Typeguard
Release 2.13.3

Alex Gronholm

Jan 20, 2023

CONTENTS

1 Quick links 3
Python Module Index 13

Index 15

Typeguard, Release 2.13.3

This library provides run-time type checking for functions defined with PEP 484 argument (and return) type annotations.
Four principal ways to do type checking are provided, each with its pros and cons:
1. the check_argument_types() and check_return_type() functions:
* debugger friendly (except when running with the pydev debugger with the C extension installed)
¢ does not work reliably with dynamically defined type hints (e.g. in nested functions)
2. the @typechecked decorator:
» automatically type checks yields and sends of returned generators (regular and async)
¢ adds an extra frame to the call stack for every call to a decorated function
3. the stack profiler hook (with TypeChecker('packagename'):) (deprecated):
* emits warnings instead of raising TypeError
* requires very few modifications to the code
» multiple TypeCheckers can be stacked/nested
* does not work reliably with dynamically defined type hints (e.g. in nested functions)
* may cause problems with badly behaving debuggers or profilers
* cannot distinguish between an exception being raised and a None being returned
4. the import hook (typeguard.importhook.install_import_hook()):
* automatically annotates classes and functions with @typechecked on import
* no code changes required in target modules
* requires imports of modules you need to check to be deferred until after the import hook has been installed

* may clash with other import hooks

CONTENTS 1

https://travis-ci.com/agronholm/typeguard
https://coveralls.io/github/agronholm/typeguard?branch=master
https://typeguard.readthedocs.io/en/latest/?badge=latest
https://www.python.org/dev/peps/pep-0484/

Typeguard, Release 2.13.3

2 CONTENTS

CHAPTER
ONE

QUICK LINKS

1.1 User guide

1.1.1 Using type checker functions

Two functions are provided, potentially for use with the assert statement:
¢ check_argument_types()
¢ check_return_type()

These can be used to implement fine grained type checking for select functions. If the function is called with incom-
patible types, or check_return_type() is used and the return value does not match the return type annotation, then
a TypeError is raised.

For example:

from typeguard import check_argument_types, check_return_type

def some_function(a: int, b: float, c: str, *args: str) -> bool:
assert check_argument_types()

assert check_return_type(retval)
return retval

When combined with the assert statement, these checks are automatically removed from the code by the com-
piler when Python is executed in optimized mode (by passing the -0 switch to the interpreter, or by setting the
PYTHONOPTIMIZE environment variable to 1 (or higher).

Note: This method is not reliable when used in nested functions (i.e. functions defined inside other functions). This
is because this operating mode relies on finding the correct function object using the garbage collector, and when a
nested function is running, its function object may no longer be around anymore, as it is only bound to the closure of
the enclosing function. For this reason, it is recommended to use @typechecked instead for nested functions.

Typeguard, Release 2.13.3

1.1.2 Using the decorator

The simplest way to type checking of both argument values and the return value for a single function is to use the
@typechecked decorator:

from typeguard import typechecked

@typechecked
def some_function(a: int, b: float, c: str, *args: str) -> bool:

return retval

@typechecked
class SomeClass:
All type annotated methods (including static and class methods and properties)
are type checked.
Does not apply to inner classes!
def method(x: int) -> int:

The decorator works just like the two previously mentioned checker functions except that it has no issues with nested
functions. The drawback, however, is that it adds one stack frame per wrapped function which may make debugging
harder.

When a generator function is wrapped with @typechecked, the yields, sends and the return value are also type checked
against the Generator annotation. The same applies to the yields and sends of an async generator (annotated with
AsyncGenerator).

Note: The decorator also respects the optimized mode setting so it does nothing when the interpreter is running in
optimized mode.

1.1.3 Using the profiler hook

Deprecated since version 2.6: Use the import hook instead. The profiler hook will be removed in v3.0.

This type checking approach requires no code changes, but does come with a number of drawbacks. It relies on setting
a profiler hook in the interpreter which gets called every time a new Python stack frame is entered or exited.

The easiest way to use this approach is to use a TypeChecker as a context manager:

from warnings import filterwarnings
from typeguard import TypeChecker, TypeWarning

Display all TypelWarnings, not just the first one
filterwarnings('always', category=TypeWarning)

Run your entire application inside this context block
with TypeChecker(['mypackage', 'otherpackage']):
mypackage.run_app()

Alternatively, manually start (and stop) the checker:

4 Chapter 1. Quick links

Typeguard, Release 2.13.3

checker = TypeChecker(['mypackage', 'otherpackage'])
checker.start()
mypackage.start_app()

The profiler hook approach has the following drawbacks:
 Return values of None are not type checked, as they cannot be distinguished from exceptions being raised

* The hook relies on finding the target function using the garbage collector which may make it miss some type
violations, especially with nested functions

» Generator yield types are checked, send types are not
* Generator yields cannot be distinguished from returns

* Async generators are not type checked at all

Hint: Some other things you can do with TypeChecker:
* Display all warnings from the start with python -W always: :typeguard.TypeWarning
* Redirect them to logging using logging.captureWWarnings ()

* Record warnings in your pytest test suite and fail test(s) if you get any (see the pytest documentation about that)

1.1.4 Using the import hook

The import hook, when active, automatically decorates all type annotated functions with @typechecked. This allows
for a noninvasive method of run time type checking. This method does not modify the source code on disk, but instead
modifies its AST (Abstract Syntax Tree) when the module is loaded.

Using the import hook is as straightforward as installing it before you import any modules you wish to be type checked.
Give it the name of your top level package (or a list of package names):

from typeguard.importhook import install_import_hook

install_import_hook('myapp"')
from myapp import some_module # import only AFTER installing the hook, or it won't take.
—effect

If you wish, you can uninstall the import hook:

manager = install_import_hook('myapp')
from myapp import some_module
manager.uninstall ()

or using the context manager approach:

with install_import_hook('myapp'):
from myapp import some_module

You can also customize the logic used to select which modules to instrument:

from typeguard.importhook import TypeguardFinder, install_import_hook

(continues on next page)

1.1. User guide 5

http://doc.pytest.org/en/latest/warnings.html#assertwarnings

Typeguard, Release 2.13.3

(continued from previous page)

class CustomFinder(TypeguardFinder):
def should_instrument(self, module_name: str):
disregard the module names list and instrument all loaded modules
return True

install_import_hook('', cls=CustomFinder)

To exclude specific functions or classes from run time type checking, use the @typeguard_ignore decorator:

from typeguard import typeguard_ignore

@typeguard_ignore
def f(x: int) -> int:
return str(x)

Unlike no_type_check(), this decorator has no effect on static type checking.

1.1.5 Using the pytest plugin

Typeguard comes with a pytest plugin that installs the import hook (explained in the previous section). To use it, run
pytest with the appropriate --typeguard-packages option. For example, if you wanted to instrument the foo.bar
and xyz packages for type checking, you can do the following:

pytest --typeguard-packages=foo.bar,xyz

There is currently no support for specifying a customized module finder.

1.1.6 Checking types directly

Typeguard can also be used as a beefed-up version of isinstance() that also supports checking against annotations
in the typing module:

from typeguard import check_type

Raises TypeError if there's a problem
check_type('variablename', [1234], List[int])

1.1.7 Support for mock objects

Typeguard handles the unittest.mock.Mock and unittest.mock.MagicMock classes specially, bypassing any type
checks when encountering instances of these classes.

6 Chapter 1. Quick links

Typeguard, Release 2.13.3

1.1.8 Supported typing.* types

The following types from the typing (and typing_extensions) package have specialized support:

Type | Notes

Abstradi&eents are typechecked

Callaplergument count is checked but types are not (yet)

Dict | Keys and values are typechecked

List | Contents are typechecked

Literal

Named[Tugidkl values are typechecked

NoReturn

Protocdun-time protocols are checked with isinstance(), others are ignored
Set Contents are typechecked

Sequend@ontents are typechecked

Tuple| Contents are typechecked

Type
TypedDidintents are typechecked; On Python 3.8 and earlier, total from superclasses is not respected (see #101
for more information); On Python 3.9.0 or typing_extensions <= 3.7.4.3, false positives can happen
when constructing TypedDict classes using old-style syntax (see issue 42059)

TypeVaxConstraints, bound types and co/contravariance are supported but custom generic types are not (due to type
erasure)

Union

1.2 API reference

1.2.1 typeguard

1.2.2 typeguard.importhook
1.3 Version history

This library adheres to Semantic Versioning 2.0.
2.13.3 (2021-12-10)
* Fixed TypeError when using typeguard within exec() (where __module__ is None) (PR by Andy Jones)

 Fixed TypedDict causing TypeError: TypedDict does not support instance and class checks
on Python 3.8 with standard library (not typing_extensions) typed dicts

2.13.2 (2021-11-23)

* Fixed typing_extensions being imported unconditionally on Python < 3.9 (bug introduced in 2.13.1)
2.13.1 (2021-11-23)

* Fixed @typechecked replacing abstract properties with regular properties

* Fixed any generic type subclassing Dict being mistakenly checked as TypedDict on Python 3.10
2.13.0 (2021-10-11)

* Added support for returning NotImplemented from binary magic methods (__eq__() et al)

1.2. API reference 7

https://github.com/agronholm/typeguard/issues/101
https://bugs.python.org/issue42059
https://semver.org/#semantic-versioning-200

Typeguard, Release 2.13.3

Added support for checking union types (e.g. Type[Union[X, Y]])

Fixed error message when a check against a Literal fails in a union on Python 3.10

Fixed NewType not being checked on Python 3.10

Fixed unwarranted warning when @typechecked is applied to a class that contains unannotated properties
Fixed TypeError in the async generator wrapper due to changes in __aiter__() protocol

Fixed broken TypeVar checks — variance is now (correctly) disregarded, and only bound types and constraints
are checked against (but type variable resolution is not done)

2.12.1 (2021-06-04)

Fixed AttributeError when __code__ is missing from the checked callable (PR by epenet)

2.12.0 (2021-04-01)

Added @typeguard_ignore decorator to exclude specific functions and classes from runtime type checking
(PR by Claudio Jolowicz)

2.11.1 (2021-02-16)

Fixed compatibility with Python 3.10

2.11.0 (2021-02-13)

Added support for type checking class properties (PR by Ethan Pronovost)
Fixed static type checking of @typechecked decorators (PR by Kenny Stauffer)
Fixed wrong error message when type check against a bytes declaration fails
Allowed memoryview objects to pass as bytes (like MyPy does)

Shortened tracebacks (PR by prescod)

2.10.0 (2020-10-17)

Added support for Python 3.9 (PR by Csergd Bélint)

Added support for nested Literal

Added support for TypedDict inheritance (with some caveats; see the user guide on that for details)
An appropriate TypeError is now raised when encountering an illegal Literal value

Fixed checking NoReturn on Python < 3.8 when typing_extensions was not installed

Fixed import hook matching unwanted modules (PR by Wouter Bolsterlee)

Install the pytest plugin earlier in the test run to support more use cases (PR by Wouter Bolsterlee)

2.9.1 (2020-06-07)

Fixed ImportError on Python < 3.8 when typing_extensions was not installed

2.9.0 (2020-06-06)

Upped the minimum Python version from 3.5.2 to 3.5.3

Added support for typing.NoReturn

Added full support for typing_extensions (now equivalent to support of the typing module)

Added the option of supplying check_type () with globals/locals for correct resolution of forward references

Fixed erroneous TypeError when trying to check against non-runtime typing.Protocol (skips the check for
now until a proper compatibility check has been implemented)

Chapter 1. Quick links

Typeguard, Release 2.13.3

Fixed forward references in TypedDict not being resolved

Fixed checking against recursive types

2.8.0 (2020-06-02)

Added support for the Mock and MagicMock types (PR by prescod)

Added support for typing_extensions.Literal (PR by Ryan Rowe)

Fixed unintended wrapping of untyped generators (PR by prescod)

Fixed checking against bound type variables with check_type () without a call memo

Fixed error message when checking against a Union containing a Literal

2.7.1 (2019-12-27)

Fixed @typechecked returning None when called with always=True and Python runs in optimized mode

Fixed performance regression introduced in v2.7.0 (the getattr_static() call was causing a 3x slowdown)

2.7.0 (2019-12-10)

Added support for typing.Protocol subclasses

Added support for typing.AbstractSet

Fixed the handling of total=False in TypedDict

Fixed no error reported on unknown keys with TypedDict

Removed support of default values in TypedDict, as they are not supported in the spec

2.6.1 (2019-11-17)

Fixed import errors when using the import hook and trying to import a module that has both a module docstring
and __future__ imports in it

Fixed AttributeError when using @typechecked on a metaclass

Fixed @typechecked compatibility with built-in function wrappers

Fixed type checking generator wrappers not being recognized as generators

Fixed resolution of forward references in certain cases (inner classes, function-local classes)

Fixed AttributeError when a class has contains a variable that is an instance of a class thathasa __call__(Q)
method

Fixed class methods and static methods being wrapped incorrectly when @typechecked is applied to the class

Fixed AttributeError when @typechecked is applied to a function that has been decorated with a decorator
that does not properly wrap the original (PR by Joel Beach)

Fixed collections with mixed value (or key) types raising TypeError on Python 3.7+ when matched against
unparametrized annotations from the typing module

Fixed inadvertent TypeError when checking against a type variable that has constraints or a bound type ex-
pressed as a forward reference

2.6.0 (2019-11-06)

Added a PEP 302 import hook for annotating functions and classes with @typechecked
Added a pytest plugin that activates the import hook

Added support for typing.TypedDict

Deprecated TypeChecker (will be removed in v3.0)

1.3. Version history 9

https://peps.python.org/pep-0302/

Typeguard, Release 2.13.3

2.5.1 (2019-09-26)

* Fixed incompatibility between annotated Iterable, Iterator, AsyncIterable or AsyncIterator return
types and generator/async generator functions

¢ Fixed TypeError being wrapped inside another TypeError (PR by russok)
2.5.0 (2019-08-26)

Added yield type checking via TypeChecker for regular generators

Added yield, send and return type checking via @typechecked for regular and async generators
* Silenced TypeChecker warnings about async generators

* Fixed bogus TypeError on Type[Any]

* Fixed bogus TypeChecker warnings when an exception is raised from a type checked function

* Accept a bytearray where bytes are expected, as per python/typing#552

Added policies for dealing with unmatched forward references
* Added support for using @typechecked as a class decorator
* Added check_return_type() to accompany check_argument_types()
¢ Added Sphinx documentation
2.4.1 (2019-07-15)
* Fixed broken packaging configuration
2.4.0 (2019-07-14)
e Added PEP 561 support
* Added support for empty tuples (Tuple[(1)
* Added support for typing.Literal
* Make getting the caller frame faster (PR by Nick Sweeting)
2.3.1 (2019-04-12)
* Fixed thread safety issue with the type hints cache (PR by Kelsey Francis)
2.3.0 (2019-03-27)
* Added support for typing.IO and derivatives
* Fixed return type checking for coroutine functions
* Dropped support for Python 3.4
2.2.2 (2018-08-13)
* Fixed false positive when checking a callable against the plain typing.Callable on Python 3.7
2.2.1 (2018-08-12)

* Argument type annotations are no longer unioned with the types of their default values, except in the case of
None as the default value (although PEP 484 still recommends against this)

* Fixed some generic types (typing.Collection among others) producing false negatives on Python 3.7
» Shortened unnecessarily long tracebacks by raising a new TypeError based on the old one

* Allowed type checking against arbitrary types by removing the requirement to supply a call memo to
check_type()

10 Chapter 1. Quick links

https://github.com/python/typing/issues/552
https://peps.python.org/pep-0561/

Typeguard, Release 2.13.3

* Fixed AttributeError when running with the pydev debugger extension installed
* Fixed getting type names on typing.* on Python 3.7 (fix by Dale Jung)
2.2.0 (2018-07-08)
* Fixed compatibility with Python 3.7
* Removed support for Python 3.3
* Added support for typing.NewType (contributed by reinhrst)
2.1.4 (2018-01-07)
* Removed support for backports.typing, as it has been removed from PyPI
¢ Fixed checking of the numeric tower (complex -> float -> int) according to PEP 484
2.1.3 (2017-03-13)
* Fixed type checks against generic classes
2.1.2 (2017-03-12)
* Fixed leak of function objects (should’ve used a WeakValueDictionary instead of WeakKeyDictionary)
* Fixed obscure failure of TypeChecker when it’s unable to find the function object
* Fixed parametrized Type not working with type variables
» Fixed type checks against variable positional and keyword arguments
2.1.1 (2016-12-20)
¢ Fixed formatting of README.rst so it renders properly on PyPI
2.1.0 (2016-12-17)
* Added support for typings.Type (available in Python 3.5.2+)
* Added a third, sys.setprofile() based type checking approach (typeguard.TypeChecker)
* Changed certain type error messages to display “function” instead of the function’s qualified name
2.0.2 (2016-12-17)
* More Python 3.6 compatibility fixes (along with a broader test suite)
2.0.1 (2016-12-10)
* Fixed additional Python 3.6 compatibility issues
2.0.0 (2016-12-10)
* BACKWARD INCOMPATIBLE Dropped Python 3.2 support
* Fixed incompatibility with Python 3.6
* Use inspect.signature() in place of inspect.getfullargspec
* Added support for typing.NamedTuple
1.2.3 (2016-09-13)
* Fixed @typechecked skipping the check of return value type when the type annotation was None
1.2.2 (2016-08-23)
* Fixed checking of homogenous Tuple declarations (Tuple[bool, ...])
1.2.1 (2016-06-29)

1.3. Version history 11

Typeguard, Release 2.13.3

* Use backports.typing when possible to get new features on older Pythons
* Fixed incompatibility with Python 3.5.2
1.2.0 (2016-05-21)
* Fixed argument counting when a class is checked against a Callable specification
 Fixed argument counting when a functools.partial object is checked against a Callable specification
* Added checks against mandatory keyword-only arguments when checking against a Callable specification
1.1.3 (2016-05-09)
* Gracefully exit if check_type_arguments can’t find a reference to the current function
1.1.2 (2016-05-08)
* Fixed TypeError when checking a builtin function against a parametrized Callable
1.1.1 (2016-01-03)
* Fixed improper argument counting with bound methods when typechecking callables
1.1.0 (2016-01-02)
 Eliminated the need to pass a reference to the currently executing function to check_argument_types()
1.0.2 (2016-01-02)
* Fixed types of default argument values not being considered as valid for the argument
1.0.1 (2016-01-01)

* Fixed type hints retrieval being done for the wrong callable in cases where the callable was wrapped with one or
more decorators

1.0.0 (2015-12-28)

e Initial release

12 Chapter 1. Quick links

PYTHON MODULE INDEX

t

typeguard, 7
typeguard. importhook, 7

13

Typeguard, Release 2.13.3

14 Python Module Index

M

module
typeguard, 7
typeguard. importhook, 7

F)

Python Enhancement Proposals
PEP 302, 9
PEP 561, 10

T

typeguard
module, 7
typeguard. importhook
module, 7

INDEX

15

	Quick links
	User guide
	Using type checker functions
	Using the decorator
	Using the profiler hook
	Using the import hook
	Using the pytest plugin
	Checking types directly
	Support for mock objects
	Supported typing.* types

	API reference
	typeguard
	typeguard.importhook

	Version history

	Python Module Index
	Index

