Expected Degree Sequence#

Random graph from given degree sequence.

Degree histogram
degree (#nodes) ****
 0 ( 0)
 1 ( 0)
 2 ( 0)
 3 ( 0)
 4 ( 0)
 5 ( 0)
 6 ( 0)
 7 ( 0)
 8 ( 0)
 9 ( 0)
10 ( 0)
11 ( 0)
12 ( 0)
13 ( 0)
14 ( 0)
15 ( 0)
16 ( 0)
17 ( 0)
18 ( 0)
19 ( 0)
20 ( 0)
21 ( 0)
22 ( 0)
23 ( 0)
24 ( 0)
25 ( 0)
26 ( 0)
27 ( 0)
28 ( 0)
29 ( 0)
30 ( 0)
31 ( 0)
32 ( 0)
33 ( 1) *
34 ( 0)
35 ( 2) **
36 ( 3) ***
37 ( 3) ***
38 ( 3) ***
39 (11) ***********
40 ( 4) ****
41 (16) ****************
42 ( 5) *****
43 (19) *******************
44 (11) ***********
45 (25) *************************
46 (20) ********************
47 (27) ***************************
48 (24) ************************
49 (37) *************************************
50 (25) *************************
51 (23) ***********************
52 (30) ******************************
53 (33) *********************************
54 (32) ********************************
55 (22) **********************
56 (25) *************************
57 (26) **************************
58 (15) ***************
59 (13) *************
60 (11) ***********
61 ( 7) *******
62 (10) **********
63 ( 1) *
64 ( 4) ****
65 ( 5) *****
66 ( 3) ***
67 ( 1) *
68 ( 1) *
69 ( 2) **

import networkx as nx

# make a random graph of 500 nodes with expected degrees of 50
n = 500  # n nodes
p = 0.1
w = [p * n for i in range(n)]  # w = p*n for all nodes
G = nx.expected_degree_graph(w)  # configuration model
print("Degree histogram")
print("degree (#nodes) ****")
dh = nx.degree_histogram(G)
for i, d in enumerate(dh):
    print(f"{i:2} ({d:2}) {'*'*d}")

Total running time of the script: (0 minutes 0.025 seconds)

Gallery generated by Sphinx-Gallery