immediately following the attribute
record. This allows the application to transform the attribute to fit the new objects bounding
rectangle.

Name Current Attributes

Purpose Defines the attributes used for creating new objects.

Tag TAG_CURRENTATTRIBUTES
TAG_CURRENTATTRIBUTES_PHASE2

Size 1

Usage Application. Optional.

Data:

< Group : BYTE > The group defining the set of current attributes being defined.
1 – ink objects, 2 – text objects

Comments:

TAG_CURRENTATTRIBUTES and TAG_CURRENTATTRIBUTES_PHASE2 have
identical meanings in the XAR file format but some XAR Readers fail when
TAG_CURRENTATTRIBUTES has a Group byte with any value except 1 and 2. The
TAG_CURRENTATTRIBUTES_PHASE2 record allows the Group byte to contain any
value .

XAR Writers should use TAG_CURRENTATTRIBUTES to represent Groups 1 and 2 and
TAG_CURRENTATTRIBUTES_PHASE2 for any other Group value.

 - 132 -

Name Current Attribute Bounds

Purpose Defines the bounding rectangle of a current attribute.

Tag TAG_CURRENTATTRIBUTEBOUNDS

Size 16

Usage Application. Optional.

Data:

< BottomLeft : COORD > The bottom left coordinate of the previous attribute’s
bounding rectangle

< TopRight : COORD > The top right coordinate of the previous attribute’s bounding
rectangle

 - 133 -

QuickShapes
QuickShapes are rectangles, ellipses, regular polygons and other rotationally symmetric
shapes.

Figure 10.1. A selection of QuickShapes.

All of these objects are represented in the Xar format by minimal data sets – the records
contain just enough data to represent the QuickShape and no more. A renderer uses that
data to construct the actual path to be rendered – the paths themselves are not held in the
Xar format. Obviously, the amount of information needed to store ellipses and rectangles is
much less than that needed for the more complex polygons and shapes. For this reason,
there are several different types of QuickShape record, each of which is tailored to hold just
the amount of information that type of QuickShape needs and no more. This helps to
maintain the efficiency of the simple, common QuickShapes such as Rectangles.

Since the more complex QuickShapes are all controlled by bounding ellipses the simple
ones, such as Rectangles, are also expressed in those terms. This makes it possible to use
common code to handle all the different cases.

All QuickShapes except ellipses can have rounded corners.

All QuickShapes except ellipses can be stellated – that is, each edge is divided in two and
the new edge-centre point can have a different radius than the corner points at either end of
the edge.

All QuickShapes except ellipses can be “reformed” – that is, each edge (or half-edge if the
QuickShape is stellated) is not a straight line, it’s a Bezier segment.

Notes about the record descriptions

Full descriptions of the fields in all of the QuickShape records are collected together at the
bottom of this chapter rather than repeated along with every record description.

 - 134 -

Upright Rectangles and Ellipses

One of the simplest and commonest QuickShapes is an upright rectangle. In this case, all
that is required is the size and position of the basic rectangle. There is a second form of the
record, which stores an upright rounded rectangle. This has one extra piece of information,
which is the rounding radius applied to the corners. The upright ellipse also only needs a
position and the sizes of its axes to describe it fully.

Figure 10.2. Information stored in simple ellipse and rectangle records.

Name Upright Rectangle and Upright Ellipse

Purpose This record describes a basic upright rectangle or ellipse

Tag TAG_RECTANGLE_SIMPLE
TAG_ELLIPSE_SIMPLE

Size 16

Usage Image. Compulsory.

Data:

< Centre : COORD > The centre point of the rectangle.

< Width : MILLIPOINT > The width of the (bounding) ellipse.

 - 135 -

< Height : MILLIPOINT > The height of the (bounding) ellipse.

Comments:

This record describes a simple upright rectangle. In TAG_RECTANGLE_SIMPLE records,
the ellipse bounds the upright rectangle as shown in figure 10.2. This information should be
passed to your standard QuickShape interpreter along with default values such as four
sides, no stellation, etc., etc…

(The ellipse describes the upright rectangle by assuming that the corners of the rectangle
are equally spaced around the ellipse. This is the same algothrim that’s used to position the
vertices of more complex polygons.)

While this method of describing rectangles may appear to be over-complex, it pays off in
the long-run when you come to implement the other QuickShapes and you’ll notice that the
description takes no more bytes than a pair of co-ordinates would.

Name Upright Rounded Rectangle

Purpose This record describes an upright rounded rectangle

Tag TAG_RECTANGLE_SIMPLE_ROUNDED

Size 24

Usage Image. Compulsory.

Data:

< Centre : COORD > The centre point of the rectangle.

< Width : MILLIPOINT > The width of the bounding ellipse.

< Height : MILLIPOINT > The height of the bounding ellipse.

< Roundness : DOUBLE > The roundness of the curved corners of the rectangle.

Comments:

 - 136 -

This record describes a simple upright rectangle that has rounded corners. The roundness
value gives the ratio of the radius of the corner curve to the radius of the major axis of the
bounding ellipse.

(The ellipse describes the upright rectangle by assuming that the corners of the rectangle
are equally spaced around the ellipse. This is the same algothrim that’s used to position the
vertices of more complex polygons.)

Non-upright Rectangles and Ellipses

The following more complex forms, instead of storing just a simple width and height, store
the major and minor axis positions. This means that they can describe rotated and skewed
rectangles.

Name Non-upright Rectangles and Ellipses

Purpose These records describe rectangles and ellipses that can be rotated and skewed.

Tag TAG_RECTANGLE_COMPLEX
TAG_ELLIPSE_COMPLEX

Size 24

Usage Image. Compulsory.

Data:

< Centre : COORD > The centre point of the rectangle.

< MajorAxis : COORD > The major axis point of the rectangle relative to the centre.

< MinorAxis : COORD > The minor axis point of the rectangle relative to the centre.

Comments:

This record describes a non-upright rectangle. The edges of the rectangle in
TAG_RECTANGLE_COMPLEX are parallel to the axes of the ellipse and the ellipse
bounds the rectangle in a similar way to the upright records described above. The Rectangle
has the same centre as the ellipse.

 - 137 -

Name Complex Rounded Rectangle

Purpose This record describes a more complex rectangle record

Tag TAG_RECTANGLE_COMPLEX_ROUNDED

Size 32

Usage Image. Compulsory.

Data:

< Centre : COORD > The centre point of the rectangle.

< MajorAxis : COORD > The major axis point of the rectangle relative to the centre.

< MinorAxis : COORD > The minor axis point of the rectangle relative to the centre.

< Roundness : DOUBLE
>

The roundness of the curved corners of the rectangle

Comments:

This record describes a more complex form of a non-upright rectangle that has rounded
corners. The rectangle is described in the same way as described for
TAG_RECTANGLE_COMPLEX above. The roundness value gives the ratio of the radius
of the corner curve to the radius of the major axis of the bounding ellipse.

Polygons

A polygon is a many sided figure and hence requires an extra “number of sides” field. The
major and minor axes define the enclosing ellipse.

 - 138 -

Figure 10.3. A simple polygon QuickShape.

There is no “Simple” record to define upright polygons because the concept of uprightness
doesn’t apply so well to polygons. The simplest form of Polygon record is
TAG_POLYGON_COMPLEX:

Name Polygon

Purpose This record describes a relatively simple polygon

Tag TAG_POLYGON_COMPLEX

Size 26

Usage Image. Compulsory.

Data:

< NumberOfSides :
UINT16 >

Number of sides on the polygon(value between 3-99)

< Centre : COORD > The centre point of the polygon.

< MajorAxis : COORD > The major axis point of the enclosing ellipse relative to the
centre.

< MinorAxis : COORD > The minor axis point of the enclosing ellipse relative to the
centre.

 - 139 -

Comments:

This record describes a simple rotated polygon. It is not stellated, reformed or rounded. For
more information about the meanings of the various fields, see below.

Name Rounded Polygon

Purpose This record describes a polygon with rounded corners

Tag TAG_POLYGON_COMPLEX_ROUNDED

Size 34

Usage Image. Compulsory.

Data:

< NumberOfSides : UINT16
>

Number of sides on the polygon(value between 3-99)

< Centre : COORD > The centre point of the polygon.

< MajorAxis : COORD > The major axis point of the enclosing ellipse relative to the
centre.

< MinorAxis : COORD > The minor axis point of the enclosing ellipse relative to the
centre.

< Roundness : DOUBLE > The roundness of the curved corners of the rectangle

Comments:

This record describes a simple rotated polygon with rounded corners. For more information
about the meanings of the various fields, see below.

Name Rounded Polygon with Reformed edges

Purpose These record describes a polygon with rounded corners and reformed edges

 - 140 -

Tag TAG_POLYGON_COMPLEX_ROUNDED_REFORMED

Size Variable

Usage Image. Compulsory.

Data:

< NumberOfSides : UINT16
>

The number of sides the polygon has.

< MajorAxis : COORD > The major axis point of the polygon relative to the centre.

< MinorAxis : COORD > The minor axis point of the polygon relative to the centre.

< Matrix : MATRIX > The matrix which transforms the centre of the QuickShape
into position and which…

< Curvature : DOUBLE > The roundness of the curved corners of the polygon.

< EdgePath : PATH > The path along the edges of the polygon.

Comments:

This record describes a polygon with rounded corners and reformed edges. For more
information about the meanings of the various fields, see below.

 Name Polygon with all the trimmings

Purpose These record describes a polygon with every possibly variation applied to it

Tag TAG_POLYGON_COMPLEX_ROUNDED_STELLATED_REFORMED

Size Variable

Usage Image. Compulsory.

Data:

< NumberOfSides : UINT16 The number of sides the polygon has.

 - 141 -

>

< MajorAxis : COORD > The major axis point of the polygon relative to the centre.

< MinorAxis : COORD > The minor axis point of the polygon relative to the centre.

< Matrix : MATRIX > The matrix which transforms the centre of the QuickShape
into position.

< StellationRadius :
DOUBLE >

The fraction of the Radius describing an ellipse on which
the inner points of the star are placed.

< StellationOffset :
DOUBLE >

The angle in degrees by which the inner points of the star
are offset from the outer points.

< PrimaryCurvature :
DOUBLE >

The roundness of the curved corners of the rectangle.

< SecondaryCurvature :
DOUBLE >

The roundness of the internal corners of the stellated
rectangle.

< EdgePath1 : PATH > The path along the edges of the rectangle or the clockwise
edges of the stellated rectangle.

< EdgePath2 : PATH > The paths along the anti-clockwise edges of the stellated
rectangle.

Comments:

This is the most complex, and thus the most capable, QuickShape description record. It can
describe any QuickShape including all those listed above, so if a Writer only intends to deal
with one QuickShape record this should be the one. Note that doing so would waste space
by holding information that isn’t really needed for the simpler QuickShapes.

Explanations of all the fields in QuickShape records

Number of sides

This is a value between 3 and 99 that corresponds to the number of sides, and thus the
number of vertices, of the polygon. The vertices are evenly distributed around the bounding
ellipse. This is achieved by conceptually placing points at equal distances around an upright
circle whose major axis point is at (1,0), minor axis (0,1). That circle and the points on it
are then transformed to lie on the ellipse by transforming the unit major and minor axes of
the imaginary circle onto the real major and minor axes of the ellipse.

 - 142 -

The first vertex of the polygon is rotated ((360/Number of sides)/2) degrees away from the
Major axis – in other words one face of the polygon is always perpendicular to the Major
axis of the imaginary circle. The other vertices are placed at (360/Number of sides) degrees
separations around the imaginary circle.

Centre point

This defines where the centre of the QuickShape is in normalised space.

Matrix

This defines where the centre of the QuickShape is in normalised space, and a
transformation that is applied to the whole QuickShape. This is usually used for Reformed
Quickshapes that need to preserve information about any transformations that have been
applied to the QuickShape and that thus affect its reformed edges.

Major axis

This defines where the major axis point is in normalised space. Note: The “Major axis” is
not necessarily longer than the “Minor axis” – these are just convenient labels.

The MajorAxis MILLIPOINT fields represent the horizontal distance to the Major Axis
point whereas the MajorAxis COORD fields represent that point directly.

Minor axis

This defines where the minor axis point is in normalised space. Note: The “Minor axis” is
not necessarily shorter than the “Major axis” – these are just convenient labels.

The MinorAxis MILLIPOINT fields represent the horizontal distance to the Minor Axis
point whereas the MinorAxis COORD fields represent that point directly.

Curvature, PrimaryCurvature and SecondaryCurvature

If curvature is applied to the shape (rounded corners) then the Curvature or
PrimaryCurvature field is a ratio that describes how to generate the curved outer corners of
the QuickShape.

The radius of the corner is controlled by the PrimaryCurvature multiplied by the length of
the major axis. If you then move along the line from the corner point under consideration to

 - 143 -

the nest point on the QuickShape (stellated or not) by that distance you arrive at a point
called the “primary curvature point”. (This corresponds to one of the editing blobs in
CorelXARA.) This is illustrated below:

Figure 10.4. The computation of rounded corners from the Primary Curvature.

Do the same in the other direction and you can then fit a �ezier curve segment between
these two curvature points. The �ezier control handles lie on the line between the primary
curvature point and the corner point, 0.552 of the way between. This is the primary
curvature. This is illustrated by:-

 - 144 -

Figure 10.5. The computation of rounded corners from the Primary Curvature

If stellation is applied in the same record as rounded corners then the SecondaryCurvature
field describes how to generate the curved corners at the internal, stellation points. The
process is analogous to that described above for the PrimaryCurvature.

At the time of writing any stellated QuickShapes with rounded corners will always have the
same value in the PrimaryCurvature and SecondaryCurvature fields for any given
QuickShape. This is simply because the existing editing tools only allow the user to set one
corner radius which applies to both Corner and Stellation points. However, this may not
always be true in the future.

EdgePath, EdgePath1 and EdgePath2

Reformed QuickShapes have edges that are curved instead of straight. This means that
instead of plotting a straight path plotted between corner points stellation points and curve
points, a Bezier path is plotted.

When the shape is not stellated, there is only one path, EdgePath. When the shape is
stellated, there are two edge paths called EdgePath1 and EdgePath2. The edge paths are
plotted between different points depending on whether the shape is stellated and/or
rounded.

Plot Edge Path EdgePath EdgePath1 EdgePath2

 - 145 -

Not Rounded

Not Stellated

From: Corner point

To: Corner point

Rounded

No Stellated

From: Curve point

To: Curve point

Not Rounded

Stellated

 From: Stellation
point

To: Corner point

From: Corner point

To: Stellation point

Rounded

Stellated

 From: Stellation
curve point

To: Corner curve
point

From: Corner curve
point

To: Stellation curve
point

Working around the shape in an anti-clockwise direction EdgePath1 is plotted on the
leading edges of the shape and EdgePath2 is plotted on the trailing edges.

These definitions are illustrated by the following diagram (no stellation curvature is shown
to simplify the diagram):-

 - 146 -

Figure 10.6. How reformed edges are mapped onto a polygon.

StellationRadius and StellationOffset

If the shape is stellated then it is “star shaped” – it has a second set of points normally
inside the radius of the main set. These are a set of points on the stellation ellipse formed by
the normalised stellation points displaced by a stellation angle around the circle. They form
the outer points of the star. These will, of course, still be equiangularly distributed with
respect to the centre point.

Figure 10.7. A stellated polygon.

The StellationRadius describes a second ellipse inside the main enclosing ellipse upon
which all the internal stellation points are positioned. It is given in terms of the fraction of
the distance from the centre to the enclosing ellipse.

The StellationOffset allows stellation points to be “staggered” between the corner points.

 - 147 -

Figure 10.8. An example of staggered stellation using the StellationOffset field.

The StellationOffset value is 0 if the stellation point is half way between the corner points.
At + or – 0.5 the stellation point is positioned on a line between the centre and one of the
corner points intersecting the stellation ellipse.

To compute the positions of the stellation points it is first required to work out the angle
between each Corner point, which we will call the AngleIncrement which is 360 degrees /
the number of sides on the polygon. The angle to the stellation point, StellationIncrement,
is now the AngleIncrement / 2 + StellationOffset * AngleIncrement. This is the amount to
add to the angle between the radius line connecting the centre point and the current Corner
point to give the next stellation point. The stellation point is then positioned where this
angle intersects the stellation ellipse, which can be calculated from the StellationRadius.

Ratios are used in all the above values so that its possible to change the number of sides
without having to re-compute the values for all the other QuickShape fields.

How the shape is built up

The shape is first built up in a normalised form, such that it is a regular polygon centred on
0, 0, with just the major and minor axis values describing the size of the shape and its
enclosing ellipse.

These normalised significant co-ordinates can then be put through a transformation matrix
to get the actual significant points. The bounding ellipse of the polygon described by the
centre, major and minor axis points ABC of the normalised form, map to the transformed
versions A’ B’ C’ under this transformation matrix. The diagram below shows this
transformation:

 - 148 -

Figure 10.9. Possible transformation of a QuickShape.

Building a path for an ellipse

There follows a description of how to build up the paths for various objects, starting with a
simple ellipse.

Figure 10.10. Constructing a path for an elliptical Quickshape.

Ellipses are a special case of a QuickShape. They do not have reformed edges or rounded
corners, making it very easy to build the path.

Inherent in the shape object are the three points, centre, major (axes) and minor (axes).
These three points define a parallelogram that encloses the ellipse. The points a, b, c and d
are positioned at the vertices of the parallelogram. W, x, y and z are positioned on the
midpoints of the lines between the vertices. The points w and z are easy to obtain as they
are the minor and major points respectively. The points x and y can be obtained by
offsetting w and z from the centre of the shape. The points a, b, c and d can be obtained
through the use of similar offsets.

An ellipse path consists of four Bezier curve segments. The control points of these
segments are positioned using the ratio of 0.552, which seems to give a true circle. The path
is built thus:

The MoveTo element is placed at point z, the major axes. The first segments control points
are positioned 0.552 of the way from z to a, and 0.552 of the way from w to a. The curve

 - 149 -

segment ends on the point w. Three more segments are positioned in a similar manner to
complete the shape.

Building a path for a Polygon

Each edge of the polygon is processed so that the following normalised significant points
are calculated:

The corner point

The curve point (if the shape has primary curvature)

The stellation point (if the shape is stellated)

The stellation curve points (if the shape is stellated and has stellation curvature)

The following curve point (if the shape has primary curvature)

Figure 10.11. Constructing a path for a stellated, rounded, reformed QuickShape.

If the shape is rounded then draw the curves at the corners.

If the shape isn’t reformed then draw straight lines between the corner points, stellation
points or curve points as appropriate.

If the shape is reformed then transform the Edge Paths to fit between the corner points,
stellation points or curve points as appropriate and draw them.

This renderable path is then transformed by the shape’s transformation matrix.

 - 150 -

Blends
Overview

Blends are a way or “morphing” one shape into another – a number of intermediate shapes
are generated which change gradually from the first shape to the second. A blend is defined
by a set of one or more source objects, a set of one or more destination objects, the number
of blending steps between source and destination and some control information. Give this
information the blending process then blends the set of source objects into the set of
destination objects in terms of both shape and colour. The illustration below shows a simple
blend:

Figure 11.1. A blend from a light blue circle to a magenta rectangle in 5 steps.

The in-between steps are not stored in the Xar format, but are calculated when the objects
are first loaded or when they’re rendered.

On renderers that support anti-aliasing, the intermediate objects can be instructed not to
anti-alias. Anti-aliasing can be a slow process and since the colour of an intermediate object
is likely to be very similar to the other intermediate objects around it, turning off anti-
aliasing can speed up rendering with little loss of quality.

Colour changes in the blend steps can be specified in the same three variants as the fill
attributes, so that the colours fade from one to another, use a rainbow effect or use an
alternative rainbow effect.

The structure

A blend is made of several records arranged in a specific structure:

 - 151 -

Figure 11.2. The basic record structure of a Blend.

Blend record

The ‘Blend’ record is like a group item and just acts as a container for all the records which
compose the blend. The child records will consist of both the source and destination record
sets and one or more Blender records which hold information such as the number of blend
steps.

Blender record

The ‘Blender’ record is placed between the source and destination objects in the blend
subtree. It contains the control information describing how the source should be blended to
the destination.

Note that a Blend subtree can contain more than one Blender record. The Blender records
are all placed between sets of object records – the destination set from one Blender
becomes the Source set for the next. Tree structures like this are called ‘multi-stage blends’:

Figure 11.3. A multi-stage Blend.

 - 152 -

Name Blend

Purpose This record describes the blend grouping item

Tag TAG_BLEND

Size 3

Usage Image. Compulsory.

Data:

<Steps: UINT16> The number of intermediate steps rendered for each blend
stage within the blend. This can be 0 when just the end
objects are rendered

<Flags : BYTE> Bit field describing the following aspects of a blend

Bit 0 : OneToOne : Set if the blend should be done using a
one-to-one mapping of the nodes in one path to the nodes
of another path

Bit 1 : Antialiased : Set if the intermediate steps of the
blend should be rendered anti-aliased

Bits 2 to 3 are reserved, and should be set to 0.

Bits 4-7 : ColourEffect: Describe the method in which
colours should be blended.
0 means Fade
1 means Rainbow
2 means Alternative Rainbow

Comments:

The record defines the head of a blend structure. The record forms the root of a sub-tree of
records that make up the blend. All child records after this record are part of the blend
object.

 - 153 -

Name Blender

Purpose This record describes the blender item.

Tag TAG_BLENDER

Size 8

Usage Image. Compulsory.

Data:

<StartPathIndex : INT32> Mapping value for the path at the start of the blend. -1
(0xffffffff) means no mapping is specified.

<EndPathIndex : INT32> Mapping value for the path at the end of the blend. -1
(0xffffffff) means no mapping is specified.

Comments:

A Blender record controls the blending of the objects either side of it in the Xar file. The
object record that precedes this record defines the path(s) at the start of the blend section.
The object record that follows this record defines the path(s) at the end of the blend section.

The Blender record must have access to Path representations of the objects it is blending. If
any object in the source or the destination sets of objects are not Paths then they must be
converted into the equivalent paths before the Blender record is rendered.

For example, if the source object were a Rectangle, it would be converted to a single path
that is visually identical to the rectangle. If the destination object were a line of text, it
would be converted to a series of paths that look exactly like the original text. The blender
would then blend the path representing the rectangle to the set of paths representing the
text.

 - 154 -

Figure 11.4. The effect of blending a rectangle to a line of text.

Mapping Values

The mapping value defines a specific point in the path to start blending from. It is an index
into the path’s list of co-ordinates. The blend then occurs as if the path’s first co-ordinate
was the one at this index.

A mapping value of (-1) is defined as the index of the bottom-left most co-ordinate. This
allows different paths (i.e. paths with different sets of co-ordinates) to be blended together
more successfully.

The StartPathIndex & EndPathIndex fields can only have values other than (-1) if both the
source and the destination object sets of the blend consist of exactly one path each.

Name Blender Additional

Purpose This record holds more properties of the blender item.

Tag TAG_BLENDERADDITIONAL

Size 17

Usage Image. Compulsory.

Data:

<BlendOnPath : INT32> Flag for blend on a path.

<BlendPathIndex : INT32> Index of something to do with blending on a curve.

 - 155 -

<StartObjectIndex : INT32> Index of start object.

<EndObjectIndex : INT32> Index of end object.

<BlenderFlags : BYTE> Some flags.

Comments:

This record, if present, immediately follows the Blender record. The ObjectIndex values are
relative to the parent bland record indicating which object the blend references. E.g. If
StartObjectIndex = 2, then the start object that the blender will blend is the third renderable
object record (starting from the first child) under the parent Blend record.

Name Blend Profiles

Purpose This record holds the object and attribute profiles of the blend.

Tag TAG_BLENDPROFILES

Size 24

Usage Image. Compulsory.

Data:

<ObjectProfile : PROFILE> The profile of the object positions.

<AttributeProfile : PROFILE> The profile used to blend the attributes.

Comments:

This record allow the object spacing and attribute blending to be controlled. It appears
immediately before the bland record that it refers to.

Name Blender Curve Properties

Purpose This record holds the curve position properties of the blend.

 - 156 -

Tag TAG_BLENDER_CURVEPROP

Size 16

Usage Image. Compulsory.

Data:

<StartPosition : DOUBLE> The position of the start object on the curve as a value
from 0.0 to 1.0

<EndPosition : DOUBLE> The position of the end object on the curve as a value
from 0.0 to 1.0

Comments:

This record appears as a child of the Blender record.

Name Blend Path

Purpose This record holds the path the blend follows.

Tag TAG_BLEND_PATH

Size Variable

Usage Image. Compulsory.

Data:

The data section for this record is identical to a standard path record.

Name Blend Path Filled

Purpose This record holds the curve position properties of the blend.

 - 157 -

Tag TAG_NODEBLENDPATH_FILLED

Size 16

Usage Image. Compulsory.

Data:

<Filled : INT32> Flag to indicate that the blend path should be filled.

Comments:

This record, if present, appears immediately after the blend path record.

Name Blender Curve Angles

Purpose This record holds the angles of the start and end objects.

Tag TAG_BLENDER_CURVEANGLES

Size 16

Usage Image. Compulsory.

Data:

<StartAngle : DOUBLE> The angle of the start object in degrees.

<EndAngle : DOUBLE> The angle of the end object in degrees.

Comments:

This record appears as a child of the Blender record. It is only present if one or both of the
angles are not zero.

 - 158 -

Blending

To display this data accurately you need to know the appropriate algorithm. This algorithm
is not supplied in this release of the Xar format specification. However, it is a commonly-
used algorithm in many Illustration packages.

 - 159 -

Moulds
Overview

Moulds are records which change the shapes of objects in some way. At present only two
types of moulds are defined, 4-point Envelopes and Perspectives. 4-point Envelopes warp
or distort the objects so that they fit within an envelope shape defined by 4 Bezier
segments. Perspective envelopes distort the objects according to the rules of perspective
drawing so that they look as if they’ve been tilted back into the picture.

All moulds work in the same way: they take objects and apply a complex transformation to
the object’s co-ordinates. The transformed objects are then displayed in the drawing. The
mould transformation is based upon the mould shape and the bounding rectangle enclosing
all the moulded objects. It may clip co-ordinates so that they are well behaved.

The structure

The tree structure associated with a mould is shown below: -

Figure 12.1. The basic record structure of a Mould.

 - 160 -

Mould

The ‘Mould’ record is like a group record and acts as a container for all of the records that
form a mould. The records that make a complete mould are: the records that the user has
selected to be warped, the shape of the mould, some control information and, optionally,
the moulded versions of the objects. The Mould record will actually be either
TAG_MOULD_ENVELOPE or TAG_MOULD_PERSPECTIVE.

Mould Path

The ‘Mould Path’ record is the shape that controls the warping space. It is this shape which
is presented to the user as “the mould” and editors may allow the shape to be edited. It is
just a normal path, but different classes of mould may put restrictions on the format of the
path. For instance, the Perspective mould must have a Mould Path consisting of a closed
shape of 4 straight lines.

Mould Group

The ‘Mould Group’ record is another container. This one holds all of the unmoulded
objects, the source objects, and their attributes.

Moulder

The ‘Moulder’ record is yet another container record, holding the moulded versions of
objects and attributes within the ‘Mould Group’.

NOTE! The ‘Moulder’ record and it’s subtree are NOT saved in the Xar format. It is
described here because it is generated when the Source objects are moulded, usually when
the file is first loaded into memory. The moulded objects are added to the tree structure
inside the ‘Moulder’ record so that they take part in rendering properly.

Name Envelope Mould

Purpose This record describes the envelope mould grouping item

Tag TAG_MOULD_ENVELOPE

Size 4

Usage Image. Compulsory.

 - 161 -

Data:

<ErrorThreshold :
UINT32>

A value that controls the accuracy of the moulded curves. The
smaller the value, the more accurate the mould will be. (Should be
greater than 32 – typical value is 128)

Comments:

This record acts just like a simple group item and contains all of the objects that are needed
to define the envelope and the objects which are being enveloped.

Figure 12.2 A graphic and an envelope moulded version of it.

Name Perspective Mould

Purpose This record describes the perspective mould grouping item

Tag TAG_MOULD_PERSPECTIVE

Size 4

Usage Image. Compulsory.

Data:

<ErrorThreshold :
UINT32>

A value that controls the accuracy of the moulded curves. The
smaller the value, the more accurate the mould will be. (Should be
greater than 32 – typical value is 128)

Comments:

This record acts just like a simple group item and contains all of the objects that are needed
to define the Perspective and the objects that are being Perspectivised.

 - 162 -

Figure 12.3. A graphic and a perspective moulded version of it.

Name Mould Path

Purpose This record describes the mould path

Tag TAG_MOULD_PATH

Size Variable.

Usage Image. Compulsory.

Data:

< MouldPath : PATH > The path which describes the mould (see TAG_PATH)

Comments:

This record describes the path that defines the moulding space that the particular form of
mould operation then needs to apply to all the unmoulded objects.

 Name Mould Bounds

Purpose This record holds the bounding rectangle of the source objects

Tag TAG_MOULD_BOUNDS

 - 163 -

Size 16

Usage Image. Optional.

Data:

< BottomLeft : COORD
>

The bottom left corner of the bounding rectangle

< TopRight : COORD > The top right corner of the bounding rectangle

Comments:

The moulding algorithms need to know the bounding rectangle of the original objects to
perform the necessary transformation. The presence of this record allows a renderer to start
rendering the moulded objects before all of the source objects have been loaded.

Name Mould Group

Purpose This record describes the mould grouping item which contains the unmoulded
objects.

Tag TAG_MOULD_GROUP

Size 0

Usage Image. Compulsory.

Comments:

This record acts just like a simple group item and contains all of the objects that are the
unmoulded objects. It is always found inside the main mould group, at present either an
envelope or a perspective mould.

Envelope Mould Algorithm

To display this data accurately you need to know the appropriate algorithm. This algorithm
is not supplied in this release of the Xar format.

 - 164 -

In it simplest form, the envelope warping might be thought of in its starting, or
untransformed state, as a simple rectangle the same size as the bounds of the objects to be
warped. This rectangle can be thought of as a piece of rubber paper, which can be stretched,
without tearing, into the warped space. It is bounded by the warping path, which the user
can edit to change what the piece of paper looks like.

Perspective Mould Algorithm

To display this data accurately you need to know the appropriate algorithm. This algorithm
is not supplied in this release of the Xar format.

 - 165 -

Bevels
A bevelled object consists of a TAG_BEVEL record which acts as a simple group object.
The children of this record will be any attributes that are common to both the original
object(s) and the bevel, then the TAG_BEVELINK record representing the bevel itself
complete with the attributes applied to the bevel as its children and then the original object
being bevelled.

Name Bevel

Purpose This record represents a bevelled object.

Tag TAG_BEVEL

Size 24

Usage Image, Compulsory

Data:

<Type : INT32> The type of the bevel

<Indent :
MILLIPOINT>

The size of the bevel

<LightAngle : INT32> The lighting angle (degrees). 0 degrees means the object is lit
from the right and 90 degrees means the object is lit from below.

<Flags : INT32> Bit 0 – if set then outer bevel otherwise inner bevel
Bits 1-31 – Reserved. Must be 0

<Contrast : INT32> The contrast value of the bevel from 0 to 100

<Tilt : INT32> The light elevation of the bevel (degrees). 0 degrees means the
object is lit “horizontally” and 90 degrees means the object is lit
from straight “above”.

Comments:

This record acts just like a simple group item and contains all of the objects that are needed
to define the bevel and the objects which are being bevelled.

Bevel Type

 - 166 -

The bevel type controls the “shape” of the bevel. The currently defined values are shown
in the table below.

Bevel Type Description Example

0 Flat

1 Round Frame

2 Round Frame 2

3 Flat Top Frame

4 Chiselled

5 Chiselled 2

 - 167 -

6 Rounded

7 Rounded 2

8 Point Frame 1

9 Point Frame 2

10 Point Frame 3

11 Ruffle Frame 1

12 Ruffle Frame 2

 - 168 -

13 Ruffle Frame 3

14 Ruffle Frame 4

Name Bevel Ink

Purpose This record represents the bevel.

Tag TAG_BEVELINK

Size 0

Usage Image, Compulsory

Comments:

This record represents the bevel itself. Any attributes applied to the bevel will be children
of this record.

 - 169 -

Contours
Contours let you create interesting effects around the edges of objects. It creates a number
of concentric objects either inside or outside the object(s) being contoured. The attributes of
the outermost contour object can be controlled and the intermediate contour steps will
blend between them and the attributes of the main object. The intermediate steps can aso be
hidden (InsetPath) which has the effect of shrinking or expanding the original object in a
different way to simply scaling the object.

A contoured object consists of a TAG_CONTOURCONTROLLER record which acts as a
simple group object. The children of this record will be any attributes that are common to
both the original object(s) and the contour, then the TAG_CONTOUR record representing
the most extreme contour step complete with the attributes applied to the contour as its
children and then the original objects being contoured. If there is more than one �ezier�l
object then the contours are generated as if the original objects’ paths are added together.

 Name Contour Controller

Purpose This record represents a contoured object.

Tag TAG_CONTOURCONTROLLER

Size 41

Usage Image, Compulsory

Data:

<Steps : INT32> The number of contour steps to generate. This will be one less
than the value displayed by XaraX¹

<Width :
MILLIPOINT>

The width of the contour. A positive value indicates an inner
contour and a negative value indicates an outer contour

<Type : BYTE> Bit field describing the following aspects of a contour

Bits 0-1 : ColourEffect: Describe the method in which colours
should be blended.
0 means Fade
1 means Rainbow
2 means Alternative Rainbow

 - 170 -

Bits 2-6 are reserved, and should be set to 0.

Bit 7 : InsetPath: This hides the intermediate contour steps.

<PositionProfile :
PROFILE>

The position profile controlling the spacing of the steps

<AttributeProfile :
PROFILE>

The attribute profile controlling the transition of the attributes

Comments:

This record acts just like a simple group item and contains all of the objects that are needed
to define the contour and the objects which are being contoured.

Name Contour

Purpose This record represents a contoured object.

Tag TAG_CONTOUR

Size 0

Usage Image, Compulsory

Comments:

This record represents the most extreme contour object. The attributes applied to the
contour will be children of this record.

 - 171 -

Shadows
A shadowed object consists of a TAG_SHADOWCONTROLLER record which acts as a
simple group object. The children of this record will be any attributes that are common to
both the original object(s) and the shadow, then the TAG_SHADOW record representing
the shadow itself complete with the attributes applied to the shadow as its children and then
the original object being shadowed. Only one object can be shadowed but multiple objects
can be grouped together so they are treated as one object.

Name Shadow Controller

Purpose This record represents an object with a shadow.

Tag TAG_SHADOWCONTROLLER

Size 29

Usage Image, Compulsory

Data:

<Type : BYTE> The type of shadow. 1 – wall shadow, 2 – floor shadow, 3 – glow
shadow

<PenumbraWidth :
MILLIPOINT>

The width of the shadow blur.

<ShadowOffset :
COORD>

The offset of the wall shadow

<FloorAngle :
LONG>

The angle of the floor shadow in radians multiplied by 1000000.
Must be between -2*PI and 2*PI

<FloorHeight :
LONG>

The height of the floor shadow relative to the original object
multiplied by 100

<WallScale : LONG> The scale factor of the wall shadow multiplied by 100

<GlowWidth :
MILLIPOINT>

The width of the glow shadow

Comments:

 - 172 -

This record acts just like a simple group item and contains all of the objects that are needed
to define the shadow and the objects which are being shadowed.

Name Shadow

Purpose This record represents the shadow itself.

Tag TAG_SHADOW

Size 24

Usage Image, Compulsory

Data:

<Profile : PROFILE> The shadow’s profile controlling the transparency transition

<Darkness :
DOUBLE>

The darkness value of the shadow. 0.0 – totally transparent, 1.0 –
totally opaque

Comments:

This record represents the shadow itself. The attributes applied to the shadow (e.g. the
shadow colour) will be children of this record.

 - 173 -

Brushes
A brush is a collection of objects that are rendered along a path. This allows the creation of
realistic looking artistic materials (e.g. chalk, airbrush etc.) and almost anything else that
can be repeated along a curve (e.g. chain links, footprints etc.). The spacing, scaling,
distance from the curve, transparency and many other properties can be altered or made to
change randomly along the curve allowing a very wide range of effects to be achieved.

Brushes support pressure sensitivity allowing one or more of the properties (scaling,
spacing, transparency etc.) to vary according to the pressure sample data which is usually
collected from a pressure sensitive tablet.

Name Brush Definition

Purpose This record defines a brush.

Tag TAG_BRUSHDEFINITION

Size 4

Usage Image, Compulsory

Data:

<Handle : UINT32> The handle of this brush.

Comments:

The objects that make up the brush are children of this record.

 Name Brush Data

Purpose This record holds various properties of a brush.

Tag TAG_BRUSHDATA

Size Variable

Usage Image, Compulsory

 - 174 -

Data:

<Handle : UINT32> The handle of this brush.

<Spacing : MILLIPOINT> The spacing of this brush.

<Flags : BYTE> Flags for this brush.

<RotateAngle : DOUBLE> The rotation angle of this brush.

<OffsetType : INT32> The offset type of this brush (0 – none, 1 – alternate, 2 –
left, 3 – right, 4 – random).

<PathOffset : MILLIPOINT> The handle of this brush.

<Name : STRING> The name of this brush.

<Scaling : DOUBLE> The scaling of this brush.

Comments:

This record holds some of the properties of the brush.

 Name More Brush Data

Purpose This record holds more properties of a brush.

Tag TAG_MOREBRUSHDATA

Size 68

Usage Image, Compulsory

Data:

<ProportionalSpacingIncrement :
DOUBLE>

The proportional spacing increment of this brush.

<ConstantSpacingIncrement :
MILLIPOINT>

The constant spacing increment of this brush.

 - 175 -

<SpacingMax : MILLIPOINT> The maximum value for random spacing.

<SpacingSeed : INT32> The seed value for random spacing.

<ScalingIncrement : DOUBLE> The scaling increment of this brush.

<ScalingMax : INT32> The maximum value for random scaling.

<ScalingSeed : INT32> The seed value for random scaling.

<SequenceType : INT32> The sequence type of this brush.

<SequenceSeed : INT32> The seed value for random sequence.

<ProportionalPathOffsetIncrement
: DOUBLE>

The proportional path offset increment of this brush.

<ConstantPathOffsetIncrement :
LONG>

The constant path offset increment of this brush.

<OffsetTypeSeed : INT32> The seed value for random offset type.

<OffsetMax : MILLIPOINT> The maximum offset value of this brush.

<OffsetSeed : INT32> The seed value for random offset value.

Comments:

This record holds some more of the properties of the brush.

 Name Even More Brush Data

Purpose This record hold even more properties of a brush.

Tag TAG_EVENMOREBRUSHDATA

Size 8

Usage Image, Compulsory

Data:

 - 176 -

<RotationMax : INT32> The maximum value for random rotation.

<RotationSeed : INT32> The seed value for random rotation.

Comments:

This record holds some more of the properties of the brush.

 Name Brush Pressure Info

Purpose This record hold pressure information of a brush.

Tag TAG_BRUSHPRESSUREINFO

Size 28

Usage Image, Compulsory

Data:

<ScalingMax : INT32> The extent to which pressure affects scaling.

<SpacingMax : INT32> The extent to which pressure affects spacing.

<OffsetMax : INT32> The extent to which pressure affects offset.

<RotationMax : INT32> The extent to which pressure affects rotation.

<HueMax : INT32> The extent to which pressure affects hue.

<SaturationMax : INT32> The extent to which pressure affects saturation.

<TimestampMax : INT32> The extent to which pressure affects timestamping.

Comments:

This record specifies the amount that pressure affects various properties of the brush.

 - 177 -

 Name Brush Transparency Info

Purpose This record holds transparency information of a brush.

Tag TAG_BRUSHTRANSPINFO

Size 40

Usage Image, Compulsory

Data:

<Transparency : INT32> The transparency of the brush.

<TranspMaxPressure : INT32> The extent to which pressure affects transparency.

<ConstantRotationIncrement :
DOUBLE>

The constant rotation increment.

<ConstantScalingIncrement :
DOUBLE>

The constant scaling increment.

<HueMax : INT32> The maximum value for random hue.

<SaturationMax : INT32> The seed value for random hue.

<SaturationMax : INT32> The maximum value for random saturation.

<TimestampMax : INT32> The seed value for random saturation.

Comments:

This record specifies the amount that pressure affects various properties of the brush.

 Name Brush Attribute

Purpose This record applies a brush to an object.

Tag TAG_BRUSHATTR

Size 33

 - 178 -

Usage Image, Compulsory

Data:

<Handle : UINT32> The handle of the brush applied.

<Spacing : MILLIPOINT> The spacing of this brush.

<Flags : BYTE> Flags for this brush.

<RotateAngle : DOUBLE> The rotation angle of this brush.

<Offset : MILLIPOINT> The offset of this brush.

<PathOffset : MILLIPOINT> The handle of this brush.

<Scaling : DOUBLE> The scaling of this brush.

Comments:

This record holds some of the properties of the brush attribute.

 Name More Brush Attribute Data

Purpose This record holds more properties of a brush attribute.

Tag TAG_MOREBRUSHATTR

Size 72

Usage Image, Compulsory

Data:

<ProportionalSpacingIncrement :
DOUBLE>

The proportional spacing increment of this brush.

<ConstantSpacingIncrement :
MILLIPOINT>

The constant spacing increment of this brush.

 - 179 -

<SpacingMax : MILLIPOINT> The maximum value for random spacing.

<SpacingSeed : INT32> The seed value for random spacing.

<ScalingIncrement : DOUBLE> The scaling increment of this brush.

<ScalingMax : INT32> The maximum value for random scaling.

<ScalingSeed : INT32> The seed value for random scaling.

<SequenceType : INT32> The sequence type of this brush.

<SequenceSeed : INT32> The seed value for random sequence.

<ProportionalPathOffsetIncrement
: DOUBLE>

The proportional path offset increment of this brush.

<ConstantPathOffsetIncrement :
LONG>

The constant path offset increment of this brush.

<OffsetTypeSeed : INT32> The seed value for random offset type.

<OffsetMax : MILLIPOINT> The maximum offset value of this brush.

<OffsetSeed : INT32> The seed value for random offset value.

<LocalFill : INT32> If non-zero then use the local fill colour else use the
colours in the brush.

Comments:

This record holds some more of the properties of the brush.

 Name Even More Brush Attribute Data

Purpose This record hold even more properties of a brush attribute.

Tag TAG_EVENMOREBRUSHATTR

Size 9

Usage Image, Compulsory

 - 180 -

Data:

<RotationMax : INT32> The maximum value for random rotation.

<RotationSeed : INT32> The seed value for random rotation.

<Flags : BYTE> Flags for the brush. Bit 0 – Scale to width

Comments:

This record holds some more of the properties of the brush.

 Name Brush Attribute Fill Flags

Purpose This record controls how the fills of the brush behave.

Tag TAG_BRUSHATTRFILLFLAGS

Size 1

Usage Image, Compulsory

Data:

<Flags : BYTE> Flags controlling the fill of the brush.

Comments:

This record holds flags controlling how the fills of the brush behave.

 Name Brush Attribute Pressure Info

Purpose This record hold pressure information of a brush attribute.

Tag TAG_BRUSHATTRPRESSUREINFO

 - 181 -

Size 28

Usage Image, Compulsory

Data:

<ScalingMax : INT32> The extent to which pressure affects scaling.

<SpacingMax : INT32> The extent to which pressure affects spacing.

<OffsetMax : INT32> The extent to which pressure affects offset.

<RotationMax : INT32> The extent to which pressure affects rotation.

<HueMax : INT32> The extent to which pressure affects hue.

<SaturationMax : INT32> The extent to which pressure affects saturation.

<TimestampMax : INT32> The extent to which pressure affects timestamping.

Comments:

This record specifies the amount that pressure affects various properties of the brush.

 Name Brush Attribute Transparency Info

Purpose This record holds transparency information of a brush.

Tag TAG_BRUSHATTRTRANSPINFO

Size 40

Usage Image, Compulsory

Data:

<Transparency : INT32> The transparency of the brush.

<TranspMaxPressure : INT32> The extent to which pressure affects transparency.

 - 182 -

<ConstantRotationIncrement :
DOUBLE>

The constant rotation increment.

<ConstantScalingIncrement :
DOUBLE>

The constant scaling increment.

<HueMax : INT32> The maximum value for random hue.

<SaturationMax : INT32> The seed value for random hue.

<SaturationMax : INT32> The maximum value for random saturation.

<TimestampMax : INT32> The seed value for random saturation.

Comments:

This record specifies the amount that pressure affects various properties of the brush.

 Name Brush Timestamp Data

Purpose This record holds timestamped brush positions.

Tag TAG_TIMESTAMPBRUSHDATA

Size Variable

Usage Image, Compulsory

Data:

<Count : INT32> The number of brush points in this record. The following
4 data items are repeated this many times.

<Point : COORD> Th position of the sample point.

<Tangent : DOUBLE> The tangent to the curve at this point.

<ProportionalDistance :
DOUBLE>

The distance along the curve as a value from 0.0 to 1.0.

<Distance : MILLIPOINT> The distance along the curve in millipoints.

 - 183 -

Comments:

This record holds a list of points and tangent data for brush objects created by the
timestamping method.

 Name Brush Timestamp Data

Purpose This record holds the pressure data samples.

Tag TAG_BRUSHPRESSURESAMPLEDATA

Size Variable

Usage Image, Compulsory

Data:

<Count : INT32> The number of samples in this record. The following 3
data items are repeated this many times.

<Pressure : INT32> The pressure value at the sample point.

<Point : COORD> The sample point.

<Distance : MILLIPOINT> The distance along the curve in millipoints.

Comments:

This record holds a list pressure samples at points along the curve.

 Name Stroke Type Attribute

Purpose This defines the stroke type used to render the object.

Tag TAG_STROKETYPE

Size 4

 - 184 -

Usage Image, Compulsory

Data:

<Handle : UINT32> The handle of the stroke type. Currently this should only
be set to 0x01000000 to indicate a simple (i.e. constant
width) stroke or to 0x02000000 to indicate a variable
width stroke (defined by a
TAG_VARIABLEWIDTHTABLE record).

Comments:

This record sets the type of stroke to render the object with.

 Name Variable Width Definition

Purpose This record defines a variable stroke width profile.

Tag TAG_VARIABLEWIDTHTABLE

Size Variable

Usage Image, Compulsory

Data:

<Type : UINT32> The type of the profile.

<Type Specific Data> Data specific to the particular type of profile.

Comments:

This record defines a variable width profile. The profiles define a mapping function that
maps values in the range 0.0 to 1.0 representing distance along the path to a value between
-1.0 and 1.0 representing the line width (as a scaling of the applied line width) at that point
of the path.

There are many different types and they are grouped into the following main types
depending on what extra data is required in the record to define the profile.

 - 185 -

Type Type Name Data Details

1 Constant <Value : FLOAT> This is a constant value.

2 Random <Seed : UINT32>
<Min : FLOAT>
<Max : FLOAT>

This generates a table of
512 pseudorandom
integers between 0 and
0xffff using the seed
value and then linearly
interpolates between two
of them to get a value in
the range 0 to 0xffff. This
is then mapped onto the
range Min to Max.

3 RampLinear <Value1 : FLOAT>
<Value2 : FLOAT>

This is a simple linear
interpolation between
Value1 and Value2

4 RampS <Value1 : FLOAT>
<Value2 : FLOAT>

This is a linear
interpolation between
Value1 and Value2 using
the following expression
to generate the mix value:
(cos(Input * Pi) + 1.0) /
2.0

5 Pressure <Count : UINT32>
<Position : UINT16>
<Pressure : UINT16>

The Position and Pressure
items are repeated Count
times. Both the Position
and Pressure values
represent values in the
range 0.0 to 1.0 (e.g.
divide by 65535). This
linearly interpolates
between the two closest
pressure points in the
array.

6 PressureS <Count : UINT32>
<Position : UINT16>
<Pressure : UINT16>

The Position and Pressure
items are repeated Count
times. Both the Position
and Pressure values
represent values in the

 - 186 -

range 0.0 to 1.0 (e.g.
divide by 65535). This
interpolates between the
two closest pressure
points in the array using
the following mapping:
In first and last segment:
cos(-MixValue * (Pi /
2.0))
Otherwise:
(cos(MixValue * Pi) +
1.0) / 2.0
where MixValue is the
proportional distance of
the input value between
the two closest pressure
points

7 Teardrop <MaxPos : FLOAT> This uses the following
mapping:
If Input < MaxPos then
cos(asin(1.0 – (Input /
MaxPos)))
Otherwise: (cos(Pi *
(Input – MaxPos) / (1.0 –
MaxPos)) + 1.0) / 2.0

8 Ellipse <MaxPos : FLOAT> This uses the following
mapping:
If Input < MaxPos then
cos(asin(1.0 – (Input /
MaxPos)))
Otherwise:
cos(asin((Input –
MaxPos) / (1.0 –
MaxPos)))

9 Blip <MaxPos : FLOAT> This uses the following
mapping:
If Input < MaxPos then
sin((Input / MaxPos) *
(Pi / 2.0))
Otherwise: cos((Pi / 2.0)
* (Position – MaxPos) /
(1.0 – MaxPos))

 - 187 -

10 Thumbtack <MaxPos : FLOAT> This uses the following
mapping:
If Input < MaxPos then
1.0 –
cos(asin(Input/MaxPos))
Otherwise: 1.0 –
cos(asin(1.0 – ((Input –
MaxPos) / (1.0 –
MaxPos))))

11 RampL <Value1 : FLOAT>
<Value2 : FLOAT>

This is a linear
interpolation between
Value1 and Value2 using
the following expression
to generate the mix value:
cos((Pi/2.0) + (Input *
Pi/2.0)) + 1.0

12 RampL2 <Value1 : FLOAT>
<Value2 : FLOAT>

This is a linear
interpolation between
Value1 and Value2 using
the following expression
to generate the mix value:
cos((Pi/2.0) + (Position *
Pi/2.0)) + 1.0

13 RampS2 <Value1 : FLOAT>
<Value2 : FLOAT>

This is a linear
interpolation between
Value1 and Value2 using
the following expression
to generate the mix value:
(cos(Input * Pi) + 1.0) /
2.0

14 TeardropCurvedEnd <MaxPos : FLOAT> This uses the following
mapping:
If Input < MaxPos then
cos(asin(1.0 – (Input /
MaxPos)))
Otherwise: sqrt(1.0 –
((Input – MaxPos) / (1.0
– MaxPos)))

15 SawTooth <Value1 : FLOAT>
<Value2 : FLOAT>

This uses the following
mapping:
If Input = 1.0 then 0.0

 - 188 -

Otherwise: 1.0 – ((9.0 *
Input) – (floor(9.0 *
Input)))²
The parameters are
ignored

16 Propeller <Value1 : FLOAT>
<Value2 : FLOAT>

This uses the following
mapping:
If Input < 0.15 then
cos(asin(1.0 – (Input /
0.15)))
If Input > 0.85 then
cos(asin((Input – 0.85) /
0.15))
Otherwise: (cos(2.0 * Pi
* (Input – 0.15) / 0.7) +
1.5) * 0.4
The parameters are
ignored

17 DoubleRampS <Value1 : FLOAT>
<Value2 : FLOAT>

This is a linear
interpolation between
Value1 and Value2 using
the following expression
to generate the mix value:
(cos(Input * 2.0 * Pi) +
1.5) * 0.4

18 Intestine <Value1 : FLOAT>
<Value2 : FLOAT>

This is a linear
interpolation between
Value1 and Value2 using
the following expression
to generate the mix value:
((cos(Position * 20.0 *
Pi) + 3.0) / 4.0)

19 Decay <Value1 : FLOAT>
<Value2 : FLOAT>

This uses the following
mapping: (1.0 – Input) *
((cos(Input * 20.0 * Pi) +
3.0) / 4.0)
The parameters are
ignored

20 BevelEnds <Value1 : FLOAT>
<Value2 : FLOAT>

This uses the following
mapping:
If Input = 1.0 then 0.0

 - 189 -

If Input < 0.15 then Input
/ 0.15
If Input > 0.85 then
(Input – 0.85) / 0.15
Otherwise: 1.0
The parameters are
ignored

21-38 Bezier based <Value1y : FLOAT>
<Value2x : FLOAT>
<Value2y : FLOAT>
<Value3x : FLOAT>
<Value3y : FLOAT>
<Value4y : FLOAT>

All of these functions use
a �ezier curve based on
the parameters to
generate a table of input
(x) and output (y) value
pairs assuming that
Value1x = 0.0 and
Value4x = 1.0. This list
of pairs is then searched
to find the closest two
points which are
interpolated between. The
parameter values must be
as specified.

21 Reed Value1y = 0.0
Value2x = 0.333
Value2y = 1.0
Value3x = 0.667
Value3y = 0.5
Value4y = 0.0

22 Meteor Value1y = 0.0
Value2x = 0.15
Value2y = 1.0
Value3x = 0.667
Value3y = 0.0
Value4y = 0.0

23 Petal Value1y = 0.0
Value2x = 0.15
Value2y = 1.0
Value3x = 0.3
Value3y = 1.0
Value4y = 0.0

24 Comet Value1y = 0.1
Value2x = 0.05

 - 190 -

Value2y = 1.6
Value3x = 0.15
Value3y = 0.2
Value4y = 0.05

25 Barb Value1y = 0.5
Value2x = 0.333
Value2y = 0.0
Value3x = 0.667
Value3y = 1.0
Value4y = 0.0

26 Concave Value1y = 1.0
Value2x = 0.3
Value2y = 0.2
Value3x = 0.667
Value3y = 0.15
Value4y = 0.2

27 Convex Value1y = 1.0
Value2x = 0.55
Value2y = 1.3
Value3x = 0.667
Value3y = 0.4
Value4y = 0.33

28 Iron Value1y = 1.0
Value2x = 0.333
Value2y = 1.0
Value3x = 0.667
Value3y = 1.0
Value4y = 0.0

29 Torpedo Value1y = 1.0
Value2x = 0.333
Value2y = 0.5
Value3x = 0.667
Value3y = 1.0
Value4y = 0.0

30 Missile Value1y = 1.0
Value2x = 0.333
Value2y = 0.0
Value3x = 0.667
Value3y = 1.0
Value4y = 0.0

 - 191 -

31 Goldfish Value1y = 0.5
Value2x = 0.333
Value2y = 0.0
Value3x = 0.667
Value3y = 1.0
Value4y = 0.0

32 OceanLiner Value1y = 0.5
Value2x = 0.333
Value2y = 0.5
Value3x = 0.667
Value3y = 1.0
Value4y = 0.0

33 Yacht Value1y = 0.5
Value2x = 0.333
Value2y = 1.0
Value3x = 0.667
Value3y = 1.0
Value4y = 0.0

34 SlimBlip Value1y = 0.0
Value2x = 0.15
Value2y = 1.2
Value3x = 0.85
Value3y = 1.2
Value4y = 0.0

35 Cigar Value1y = 0.4
Value2x = 0.333
Value2y = 1.3
Value3x = 0.667
Value3y = 1.3
Value4y = 0.4

36 Cigar2 Value1y = 0.4
Value2x = 0.333
Value2y = 1.0
Value3x = 0.667
Value3y = 1.0
Value4y = 0.4

37 Cigar3 Value1y = 0.4
Value2x = 0.333
Value2y = 0.7
Value3x = 0.667

 - 192 -

Value3y = 0.7
Value4y = 0.4

38 Fallout Value1y = 1.0
Value2x = 0.333
Value2y = 1.0
Value3x = 0.667
Value3y = 1.0
Value4y = 0.5

 - 193 -

ClipView
A ClipView object consists of a TAG_CLIPVIEWCONTROLLER record which acts as a
simple group object. The children of this record will be any attributes that are common to
both the original object(s) and the clipping objects, then the clipping objects, then the
TAG_CLIPVIEW record and then the original objects being clipped.

Name ClipView Controller

Purpose This record represents an object with a ClipView.

Tag TAG_CLIPVIEWCONTROLLER

Size 0

Usage Image, Compulsory

Comments:

This record acts just like a simple group item and contains all of the objects that are needed
to define the ClipView and the objects which are being clipped.

Name ClipView

Purpose This record marks the end of the clipping path objects and the start of the
objects to be clipped.

Tag TAG_CLIPVIEW

Size 0

Usage Image, Compulsory

Comments:

This record marks the end of the clipping path objects and the start of the objects to be
clipped.

 - 194 -

Name ClipViewPath

Purpose This record marks the end of the clipping path objects and the start of the
objects to be clipped and also includes the actual path definition used to
perform the clipping.

Tag TAG_CLIPVIEW_PATH

Size Variable

Usage Image, Optional

Data:

< ClipPath : PATH > The path to clip with (see TAG_PATH)

Comments:

This is a variant of the TAG_CLIPPATH record that is only used when exporting to plugin
filters that ask for it. It includes the actual path used to clip with when rendering the clip
view to remove the need for the filter to generate the combined clipping path from the
clipping objects and also to avoid problems with the conversion system changing the shape
of the clipping objects (e.g. if one of the clipping objects gets converted into a bitmap then
its path will become a simple rectangle which would give the wrong result if the filter were
generating the clipping path).

 - 195 -

Text

Overview

Xar format can encode text in several ways: single lines of text, blocks of text controlled by
margins and text lines that follow a path. Any of the standard Attributes can be applied to
any of the types of text, including all the fill types and transparency types. In addition to the
normal Image Attributes, text objects have their own set of attributes, which control text
formatting.

Text structure

A block of text, called a Text Story in Xar format, is built up of a list of Text Strings. Each
String is an array of Unicode characters which all share the same attributes. So one of the
rules that determines how a Text Story is broken up into Text Strings is based upon the
position of attributes in the Text Story subtree. Another rule is determined by the position
of Line End characters in the Story: a new Text String is always started after a Line End
character.

Figure 13.1. The general structure of a Text

The Text Story record is a container for all the records that describes all the various aspects
of a block of text. (The term Text Story comes from Desktop Publishing where a Story is a
column of text which flows between frames and across pages). Text String records hold the
basic text information – the runs of characters typed by the user.

Each character is uniquely represented by 2 bytes; a Unicode value. By using Unicode, Xar
Writers don’t have to worry about the different character sets that exist on different
versions of Windows or other platforms – they don’t have to target a particular platform.
All possible characters are available in the Xar format and it’s up to the Readers to do their
best to display them. Furthermore, Windows NT works entirely in Unicode and it is

 - 196 -

supported by Windows 95. CorelXARA works internally in Unicode. The Zlib compression
layer deals with representing these two-bytes characters efficiently in the byte stream.

The Text String record holds a list of Unicode characters. CR characters (0xD) embedded
in these strings imply a new line, so many lines of text can be represented by using one
Text String record. Xar format only needs to use more than one Text String record for a
block of text in the drawing if different attributes are applied to different areas of the text
block (Figure 13.1).

Text structure records

In the descriptions that follow, the text is assumed to be upright; lines are described as
being above and below each other. This is just a convenient way to think of blocks of text.
It’s the most common case but text can be rotated to any angle. In that case the lines are no
longer simply above and below each other but the same principles of relative positioning
still apply.

Name Text story object

Purpose Parent object of the set of records that define a text story.

Tag TAG_TEXT_STORY_SIMPLE

Size 12 (8)

Usage Image. Compulsory.

Data:

< Anchor : COORD
>

Co-ordinate of anchor point of text.

< AutoKern : LONG
>

Kerning flag. 0 – no kerning, 1 – automatic kerning.
Note: this field may not be present in older Xar format documents

The anchor point of the text positions the text story in the document. In the most common
case, when text is in English and the text is left aligned, the anchor point is the left-hand
end of the baseline of the first line of text in the story.

Comments:

Starts a new text story subtree. This record should immediately be followed by a Down
record; the end of the text story is indicated by an Up record.

 - 197 -

This record represents text that hasn’t been rotated, sheared or reflected in any way.

The magnitude of any scale transformations that have been applied to the text are implicitly
represented in the co-ordinates and dimension attributes (such as font size or line width) of
the text story.

This text story is not fitted to a path. (See the section on Fitting Text to Paths for details of
TEXT_STORY records that fit text to paths.)

Name Text story object

Purpose Parent object of the set of records that define a text story.

Tag TAG_TEXT_STORY_COMPLEX

Size 28 (24)

Usage Image. Compulsory.

Data:

< Transformation :
MATRIX >

The transformation matrix describes the translation to move from
0,0 to the anchor point and also any rotation and shear that should
be applied to the text.

< AutoKern : LONG
>

Kerning flag. 0 – no kerning, 1 – automatic kerning.
Note: this field may not be present in older Xar format documents

The anchor point of the text positions the text story in the document. In the most common
case, when text is in English and the text is left aligned, the anchor point is the left-hand
end of the baseline of the first line of text in the story.

Comments:

Starts a new text story subtree. This record should immediately be followed by a Down
record; the end of the text story is indicated by an Up record.

The matrix describes any Rotations, Reflections or Shears that should be applied to the
story.

 - 198 -

The matrix does not describe Scales. The magnitude of any Scale transformations that have
been applied to the text are implicitly represented in the co-ordinates and dimension
attributes (such as font size or line width) of the text story.

This text story is not fitted to a path. (See the section on Fitting Text to Paths for details of
TEXT_STORY records that fit text to paths.)

Name Text string

Purpose Holds a string of Unicode characters

Tag TAG_TEXT_STRING

Size Variable

Usage Image. Compulsory.

Data:

<Contents : n *
UINT16>

Contents of string

Comments:

This record describes one of several possible sub-strings in a text story. The strings are
added together in the order in which they appear in the Xar file to create the full story.
Note: there is no terminator on this string, it is just a sequence of characters. The length is
determined by the length of the record.

This record must be a child of TAG_TEXT_LINE.

Name Text string position

Purpose Holds a string of Unicode characters and their position in the story

Tag TAG_TEXT_STRING_POS

 - 199 -

Size Variable

Usage Image. Optional.

Data:

<Offset : COORD> The millipoint offset of this string from the story anchor point in
the untransformed story.

<Contents : n *
UINT16>

Contents of string

Comments:

This is a variant of the TAG_TEXT_STRING record that is only used when exporting to a
plugin filter that asks for it to remove the need for the filter to calculate the position of each
sub-string if the output format requires it.

This record must be a child of TAG_TEXT_LINE.

Name Text character

Purpose Holds a single Unicode character

Tag TAG_TEXT_CHAR

Size 2

Usage Image. Compulsory.

Data:

<Contents : UINT16> A Unicode character

Comments:

This record describes one of several possible sub-strings in a text story, where this sub-
string consists of just one character. This character is added to the other strings and
characters in the order in which they appear in the Xar file to create the full story.

 - 200 -

This record must be a child of TAG_TEXT_LINE.

Name Text end-of-line

Purpose End of line marker

Tag TAG_TEXT_EOL

Size 0

Usage Image. Compulsory.

Comments:

This record specifies the end of a line in the text story – it is the Xar format equivalent of a
“Carriage Return Linefeed” sequence.

This record must be a child of TAG_TEXT_LINE.

 Name Kerning code

Purpose Provide kerning information, in thousandths of an “em”

Tag TAG_TEXT_KERN

Size 4

Usage Image. Compulsory.

Data:

<KernSize :
COORD>

A co-ordinate which adjusts the position of the baseline of the
following character relative to the baseline of the previous
character.

Comments:

 - 201 -

This record specifies the kerning offset between two adjacent characters. For the purposes
of editing, this can be treated as a hard space.

An “em” is a standard unit used when dealing with text. It represents the width of a lower
case m character. Defining this record in terms of ems means that it doesn’t need to be
modified if the text story is scaled as the attributes applied to the kern will be scaled
resulting in the correct appearance.

This record must be a child of TAG_TEXT_LINE.

Name Horizontal tab

Purpose Represents a horizontal tab object

Tag TAG_TEXT_TAB

Size 0

Usage Image. Compulsory.

Comments:

This record represents a horizontal tab. This causes the current text position to move to the
next tab stop defined by the current ruler attribute.

This record must be a child of TAG_TEXT_LINE.

Name Text Cursor or “caret”

Purpose Insertion point marker

Tag TAG_TEXT_CARET

Size 0

Usage Framework. Optional.

Comments:

 - 202 -

This record is used to mark the position of the caret in the text story. It is only needed by
editors and can be ignored by renderers.

Name Text line

Purpose Groups together several Text Objects

Tag TAG_TEXT_LINE

Size 0

Usage Image. Compulsory.

Comments:

This record describes one line of text within a text story. It is the parent of records such as
TAG_TEXT_STRING and TAG_TEXT_CHAR which are used to compose the line of
text.

This record must be a child of TAG_TEXT_STORY_XXX.

Name Text line information

Purpose Describe the size and relative position of a single line of text

Tag TAG_TEXT_LINE_INFO

Size 12

Usage Image. Compulsory.

Data:

<Width : MILLIPOINT> The width of the line of text.

<Height : MILLIPOINT> The height of the line of text.

<Offset : MILLIPOINT> The vertical distance between this line of text and the previous

 - 203 -

line (baseline to baseline).

Comments:

This record contains information about an individual line of text to help a renderer to
display text without needing to understand the complex formatting algorithm that
determines the positions of text lines relative to each other.

This information is also useful if font substitution has taken place. It can be used to ensure
that text in the substituted font fills roughly the same area of the image by scaling it so that
it fits into the Width and Height of the line.

(If a full text formatter is available, consider using the information in
TAG_TEXT_STORY_WORD_WRAP_INFO instead.)

Name Text word wrapping information

Purpose Describe the parameters controlling a block of text

Tag TAG_TEXT_STORY_WORD_WRAP_INFO

Size 5

Usage Image. Optional.

Data:

<BlockWidth :
MILLIPOINT>

The width of the block of text.

<Flags : BYTE> Non-zero enables word wrapping.
Zero disables word wrapping.

Comments:

This record can be used to reformat the text inside a column of the width specified. To use
this record properly a program will need a sophisticated text formatter. It is thus only
suitable for use in editing applications. Simple Renderers should use the information
supplied in TAG_TEXT_LINE_INFO instead.

 - 204 -

Name Text indent information

Purpose Describe the margins within a block of text

Tag TAG_TEXT_STORY_INDENT_INFO

Size 8

Usage Image. Optional.

Data:

<LeftIndent : MILLIPOINT> The left indent inside the column defined by the text
anchor point and the word wrapping information record.

<RightIndent : MILLIPOINT> The right indent inside the column defined by the text
anchor point and the word wrapping information record.

Comments:

This record can be used to reformat the text inside a column of the width specified. To use
this record properly a program will need a sophisticated text formatter. Simple Renderers
should use just the LeftIndent value to calculate the position of the baseline and then use
the information supplied in TAG_TEXT_LINE_INFO instead attempting to format text
within these margins.

Name Text area height information

Purpose Describe the parameters controlling a block of text

Tag TAG_TEXT_STORY_HEIGHT_INFO

Size 4

Usage Image. Optional.

Data:

 - 205 -

<Height : LONG> The height of the text story. If this is non-zero then this
turns the story into a text area.

Comments:

This record sets the height of a text area object. To use this record properly a program will
need a sophisticated text formatter. It is thus only suitable for use in editing applications.
Simple Renderers should use the information supplied in TAG_TEXT_LINE_INFO
instead.

Name Text story link information

Purpose Describe the linking of text stories into flowing text stories

Tag TAG_TEXT_STORY_LINK_INFO

Size 9

Usage Image. Optional.

Data:

<Flags : BYTE> Non-zero enables word wrapping.
Zero disables word wrapping.

<NextInFlowID : UINT32> The ID of the text area that this text area flows into
(0xFFFFFFFF if there is no next area).

<ThisID : UINT32> The ID of this area of text.

Flags ::= <LineAdded : BIT(0)>
<EOLAdded : BIT(1)>

The LineAdded flag is set to indicate that a virtual line has been added to this area (for
backwards compatability) because it was empty. This line should be deleted by flow-aware
importers.
The EOLAdded flag is set to indicate that a virtual EOL has been added to the last line of
this area (for backwards compatability). The EOL should be deleted for flow-aware
importers.

 - 206 -

Comments:

This record represents the linkage of text areas into flowing text stories and also includes
information to undo normalisations done for backwards compatability. To use this record
properly a program will need a sophisticated text formatter. It is thus only suitable for use
in editing applications. Simple Renderers should use the information supplied in
TAG_TEXT_LINE_INFO instead.

Name Text area translation information

Purpose Describe the real position of the story matrix for text areas.

Tag TAG_TEXT_STORY_TRANSLATION_INFO

Size 8

Usage Image. Optional.

Data:

<Position : COORD> This is the real translation offset part of the story matrix
for text areas.

Comments:

This record sets the real position of the text area. The translation stored in the matrix in the
story record is an adjusted value so that non-area-aware importers that treat the area as a
text column render the text at the correct position. To use this record properly a program
will need a sophisticated text formatter. It is thus only suitable for use in editing
applications. Simple Renderers should use the information supplied in
TAG_TEXT_LINE_INFO instead.

Text Attributes

Name Line spacing attribute for lines of text

Purpose Sets the text line linespacing attribute.

 - 207 -

Tag TAG_TEXT_LINESPACE_RATIO

Size 4

Usage Image. Optional.

Data:

<LineSpacingRatio :
FIXED16>

Line spacing as a ratio of the current font size

Comments:

The linespacing is the distance between the baselines of consecutive lines of text. This
record sets the linespacing as a ratio of the largest font size in the line. A simple renderer
does not need to process this attribute if it is using the information given by
TAG_TEXT_LINE_INFO.

Name Line spacing attribute for lines of text

Purpose Sets the text line spacing attribute as an absolute distance.

Tag TAG_TEXT_LINESPACE_ABSOLUTE

Size 4

Usage Image. Optional.

Data:

<LineSpacingAbsolute :
MILLIPOINT>

Line spacing as an absolute measurement in millipoints

Comments:

Sets the linespacing between this line and the next to be absolute value, regardless of the
size of any fonts on the line. A simple renderer does not need to process this attribute if it is
using the information given by TAG_TEXT_LINE_INFO.

 - 208 -

Name Line spacing attribute for lines of text

Purpose Sets the text line spacing attribute as an absolute leading value.

Tag TAG_TEXT_LINESPACE_LEADING

Size 4

Usage Image. Optional.

Data:

<LineSpacingLeading :
MILLIPOINT>

Line spacing as an absolute leading measurement in
millipoints

Comments:

This record is never currently saved and is defined so that plugin import filters for formats
that describe line spacing as leading values (leading is the absolute distance of this line’s
baseline from the previous line’s baseline). If this attribute is used in a story then each line
should have an applied leading attribute as mixing leading and the other linespacing
attributes is not logical and will almost certainly not give the desired result.

Name Justification attributes

Purpose Sets the text line justification attribute to no justification

Tag TAG_TEXT_JUSTIFICATION_LEFT,
TAG_TEXT_JUSTIFICATION_CENTRE,
TAG_TEXT_JUSTIFICATION_RIGHT,
TAG_TEXT_JUSTIFICATION_FULL

Size 0

Usage Image. Compulsory.

Comments:

 - 209 -

Sets the method of justification for text to one of the four familiar methods found
commonly in Word Processors. When applied to a single text line, the text is justified
relative to the anchor point. When applied to blocks of text or text on a path, the text is
justified within the margins set by those objects.

Name Font size attribute for characters

Purpose Sets the text character font size attribute.

Tag TAG_TEXT_FONT_SIZE

Size 4

Usage Image. Compulsory.

Data:

<FontSize :
MILLIPOINT>

Font size measured in millipoints

Comments:

Sets the text font size.

(See the related section Fonts and Typeface attributes below.)

Name Text Effect “On” attributes

Purpose Sets certain text display flags

Tag TAG_TEXT_BOLD_ON,
TAG_TEXT_ITALIC_ON,
TAG_TEXT_UNDERLINE_ON,
TAG_TEXT_SUPERSCRIPT_ON,
TAG_TEXT_SUBSCRIPT_ON

Size 0

 - 210 -

Usage Image. Compulsory

Comments:

These records turn on one of the standard font appearance attributes, Bold, Italic and
Underline, as commonly found in Word Processors. The TAG_SUPERSCRIPT_ON and
TAG_SUBSCRIPT_ON attributes use default offsets and sizes. (See Appendix B for the
defaults).

Name Text Effect “Off” attributes

Purpose Clears certain text display flags

Tag TAG_TEXT_BOLD_OFF,
TAG_TEXT_ITALIC_OFF,
TAG_TEXT_UNDERLINE_OFF,
TAG_TEXT_SCRIPT_OFF

Size 0

Usage Image. Compulsory

Comments:

These records turn off one of the standard font appearance attributes, Bold, Italic, Underline
and Script. They remove the effects of the “On” attributes listed above.

Name Defines the appearance of super- or subscript text

Purpose Describes the size and offset of script text.

Tag TAG_TEXT_SCRIPT_ON

Size 8

Usage Image. Compulsory.

 - 211 -

Data:

<ScriptFontSize :
FIXED16>

Size of the script text, as a fraction of the current font size
attribute

<ScriptOffset :
FIXED16>

Position of the script text, as a fraction of the current font size
attribute.

Comments:

Defines the font size and offset ratios needed for rendering super- and subscript type.

Default values for this attribute (like all others) are listed in Appendix B. The Offset field
gives the position of the baseline of the script text relative to the baseline of the text before
it.

Name Tracking attribute for text characters

Purpose Sets the text character tracking attribute.

Tag TAG_TEXT_TRACKING

Size 4

Usage Image. Compulsory.

Data:

<Tracking : LONG> New tracking attribute, measured in 1000s of ems

Comment:

The text tracking attribute alters the density of characters by pulling them closer together or
pushing them further apart. The signed Tracking value specifies a distance by which each
character in the scope of this attribute should be pushed further away from the previous
character. A negative value will pull the characters closer together.

 - 212 -

Name Aspect ratio attribute for text characters

Purpose Sets the text character aspect ratio attribute

Tag TAG_TEXT_ASPECT_RATIO

Size 4

Usage Image. Compulsory.

Data:

<AspectRatio :
FIXED16>

New aspect ratio attribute value

Comments:

Sets the text character aspect ratio attribute, a ratio of X scaling to Y scaling. A value of 1
is equivalent to a ratio of 100% or 1:1. A ratio of 1.2, or 120%, gives expanded, “fat”, type,
0.8 or 80% gives condensed, “thin”, type.

Name Baseline shift attribute for text characters

Purpose Sets the text character baseline shift attribute.

Tag TAG_TEXT_BASELINE

Size 4

Usage Image. Compulsory.

Data:

<BaseLineShift :
MILLIPOINT>

New baseline shift, in millipoints

Comments:

 - 213 -

This signed value is used to move the baseline of the text within its scope relative to the
previous baseline. Positive values move the new baseline up and negative values move it
down.

Name Aspect ratio attribute for text characters

Purpose Sets the text character aspect ratio attribute

Tag TAG_TEXT_RULER

Size Variable

Usage Image. Compulsory.

Data:

<Count : UINT16> The number of tab stop entries in the record. The following entries
are repeated for each tab stop.

<TypeAndFlags :
BYTE>

This represents the type of the tab stop and whether a tab filler
character is specified.

<Position : INT32> The position of the tab stop.

<DecimalChar :
UINT16>

Optional. This is the character that is aligned to the decimal tab.
This item is only present if the TypeAndFlags item specifies a
decimal tab stop.

<FillerChar :
UINT16>

Optional. This is the filler character. This item is only present if a
filler char is specified by the TypeAndFlags item.

Comments:

This is a line level attribute so must only be applied to whole lines. It defines the position
and type of the tab stops for the line.

Name Aspect ratio attribute for text characters

 - 214 -

Purpose Sets the text character aspect ratio attribute

Tag TAG_TEXT_LEFT_INDENT
TAG_TEXT_FIRST_INDENT
TAG_TEXT_RIGHT_INDENT

Size 4

Usage Image. Compulsory.

Data:

<Value : INT32> The indent value applied

Comments:

This is a line level attribute so must only be applied to whole lines.

Fonts and Typeface attributes

Introduction

Xar format can refer to Truetype and Adobe Type1 fonts on the Windows platform.
Enough information is given in those font specification records that it should be possible to
find the equivalent font on other platforms.

Like colours and bitmaps, font specifications can be quite large and since they may be
referred to frequently the Reusable Records system is used to avoid repeating the
specification every time it is needed.

This revision of the Xar format does not attempt to embed fonts or partial fonts within
documents.

Some terminology

A glyph is a single renderable object. It may represent several (Unicode) characters, or a
single (Unicode) character may require many glyphs to be rendered.

 - 215 -

A font is a collection of glyphs that share a common design. The three major elements of
this design are the typeface, style and size.

The term typeface refers to the specific characteristics of glyphs, such as the width and
design of the thin and thick, horizontal and vertical strokes and the presence or absence of
serifs which make up the glyphs.

The term style of a font refers to the weight and slant of a font. Font weights can range from
thin to black, i.e. thin ... normal ... bold ... heavy. The slant of a font can be any of three
values; roman, oblique or italic. The glyphs in a roman font are upright, those in a oblique
font are artificially slanted and those in an italic font are designed slanted. The slanting in
oblique fonts is achieved by performing a shear transformation on the glyphs from the
roman font, hence italic fonts may look better than oblique fonts.

If we concatenate the font name and style we get the full font name. For instance, “Times
Roman” or “Arial Narrow Bold Italic”.

Information required by a text story

Putting together the information in the above sections we can say what information we need
to uniquely specify a font and to help us choose a substitute font should the original font
not be installed.

The style of a font should not be confused with the bold or italic attributes we can apply to
text. When a bold or italic attribute is applied to a selection of text we can either find an
appropriate font or generate bold or oblique glyphs to use to render the text. However the
text still retains its full font name attribute.

Xar format assumes that the font technologies it uses are scaleable and that it’s able to store
the size of the text separately from the description of the font; it doesn’t affect the font
information.

Name Font specification

Purpose Specifies the attributes of a TrueType font.

Tag TAG_FONT_DEF_TRUETYPE,
TAG_FONT_DEF_ATM

Size Variable

Usage Image. Compulsory.

Data:

 - 216 -

<FullFontName :
STRING>

Full font name

<TypeFaceName :
STRING>

Typeface name

<PANOSE : 10 * BYTE> PANOSE number

Comments:

TAG_TEXT_FONT_DEF_TRUETYPE specifies a font in the TrueType system.

TAG_TEXT_FONT_DEF_ATM specifies a font in the Adobe Type Manager system.

These records contain all the information to describe fonts uniquely. They allow for
intelligent font substitution in case the required font is not present. By itself these records
do nothing, however TAG_TEXT_FONT_TYPEFACE records later in the file will
reference them when a change of font attribute is required.

It may seem excessive storing both the full font name and the typeface name, especially
when the typeface name is usually a prefix of the full font name. However this cannot be
guaranteed.

The PANOSE font classification system

The PANOSE system classifies fonts by 10 different attributes. These attributes are rated
individually on a scale. The resulting values are concatenated together to produce a 10 digit
hexadecimal number. Given a number for a font and a mathematical metric to measure
distances in the PANOSE space, an application can determine the nearest neighbours.

Briefly, the attributes represented in the PANOSE number are:

• Family type
• Serif Style
• Weight
• Proportion
• Contrast
• Stroke Variation
• Arm Style
• Letter Form
• Midline
• Height

 - 217 -

Font Matching

A suggested font-matching algorithm is this:

1. Does a font exist with the same full font name and technology? If so then use it.
(Font names are unique within their technology)

2. Does a font exist with the same full font name but different technology? If so then
use it.

3. Do there exist fonts with the same typeface names and technology, if so then choose
the closest font from this set using PANOSE numbers.

4. Do there exist fonts with the same typeface names but different technology, if so
then choose the closest font from this set using PANOSE numbers.

5. If all the other methods fail, choose the closest font from all installed fonts using
PANOSE numbers.

If a Reader is unable to find a close match to the specified font and is forced to substitute it
with another then it should warn the user that it has done so and that the image may not
look as the designer originally intended.

Name Font attribute

Purpose Sets the text font attribute.

Tag TAG_TEXT_FONT_TYPEFACE

Size Variable

Usage Image. Compulsory.

Data:

<RecordID : INT32> Sequence number of the TAG_TEXT_FONT_DEF_XXX record
earlier in the file.

Comments:

Sets the text font attribute to a previously declared font.

 - 218 -

Fitting Text to Paths

Text stories can be fitted to paths so that the characters flow along the path by treating the
path as the baseline of the text. Individual characters are not warped to fit the path, they are
just rotated and translated so that their baseline is tangential to the path at the appropriate
position.

There can only be one path per text story.

Just to add a bit of spice to proceedings note that it is possible for the characters to be
transformed individually as well as being fitted to the path. The SIMPLE records don’t
transform the characters individually, the COMPLEX ones do.

Figure 13.2. The two major types of text fitted to paths.

Each of the following TAG_TEXT_STORY_PATH_* records differ only in the orientation
of the text when fitted to the path.

Name Text story fitted to a path

Purpose Path object for text stories

Tag TAG_TEXT_STORY_SIMPLE_START_LEFT,
TAG_TEXT_STORY_SIMPLE_START_RIGHT,
TAG_TEXT_STORY_SIMPLE_END_LEFT,
TAG_TEXT_STORY_SIMPLE_END_RIGHT

Size 12 (8)

Usage Image. Compulsory.

Data:

 - 219 -

<Anchor : COORD> Co-ordinate of anchor point of text.

< AutoKern : LONG
>

Kerning flag. 0 – no kerning, 1 – automatic kerning.
Note: this field may not be present in older Xar documents

Comments:

Each of these records describes a text story that is fitted to a path. The path used for fitting
is a child of this record and it is rendered in the normal way – it doesn’t need to be treated
differently to any other paths in the document.

This record represents text that isn’t rotated or sheared in any way while it is fitted to the
path.

The magnitude of any scale transformations that have been applied to the text are implicitly
represented in the co-ordinates and dimension attributes (such as font size or line width) of
the text story.

See the Reflective variants section for a description of the meanings of the four variations
of this record.

Name Text story fitted to a path

Purpose Path object for text stories

Tag TAG_TEXT_STORY_COMPLEX_START_LEFT,
TAG_TEXT_STORY_COMPLEX_START_RIGHT,
TAG_TEXT_STORY_COMPLEX_END_LEFT,
TAG_TEXT_STORY_COMPLEX_END_RIGHT

Size 36 (32)

Usage Image. Compulsory.

Data:

<Transformation :
MATRIX>

The transformation matrix describes the translation to move from
0,0 to the anchor point and also any rotation and shear that should
be applied to the text story.

 - 220 -

<Rotation : ANGLE> The angle of rotation that should be applied to each character after
it has been positioned on the path.

<Shear : ANGLE> The angle of shear that should be applied to each character after it
has been positioned on the path.

< AutoKern : LONG
>

Kerning flag. 0 – no kerning, 1 – automatic kerning.
Note: this field may not be present in older Xar documents

Comments:

These records represent text that is rotated or sheared as well as being fitted to a path!

The path used for fitting is a child of this record and it is rendered in the normal way – it
doesn’t need to be treated differently to any other paths in the document.

The matrix specifies a global transform that is applied to the whole text story.

The angle and shear fields specify how to transform each character as it is fitted to the path.
Editors can use this information to preserve the angle and shear of the text story that results
when they remove the text from the path.

The magnitude of any scale transformations that have been applied to the text are implicitly
represented in the co-ordinates and dimension attributes (such as font size or line width) of
the text story.

See the Reflective variants section for a description of the meanings of the four variations
of this record.

Reflective variants

The four variants of this record are used to encode any reflection transformations that have
been applied to the text. Unlike scale transformations, reflective transformations can’t
simply be stored implicitly in the co-ordinates and dimensions of the text story. The reason
for this is that text is unlike most other graphical objects in that it has “direction”. The
characters have to appear in a particular order to make sense and the cursor has to move
through the characters appropriately. The record variants allow the direction of the text to
be represented correctly.

The following list attempts to describe the differences between the variants, giving the
reflective transformations for each one:

TAG_TEXT_STORY_SIMPLE_START_LEFT: The text is fitted to the left of the path,
flowing forward along the path from the start. (X=0, Y=0)

 - 221 -

TAG_TEXT_STORY_SIMPLE_START_RIGHT: The text is fitted to the right of the path,
flowing forwards along the path from the start. (X=-1, Y=0)

TAG_TEXT_STORY_SIMPLE_END_LEFT: The text is fitted to the left of the path,
flowing backwards along the path from the end. (X=0, Y=-1)

TAG_TEXT_STORY_SIMPLE_END_RIGHT: The text is fitted to the right of the path,
flowing backwards along the path from the end. (X=-1, Y=-1)

The shear and the absolute values of the scalings are used when fitting the text to the path,
the sign of the scalings and the rotation get used to determine where on the path the text is
to be fitted. There are four different path attributes for text stories, one for each position on
path that the text may be placed. The algorithm for fitting text is:

if Xsign = -1 then the text begins from the other end of the path (swap start for end etc.)

if Ysign = -1 then the text lies on the other side of the path (swap top for bottom).

Figure 13.3. The effects of transform attributes on text fitted to a path.

 - 222 -

Bitmaps
There are two main types of bitmap records, one type for the preview bitmaps, or
“thumbnails”, optionally stored at the start of the file and the other type for all Image
bitmap records. The Preview bitmaps are Framework records that don’t appear in the image
itself. The Image bitmaps may be rendered directly in the image or may be used as fills in
other shapes.

Embedded bitmaps

When the user drops (or imports) a JPG or PNG bitmap onto their document this original
file is embedded in the Xar file. It is not de-compressed and re-compressed so avoiding
decode / encode losses that happen for JPEG files. This not only saves a huge amount of
space in the resulting file, it also enables the original untouched, full resolution image is
available for export or printing purposes.

In Xara X¹ and later versions it’s possible to edit embedded bitmaps using the Xara Picture
Editor. The XPE has the ability to record bitmap edits in a XML edit list, so rather than
having to create and store the edited bitmap, Xara stores just the XPE Edit list and re-
constructs the edited bitmap upon load. This also has huge space saving implications, (you
can use edited copies of your photos with a near zero file space overhead) as well as the
advantage of being able to further edit or undo previous bitmaps edits.

In the case of using a ‘destructive plug-in’ such as non-scriptable Photoshop effects, these
produce a new full-size edited bitmap, and are stored as lossless PNG in the Xar file.

Preview Bitmap

The Preview bitmap is optional. When present, it appears at the start of the file so that it can
be recovered quickly for displaying in situations where a quick view of the image is
required – often in replacement for file icons. The preview bitmap record must not be in a
region of the file that has been compressed by Zlib. Further, unless there is a very good
reason otherwise, it should also be the first record found after the File Header in the header
records section. These stipulations make the Preview Bitmap easily available to simple
programs since they don’t have to understand the full details of the Xar format.

This record holds a small bitmap, with a pre-rendered version of the document in it. The
bitmap can be any size, any resolution and any colour depth. The recommended settings
are, 128*128 pixels (resolution depends on the size of the image being previewed) and 256
colours.

The Preview Bitmap is generally not found in files intended for publishing on the Web
because the byte overhead of this record is too great.

 - 223 -

Preview Bitmaps are usually held either in GIF or PNG format because those formats best
express the recommended 256-colour preview image.

Name Preview Bitmap GIF

Purpose This record defines a preview bitmap in GIF format

Tag TAG_PREVIEWBITMAP_GIF

Size Variable

Usage Framework. Optional

Data:

<Bitmap data> Data to store the bitmap in the specified format.

<Bitmap data> ::= Data to store the bitmap in the specified format.

Comments:

This record holds the preview bitmap in the form of a GIF. The bitmap data will therefore
consist of a straight definition of the bitmap using the GIF format standard.

 Name Preview Bitmap JPEG

Purpose This record defines a preview bitmap in JPEG format

Tag TAG_PREVIEWBITMAP_JPEG

Size Variable

Usage Framework. Optional.

Data:

<Bitmap data> Data to store the bitmap in the specified format.

<Bitmap data> ::= Data to store the bitmap in the specified format.

 - 224 -

Comments:

This record holds the preview bitmap in the form of a JPEG.

Name Preview Bitmap PNG

Purpose This record defines a preview bitmap to the system.

Tag TAG_PREVIEWBITMAP_PNG

Size Variable

Usage Framework. Optional

Data:

<Bitmap data> Data to store the bitmap in the specified format.

<Bitmap data> ::= Data to store the bitmap in the specified format.

Comments:

This record holds the preview bitmap in the form of a PNG.

 Bitmap references

Any references made to bitmaps from other records actually just contain a Sequence
Number, which refers to a bitmap definition record. The bitmap definition record must be
appear before it is actually referenced by any Sequence Number and it usually appears just
prior to the first record that refers to it. Thus, when the Xar file is being transmitted down a
slow communications channel, such as a modem link to the Internet, the bitmap
information is transmitted just before it is used. This system ensures that as much of the
image preceding the bitmap is downloaded onto the user’s machine and shown to him
before a potentially slow bitmap download starts.

If the format of the bitmap is unknown to the Reader then it can substitute a default bitmap
of its own. This is defined at the end of this chapter.

 - 225 -

Bitmap Definition Records

Bitmap Definition Records use industry standard bitmap encodings, JPEG and PNG, which
are both compressed formats. The two formats have different strengths: JPEG is ideal for
high BPP, photographic images and its compression is “lossy”. PNG is ideal for low BPP,
computer-generated images or where non-lossy images are required. The PNG format
supports alpha-channel transparency (mix type only) and so is used a lot internally where
alpha-channel bitmaps are required For example where an export filter specifis that it
requires bitmaps to represent certainl object types, these will be converted to alpha-channel
PNGs and stored in the xar file this way.

Since both bitmap formats are compressed, Xar format often turns off its own Zlib
compression around these definition records. It is unlikely that the Zlib compression stage
would have any useful effect on the sizes of these records and, more significantly,
attempting to compress them would probably upset the Zlib compression dictionaries,
possibly making the compression of following records less efficient.

Name Define Bitmap JPEG

Purpose This record defines a bitmap to the system in the form of a JPEG.

Tag TAG_DEFINEBITMAP_JPEG

Size Variable

Usage Image. Compulsory.

Data:

<Bitmap name :
STRING>

The name of the bitmap. Can be an empty string, in which case
the bitmap is unnamed and should be given a default name. It
is recommended that this field is empty for Web-only
publishable files. (NULL terminated).

<Bitmap data> Data to store the bitmap in the specified format.

<Bitmap data> ::= Data to store the bitmap in the specified format.

Comments:

This record defines a bitmap in JPEG format for later use in the image.

 - 226 -

Name Define Bitmap 8bpp JPEG

Purpose This record defines a bitmap to the system in the form of a JPEG.

Tag TAG_DEFINEBITMAP_JPEG8BPP

Size Variable

Usage Image. Compulsory.

Data:

<Bitmap name :
STRING>

The name of the bitmap. Can be an empty string, in which case
the bitmap is unnamed and should be given a default name. It
is recommended that this field is empty for Web-only
publishable files. (NULL terminated).

<Palette data> Data to store the palette for the bitmap

<Bitmap data> Data to store the bitmap in the specified format.

<Bitmap data> ::= Data to store the bitmap in the specified format.

Comments:

This record holds the bitmap in the form of a JPEG. It has the addition of a palette
definition. The bitmap data is really of an 8bpp coloured bitmap which has been converted
to 24bpp and then JPEG compressed. When loaded, it can be converted back to 8bpp using
the specified palette. The palette is saved in RGB Triple format. It consists of a byte
indicating the number of entries in the palette followed by that number of entries saved out
as a byte each for the red, green and blue palette items.

Name Define Bitmap PNG

Purpose This record defines a bitmap to the system in the form of a PNG.

Tag TAG_DEFINEBITMAP_PNG
TAG_DEFINEBITMAP_PNG_REAL

 - 227 -

Size Variable

Usage Image. Compulsory.

Data:

<Bitmap name :
STRING>

The name of the bitmap. Can be an empty string, in which case
the bitmap is unnamed and should be given a default name. It
is recommended that this field is empty for Web-only
publishable files. (NULL terminated).

<Bitmap data> Data to store the bitmap in the specified format.

<Bitmap data> ::= Data to store the bitmap in the specified format.

Comments:

This record defines a bitmap in PNG format for later use in the image. When this record
contains a 32 bpp RGBA bitmap, the alpha channel will be inverted from the normal sense
stored in PNG files (e.g. if the image is treated as a normal PNG then the transparent areas
of the image will be opaque and the opaque areas will be transparent).

The TAG_DEFINEBITMAP_PNG_REAL record is a variant that does not store 32bpp
RGBA bitmaps with the alpha channel inverted. This is currently only used when
exporting via a plugin filter (and only if the filter asks for it) to remove the need for the
filter to mess around with the bitmap.

Name Bitmap Properties

Purpose This record holds extra information about bitmap definition records.

Tag TAG_BITMAP_PROPERTIES

Size 12

Usage Image. Compulsory.

Data:

 - 228 -

<Bitmap : BITMAPREF> A reference to the bitmap that this record refers to.

<Flags : BYTE> Flags. Bit 0 – use interpolation when rendering this bitmap
Bits 1-7 are reserved, must be set to 0

<Reserved : 7 BYTEs> Reserved. Must be set to 0

Name XPE Bitmap Definition

Purpose This record defines an XPE generated bitmap. The reference to the source
bitmap and the list of edits to apply are contained in a XPE Bitmap Properties
record.

Tag TAG_DEFINEBITMAP_XPE

Size 0

Usage Image. Compulsory.

Name XPE Bitmap Properties

Purpose This record holds extra information about XPE generated bitmap definition
records.

Tag TAG_XPE_BITMAP_PROPERTIES

Size Variable

Usage Image. Compulsory.

Data:

<Bitmap : BITMAPREF> A reference to the bitmap that this record refers to.

<Flags : BYTE> Flags. Bit 0 – use interpolation when rendering this bitmap
Bits 1-7 are reserved, must be set to 0

<Reserved : 7 BYTEs> Reserved. Must be set to 0

 - 229 -

<MasterBitmap :
BITMAPREF>

A reference to the source bitmap of this XPE generated
bitmap.

<BitmapName : STRING> The name of this bitmap.

<EditList : STRING> The XML XPE edit list required to generate this bitmap.

Comments:

This record defines a bitmap that is created from another bitmap definition by applying
various “editing” operations on it using the Xara Photo Editor (XPE). These operations can
include (but are not limited to) altering the brightness, contrast or saturation, cropping,
rotating and rescaling. The format of the XML XPE edit list is available in the
documentation for the Xara Photo Editor.

Unknown bitmaps

It’s possible that a Reader parsing a Xar file might not understand a bitmap definition, or
that the record referred to by a Bitmap Reference isn’t a bitmap definition record. In these
circumstances the Reader should use a default bitmap, that it has guaranteed access to, in
the unknown bitmap’s place.

It is polite to warn the user that such a substitution has taken place because the image that
will now be rendered won’t appear how the designer intended it to. This warning should be
given in as unobtrusive a way as possible.

 Contone Bitmap Objects

A Contone bitmap has a palette of colours that change smoothly from one colour to another
– a continuous tone.

Usually, a bitmap record representing a bitmap object does not have any line or fill colour
applied to it (i.e. it has Line Colour None and Fill Colour None applied). However, if the
record has either a line or a fill colour (or both), then it is rendered as a contone bitmap.
The bitmap must then be converted or treated as a grey scale bitmap, where the levels of
grey are replaced by colours generated by interpolating between the fill and line colours.
The fill colour replaces white, and the line colour replaces black, and all grey levels lie in
between these two colours.

 - 230 -

 Document Bitmap Objects

Documents can contain bitmaps on the page through the following records:

Name Bitmap Object

Purpose This record describes a bitmap on the page of the current document.

Tag TAG_NODE_BITMAP

Size 36

Usage Image. Compulsory.

Data:

<BottomLeft :
COORD>

The bottom left-hand co-ordinate of the parallelogram bounding
the bitmap image.

<BottomRight :
COORD>

The bottom right-hand co-ordinate of the parallelogram
bounding the bitmap image.

<TopRight : COORD> The top right-hand co-ordinate of the parallelogram bounding
the bitmap image.

<TopLeft : COORD> The top left-hand co-ordinate of the parallelogram bounding the
bitmap image.

<Bitmap :
BITMAPREF>

A reference to the bitmap to show in the bounding
parallelogram.

 Name Contone Bitmap Object

Purpose This record describes a contone bitmap on the page of the current document.

Tag TAG_NODE_CONTONEDBITMAP

Size 44

Usage Image. Compulsory.

 - 231 -

Data:

<BottomLeft : COORD> The bottom left-hand co-ordinate of the parallelogram
bounding the bitmap image.

<BottomRight : COORD> The bottom right-hand co-ordinate of the parallelogram
bounding the bitmap image.

<TopRight : COORD> The top right-hand co-ordinate of the parallelogram
bounding the bitmap image.

<TopLeft : COORD> The top left-hand co-ordinate of the parallelogram bounding
the bitmap image.

<Bitmap : BITMAPREF> A reference to the bitmap to show in the bounding
parallelogram.

<StartColour :
COLOURREF>

A reference to the first colour in the continuous-tone bitmap
palette.

<EndColour :
COLOURREF>

A reference to the last colour in the continuous-tone bitmap
palette.

 - 232 -

Bitmap Effect Records

Name Live Effect

Purpose This record describes a Live Effect object.

Tag TAG_LIVE_EFFECT

Size Variable

Usage Image. Compulsory.

Data:

<Flags : BYTE> Currently unused. Should be set to 0.

<DPI : DOUBLE> Pixels per inch value for this effect. May be 0 in which case the
resolution of the effect will be obtained from the objects around
it and global settings.

<EffectID : String> The unique internal identifier of the effect. Guaranteed to remain
constant across all installations on different platforms.

<DisplayName :
String>

The name of the effect shown to the user. May be localised.

<EditsXML : String> The XML document containing the parameters for the effect.
The format of this document is determined by the “Xara Picture
Editor”.

Comments:

A Live effect is linked to a bitmap effect whose parameters are stored in the XML
document. Those parameters can be edited after the original bitmap has been created or
applied to different source bitmaps. This allows the effect to be automatically re-applied to
vector objects when they change. Hence the term, “live effect”.

A Live effect object can contain child objects in the same way as a group and the bitmap
effect is applied to those objects. To render a live effect, you must make the child objects
render into a bitmap, pass the bitmap to the effect processor specified by the EffectID then
render the resulting bitmap into the document. Most common effects are produced by

 - 233 -

Photoshop plugins but a few are specially implemented by Xara X and a few by special
plugins of the Xara Picture Editor.

The DPI should be used to control the resolution of the bitmap. If it’s zero, then the
resolution should be taken from any parent effects, child effects or child bitmaps. The exact
algorithm is beyond the scope of this document.

The content of the EffectID string is managed by Xara Picture Editor.

The content of the DisplayName string is managed by Xara Picture Editor.

The content of the EditsXML string is managed by Xara Picture Editor.

Further information about any of these things can be supplied on request.

Name Locked Effect

Purpose This record describes a Locked Effect object.

Tag TAG_LOCKED_EFFECT

Size Variable

Usage Image. Compulsory.

Data:

<Flags : BYTE> Bit 0: Unused, must be zero
Bit 1: Set when this locked effect can be converted to a live
effect
Bits 2-7: Unused, must be zero

<DPI : DOUBLE> Pixels per inch value for this effect. May be 0 in which case the
resolution of the effect will be obtained from the objects around
it and global settings.

<Bitmap :
BITMAPREF>

A reference to the bitmap record containing the bitmap.

<BottomLeft :
COORD>

Position of bottom left corner of bitmap in the document

 - 234 -

<BottomRight :
COORD>

Position of bottom right corner of bitmap in the document

<TopLeft : COORD> Position of top left corner of bitmap in the document

<EffectID : String> The unique internal identifier of the effect. Guaranteed to remain
constant across all installations on different platforms.

<DisplayName :
String>

The name of the effect shown to the user. May be localised.

<EditsXML : String> The XML document containing the parameters for the effect.
The format of this document is determined by the “Xara Picture
Editor”.

Comments:

A Locked effect is linked to a bitmap effect whose parameters are stored in the XML
document. Unlike a Live effect, those parameters can not be edited after the original bitmap
has been created or applied to different source bitmaps.

A Locked effect object can contain child objects in the same way as a group and the bitmap
effect is applied to those objects but the child objects are hidden by the locked effect
bitmap. The child objects will become visible again if the user chooses to remove or
recreate the locked effect. To render a locked effect, you simply need to render the bitmap
data described by the locked effect record. Xara X allows the user to convert live effects to
locked effects and so locked effects can be produced by Photoshop plugins, Xara X or Xara
Picture Editor.

The DPI should be used to control the resolution of the bitmap if it is recreated. If it’s zero,
then the resolution should be taken from any parent effects, child effects or child bitmaps.
The exact algorithm is beyond the scope of this document.

The three coordinates describe a parallelogram into which the bitmap should be rendered,
allowing for 2D affine transformations.

The content of the EffectID string is managed by Xara Picture Editor.

The content of the DisplayName string is managed by Xara Picture Editor.

The content of the EditsXML string is managed by Xara Picture Editor.

Further information about any of these things can be supplied on request.

 - 235 -

Name Feather Effect

Purpose This record describes a Feather Effect object.

Tag TAG_FEATHER_EFFECT

Size Variable

Usage Image. Compulsory.

Data:

<Flags : BYTE> Unused, must be 0

<DPI : DOUBLE> Pixels per inch value for this effect. May be 0 in which case the
resolution of the effect will be obtained from the objects around
it and global settings.

<EffectID : String> The unique internal identifier of the effect. Guaranteed to remain
constant across all installations on different platforms. (Always
“Camelot/Internal/Feather”)

<DisplayName :
String>

The name of the effect shown to the user. May be localised.

<FeatherSize :
MILLIPOINT>

The feather distance.

<FeatherProfile :
PROFILE>

The profile definition describing transparency change across the
feather distance.

Comments:

A Feather effect is similar in operation to a Feather attribute. The difference is that the
feather effect can be used in a stack of other effects at a controlled position and will
correctly feather any effect bitmaps. (The feather attribute cannot feather transparent
bitmaps correctly.)

A Feather effect object can contain child objects in the same way as a group and the feather
effect is applied to those objects. To render a feather effect, you must make the child
objects render into a bitmap, pass the bitmap to the feather processor then render the
resulting bitmap into the document.

 - 236 -

The DPI should be used to control the resolution of the bitmap. If it’s zero, then the
resolution should be taken from any parent effects, child effects or child bitmaps. The exact
algorithm is beyond the scope of this document.

The content of the EffectID string is always “Camelot/Internal/Feather”

The content of the DisplayName string is usually “Feather” but may be localised.

Further information about any of these things can be supplied on request.

 - 237 -

Other Image Records
This section covers a few records that are required to be able to render images properly but
which don’t fall naturally into any of the other groups of records.

Name Group

Purpose This record defines the start of a new group.

Tag TAG_GROUP

Size 0

Usage Image. Compulsory.

Comments:

This record defines a new group. It allows a number of objects to be grouped together into
one composite unit. It is always directly followed by a TAG_DOWN. All the following
records until the matching TAG_UP are members of the Group.

See also: TAG_COMPOUNDRENDER

Name Quality

Purpose This record sets the current rendering quality.

Tag TAG_QUALITY

Size 4

Usage Image. Optional.

Data:

< Quality : INT32 > The quality level at which to render objects.

Comments:

 - 238 -

This record applies rendering Quality as an attribute so that it can be changed on an object-
by-object basis. See TAG_VIEWQUALITY for a description of the possible values the
Quality field can take. Rendering Quality is really only a speed vs. accuracy trade-off and
so a Renderer can safely ignore it, rendering the image at whatever quality level it thinks is
appropriate.

Name Set Sentinel

Purpose This record acts as a container for various document property records.

Tag TAG_SETSENTINEL

Size 0

Usage Image. Optional.

Comments:

This record hold document property records for object naming and button bars.

Name Wizard Property

Purpose This record can hold a range of different properties.

Tag TAG_WIZOP

Size Variable

Usage Image. Optional.

Data:

< Name : STRING > The property name. Max. 64 characters.

< Question : STRING > The question associated with this property. Max. 256
characters.

< Parameter : STRING > The parameter associated with this property. Max. 256

 - 239 -

characters.

< Reserved : STRING > Reserved for future use. Max. 256 characters.

Comments:

This record holds a property of an object. The primary use is for naming objects where the
Name value is set to “ObjectName”, the Question will be empty and the Parameter will be
set to the object name.

Name Set Property

Purpose This record holds properties of object names.

Tag TAG_SETPROPERTY

Size Variable

Usage Image. Optional.

Data:

< Name : STRING > The object name this property set refers to.

< Count : INT16 > The number of properties contained in this record.

< Property List > A list of all the properties.

< Property List > ::= < Property >+

< Property > ::= < Index : INT16 > < Data >

Comments:

This record holds properties of an object name.

 - 240 -

Name Bar Property

Purpose This holds properties of button bars.

Tag TAG_BARPROPERTY

Size Variable

Usage Image. Optional.

Data:

< Count : INT32 > The number of bar property entries (one for each bar in the
document).

< Property List > A list of all the bar properties.

< Property List > ::= < Bar Property >+

< Bar Property > ::= < Spacing : MILLIPOINT > < Flags : BYTE > < SameSize : BYTE >

Flags := <IsLive : BIT(0)> <IsHorizontal : BIT(1)> <NeedShuffle: BIT(2)>
<ButtonsExtend: BIT(3)> <ButtonsScale: BIT(4)> <GroupsStretch: BIT(5)>

Comments:

This record holds properties of button bars.

Name Object Bounds

Purpose Holds the bounding rectangle of an object

Tag TAG_OBJECTBOUNDS

Size 16

Usage Image. Optional.

 - 241 -

Data:

< BottomLeft : COORD > The bottom left corner of the bounding rectangle

< TopRight : COORD > The top right corner of the bounding rectangle

Comments:

This record was introduced for the plugin export filter mechanism in Xara Xtreme. A filter
can ask that object bounds are output either for all objects, only for compound objects or
for no objects. This record is output as the first child of the object (if the object outputs
additional information records before its children then it may not be the first record after
the TAG_DOWN but it will be before any child objects or attributes) if the bounding box is
not already output using another record (e.g. group transparency outputs a
TAG_COMPOUNDRENDER record instead).

Name Compound Render Hint

Purpose This record signals that compound rendering should start and holds the
bounding rectangle of the source objects

Tag TAG_COMPOUNDRENDER

Size 20

Usage Image. Optional.

Data:

< Reserved : UINT32 > Reserved for future use

< BottomLeft : COORD > The bottom left corner of the bounding rectangle

< TopRight : COORD > The top right corner of the bounding rectangle

Comments:

This record is used in conjunction with records representing objects that capture the images
of their child objects as a bitmap and then process that bitmap in some way before
rendering it into the document.

 - 242 -

For instance, compound rendering allows Photoshop plugins to be applied to objects and
allows a group of objects to be opaque to each other but transparent to the rest of the
drawing.

NOTE: The following descriptions assume that compound images will be captured as
bitmaps. Certain file format filters may not need to use bitmaps to implement group
transparency if their target format supports distinct rendering contexts (e.g. PostScript).

The TAG_COMPOUNDRENDER record was introduced in Xara Xtreme to signal that the
records in a compound object should be rendered into a bitmap. The bitmap should then
either be rendered into the document using the current attributes or processed before being
rendered into the document, depending on the type of compound object.

If there’s an effect transparency attribute in scope when the bitmap is rendered the bitmap
should be rendered transparently. Effect transparency attributes are normal transparency
attributes, with normal scoping rules, but stored in a different position in the tree than
normal attributes. That different position marks them as effect transparency attributes.

TAG_COMPOUNDRENDER will always appear immediately after the TAG_DOWN
record of the parent compound record and all further records until the TAG_UP should be
rendered into a bitmap. The bitmap should be sized according to the BottomLeft and
TopRight parameters and DPI information from the parent record.

When the TAG_UP record is encountered rendering into the bitmap can be turned off and
the parent record handler can process and render the bitmap. (See TAG_LIVE_EFFECT,
TAG_LOCKED_EFFECT, TAG_FEATHER_EFFECT).

The compound records affected are:

• TAG_GROUP
• TAG_LIVE_EFFECT
• TAG_LOCKED_EFFECT
• TAG_FEATHER_EFFECT
• TAG_BLEND
• TAG_CLIPVIEWCONTROLLER

Note that compound rendered records can be nested. So, for instance, it’s possible to find
several TAG_LIVE_EFFECT records in a “stack” – each one containing another
TAG_LIVE_EFFECT record. The visible effect of this is that the object at the bottom of
the stack is rendered, then the first effect is applied to it, then the next effect is applied to
the result of the first effect, etc… up to the top effect.

TAG_GROUP

 - 243 -

Use TAG_COMPOUNDRENDER as a signal to start rendering into a bitmap. Suggestion:
Set a flag in the group record so that when the group is rendered, after all of its children, it
can render the bitmap using the current effect transparency attribute.

The TAG_COMPOUNDRENDER record will only appear in groups that have an effect
transparency attribute applied to them. Normal groups will not contain a
TAG_COMPOUNDRENDER record.

TAG_LIVE_EFFECT, TAG_LOCKED_EFFECT, TAG_FEATHER_EFFECT

Use TAG_COMPOUNDRENDER as a signal to start capturing further rendering into a
bitmap. When the effect record itself is finally rendered, it should apply the appropriate
effect to the captured bitmap and then render that into the document using any effect
transparency attribute in scope. The TAG_COMPOUNDRENDER record will always
appear along with effect records.

TAG_BLEND, TAG_CLIPVIEWCONTROLLER

Use TAG_COMPOUNDRENDER in a similar way to TAG_GROUP.

Like Groups, the TAG_COMPOUNDRENDER record will only appear when an effect
transparency attribute is applied.

 - 244 -

Application Records
These are records that contain useful information about the document which isn’t necessary
for its correct rendering. They are mainly concerned with preserving information needed by
editing applications on behalf of the user.

 Name Document Comment

Purpose This record stores a comment string usually entered by the user.

Tag TAG_DOCUMENTCOMMENT

Size Variable

Usage Application. Optional.

Data:

< DocumentInformation :
STRING >

A comment string.

Comments:

This record is designed to store comments that the user has applied to the document. It’s
only present if the user has supplied a comment, otherwise it’s omitted.

Like the preview bitmap records, it is suggested that this record should be at the start of the
file, in the uncompressed section, so that programs can read it without having to understand
the Xar format too deeply. This record can be used by search programs, which can pick
keywords out of the comment.

Spread information

The following records contain information relating to the current spread and appear after a
Spread record in the Xar format.

Name Spread scaling active

Purpose This record defines a current active spread scaling factor.

Tag TAG_SPREADSCALING_ACTIVE

 - 245 -

Size 24

Usage Application. Optional.

Data:

< DrawingScale :
DOUBLE >

The scaling to be applied when working in drawing mode in
terms of the drawing units.

< DrawingUnits :
UNITSREF >

The drawing units to use.

< RealScale : DOUBLE > The scaling to be applied when working in real world mode
in terms of the real world units.

< RealUnits : UNITSREF
>

The real world units to use.

Comments:

This record describes a spread scaling active record. This defines the spread scaling to be
used when showing the user measurements and specifies that this scaling is active now.

The record relates the actual size of the objects on the page to the scaled sizes that the
drawing is intended to represent in the real world. For example, the user can define that
1cm on the drawing is equivalent to 5 miles in the real world.

Name Spread scaling inactive

Purpose This record defines a current inactive spread scaling factor.

Tag TAG_SPREADSCALING_INACTIVE

Size 24

Usage Application. Optional.

Data:

 - 246 -

< DrawingScale :
DOUBLE >

The scaling to be applied when working in drawing mode in
terms of the drawing units.

< DrawingUnits :
UNITSREF >

The drawing units to use.

< RealScale : DOUBLE > The scaling to be applied when working in real world mode
in terms of the real world units.

< RealUnits : UNITSREF
>

The real world units to use.

Comments:

This record describes a spread scaling active record. This defines the spread scaling to be
used when showing the user measurements and says that this is inactive.

Name Grid and Page Ruler settings

Purpose This record defines the current grid and page ruler settings.

Tag TAG_GRIDRULERSETTINGS

Size 17

Usage Application. Optional.

Data:

< GridUnits : UNITREF > The units used by the grid page ruler

< GridDivisions :
DOUBLE >

The distance between each major grid & ruler graticule,
measured in the units defined by GridUnits.

< GridSubDivisions :
UINT32 >

The number of sub-divisions between each major grid &
ruler graticule, defining the minor graticules.

< GridType : BYTE > The type of grid in use.

 - 247 -

Grid Type Value

Rectangular 1

Orthogonal 2

Comments:

This record describes how the grid and the ruler are scaled. They both work from the same
measurements which are defined in terms of the size of the main divisions in a specified
unit of measurement and the sub-divisions of these main ones. These are the unscaled sizes
i.e. before any scaling has been applied.

Name Grid and Ruler Origin

Purpose This record defines the origin of the current grid and page ruler.

Tag TAG_GRIDRULERORIGIN

Size 8

Usage Application. Optional.

Data:

< GridOrigin :
COORD >

The position of the origin of the grid, relative to the current origin
(usually the bottom left had corner of the union of the pages).

Comments:

This record defines the current origin of the grid and page ruler relative to the bottom left
hand corner of the union of the pages. The default is 0,0, so this record only needs to be
present if the origin is not 0,0.

Name Nudge Offset

 - 248 -

Purpose This record defines the offset used when nudging objects.

Tag TAG_DOCUMENTNUDGE

Size 4

Usage Application. Optional.

Data:

< Size :
MILLIPOINT >

The distance that a single “nudge” operation will move an object.

Comments:

This record defines the distance that an object should move when “nudged” (in Xara X¹ the
selection can be nudged with the cursor keys). No default value is defined in the Xar format
so it is up to the application concerned (Xara X¹ uses a default of 2835 which is equivalent
to 1mm).

Name Duplication Offset

Purpose This record defines the offset used when duplicating objects.

Tag TAG_DUPLICATIONOFFSET

Size 8

Usage Application. Optional.

Data:

< Offset : COORD > The offset to use when creating duplicate objects.

Comments:

This record defines the offset that should be used when duplicating objects (Ctrl+D in
XaraX¹). No default value is defined in the Xar format so it is up to the application
concerned.

 - 249 -

Extra Document Information

The following records all contain extra non-essential information about the current
document and, when present, appear directly after the Document record.

Name Document Dates

Purpose This record stores dates and times relevant to the document being processed.

Tag TAG_DOCUMENTDATES

Size 8

Usage Application. Optional.

Data:

< Creation date : DATETIME
>

The date and time the document was created.

< Last saved date :
DATETIME >

The date and time the document was last saved.

DATETIME ::= ANSI time_t type (same size as an UINT32)

Comments:

This record stores basic time information about the document.

Name Document Flags

Purpose This record stores flag information on the present document.

Tag TAG_DOCUMENTFLAGS

Size 4

Usage Application. Optional.

Data:

 - 250 -

< Document Flags : UINT32 > Bit 0 : Multilayer flag

Bit 1 : All Layers visible flag

All other flags reserved, as set to 0.

Comments:

This record stores some flags for the document such as whether all layers are visible and
whether multi-layer editing is enabled.

Name Document Structure Information

Purpose This record stores information about the chapters and spreads in the document

Tag TAG_DOCUMENTINFORMATION

Size Variable

Usage Application. Optional.

Data:

< Document Structure Flags :
UINT16 >

All flags reserved, set to 0.

< NumChapters : UINT32 > The number of chapters in this document

And for each chapter, in the order that chapters appear in the stream:

< Chapter Structure Flags :
UINT16 >

All flags reserved, set to 0.

< NumSpreads : UINT32 > The number of spreads in this document

Comments:

 - 251 -

This record stores information about the upcoming structure of the document and is
guaranteed to appear before the first Chapter record in the document. This gives Readers
early notice how how many chapters and spreads it will subsequently have to read and help
it to make early decisions if merging XAR files together.

Name Undo Size

Purpose This record stores the undo buffer size for the document.

Tag TAG_DOCUMENTUNDOSIZE

Size 4

Usage Application. Optional.

Data:

< UndoSize : UINT32 > The size of the undo buffer for the document.

Comments:

This record defines the size of the undo buffer allocated in this document. If the UndoSize
value is equal to the maximum value of an UINT32 then it is considered infinite.

Name Document View

Purpose This record describes a document view object. There can be several document
views onto a single document.

Tag TAG_DOCUMENTVIEW

Size 24

Usage Application. Optional.

Data:

 - 252 -

< ScaleFactor : FIXED16 > Current scaling factor applied to the View.

< BottomLeft : COORD > Bottom-left co-ordinate of the view area

< TopRight: COORD > Top-right co-ordinate of the view area

< ViewFlags : UINT32 > Bit 0: BackgroundRender : 1 if background rendering
Bit 1: GridShow : 1 if grid is shown
Bit 2: GridSnap : 1 if grid is active
Bit 3: ObjectsSnap : 1 if snapping to all objects is active
Bits 4-7: Reserved. Must be 0.
Bit 8: MagObjectsSnap : 1 if snapping to magnetic objects is
active
Bit 9: PrintBorderShow : 1 if print borders are shown
Bit 10: GuidesSnap : 1 if snapping to objects in guide layers
Bit 11: GuidesShow : 1 if showing objects in guide layers
Bits 12-15: Reserved. Must be 0.
Bit 16: ShowScrollBars : 1 if scroll bars are required on this
view.
Bit 17: ShowRulers : 1 if rulers are required on this view.
Bits 18-31: Reserved. Must be 0.

Comments:

Defines a view onto the document in terms of a viewport onto the document, the scale that
it is being shown at, plus flags that dictate the properties of this view.

Note that the BottomLeft and TopRight co-ordinates are always relative to the first spread
in the document.

Name Export Hint

Purpose This record stores the user’s last used bitmap export options.

Tag TAG_EXPORTHINT

Size Variable

Usage Application. Optional.

Data:

 - 253 -

< Type : UINT32 > Specifies the type of bitmap export filter
1 – JPEG
2 – GIF
3 – PNG

< Width : UINT32 > Width of the bitmap in pixels

< Height : UINT32 > Height of the bitmap in pixels

< BPP : UINT32 > Bits per pixel

< Options : ASCII_STRING > Type specific options

Comments:

This record stores the last settings used to export a bitmap in JPEG, GIF or PNG format.
The Options string is dependent on the type of filter:

JPEG – “Q<quality value> D<dpi> [P]”
The quality value can range from 0 to 100.
The P signifies a progressive JPEG if present.

GIF and PNG – “D<dither type> [P<palette type> N<number of colours> [S]] [T] [I]”
Dither type can be: 0 – simple, 1 – ordered, 2 – ordered grey, 3 – error diffused, 4 – none
The P, N and S options are only present if the BPP is less than or equal to 8
Palette type can be: 0 – standard, 1 – optimised, 2 – browser, 3 – global optimised, 4 –
websnap optimised
Number of colours is the number of colours in the palette. This allows the palette to be
smaller than that allowed by the BPP setting
The S option indicates that the system colours should be added to the palette
The T option indicates a transparent bitmap
The I option indicates an interlaced bitmap

Name Document Bitmap Smoothing

Purpose This record stores bitmap smoothing settings for the document.

Tag TAG_DOCUMENTBITMAPSMOOTHING

Size 5

Usage Application. Optional.

 - 254 -

Data:

< Flags : BYTE > Bit 0 : Enable bitmap smoothing
Bits 1-7 : Reserved, must be set to 0

< Reserved1 : BYTE > Reserved, must be set to 0

< Reserved2 : BYTE > Reserved, must be set to 0

< Reserved3 : BYTE > Reserved, must be set to 0

< Reserved4 : BYTE > Reserved, must be set to 0

Comments:

This record stores settings relating to bitmap smoothing (interpolation).

Printing information

This section describes the format of all printer options related records.

 Name Printer Settings

Purpose This record describes the printer settings for this document.

Tag TAG_PRINTERSETTINGS
TAG_PRINTERSETTINGS_PHASE2

Size 45 for TAG_PRINTERSETTINGS
(Variable for TAG_PRINTERSETTINGS_PHASE2)

Usage Application. Optional

Data:

< NumberOfCopies :
UINT32 >

The number of copies to be printed.

< PrintScale : FIXED16 > The scale to be applied to the printed document, as a
percentage of the actual size.

< TopMargin : The width of the margin to leave at the top of the printed

 - 255 -

MILLIPOINTS > page.

< LeftMargin :
MILLIPOINTS >

The width of the margin to leave at the left hand side of the
printed page.

< Width : MILLIPOINTS > When FitType is Custom fit, this is the page width to use.

< Height : MILLIPOINTS > When FitType is Custom fit, this is the page height to use.

< Rows : UINT16 > When the FitType is Multiple fit, this is the number of
copies of the document to fit down the page.

< Columns : UINT16 > When the FitType is Multiple fit, this is the number of
copies of the document to fit across the page.

< Gutter : MILLIPOINTS > When the FitType is Multiple fit, this is the width of the
gap to apply between copies of the document.

< PrintMethod : BYTE > The form of the data sent to the printer.

< ObjectPrintRange : BYTE
>

The objects in the document to print.

< DPSPrintRange : BYTE > The pages in the document to print.

< PageOrientation : BYTE > The orientation applied to the page to map it onto the
printed page.

< FitType : BYTE > How to arrange the document on the printed page.

< PrintLayers : BYTE > The layers in the document to print.

< PostscriptLevel : BYTE > The Postscript Language Level to be used.

< BitmapResMethod : BYTE
>

The method to determine the resolution at which bitmaps
should be printed.

< DotsPerInch : UINT32 > When BitmapResMethod is Manual, this determines the
resolution to use for bitmaps in dots per inch.

< PrintFlags : BYTE > Bit 0: Collated : 1 if pages collated

Bit 1: PrintWholeSpread : 1 if the whole of a multi-page
spread is to be printed on one page, otherwise each page
should be on its own sheet of paper

Bit 2: PrintToFile : 1 if printing to a file rather than directly

 - 256 -

to the printer

Bit 3: PrintTextAsShapes : 1 if text should be printed as
shapes

All other flags reserved, as set to 0.

Additional Data for TAG_PRINTERSETTINGS_PHASE2:
As above plus:

< PrintRange : STRING > The “Page range” string that controls which pages to print
in a multi-page document.

PrintMethod Value

Normal 1

Bitmap 2

Anti-aliased Bitmap 3

ObjectPrintRange Value

All objects 1

Selected objects 2

Selected pages 3

Page range 4

DPSPrintRange Value

All pages 1

Left pages 2

 - 257 -

Right pages 3

PageOrientation Value

Portrait 1

Landscape 2

FitType Value

Best fit 1

Custom fit 2

Multiple fit 3

PrintLayers Value

All foreground 1

Visible foreground 2

PostscriptLevel Value

Automatic 1

Level 1 2

Level 2 3

BitmapResMethod Value

 - 258 -

Automatic 1

Manual 2

Comments:

This record stores the printer settings for the document. These options typically come from
the user via a “Printer Options” dialog.

The PrintRange string in TAG_PRINTERSETTINGS_PHASE2 is only used when
ObjectPrintRange is 4.

Name Imagesetting Options

Purpose This record describes the document’s imagesetting options.

Tag TAG_IMAGESETTING

Size 15

Usage Application. Optional

Data:

< DeviceResolution : UINT32 > The resolution of the target printer in dots per inch.

< DefaultScreenFreq : DOUBLE
>

The default screen frequency to be used in lines per
inch)

< ScreenType : UINT16 > The type of screening to be used.

< ImagesettingFlags : BYTE > Bit 0: ColourSeparateOutput : 1 if printing separation
plates, 0 if composite output
Bit 1: UsePrinterDefaults : 1 to use printer default for
screen type, otherwise use type in ScreenType field
Bit 2: EmulsionDown : 1 to print with emulsion down
(reflect image in x-axis)
Bit 3: PhotographicNegative : 1 to negate all colour
information
Bit 4: AlwaysOverprintBlack : 1 to automatically
overprint all CMYK colours with K > 95%

 - 259 -

Bit 5: PrintSpotsAsProcess : 1 to convert all spot
colours to process colours

All other flags reserved, must be 0.

ScreenType Value

None 0

Spot 1 1

Spot 2 2

Triple spot 1 3

Triple spot 2 4

Elliptical 5

Line 6

Cross hatch 7

Mezzotint 8

Square 9

Dither 10

Comments:

This record stores the imagesetting options for the document. These options would usually
come from the user via an advanced print options dialog.

NOTE that since this record determines the defaults for Colour Plates it must precede all
TAG_COLOURPLATE records in the file.

Name Colour Plate Settings

 - 260 -

Purpose This record describes the imagesetting options for a particular printing plate
when printing colour separations of the document.

Tag TAG_COLOURPLATE

Size 22

Usage Application. Optional.

Data:

< PlateType : BYTE > The type of colour plate.

< PlateColour : COLOURREF
>

0, or if PlateType is Spot, the spot colour to be printed on
this plate.

< ScreenAngle : DOUBLE > The screen angle in degrees.

< ScreenFrequency : DOUBLE
>

The screen frequency in lines per inch.

< PlateFlags : BYTE > Bit 0: PrintThisPlate : 1 if actually printing this plate
Bit 1: OverprintThisPlate : 1 to overprint the entire plate,
otherwise knock out the plate

All other flags reserved, as set to 0.

PlateType Value

Cyan separation plate 1

Magenta 2

Yellow 3

Key 4

Spot (using PlateColour) 5

Comments:

 - 261 -

This record stores the imagesetting options for the document. The user would usually
provide these via an advanced print options dialog.

NOTE that TAG_COLOURPLATE records must always follow any
TAG_IMAGESETTING record in the document to determine their default values.

Name Document Print Marks

Purpose This record defines the print marks to be used when printing the document.

Tag TAG_PRINTMARKDEFAULT

Size 1

Usage Application. Optional.

Data:

< PrintMark : BYTE > A number representing a print mark.

Comments:

The PrintMark refers to an application-wide print mark ID. See Appendix B for a list of the
default print mark Ids.

Units

Units are used to display distances and other sizes to the user. There are by default a
number of built in basic units. The user can create her own unit definitions.

The unit records usually appear after the Document record.

Defining units in terms of other units

Units within Xar files have an associated absolute distance. This distance is measured in
millipoints. When defining a unit, you can give it an absolute millipoint value. However, it
is sometimes more useful to be able to specify a unit in terms of another unit. A typical
example is centimetres. One centimetre is always 10 millimetres, no matter how many
millipoints are defined to be equal to one millimetre. If we change the number of

 - 262 -

millipoints in a millimetre, e.g., by improving the accuracy, we can automatically calculate
the number of millipoints in 1 centimetre, by just multiplying the millimetre value by 10.
The default set of metric units are defined this way, all based on the number of millipoints
in a millimetre.

Here are the rules:

• The first unit defined must have an absolute millipoint value, i.e., it can’t be based
on another.

• If a unit is based on another, the base unit must be defined beforehand.

The millipoint value for a unit based on another unit is that it is equal to:

(Millipoint value of the base unit * BaseNumerator) / BaseDenominator

Following are the record definitions for user-defined units and for the two basic
measurements:

Name Define Prefix User Unit

Purpose This record declares user-defined units that are displayed before the associated
value.

Tag TAG_DEFINE_PREFIXUSERUNIT,
TAG_DEFINE_SUFFIXUSERUNIT

Size Variable

Usage Application. Optional.

Data:

< UnitName : STRING > The full name of the unit, e.g., “Millimetres”.

< UnitAbbreviation : STRING > The abbreviated name of the unit, e.g., “mm”.

< AbsoluteSize : UINT32 > The size of the unit in millipoints.

< BaseUnitRef : UNITSREF > The reference to the unit on which this is based. Zero
means no base unit.

< Numerator : DOUBLE > The multiplier to apply to the base unit.

< Denominator : DOUBLE > The divisor to apply to the base unit.

 - 263 -

Comments:

Defines a new user unit.

All unit definition records should precede the TAG_DEFINE_DEFAULTUNITS record,
which may reference them.

TAG_DEFINE_PREFIXUSERUNIT defines a unit whose abbreviation is shown before the
numerical value, for instance, dollars, “$500”.

TAG_DEFINE_SUFFIXUSERUNIT defines a unit whose abbreviation is shown after the
numerical value, for instance, metres, “500m”.

Name Define Default Units

Purpose This record defines the default units shown to users of the document.

Tag TAG_DEFINE_DEFAULTUNITS

Size 8

Usage Application. Optional.

Data:

< PageUnits :
UNITSREF >

A reference to the units used to display page based
measurements.

< FontUnits :
UNITSREF >

A reference to the units used to display font based
measurements.

Comments:

This record defines the units which will be used to show measurements to the user. Two
unit types are specified; Page Units for most measurements and Font Units for font sizes.
Font sizes have their own unit because they are a special case – users frequently expect to
see fonts measured in Points regardless of what other units other distances are measured in.

 - 264 -

Extendibility
This chapter describes the records that allow Forward and Backward compatibility between
different versions of the Xar format. Xar Readers should respond appropriately to these
records. This is also discussed.

Name Atomic Records

Purpose Contains a list of tags. Records that have these tag types are defined to be
atomic records

Tag TAG_ATOMICTAGS

Size Variable

Usage Extension. Compulsory where applicable

Data:

<Tag : UINT32>* Array of record Tags.

Comments:

This record is used to ensure backward compatibility of new records in old Readers. It
prevents a Reader trying to understand the children of a record it doesn’t recognise.

This record contains zero or more tags. The number of tags can be calculated from the
record size. There can be more than one of these records in the file, but a good Writer
should only need to export one. This record should appear before the first object record in
the file, although this is not a strict rule.

A record that has a tag type in this list is an ‘Atomic’ record. An atomic record is one where
itself and all its children can be thought of as a single entity. Examples of atomic records
are Text Stories, Moulds, and Blends.

A Reader should read this record and retain the list of atomic tags for reference. When it
subsequently reads a record with a tag it doesn’t understand, it should look up that tag in
the list of Atomic tags. If it finds a match the record and all its child records should be
ignored.

A Writer should create one of these records listing the Tags of all new records (above 1.0
format) that it writes and which it wants old Readers to treat as Atomic objects.

 - 265 -

Note: This implies that no references should be made to tags within atomic record subtrees
if the referencing record is deemed essential. For instance,
TAG_PATHREF_TRANSFORM records should not reference another path in an atomic
subtree.

Name Essential Records

Purpose Contains a list of tags. Records that have these tag types are defined to be
essential records

Tag TAG_ESSENTIALTAGS

Size Variable

Usage Extension. Compulsory where applicable

Data:

<Tag : UINT32>* Array of record Tags.

Comments:

This record is used to ensure backward compatibility of new records in old Readers. It
gives the Reader a list of Tags which it must understand if it is to display the graphic
correctly.

This record contains zero or more tags. The number of tags can be calculated from the
record size. There can be more than one of these records in the file, but a good Writer
should only need to export one. This record should appear before the first Image record in
the file, although this is not a strict rule.

It is assumed that all records defined as “Compulsory” in the Xar format are essential
records. I.e. an importer must understand all records in v1 of the format as a minimum
requirement. The Essential records mechanism is provided for future versions of the format.

A Reader should read this record and retain the list of Essential Tags for future reference.
When it subsequently reads a record with a tag it doesn’t understand, it should look up that
tag in the list of Essential tags. If it finds a match the Reading process should be aborted
and the user should be informed. See TAG_TAGDESCRIPTION for information on
informing the user.

A Writer should create one of these records listing the Tags of all new records (above 1.0
format) that it writes and which it wants old Readers to treat as being Essential to the
display of the graphic.

 - 266 -

Name Tag Descriptions

Purpose Contains a list of tags, plus a textual description of each of the tags in the list

Tag TAG_TAGDESCRIPTION

Size Variable

Usage Extension. Compulsory where applicable

Data:

< NumberOfTags : UINT32 > The Number of Tag Description fields following this
field.

<Tag Description>* Array of [tag, string] pairs each describing a tag.

<Tag Description> ::= < Tag : UINT32> < Description : STRING>

Comments:

This record is used to ensure backward compatibility of new records in old Readers. It
provides a Reader with textual names for records so that the Reader can inform the user
about problem records by name. It can contain descriptions of any record but it is
recommended that it only be used to describe records outside the 1.0 specification – i.e. the
same records that have entries in the Atomic or Essential tables.

This record contains zero or more tags. There can be more than one of these records in the
file. This record should appear before the first Image record in the file, although this is not
a strict rule.

Example Tag Description entries are:

TAG_OBJECT_RECTANGLE, “Rectangle”

TAG_ATTRIBUTE_LINECOLOUR, “ “Line Colour”

TAG_PRINTMARKCUSTOM, “ TAG_PRINTMARKCUSTOM”

A Reader should read this record and retain the list of atomic tag names for reference.
When it subsequently reads a record with a tag it doesn’t understand or has some other
problem with, it can look up the tag’s name in this list and use the description in any

 - 267 -

message presented to the user. The Reader must not assume that a tag is named. When a tag
isn’t named, the program should adjust user messages accordingly.

A Writer should create one of these records listing the Tag names of all new records (above
1.0 format) that it writes and which it wants old Readers to be able to name for the user.

 - 268 -

Depreceated Records
As the Xar format evolves, some records may be removed from the format. This can
happen for various reasons; to simplify the format, to correct problems, or to make way for
improved records.

When records are deprecated in a Xar Format Revision, new Writers adhering to the
revised specification will no longer create those records. New Readers adhering to the
revised specification have the option of only interpreting the records in the revised spec or
they can be more flexible and continue to deal with deprecated records.

When a Xar Format Revision causes some records to be deprecated there will, of course, be
a lot of Xar files in the world which still contain those old records. Whether to read or write
deprecated records is a decision for the implementor. It will depend upon the quantity of
old format files you expect to encounter, the feature sets of the old and new revisions, the
availability of other programs producing the new format, etc., etc…

Records deprecated in Version 1.0

The following records were deprecated during the development of the Version 1.0 Xar
Specification. Files written by some of Xara Group Ltd.’s earlier programs (e.g.
CorelXARA 1.5 and Xara Webster 1.0) may contain some of these records. Newer versions
of both programs will create files that adhere to the 1.0 specification and those files will not
contain any records in the list below.

Name Permutation Rectangle Records

Purpose These records describe all forms of rectangles

Tag TAG_RECTANGLE_SIMPLE_REFORMED,
TAG_RECTANGLE_SIMPLE_STELLATED ,
TAG_RECTANGLE_SIMPLE_STELLATED_REFORMED,
TAG_RECTANGLE_SIMPLE_ROUNDED_REFORMED,
TAG_RECTANGLE_SIMPLE_ROUNDED_STELLATED,
TAG_RECTANGLE_SIMPLE_ROUNDED_STELLATED_REFORMED,
TAG_RECTANGLE_COMPLEX_REFORMED,
TAG_RECTANGLE_COMPLEX_STELLATED,
TAG_RECTANGLE_COMPLEX_STELLATED_REFORMED,
TAG_RECTANGLE_COMPLEX_ROUNDED_REFORMED,
TAG_RECTANGLE_COMPLEX_ROUNDED_STELLATED,
TAG_RECTANGLE_COMPLEX_ROUNDED_STELLATED_REFORMED

Size Sum of selected parts

 - 269 -

Usage Image. Compulsory.

Data:

If not(COMPLEX and
ROUNDED and
REFORMED)

< Centre : COORD >

The centre point of the rectangle.

If SIMPLE

< Width : MILLIPOINTS >

The radius of the horizontal axis of the bounding ellipse.

If SIMPLE

< Height : MILLIPOINTS >

The radius of the vertical axis of the bounding ellipse.

If COMPLEX

< MajorAxis : COORD >

The major axis point of the rectangle relative to the centre.

If COMPLEX

< MinorAxis : COORD >

The minor axis point of the rectangle relative to the centre.

If COMPLEX and
ROUNDED and
REFORMED

< Matrix : MATRIX >

The matrix which transforms the centre of the QuickShape
into position and which…

If STELLATED

< StellationRadius :
DOUBLE >

The fraction of the Radius describing an ellipse on which
the inner points of the star are placed.

If STELLATED

< StellationOffset :
DOUBLE >

The angle in degrees by which the inner points of the star
are offset from the outer points.

If ROUNDED

< PrimaryCurvature :

The roundness of the curved corners of the rectangle.

 - 270 -

DOUBLE >

If STELLATED and
ROUNDED

< SecondaryCurvature :
DOUBLE >

The roundness of the internal corners of the stellated
rectangle.

If REFORMED

< EdgePath1 : PATH >

The path along the edges of the rectangle or the clockwise
edges of the stellated rectangle.

If REFORMED and
STELLATED

< EdgePath2 : PATH >

The paths along the anti-clockwise edges of the stellated
rectangle.

Comments:

As you can see from the table above, these records were unnecessarily complex and have
been deprecated in favour of different flavours of TAG_POLYGON.

Note the “If” conditions in the field descriptions column! It is suggested that the Reading of
these records and the more basic TAG_RECTANGLE_SIMPLE,
TAG_RECTANGLE_SIMPLE_ROUNDED, TAG_RECTANGLE_COMPLEX and
TAG_RECTANGLE_COMPLEX_ROUNDED records is implemented by a simple table
driven algorithm.

A similar system was used to describe different permutations of polygon data fields:

Name Permutation Polygon records

Purpose These records describe different permutations of polygons

Tag TAG_POLYGON_COMPLEX_REFORMED,
TAG_POLYGON_COMPLEX_STELLATED,
TAG_POLYGON_COMPLEX_STELLATED_REFORMED,
TAG_POLYGON_COMPLEX_ROUNDED_STELLATED

Size Sum of selected parts

Usage Image. Compulsory.

 - 271 -

Data:

< NumberOfSides : UINT16
>

The number of sides the polygon has.

If not(ROUNDED and
REFORMED)

< Centre : COORD >

The centre point of the polygon.

< MajorAxis : COORD > The major axis point of the polygon relative to the centre.

< MinorAxis : COORD > The minor axis point of the polygon relative to the centre.

If ROUNDED and
REFORMED

< Matrix : MATRIX >

The matrix which transforms the centre of the QuickShape
into position and which…

If STELLATED

< StellationRadius :
DOUBLE >

The fraction of the Radius describing an ellipse on which
the inner points of the star are placed.

If STELLATED

< StellationOffset :
DOUBLE >

The angle in degrees by which the inner points of the star
are offset from the outer points.

If ROUNDED

< PrimaryCurvature :
DOUBLE >

The roundness of the curved corners of the rectangle.

If STELLATED and
ROUNDED

z< SecondaryCurvature :
DOUBLE >

The roundness of the internal corners of the stellated
rectangle.

If REFORMED

< EdgePath1 : PATH >

The path along the edges of the rectangle or the clockwise
edges of the stellated rectangle.

If REFORMED and The paths along the anti-clockwise edges of the stellated
rectangle.

 - 272 -

STELLATED

< EdgePath2 : PATH >

Comments:

As you can see from the table above, these records were unnecessarily complex and have
been deprecated in favour of a simpler set of TAG_POLYGON records.

Note the “If” conditions in the field descriptions column.

It is suggested that, if you choose to read these deprecated records, the Reading be
implemented by a simple table driven algorithm.

Deprecated Development Quickshape records

Name Unconditional fully qualified QuickShape records

Purpose Describes a fully defined QuickShape

Tag TAG_REGULAR_SHAPE_PHASE_1

Size Variable

Usage Image. Compulsory.

Data:

< Flags : BYTE > Flags

<NumberOfSides : UINT> Number of sides on the QuickShape (value between 3-99)

<CentrePoint : COORD> The untransformed position of the centre

<MajorAxes : COORD> The untransformed position of the major axis

<MinorAxes : COORD> The untransformed position of the minor axis

<TransformMatrix :
MATRIX>

Transform to apply to the above three points

 - 273 -

<StellRadiusToPrimary :
DOUBLE>

The value to apply to the primary radius to get the stellation
to primary radius. This is the length of the inner points to the
outer ones.

<StellOffsetRatio :
DOUBLE>

The rotation of the inner stellation points

<PrimaryCurveToPrimary :
DOUBLE>

Value to apply to the primary radius to get the primary
curvature point. Defines how curved the primary curvature
is.

<StellCurveToPrimary:
DOUBLE>

Value to apply to the primary radius to get the stellation
curvature point. Defines how curved the stellation curvature
is.

<EdgePath1 : PATH> Primary edge

<EdgePath2 : PATH> Stellation edge (may be the same as EdgePath1).

Comments:

This record has been deprecated in favour of
TAG_POLYGON_COMPLEX_ROUNDED_STELLATED_REFORMED and its simpler
cousins.

Name Unconditional fully qualified QuickShape record

Purpose Describes a fully defined QuickShape

Tag TAG_REGULAR_SHAPE_PHASE_2

Size

Usage Image. Compulsory.

Data:

< Flags : BYTE > Flags

<NumberOfSides : UINT> Number of sides on the QuickShape (value between 3-99)

 - 274 -

<MajorAxes : COORD> The untransformed position of the major axis

<MinorAxes : COORD> The untransformed position of the minor axis

<TransformMatrix :
MATRIX>

Transform to apply to the above three points

<StellRadiusToPrimary :
DOUBLE>

The value to apply to the primary radius to get the stellation
to primary radius. This is the length of the inner points to the
outer ones.

<StellOffsetRatio :
DOUBLE>

The rotation of the inner stellation points

<PrimaryCurveToPrimary :
DOUBLE>

Value to apply to the primary radius to get the primary
curvature point. Defines how curved the primary curvature
is.

<StellCurveToPrimary:
DOUBLE>

Value to apply to the primary radius to get the stellation
curvature point. Defines how curved the stellation curvature
is.

<EdgePath1 : PATH> Primary edge

<EdgePath2 : PATH> Stellation edge (may be the same as EdgePath1).

Comments:

This record has been deprecated in favour of
TAG_POLYGON_COMPLEX_ROUNDED_STELLATED_REFORMED and its simpler
cousins.

 - 275 -

Appendix A

Complete List of Xar Tags

Tag name Tag
value

Notes

//Navigation records

TAG_UP� 0

TAG_DOWN� 1

TAG_FILEHEADER� 2

TAG_ENDOFFILE� 3

// Tag management

TAG_ATOMICTAGS� 10

TAG_ESSENTIALTAGS� 11

TAG_TAGDESCRIPTION� 12

// Compression tags

TAG_STARTCOMPRESSION� 30

TAG_ENDCOMPRESSION� 31

// Document tags

TAG_DOCUMENT� 40

TAG_CHAPTER� 41

TAG_SPREAD� 42

 - 276 -

TAG_LAYER� 43

TAG_PAGE� 44

TAG_SPREADINFORMATION� 45

TAG_GRIDRULERSETTINGS� 46

TAG_GRIDRULERORIGIN� 47

TAG_LAYERDETAILS� 48

TAG_GUIDELAYERDETAILS� 49

TAG_SPREADSCALING_ACTIVE� 52

TAG_SPREADSCALING_INACTIVE� 53

// Colour reference tags

TAG_DEFINERGBCOLOUR� 50

TAG_DEFINECOMPLEXCOLOUR� 51

 // Bitmap reference tags

Reserved 60

TAG_PREVIEWBITMAP_GIF� 61

TAG_PREVIEWBITMAP_JPEG� 62

TAG_PREVIEWBITMAP_PNG� 63

Reserved 64

Reserved 65

 - 277 -

Reserved 66

TAG_DEFINEBITMAP_JPEG� 67

TAG_DEFINEBITMAP_PNG� 68

Reserved 69

Reserved 70

TAG_DEFINEBITMAP_JPEG8BPP� 71

// View tags

TAG_VIEWPORT� 80

TAG_VIEWQUALITY� 81

TAG_DOCUMENTVIEW� 82

// Document unit tags

TAG_DEFINE_PREFIXUSERUNIT� 85

TAG_DEFINE_SUFFIXUSERUNIT� 86

TAG_DEFINE_DEFAULTUNITS� 87

// Document info tags

TAG_DOCUMENTCOMMENT� 90

TAG_DOCUMENTDATES� 91

TAG_DOCUMENTUNDOSIZE� 92

TAG_DOCUMENTFLAGS� 93

TAG_DOCUMENTINFORMATION 4136

 - 278 -

// Object tags

TAG_PATH� 100

TAG_PATH_FILLED� 101

TAG_PATH_STROKED� 102

TAG_PATH_FILLED_STROKED� 103

TAG_GROUP� 104

TAG_BLEND� 105

TAG_BLENDER� 106

TAG_MOULD_ENVELOPE� 107

TAG_MOULD_PERSPECTIVE� 108

TAG_MOULD_GROUP� 109

TAG_MOULD_PATH� 110

TAG_PATH_FLAGS� 111

TAG_GUIDELINE� 112

TAG_PATH_RELATIVE� 113

TAG_PATH_RELATIVE_FILLED� 114

TAG_PATH_RELATIVE_STROKED� 115

TAG_PATH_RELATIVE_FILLED_STROKED� 116

Reserved 117

TAG_PATHREF_TRANSFORM� 118

// Attribute tags

TAG_FLATFILL� 150

 - 279 -

TAG_LINECOLOUR� 151

TAG_LINEWIDTH� 152

TAG_LINEARFILL� 153

TAG_CIRCULARFILL� 154

TAG_ELLIPTICALFILL� 155

TAG_CONICALFILL� 156

TAG_BITMAPFILL� 157

TAG_CONTONEBITMAPFILL� 158

TAG_FRACTALFILL� 159

TAG_FILLEFFECT_FADE� 160

TAG_FILLEFFECT_RAINBOW� 161

TAG_FILLEFFECT_ALTRAINBOW� 162

TAG_FILL_REPEATING� 163

TAG_FILL_NONREPEATING� 164

TAG_FILL_REPEATINGINVERTED� 165

TAG_FLATTRANSPARENTFILL� 166

TAG_LINEARTRANSPARENTFILL� 167

TAG_CIRCULARTRANSPARENTFILL� 168

TAG_ELLIPTICALTRANSPARENTFILL� 169

TAG_CONICALTRANSPARENTFILL� 170

TAG_BITMAPTRANSPARENTFILL� 171

TAG_FRACTALTRANSPARENTFILL� 172

TAG_LINETRANSPARENCY� 173

TAG_STARTCAP� 174

 - 280 -

TAG_ENDCAP� 175

TAG_JOINSTYLE� 176

TAG_MITRELIMIT� 177

TAG_WINDINGRULE� 178

TAG_QUALITY� 179

TAG_TRANSPARENTFILL_REPEATING� 180

TAG_TRANSPARENTFILL_NONREPEATING� 181

TAG_TRANSPARENTFILL_REPEATINGINVERTED� 182

// Arrows and dash patterns

TAG_DASHSTYLE� 183

TAG_DEFINEDASH� 184

TAG_ARROWHEAD� 185

TAG_ARROWTAIL� 186

TAG_DEFINEARROW� 187

TAG_DEFINEDASH_SCALED� 188

// User Attributes

TAG_USERVALUE� 189

// special colour fills

TAG_FLATFILL_NONE� 190

TAG_FLATFILL_BLACK� 191

TAG_FLATFILL_WHITE� 192

 - 281 -

TAG_LINECOLOUR_NONE� 193

TAG_LINECOLOUR_BLACK� 194

TAG_LINECOLOUR_WHITE� 195

// Bitmaps

TAG_NODE_BITMAP� 198

TAG_NODE_CONTONEDBITMAP� 199

// New fill type records

TAG_DIAMONDFILL� 200

TAG_DIAMONDTRANSPARENTFILL� 201

TAG_THREECOLFILL� 202

TAG_THREECOLTRANSPARENTFILL� 203

TAG_FOURCOLFILL� 204

TAG_FOURCOLTRANSPARENTFILL� 205

TAG_FILL_REPEATING_EXTRA� 206

TAG_TRANSPARENTFILL_REPEATING_EXTRA� 207

// Regular shapes

// Ellipses

TAG_ELLIPSE_SIMPLE� 1000

TAG_ELLIPSE_COMPLEX� 1001

// Rectangles

 - 282 -

TAG_RECTANGLE_SIMPLE� 1100

TAG_RECTANGLE_SIMPLE_REFORMED 1101 Deprecated

TAG_RECTANGLE_SIMPLE_STELLATED 1102 Deprecated

TAG_RECTANGLE_SIMPLE_STELLATED_REFORMED 1103 Deprecated

TAG_RECTANGLE_SIMPLE_ROUNDED� 1104

TAG_RECTANGLE_SIMPLE_ROUNDED_REFORMED 1105 Deprecated

TAG_RECTANGLE_SIMPLE_ROUNDED_STELLATED 1106 Deprecated

TAG_RECTANGLE_SIMPLE_ROUNDED_STELLATED_REFORMED 1107 Deprecated

TAG_RECTANGLE_COMPLEX� 1108

TAG_RECTANGLE_COMPLEX_REFORMED 1109 Deprecated

TAG_RECTANGLE_COMPLEX_STELLATED 1110 Deprecated

TAG_RECTANGLE_COMPLEX_STELLATED_REFORMED 1111 Deprecated

TAG_RECTANGLE_COMPLEX_ROUNDED� 1112

TAG_RECTANGLE_COMPLEX_ROUNDED_REFORMED 1113 Deprecated

TAG_RECTANGLE_COMPLEX_ROUNDED_STELLATED 1114 Deprecated

TAG_RECTANGLE_COMPLEX_ROUNDED_STELLATED_REFORMED 1115 Deprecated

// Polygons

TAG_POLYGON_COMPLEX� 1200

TAG_POLYGON_COMPLEX_REFORMED 1201 Deprecated

TAG_POLYGON_COMPLEX_STELLATED 1212 Deprecated

TAG_POLYGON_COMPLEX_STELLATED_REFORMED 1213 Deprecated

TAG_POLYGON_COMPLEX_ROUNDED� 1214

TAG_POLYGON_COMPLEX_ROUNDED_REFORMED� 1215

 - 283 -

TAG_POLYGON_COMPLEX_ROUNDED_STELLATED 1216 Deprecated

TAG_POLYGON_COMPLEX_ROUNDED_STELLATED_REFORMED� 1217

// General regular shapes

TAG_REGULAR_SHAPE_PHASE_1 1900 Deprecated

TAG_REGULAR_SHAPE_PHASE_2 1901

// Text related records

// Text definitions

TAG_FONT_DEF_TRUETYPE� 2000

TAG_FONT_DEF_ATM� 2001

 // vanilla text story objects

TAG_TEXT_STORY_SIMPLE� 2100

TAG_TEXT_STORY_COMPLEX� 2101

// text story objects on a path

TAG_TEXT_STORY_SIMPLE_START_LEFT� 2110

TAG_TEXT_STORY_SIMPLE_START_RIGHT� 2111

TAG_TEXT_STORY_SIMPLE_END_LEFT� 2112

TAG_TEXT_STORY_SIMPLE_END_RIGHT� 2113

TAG_TEXT_STORY_COMPLEX_START_LEFT� 2114

TAG_TEXT_STORY_COMPLEX_START_RIGHT� 2115

TAG_TEXT_STORY_COMPLEX_END_LEFT� 2116

 - 284 -

TAG_TEXT_STORY_COMPLEX_END_RIGHT� 2117

// Text story information records

TAG_TEXT_STORY_WORD_WRAP_INFO� 2150

TAG_TEXT_STORY_INDENT_INFO� 2151

// other text story related objects

TAG_TEXT_LINE� 2200

TAG_TEXT_STRING� 2201

TAG_TEXT_CHAR� 2202

TAG_TEXT_EOL� 2203

TAG_TEXT_KERN� 2204

TAG_TEXT_CARET� 2205

TAG_TEXT_LINE_INFO� 2206

// Text attributes

TAG_TEXT_LINESPACE_RATIO� 2900

TAG_TEXT_LINESPACE_ABSOLUTE� 2901

TAG_TEXT_JUSTIFICATION_LEFT� 2902

TAG_TEXT_JUSTIFICATION_CENTRE� 2903

TAG_TEXT_JUSTIFICATION_RIGHT� 2904

TAG_TEXT_JUSTIFICATION_FULL� 2905

TAG_TEXT_FONT_SIZE� 2906

TAG_TEXT_FONT_TYPEFACE� 2907

 - 285 -

TAG_TEXT_BOLD_ON� 2908

TAG_TEXT_BOLD_OFF� 2909

TAG_TEXT_ITALIC_ON� 2910

TAG_TEXT_ITALIC_OFF� 2911

TAG_TEXT_UNDERLINE_ON� 2912

TAG_TEXT_UNDERLINE_OFF� 2913

TAG_TEXT_SCRIPT_ON� 2914

TAG_TEXT_SCRIPT_OFF� 2915

TAG_TEXT_SUPERSCRIPT_ON� 2916

TAG_TEXT_SUBSCRIPT_ON� 2917

TAG_TEXT_TRACKING� 2918

TAG_TEXT_ASPECT_RATIO� 2919

TAG_TEXT_BASELINE� 2920

// Imagesetting attributes

TAG_OVERPRINTLINEON� 3500

TAG_OVERPRINTLINEOFF� 3501

TAG_OVERPRINTFILLON� 3502

TAG_OVERPRINTFILLOFF� 3503

TAG_PRINTONALLPLATESON� 3504

TAG_PRINTONALLPLATESOFF� 3505

// Document Print/Imagesetting options

TAG_PRINTERSETTINGS� 3506

 - 286 -

TAG_IMAGESETTING� 3507

TAG_COLOURPLATE� 3508

// Registration mark records

TAG_PRINTMARKDEFAULT� 3509

Reserved 3510

// Stroking records

TAG_VARIABLEWIDTHFUNC 4000 This
record is
not
currently
used

TAG_VARIABLEWIDTHTABLE� 4001

TAG_STROKETYPE� 4002

TAG_STROKEDEFINITION 4003 This
record is
not
currently
used

TAG_STROKEAIRBRUSH 4004 This
record is
not
currently
used

// Fractal Noise records

TAG_NOISEFILL� 4010

TAG_NOISETRANSPARENTFILL� 4011

// Mould bounds record

TAG_MOULD_BOUNDS� 4012

// Bitmap export hint record

 - 287 -

TAG_EXPORT_HINT� 4015

// Web Address tags

TAG_WEBADDRESS� 4020

TAG_WEBADDRESS_BOUNDINGBOX� 4021

// Frame layer tags

TAG_LAYER_FRAMEPROPS� 4030

TAG_SPREAD_ANIMPROPS� 4031

// Wizard properties tags

TAG_WIZOP� 4040

TAG_WIZOP_STYLE 4041

TAG_WIZOP_STYLEREF 4042

// Shadow tags

TAG_SHADOWCONTROLLER� 4050

TAG_SHADOW� 4051

// Bevel tags

TAG_BEVEL� 4052

TAG_BEVATTR_INDENT 4053 Deprecated

TAG_BEVATTR_LIGHTANGLE 4054 Deprecated

TAG_BEVATTR_CONTRAST 4055 Deprecated

TAG_BEVATTR_TYPE 4056 Deprecated

TAG_BEVELINK� 4057

// Blend on a curve tags

TAG_BLENDER_CURVEPROP� 4060

TAG_BLEND_PATH� 4061

 - 288 -

TAG_BLENDER_CURVEANGLES� 4062

// Contouring tags

TAG_CONTOURCONTROLLER� 4066

TAG_CONTOUR� 4067

// Set tags

TAG_SETSENTINEL� 4070

TAG_SETPROPERTY� 4071

// More Blend on a curve tags

TAG_BLENDPROFILES� 4072

TAG_BLENDERADDITIONAL� 4073

TAG_NODEBLENDPATH_FILLED� 4074

// Multi stage fill tags

TAG_LINEARFILLMULTISTAGE� 4075

TAG_CIRCULARFILLMULTISTAGE� 4076

TAG_ELLIPTICALFILLMULTISTAGE� 4077

TAG_CONICALFILLMULTISTAGE� 4078

// Brush attribute tags

TAG_BRUSHATTR� 4079

TAG_BRUSHDEFINITION� 4080

TAG_BRUSHDATA� 4081

TAG_MOREBRUSHDATA� 4082

TAG_MOREBRUSHATTR� 4083

 // ClipView tags

TAG_CLIPVIEWCONTROLLER� 4084

 - 289 -

TAG_CLIPVIEW� 4085

// Feathering tags

TAG_FEATHER� 4086

// Bar properties tag

TAG_BARPROPERTY� 4087

 // Other multi stage fill tags

TAG_SQUAREFILLMULTISTAGE� 4088

// More brush tags

TAG_EVENMOREBRUSHDATA� 4102

TAG_EVENMOREBRUSHATTR� 4103

TAG_TIMESTAMPBRUSHDATA� 4104

TAG_BRUSHPRESSUREINFO� 4105

TAG_BRUSHPRESSUREDATA 4106

TAG_BRUSHATTRPRESSUREINFO� 4107

TAG_BRUSHCOLOURDATA 4108

TAG_BRUSHPRESSURESAMPLEDATA� 4109

TAG_BRUSHTIMESAMPLEDATA 4110

TAG_BRUSHATTRFILLFLAGS� 4111

TAG_BRUSHTRANSPINFO� 4112

TAG_BRUSHATTRTRANSPINFO� 4113

// Nudge size record

TAG_DOCUMENTNUDGE� 4114

// Bitmap properties record

TAG_BITMAP_PROPERTIES� 4115

 - 290 -

// Bitmap smoothing record

TAG_DOCUMENTBITMAPSMOOTHING� 4116

// XPE bitmap processing record

TAG_XPE_BITMAP_PROPERTIES� 4117

// XPE Bitmap file format placeholder record

TAG_DEFINEBITMAP_XPE� 4118

// Current attributes records

TAG_CURRENTATTRIBUTES� 4119

TAG_CURRENTATTRIBUTEBOUNDS� 4120

// 3-point linear fill records

TAG_LINEARFILL3POINT� 4121

TAG_LINEARFILLMULTISTAGE3POINT� 4122

TAG_LINEARTRANSPARENTFILL3POINT� 4123

// Duplication distance record

TAG_DUPLICATIONOFFSET� 4124

// Bitmap effect tags

TAG_LIVE_EFFECT� 4125

TAG_LOCKED_EFFECT� 4126

TAG_FEATHER_EFFECT� 4127

// Miscellaneous records

TAG_COMPOUNDRENDER� 4128

TAG_OBJECTBOUNDS� 4129

TAG_SPREAD_PHASE2 4131

TAG_CURRENTATTRIBUTES_PHASE2 4132

 - 291 -

TAG_SPREAD_FLASHPROPS 4134

TAG_PRINTERSETTINGS_PHASE2 4135

TAG_DOCUMENTINFORMATION 4136

TAG_CLIPVIEW_PATH 4137

TAG_DEFINEBITMAP_PNG_REAL 4138

TAG_TEXT_STRING_POS 4139

TAG_SPREAD_FLASHPROPS2 4140

TAG_TEXT_LINESPACE_LEADING 4141

// New text records

TAG_TEXT_TAB 4200

TAG_TEXT_LEFT_INDENT 4201

TAG_TEXT_FIRST_INDENT 4202

TAG_TEXT_RIGHT_INDENT 4203

TAG_TEXT_RULER 4204

TAG_TEXT_STORY_HEIGHT_INFO 4205

TAG_TEXT_STORY_LINK_INFO 4206

TAG_TEXT_STORY_TRANSLATION_INFO 4207

 - 292 -

Appendix B

Lists of Default Values

Default Attributes

The default attributes which are assumed to be applied to the document when tree rendering
first starts.

Attribute First Value

Text Line spacing LineSpacing = 0 Ratio = 1.00

Text Baseline Rise = 0

Text Script Size = 1 Offset = 0

Text SubScript Size = 0.5 Offset = -0.1

Text SuperScript Size = 0.5 Offset = 0.33

Text Underline FALSE

Text Tracking 0

Text Justification Left justified

Text AspectRatio 1.000000

Text Italic FALSE

Text Bold FALSE

Text FontTypeface Font = Times New
Roman

Type =
TrueType

Bold =
FALSE

Italic =
FALSE

MitreLimit 4000

EndArrow None

StartArrow None

 - 293 -

StartCap Butt

DashPattern REF_DASH_SOLID

Quality 110

JoinType Bevelled

WindingRule Even-odd

LineWidth 501

FillEffectFade None

TranspFillMappingLinear None

FillMappingLinear None

FlatTranspFill None

FlatColourFill None

StrokeTransp Fill colour =
transparent

Start colour =
transparent

StrokeTransparency Line Transparency =
0

Transparency
Type = 1

StrokeColour Line colour =
RGB(0, 0, 0)

Feather None

StrokeType 0x01000000

Default arrowheads and tails

The following arrowheads and tails are assumed to be defined as standard and hence not
included in the file. As with all built-in items these defaults are referenced via a negative
reference number ID.

REF_ARROW_NULL

This is the default arrow. If a defined arrow is not found then this can be chosen as the
default to replace it with.

 - 294 -

Reference Value -1

LineWidth 72000/2

Centre 0,0

Flags Filled ScaleWithLineWidth

Path NULL

REF_ARROW_STRAIGHT

Reference Value -2

LineWidth (72000/2)*3

Centre 0,0

Flags Filled

Path MoveTo (-9000, 54000)

LineTo (-9000, -54000)

LineTo (117000, 0)

ClosePath

REF_ARROW_ANGLED

Reference Value -3

LineWidth (72000/2)*3

Centre 0,0

Flags Filled

Path MoveTo (-27000, 54000)

 - 295 -

LineTo (-9000, 0)

LineTo (-27000, -54000)

LineTo (135000, 0)

ClosePath

REF_ARROW_ROUNDED

Reference Value -4

LineWidth (72000/2)*3

Centre 0,0

Flags Filled

Path MoveTo (-9000, 0)

LineTo (-9000, -45000)

CurveTo (-9000, -51708), (2808, -56580), (9000, -54000)

LineTo (117000, -9000)

CurveTo (120916, -7369), (126000, -4242), (126000, 0)

CurveTo (126000, 4242), (120916, 7369), (117000, 9000)

LineTo (9000, 54000)

CurveTo (2808, 56580), (-9000, 51708), (-9000, 45000)

ClosePath

REF_ARROW_SPOT

Reference Value -5

 - 296 -

LineWidth (72000/2)*3

Centre 0,0

Flags Filled, StartArrow

Path MoveTo (-54000, 0)

CurveTo (-54000, 29807), (-29807, 54000), (0, 54000)

CurveTo (29807, 54000), (54000, 29807), (54000, 0)

CurveTo (54000, -29807), (29807, -54000), (0, -54000)

CurveTo (-29807, -54000), (-54000, -29807), (-54000, 0)

ClosePath

REF_ARROW_DIAMOND

Reference Value -6

LineWidth (72000/2)*3

Centre 0,0

Flags Filled, StartArrow

Path MoveTo (-63000, 0)

LineTo (0, 63000)

LineTo (63000, 0)

LineTo (0, -63000)

ClosePath

REF_ARROW_FEATHER

 - 297 -

Reference Value -7

LineWidth (72000/2)*3

Centre 0,0

Flags Filled, StartArrow

Path MoveTo (18000, -54000)

LineTo (108000, -54000)

LineTo (63000, 0)

LineTo (108000, 54000)

LineTo (18000, 54000)

LineTo (-36000, 0)

ClosePath

REF_ARROW_FEATHER2

Reference Value -8

LineWidth (72000/2)*3

Centre 0,0

Flags Filled, StartArrow

Path MoveTo(-36000, 0)

LineTo (18000, -54000)

LineTo (54000, -54000)

LineTo (18000, -18000)

LineTo (27000, -18000)

 - 298 -

LineTo (63000, -54000)

LineTo (99000, -54000)

LineTo (63000, -18000)

LineTo (72000, -18000)

LineTo (108000, -54000)

LineTo (144000, -54000)

LineTo (90000, 0)

LineTo (144000, 54000)

LineTo (108000, 54000)

LineTo (72000, 18000)

LineTo (63000, 18000)

LineTo (99000, 54000)

LineTo (63000, 54000)

LineTo (27000, 18000)

LineTo (18000, 18000)

LineTo (54000, 54000)

LineTo (18000, 54000)

ClosePath

REF_ARROW_HOLLOWDIAMOND

Reference Value -9

LineWidth (72000/2)*3

 - 299 -

Centre -45000,0

Flags Filled, StartArrow

Path MoveTo(0, 45000)

LineTo (-45000, 0)

LineTo (0, -45000)

LineTo (45000, 0)

ClosePath

MoveTo(0, 63000)

LineTo (-63000, 0)

LineTo (0, -63000)

LineTo (63000, 0)

ClosePath

Default dash patterns

The DashUnit size used in the definitions is defined to be:

const LONG DashUnit = 72000/4;

REF_DASH_SOLID

Reference Value -21

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 0

 - 300 -

DashDef NULL

This is the default pattern.

REF_DASH_1

Reference Value -1

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 2

DashDef DashUnit*2

DashUnit*2

REF_DASH_2

Reference Value -2

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 2

DashDef DashUnit*4

DashUnit*2

REF_DASH_3

 - 301 -

Reference Value -3

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 2

DashDef DashUnit*8

DashUnit*2

REF_DASH_4

Reference Value -4

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 2

DashDef DashUnit*16

DashUnit*2

REF_DASH_5

Reference Value -5

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

 - 302 -

Elements 2

DashDef DashUnit*24

DashUnit*2

REF_DASH_6

Reference Value -6

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 2

DashDef DashUnit*4

DashUnit*4

REF_DASH_7

Reference Value -7

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 2

DashDef DashUnit*8

DashUnit*4

 - 303 -

REF_DASH_8

Reference Value -8

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 2

DashDef DashUnit*16

DashUnit*4

REF_DASH_9

Reference Value -9

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 2

DashDef DashUnit*8

DashUnit*8

REF_DASH_10

Reference Value -10

DashStart 0

LineWidth 72000/4

 - 304 -

DashFlags ScaleWithLineWidth

Elements 2

DashDef DashUnit*16

DashUnit*8

REF_DASH_11

Reference Value -11

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 4

DashDef DashUnit*4

DashUnit*2

DashUnit*2

DashUnit*2

REF_DASH_12

Reference Value -12

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 4

 - 305 -

DashDef DashUnit*8

DashUnit*2

DashUnit*2

DashUnit*2

REF_DASH_13

Reference Value -13

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 4

DashDef DashUnit*16

DashUnit*2

DashUnit*2

DashUnit*2

REF_DASH_14

Reference Value -14

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 4

 - 306 -

DashDef DashUnit*8

DashUnit*2

DashUnit*4

DashUnit*2

REF_DASH_15

Reference Value -15

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 4

DashDef DashUnit*16

DashUnit*2

DashUnit*4

DashUnit*2

REF_DASH_16

Reference Value -16

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 6

 - 307 -

DashDef DashUnit*8

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

REF_DASH_17

Reference Value -17

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 6

DashDef DashUnit*16

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

REF_DASH_18

Reference Value -18

 - 308 -

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 8

DashDef DashUnit*8

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

REF_DASH_19

Reference Value -19

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 8

DashDef DashUnit*16

DashUnit*2

DashUnit*2

 - 309 -

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*2

REF_DASH_20

Reference Value -20

DashStart 0

LineWidth 72000/4

DashFlags ScaleWithLineWidth

Elements 8

DashDef DashUnit*8

DashUnit*2

DashUnit*2

DashUnit*2

DashUnit*4

DashUnit*2

DashUnit*2

DashUnit*2

REF_DASH_GUIDELAYER

 - 310 -

Reference Value -22

DashStart 0

LineWidth 72000/4

DashFlags

Elements 2

DashDef DashUnit*2

DashUnit*2

This is the dash pattern used to render objects in guide layers with. It's different from the
others in that the dashes aren't scaled relative to the line width.

Default colours

The following colours are defined as default colours in v1 of the format, i.e. records don't
need to refer to a colour definition record earlier in the file to use one of these colours:

REF_DEFAULTCOLOUR_NONE (-1) no colour

REF_DEFAULTCOLOUR_BLACK (-
2)

Full black

REF_DEFAULTCOLOUR_WHITE (-3) Full white

REF_DEFAULTCOLOUR_RED (-4) Full red in RGB model

REF_DEFAULTCOLOUR_GREEN (-
5)

Full green in RGB model

REF_DEFAULTCOLOUR_BLUE (-6) Full blue in RGB model

REF_DEFAULTCOLOUR_CYAN (-7) Full cyan in CMYK model

REF_DEFAULTCOLOUR_MAGENTA
(-8)

Full magenta in CMYK model

 - 311 -

REF_DEFAULTCOLOUR_YELLOW
(-9)

Full yellow in CMYK model

Default Units

The following units are considered defined by default:

Millimetres

Unit reference REF_UNIT_MILLIMETRES (-2)

Unit name Millimetres

Unit abbreviation mm

Size in millipoints 2834.652715

Base unit reference 0 (No base unit)

Numerator 0

Denominator 0

Centimetres

Unit reference REF_UNIT_CENTIMETRES (-3)

Unit name Centimetres

Unit abbreviation cm

Size in millipoints 0 (Based on)

Base unit reference REF_UNIT_MILLIMETRES

Numerator 10.0

Denominator 1.0

 - 312 -

Metres

Unit reference REF_UNIT_METRES (-4)

Unit name Metres

Unit abbreviation m

Size in millipoints 0 (Based on)

Base unit reference REF_UNIT_CENTIMETRES

Numerator 100.0

Denominator 1.0

Kilometres

Unit reference REF_UNIT_KILOMETRES (-5)

Unit name Kilometres

Unit abbreviation km

Size in millipoints 0 (Based on)

Base unit reference REF_UNIT_METRES

Numerator 1000.0

Denominator 1.0

Millipoints

Unit reference REF_UNIT_MILLIPOINTS (-6)

Unit name Millipoints

Unit abbreviation mp

 - 313 -

Size in millipoints 1.0

Base unit reference 0 (No base unit)

Numerator 0.0

Denominator 0.0

Points

Unit reference REF_UNIT_COMP_POINTS (-8)

Unit name Points

Unit abbreviation pt

Size in millipoints 0 (Based on)

Base unit reference REF_UNIT_MILLIPOINTS

Numerator 1000.0

Denominator 1.0

Picas

Unit reference REF_UNIT_PICAS (-8)

Unit name Picas

Unit abbreviation pi

Size in millipoints 0 (Based on)

Base unit reference REF_UNIT_COMP_POINTS

Numerator 12.0

Denominator 1.0

 - 314 -

Inches

Unit reference REF_UNIT_INCHES (-9)

Unit name Inches

Unit abbreviation In

Size in millipoints 0 (Based on)

Base unit reference REF_UNIT_PICAS

Numerator 6.0

Denominator 1.0

Feet

Unit reference REF_UNIT_FEET (-10)

Unit name Feet

Unit abbreviation Ft

Size in millipoints 0 (Based on)

Base unit reference REF_UNIT_INCHES

Numerator 12.0

Denominator 1.0

Yards

Unit reference REF_UNIT_YARDS (-11)

Unit name Yards

 - 315 -

Unit abbreviation Yd

Size in millipoints 0 (Based on)

Base unit reference REF_UNIT_FEET

Numerator 3.0

Denominator 1.0

Miles

Unit reference REF_UNIT_MILES (-12)

Unit name Miles

Unit abbreviation mi

Size in millipoints 0 (Based on)

Base unit reference REF_UNIT_YARDS

Numerator 1760.0

Denominator 1.0

Pixels

Unit reference REF_UNIT_PIXELS (-13)

Unit name Pixels

Unit abbreviation pix

Size in millipoints 750

Base unit reference 0 (No base unit)

Numerator 0.0

 - 316 -

Denominator 0.0

The default page units are REF_UNIT_CENTIMETRES.

The default font units are REF_UNIT_COMP_POINTS

Default Print Marks

Print Mark 0

Mark Type Registration

Orientation Horizontal

Positions 2MC+4MC+6MC+8MC+10MC+12MC+14MC+16MC

Name Information Marks

Print Mark 1

Mark Type Registration

Orientation Horizontal

Positions 2MC+4MC+6MC+8MC+10MC+12MC+14MC+16MC

Name Crop Marks

Print Mark 2

Mark Type Registration

Orientation None

Positions 2MC+4MC+6MC+8MC+10MC+12MC+14MC+16MC

Name Registration targets

 - 317 -

Print Mark 3

Mark Type Star

Orientation None

Positions 1MC + 9MC

Name Registration stars

Print Mark 4

Mark Type GreyBar

Orientation Vertical

Positions 15MC

Name Greyscale bar

Print Mark 5

Mark Type Colour Bar

Orientation Vertical

Positions 7MC

Name Progressive Colour Bar

Print Mark 6

Mark Type Colour Bar

Orientation Vertical

 - 318 -

Positions 11MC

Name Overprinted Colour Bar

Print Mark 7

Mark Type Registration

Orientation Horizontal

Positions 2MC+4MC+6MC+8MC+10MC+12MC+14MC+16MC

Name Long registration targets

 Positions ::= <Region + 1><Format First Letter>+ [+ <Positions>]*

Value Mark Type

Unknown 0

Star 1

Registration 2

ColourBar 3

GreyBar 4

Information 5

Crop 6

Orientation Value

None 0

Vertical 1

Horizontal 2

 - 319 -

A Region is an area on the page, outside the normal document area.

Value Region

TopLeft 0

Top1 1

Top2 2

Top3 3

TopRight 4

Right1 5

Right2 6

Right3 7

BottomRight 8

Bottom3 9

Bottom2 10

Bottom1 11

BottomLeft 12

Left1 13

Left2 14

Left3 15

The Format refers to the position of the print mark within its region.

Format Value

Left 0x01

Centre 0x02

Right 0x04

 - 320 -

Top 0x08

Middle 0x10

Bottom 0x20

 - 321 -

Glossary
Application Record A record that contains information applicable to all documents.

Bitmap graphic An image defined by an array of pixels. Frequently bigger than
a vector graphic but is more suited to photographic images.
Can suffers from loss of visible quality when transformed or
when displayed on hardware whose colour depth or resolution
differ from the bitmap.

Chapter An optional grouping of Spreads.

A Path with its end-point the same as its start-point. c.f. open
path.

Closed path

CorelXARA An Illustration program developed by Xara Group Ltd. which
can read and write Xar files.

Deprecated Said of a program or feature that is considered obsolescent and
in the process of being phased out, usually in favour of a
specified replacement.

Dictionary A cache of Sequence numbers used to maintain references to
records.

Document An optional grouping of Chapters. The root of a subtree whose
children are Chapters.

Often synonymous with 'File' because it's very common for a
file to contain just one Document.

Extension Record A record that provides information to readers so that they can
correctly handle unknown records.

File A stream of bytes.

Often synonymous with "Document".

File identifier A unique set of bytes at the start of the file which identify this
file as a Xar file.

Framework Record A record that doesn't have any direct effect on the image being
described.

GIF 'Graphics Interchange Format', a standard lossless bitmap file
format.

 - 322 -

Group A simple item grouping of number of objects and attributes
together.

Image Record A record that has some direct effect on the image being
described.

JPEG 'Joint Photographic Experts Group', a standard 'lossy' bitmap
file format - particularly suited to representing photographic
images.

Layer A grouping of objects and attributes which controls the
visibility and editability of all the objects on the Layer.

Library A logical grouping of a set of objects e.g. colours and bitmaps.

Navigation Record One of two records, 'Up' and 'Down', that create a tree structure
within the Xar file.

Object A record that defines a renderable entity - something that will
be visible to the user.

Sometimes used in a looser sense as a synonym for Record.
This usage comes from the implementation of Xar Records as
objects in an object oriented language such as C++.

Open path A path with its end points at different locations. c.f. closed
path.

Panose A TrueType font matching system.

Path A sequence of coordinates that describe a line. It can contain
straight and curved sections and be open or closed.

PNG "Portable Network Graphic", a new lossless bitmap file format.

Reader A program that converts the raw bytes of a Xar file into a
usable graphical description and often goes on to render that
description.

Record The elements which make up the data in the Xar file format.
Each records has a standard header consisting of a unique Tag
and a Size field. Following the header is an optional data
section.

Sequence number A number unique to each record in the file, starting at one for
the first and increasing by one for each subsequent record in
the record stream.

Spread An optional grouping of optional pages and Layers.

 - 323 -

Subtree A tree that is inside another tree.

Tag A unique identifier for each record - labels the record 'type' or
'class'.

TIFF 'Tagged Image File Format', a standard encompassing may
different ways of storing bitmaps.

Tree An arrangement of data items (Records) which places each
data item in a list of similar items (siblings) which all share a
common 'root' data item. Each data item can itself be the root
of a tree.

URL 'Uniform Resource Locator' addresses a resource on the
Internet. Typically addresses pages on the World Wide Web.

Vector graphic An image defined in terms of the lines, or 'vectors', that
describe it. Can be more compact than a bitmap. Can be
transformed without loss of quality.

Writer A program that converts a graphic into the raw bytes of a Xar
file.

 - 324 -

	Abstract
	Background
	Status of this Document
	Change log
	Copyright
	Contents
	Introduction
	Why a new format?
	Bitmaps are dumb
	Are current Vector formats the answer?
	Xar format - one step beyond
	What the Xar format can't do (yet)

	Design goals
	Design background

	Xar format overview
	Feature List
	Feature notes
	Current Implementations
	Technical overview
	Records
	Record families
	Streams and Compression
	Byte Stream
	Refined Record Stream
	Record Stream
	Trees and subtrees

	Conventions
	Data Types
	Record Description
	Name of Record or group of Records
	The meaning of the symbols used in record definitions

	File structure
	Byte ordering
	High-level Structure
	Records
	The Tag Guarantee
	Using Diverse Tags to Aid Compression

	Tree Structure
	Rendering Order
	Attributes in the Tree
	Scope
	Precedence
	Effect Attributes
	Attributes in Xara Programs

	Rendering Attributes
	The Rendering Context
	Rendering Attribute Scope
	Default Attributes

	 Notes about Common Data Types
	Co-ordinates
	Strings
	Profiles

	Compression
	The Record Refiner
	Refinement Methods
	Refinement Methods Flags Word
	ZLib Compression
	Application of Zlib compression
	Reusable Data Records
	Sequence Numbers
	Writing Reusable Data Records
	Reading Reusable Data Records
	Default Reusable Data Records

	Document Structure
	Document Structure Records
	Multi-spread documents

	 Other information in Xar files
	Application Records
	Extension Records

	Guidelines for implementers
	The XarLib Library
	Suggestions for implementing a Xar Reader
	Suggested stages of Development
	Attribute stack
	"Un-refining" Paths
	Reading large records
	Coordinates

	Suggestions for Implementing a Xar Writer
	Layout of a legal Xar file
	Algorithms
	Attribute scoping
	Writing large records
	Files don't have to be compressed

	Navigation Records
	Down
	Up

	Framework Records
	File delimiters
	File Header
	End Of File

	Compression records
	Start Compression
	End Compression

	Document Structure Objects
	Document
	Chapter
	Spread
	Spread Information
	Spread Animation Properties
	Flash Animation Properties
	Page
	Layer
	Layer Details
	Guide Layer Details
	Guide-line

	View records
	View Port
	View Quality

	Paths
	Path
	Path Flags
	Path Refinement
	Relative Path Co-ordinates
	Relative Path
	Transformed Path

	Attributes
	Fills
	Flat Fill Colour
	Standard Fill Colours
	Linear Graduated Fill
	Linear Multistage Fill
	Circular Graduated fill
	Circular Multistage fill
	Elliptical Graduated fill
	Elliptical Multistage fill
	Conical Graduated fill
	Conical Multistage fill
	Bitmap Fill
	Contone Bitmap Fill
	Fractal Clouds Fill
	Fractal Noise Fill
	Three-colour Graduated Fill
	Four-colour Graduated Fill
	Diamond Graduated Fill
	Diamond Multistage Fill

	Fill Effects
	Fill Effects

	 Fill Repeat Methods
	Fill Repeating

	Transparency attributes
	Transparency Type
	 Transparent Fills
	Flat Transparent Fill
	Linear Transparent Fill
	Circular Transparent fill
	Elliptical Transparent fill
	Conical Transparent fill
	Bitmap Transparent Fill
	Fractal Clouds Transparent Fill
	Fractal Noise Transparent Fill
	Three-level Transparent Fill
	Four-level Transparent Fill
	Diamond Transparent Fill

	Transparent Fill Repeat Methods
	Transparent Fill Repeating

	Winding Rule Attribute
	Winding Rule

	 Line Attributes
	Line Colour
	Standard Line Colours
	Line Transparency
	Line Width
	Line Caps
	Join Style
	Mitre Limit

	Dash Patterns
	Dash Style
	Define Dash Style

	Arrowheads
	Arrowheads

	Colour records
	Define RGB Colour
	Define Complex Colour
	Fields in a TAG_DEFINECOMPLEXCOLOUR record
	Simple RGB Colour
	Colour Models
	RGB (ColourModel 2)
	CMYK (ColourModel 3)
	 HSV (ColourModel 4)
	Greyscale (ColourModel 5)
	ParentColour
	ColourType
	Normal (ColourType 0)
	Spot (ColourType 1)
	Tint (ColourType 2)
	Linked (ColourType 3)
	Shade (ColourType 4)
	ColourName
	EntryIndex

	Colour parentage

	 User Attributes
	User Value
	Web Address and Web Address Bounded

	Feather
	Feather

	Imagesetting Attributes
	Imagesetting Attributes On
	Imagesetting Attributes Off

	Current Attributes
	Current Attributes
	Current Attribute Bounds

	QuickShapes
	Upright Rectangles and Ellipses
	Upright Rectangle and Upright Ellipse
	Upright Rounded Rectangle
	Non-upright Rectangles and Ellipses
	Polygons
	Polygon
	Rounded Polygon
	Rounded Polygon with Reformed edges
	Polygon with all the trimmings

	Explanations of all the fields in QuickShape records
	Number of sides
	Centre point
	Matrix
	Major axis
	Minor axis
	Curvature, PrimaryCurvature and SecondaryCurvature
	EdgePath, EdgePath1 and EdgePath2
	StellationRadius and StellationOffset
	How the shape is built up
	Building a path for an ellipse
	Building a path for a Polygon

	Blends
	Overview
	The structure
	Blend record
	Blender record
	Blend
	Blender

	Mapping Values
	Blender Additional
	Blend Profiles
	Blend Path
	Blend Path Filled
	Blender Curve Angles

	Blending

	Moulds
	Overview
	The structure
	Mould
	Mould Path
	Mould Group
	Moulder
	Envelope Mould
	Perspective Mould
	Mould Path
	Mould Bounds
	Mould Group

	Envelope Mould Algorithm
	Perspective Mould Algorithm

	Bevels
	Bevel
	Bevel Ink

	Contours
	Contour Controller
	Contour

	Shadows
	Shadow Controller
	Shadow

	Brushes
	Brush Definition
	Brush Data
	More Brush Data
	Even More Brush Data
	Brush Pressure Info
	Brush Transparency Info
	Brush Attribute
	More Brush Attribute Data
	Even More Brush Attribute Data
	Brush Attribute Fill Flags
	Brush Attribute Pressure Info
	Brush Attribute Transparency Info
	Brush Timestamp Data
	Brush Timestamp Data
	Stroke Type Attribute
	Variable Width Definition

	ClipView
	ClipView Controller
	ClipView
	ClipViewPath

	Text
	Overview
	Text structure
	Text structure records
	Text story object
	Text string
	Text string position
	Text character
	Kerning code
	Horizontal tab
	Text Cursor or “caret”
	Text line
	Text line information
	Text word wrapping information
	Text indent information
	Text area height information
	Text story link information
	Text area translation information

	Text Attributes
	Line spacing attribute for lines of text
	Line spacing attribute for lines of text
	Line spacing attribute for lines of text
	Justification attributes
	Font size attribute for characters
	Text Effect “On” attributes
	Text Effect “Off” attributes
	Tracking attribute for text characters
	Aspect ratio attribute for text characters
	Baseline shift attribute for text characters
	Aspect ratio attribute for text characters
	Aspect ratio attribute for text characters

	Fonts and Typeface attributes
	Introduction
	Some terminology
	Information required by a text story
	Font specification

	The PANOSE font classification system
	Font Matching
	Font attribute

	Fitting Text to Paths
	Text story fitted to a path
	Text story fitted to a path
	Reflective variants

	Bitmaps
	Embedded bitmaps
	Preview Bitmap
	Preview Bitmap GIF
	Preview Bitmap JPEG
	Preview Bitmap PNG
	 Bitmap references
	Bitmap Definition Records
	Define Bitmap JPEG
	Define Bitmap 8bpp JPEG
	Define Bitmap PNG
	Bitmap Properties
	XPE Bitmap Definition
	XPE Bitmap Properties

	Unknown bitmaps
	 Contone Bitmap Objects
	 Document Bitmap Objects
	Bitmap Object
	Contone Bitmap Object

	Bitmap Effect Records
	Live Effect
	Locked Effect
	Feather Effect

	Other Image Records
	Group
	Quality
	Set Sentinel
	Wizard Property
	Set Property
	Bar Property
	Object Bounds
	Compound Render Hint
	TAG_GROUP
	TAG_LIVE_EFFECT, TAG_LOCKED_EFFECT, TAG_FEATHER_EFFECT
	TAG_BLEND, TAG_CLIPVIEWCONTROLLER

	Application Records
	Document Comment
	Spread information
	Spread scaling active
	Spread scaling inactive
	Grid and Page Ruler settings
	Grid and Ruler Origin
	Nudge Offset
	Duplication Offset

	Extra Document Information
	Document Dates
	Document Flags
	Document Structure Information
	Undo Size
	Document View
	Export Hint
	Document Bitmap Smoothing

	Printing information
	Printer Settings
	Imagesetting Options
	Colour Plate Settings
	Document Print Marks

	Units
	Defining units in terms of other units
	Define Prefix User Unit
	Define Default Units

	Extendibility
	Atomic Records
	Essential Records
	Tag Descriptions

	Depreceated Records
	Records deprecated in Version 1.0
	Permutation Rectangle Records
	Permutation Polygon records
	Unconditional fully qualified QuickShape records
	Unconditional fully qualified QuickShape record

	Appendix A
	Complete List of Xar Tags

	Appendix B
	Lists of Default Values
	Default Attributes
	Default arrowheads and tails
	REF_ARROW_NULL
	REF_ARROW_STRAIGHT
	REF_ARROW_ANGLED
	REF_ARROW_ROUNDED
	REF_ARROW_SPOT
	REF_ARROW_DIAMOND
	REF_ARROW_FEATHER
	REF_ARROW_FEATHER2
	REF_ARROW_HOLLOWDIAMOND

	Default dash patterns
	REF_DASH_SOLID
	REF_DASH_1
	REF_DASH_2
	REF_DASH_3
	REF_DASH_4
	REF_DASH_5
	REF_DASH_6
	REF_DASH_7
	REF_DASH_8
	REF_DASH_9
	REF_DASH_10
	REF_DASH_11
	REF_DASH_12
	REF_DASH_13
	REF_DASH_14
	REF_DASH_15
	REF_DASH_16
	REF_DASH_17
	REF_DASH_18
	REF_DASH_19
	REF_DASH_20
	REF_DASH_GUIDELAYER

	Default colours
	Default Units
	Millimetres
	Centimetres
	Metres
	Kilometres
	Millipoints
	Points
	Picas
	Inches
	Feet
	Yards
	Miles
	Pixels

	Default Print Marks

	Glossary

