Typeguard

Release 4.1.5

Alex Gronholm

Oct 26, 2023

CONTENTS

1 Quick links 3
Python Module Index 31

Index 33

Typeguard, Release 4.1.5

This library provides run-time type checking for functions defined with PEP 484 argument (and return) type annotations,
and any arbitrary objects. It can be used together with static type checkers as an additional layer of type safety, to catch
type violations that could only be detected at run time.

Two principal ways to do type checking are provided:
1. The check_type function:
* like isinstance (), but supports arbitrary type annotations (within limits)
* can be used as a cast () replacement, but with actual checking of the value
2. Code instrumentation:

* entire modules, or individual functions (via @typechecked) are recompiled, with type checking code in-
jected into them

* automatically checks function arguments, return values and assignments to annotated local variables
* for generator functions (regular and async), checks yield and send values
* requires the original source code of the instrumented module(s) to be accessible
Two options are provided for code instrumentation:

1. the @typechecked function:
* can be applied to functions individually

2. the import hook (typeguard.install_import_hook()):
¢ automatically instruments targeted modules on import
* no manual code changes required in the target modules
* requires the import hook to be installed before the targeted modules are imported

* may clash with other import hooks

CONTENTS 1

https://github.com/agronholm/typeguard/actions/workflows/test.yml
https://coveralls.io/github/agronholm/typeguard?branch=master
https://typeguard.readthedocs.io/en/latest/?badge=latest
https://www.python.org/dev/peps/pep-0484/

Typeguard, Release 4.1.5

2 CONTENTS

CHAPTER
ONE

QUICK LINKS

1.1 User guide

1.1.1 Checking types directly

The most straightfoward way to do type checking with Typeguard is with check_type (). It can be used as as a
beefed-up version of isinstance() that also supports checking against annotations in the typing module:

from typeguard import check_type

Raises TypeCheckError if there's a problem
check_type([1234], List[int])

It’s also useful for safely casting the types of objects dynamically constructed from external sources:

import json
from typing import List, TypedDict

from typeguard import check_type

Example contents of "people.json":

#[

{"name": "John Smith", "phone": "111-123123", "address'": "123 Main Street"},
{"name": "Jane Smith", "phone": "111-456456", "address'": "123 Main Street"}

1

class Person(TypedDict):
name: str
phone: str
address: str

with open('"people.json") as f:
people = check_type(json.load(f), List[Person])

With this code, static type checkers will recognize the type of people to be List [Person].

Typeguard, Release 4.1.5

1.1.2 Using the decorator

The @typechecked decorator is the simplest way to add type checking on a case-by-case basis. It can be used on
functions directly, or on entire classes, in which case all the contained methods are instrumented:

from typeguard import typechecked

@typechecked
def some_function(a: int, b: float, c: str, *args: str) -> bool:

return retval

@typechecked
class SomeClass:
All type annotated methods (including static and class methods and properties)
are type checked.
Does not apply to inner classes!
def method(x: int) -> int:

The decorator instruments functions by fetching the source code, parsing it to an abstract syntax tree using ast.
parse(), modifying it to add type checking, and finally compiling the modified AST into byte code. This code is then
used to make a new function object that is used to replace the original one.

To explicitly set type checking options on a per-function basis, you can pass them as keyword arguments to
@typechecked:

from typeguard import CollectionCheckStrategy, typechecked

@typechecked(collection_check_strategy=CollectionCheckStrategy.ALL_ITEMS)
def some_function(a: int, b: float, c: str, *args: str) -> bool:

return retval

This also allows you to override the global options for specific functions when using the import hook.

Note: You should always place this decorator closest to the original function, as it will not work when there is another
decorator wrapping the function. For the same reason, when you use it on a class that has wrapping decorators on its
methods, such methods will not be instrumented. In contrast, the import hook has no such restrictions.

1.1.3 Using the import hook

The import hook, when active, automatically instruments all type annotated functions to type check arguments, return
values and values yielded by or sent to generator functions. This allows for a non-invasive method of run time type
checking. This method does not modify the source code on disk, but instead modifies its AST (Abstract Syntax Tree)
when the module is loaded.

Using the import hook is as straightforward as installing it before you import any modules you wish to be type checked.
Give it the name of your top level package (or a list of package names):

from typeguard import install_import_hook

(continues on next page)

4 Chapter 1. Quick links

Typeguard, Release 4.1.5

(continued from previous page)
install_import_hook('myapp')
from myapp import some_module # import only AFTER installing the hook, or it won't take.
—effect

If you wish, you can uninstall the import hook:

manager = install_import_hook('myapp")
from myapp import some_module
manager.uninstall()

or using the context manager approach:

with install_import_hook('myapp'):
from myapp import some_module

You can also customize the logic used to select which modules to instrument:

from typeguard import TypeguardFinder, install_import_hook

class CustomFinder(TypeguardFinder):
def should_instrument(self, module_name: str):
disregard the module names list and instrument all loaded modules
return True

install_import_hook('', cls=CustomFinder)

1.1.4 Notes on forward reference handling

The internal type checking functions, injected to instrumented code by either @typechecked or the import hook,
use the “naked” versions of any annotations, undoing any quotations in them (and the effects of from __future__
import annotations). As such, in instrumented code, the forward_ref_policy only applies when using type
variables containing forward references, or type aliases likewise containing forward references.

To facilitate the use of types only available to static type checkers, Typeguard recognizes module-level imports guarded
by if typing.TYPE_CHECKING: or if TYPE_CHECKING: (add the appropriate typing imports). Imports made
within such blocks on the module level will be replaced in calls to internal type checking functions with Any.

1.1.5 Using the pytest plugin

Typeguard comes with a pytest plugin that installs the import hook (explained in the previous section). To use it, run
pytest with the appropriate --typeguard-packages option. For example, if you wanted to instrument the foo.bar
and xyz packages for type checking, you can do the following:

pytest --typeguard-packages=foo.bar,xyz

There is currently no support for specifying a customized module finder.

1.1. User guide 5

Typeguard, Release 4.1.5

1.1.6 Setting configuration options

There are several configuration options that can be set that influence how type checking is done. The typeguard.
config (which is of type TypeCheckConfiguration) controls the options applied to code instrumented via either
@typechecked or the import hook. The check_type (), function, however, uses the built-in defaults and is not
affected by the global configuration, so you must pass any configuration overrides explicitly with each call.

You can also override specific configuration options in instrumented functions (or entire classes) by passing keyword
arguments to @typechecked. You can do this even if you're using the import hook, as the import hook will remove the
decorator to ensure that no double instrumentation takes place. If you're using the import hook to type check your code
only during tests and don’t want to include typeguard as a run-time dependency, you can use a dummy replacement
for the decorator.

For example, the following snippet will only import the decorator during a pytest run:

import sys

if "pytest" in sys.modules:

from typeguard import typechecked
else:

from typing import TypeVar

_T = TypeVar("_T")

def typechecked(target: _T, **kwargs) -> _T:
return target if target else typechecked

1.1.7 Suppressing type checks

Temporarily disabling type checks

If you need to temporarily suppress type checking, you can use the suppress_type_checks () function, either as a
context manager or a decorator, to skip the checks:

from typeguard import check_type, suppress_type_checks

with suppress_type_checks():
check_type(l, str) # would fail without the suppression

@suppress_type_checks
def my_suppressed_function(x: int) -> None:

Suppression state is tracked globally. Suppression ends only when all the context managers have exited and all calls to
decorated functions have returned.

6 Chapter 1. Quick links

https://docs.pytest.org/

Typeguard, Release 4.1.5

Permanently suppressing type checks for selected functions

To exclude specific functions from run time type checking, you can use one of the following decorators:
e @typeguard_ignore: prevents the decorated function from being instrumentated by the import hook
* @no_type_check: as above, but disables static type checking too

For example, calling the function defined below will not result in a type check error when the containing module is
instrumented by the import hook:

from typeguard import typeguard_ignore

@typeguard_ignore
def f(x: int) -> int:
return str(x)

Warning: The @no_type_check_decorator decorator is not currently recognized by Typeguard.

1.1.8 Suppressing the @typechecked decorator in production

If you’re using the @typechecked decorator to gradually introduce run-time type checks to your code base, you can
disable the checks in production by running Python in optimized mode (as opposed to debug mode which is the default
mode). You can do this by either starting Python with the -0 or -00 option, or by setting the PY THONOPTIMIZE
environment variable. This will cause @typechecked to become a no-op when the import hook is not being used to
instrument the code.

1.1.9 Debugging instrumented code

If you find that your code behaves in an unexpected fashion with the Typeguard instrumentation in place, you should
set the typeguard.config.debug_instrumentation flag to True. This will print all the instrumented code after
the modifications, which you can check to find the reason for the unexpected behavior.

If you're using the pytest plugin, you can also pass the --typeguard-debug-instrumentation and -s flags together
for the same effect.

1.2 Features

1.2.1 What does Typeguard check?

The following type checks are implemented in Typeguard:
* Types of arguments passed to instrumented functions
* Types of values returned from instrumented functions
* Types of values yielded from instrumented generator functions
» Types of values sent to instrumented generator functions

* Types of values assigned to local variables within instrumented functions

1.2. Features 7

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONOPTIMIZE

Typeguard, Release 4.1.5

1.2.2 What does Typeguard NOT check?

The following type checks are not yet supported in Typeguard:
* Types of values assigned to class or instance variables
* Types of values assigned to global or nonlocal variables
* Stubs defined with @overload (the implementation is checked if instrumented)
* yield_£from statements in generator functions
* ParamSpec and Concatenate are currently ignored

* Types where they are shadowed by arguments with the same name (e.g. def foo(x: type, type: str):

)

1.2.3 Other limitations

Local references to nested classes

Forward references from methods pointing to non-local nested classes cannot currently be resolved:

class Outer:
class Inner:
pass

Cannot be resolved as the name is no longer available
def method(self) -> "Inner":
return Outer.Inner()

This shortcoming may be resolved in a future release.

Using @typechecked on top of other decorators

As @typechecked works by recompiling the target function with instrumentation added, it needs to replace all the
references to the original function with the new one. This could be impossible when it’s placed on top of another
decorator that wraps the original function. It has no way of telling that other decorator that the target function should
be switched to a new one. To work around this limitation, either place @typechecked at the bottom of the decorator
stack, or use the import hook instead.

1.2.4 Special considerations for if TYPE_CHECKING:

Both the import hook and @typechecked avoid checking against anything imported in a module-level if
TYPE_CHECKING: (or if typing.TYPE_CHECKING:) block, since those types will not be available at run time. There-
fore, no errors or warnings are emitted for such annotations, even when they would normally not be found.

8 Chapter 1. Quick links

Typeguard, Release 4.1.5

1.2.5 Support for generator functions

For generator functions, the checks applied depend on the function’s return annotation. For example, the following
function gets its yield, send and return values type checked:

from collections.abc import Generator

def my_generator() -> Generator[int, str, bool]:
a = yield 6
return True

In contrast, the following generator function only gets its yield value checked:

from collections.abc import Iterator

def my_generator() -> Iterator[int]:
a = yield 6
return True

Asynchronous generators work just the same way, except they don’t support returning values other than None, so the
annotation only has two items:

from collections.abc import AsyncGenerator

async def my_generator() -> AsyncGenerator[int, str]:
a = yield 6

Overall, the following type annotations will work for generator function type checking:
* typing.Generator
* collections.abc.Generator
e typing.Iterator
e collections.abc.Iterator
* typing.Iterable
* collections.abc.Iterable
e typing.AsyncIterator
e collections.abc.AsyncIterator
* typing.Asynclterable
e collections.abc.AsyncIterable
* typing.AsyncGenerator

e collections.abc.AsyncGenerator

1.2. Features 9

Typeguard, Release 4.1.5

1.2.6 Support for PEP 604 unions on Pythons older than 3.10

The PEP 604 X | Y notation was introduced in Python 3.10, but it can be used with older Python versions in modules
where from __future__ import annotations is present. Typeguard contains a special parser that lets it convert
these to older Union annotations internally.

1.2.7 Support for generic built-in collection types on Pythons older than 3.9

The built-in collection types (1ist, tuple, dict, set and frozenset) gained support for generics in Python 3.9. For
earlier Python versions, Typeguard provides a way to work with such annotations by substituting them with the equiv-
alent typing types. The only requirement for this to work is the use of from __future__ import annotations
in all such modules.

1.2.8 Support for mock objects

Typeguard handles the unittest.mock.Mock class (and its subclasses) specially, bypassing any type checks when
encountering instances of these classes. Note that any “spec” class passed to the mock object is currently not respected.

1.2.9 Supported standard library annotations

The following types from the standard library have specialized support:

10 Chapter 1. Quick links

https://peps.python.org/pep-0604/

Typeguard, Release 4.1.5

Type(s)

Notes

typing.Any

typing.Annotated

BinaryIO

typing.Callable
collections.abc.Callable

dict
typing.Dict

typing.IO

list
typing.List

typing.Literal
typing.LiteralString

typing.Mapping
typing.MutableMapping
collections.abc.Mapping
collections.abc.MutableMapping

typing.NamedTuple

typing.Never
typing.NoReturn

typing.Protocol

typing.Self

set

frozenset
typing.Set
typing.AbstractSet

typing.Sequence
collections.abc.Sequence

typing.TextIO

tuple

Any type passes type checks against this annotation. In-
heriting from Any (typing.Any on Python 3.11+, or
typing.extensions.Any) will pass any type check
Original annotation is unwrapped and typechecked nor-
mally

Specialized instance checks are performed

Argument count is checked but types are not (yet)

Keys and values are typechecked

Specialized instance checks are performed
Contents are typechecked

Checked as str
Keys and values are typechecked

Field values are typechecked
Supported in argument and return type annotations

Run-time protocols are checked with isinstance(),
others are ignored

Contents are typechecked

Contents are typechecked

Specialized instance checks are performed
Contents are typechecked

123:pFieatuigse

t+tvne

11

https://github.com/agronholm/typeguard/issues/101
https://bugs.python.org/issue42059
https://peps.python.org/pep-0604/

Typeguard, Release 4.1.5

1.3 Extending Typeguard

1.3.1 Adding new type checkers

The range of types supported by Typeguard can be extended by writing a type checker lookup funvtion and one or
more type checker functions. The former will return one of the latter, or None if the given value does not match any
of your custom type checker functions.

The lookup function receives three arguments:
1. The origin type (the annotation with any arguments stripped from it)
2. The previously stripped out generic arguments, if any
3. Extra arguments from the Annotated annotation, if any

For example, if the annotation was tuple,, the lookup function would be called with tuple, (O, (. If the
type was parametrized, like tuple[str, int], it would be called with tuple, (str, int), (). If the annota-
tion was Annotated[tuple[str, int], "foo", "bar"], the arguments would instead be tuple, (str, int),
('lfooll’ llbarll).

The checker function receives four arguments:
1. The value to be type checked
2. The origin type
3. The generic arguments from the annotation (empty tuple when the annotation was not parametrized)
4. The memo object (TypeChecklMemo)
There are a couple of things to take into account when writing a type checker:

1. If your type checker function needs to do further type checks (such as type checking items in a collection), you
need to use check_type_internal () (and pass along memo to it)

2. If you’re type checking collections, your checker function should respect the collection_check_strategy
setting, available from config

Changed in version 4.0: In Typeguard 4.0, checker functions must respect the settings in memo . config, rather than
the global configuration

The following example contains a lookup function and type checker for a custom class (MySpecialType):

from __future__ import annotations
from inspect import isclass
from typing import Any

from typeguard import TypeCheckError, TypeCheckerCallable, TypeCheckMemo

class MySpecialType:
pass

def check_my_special_type(
value: Any, origin_type: Any, args: tuple[Any, ...], memo: TypeCheckMemo
) -> None:
if not isinstance(value, MySpecialType):
raise TypeCheckError('is not my special type')
(continues on next page)

12 Chapter 1. Quick links

Typeguard, Release 4.1.5

(continued from previous page)

def my_checker_lookup(
origin_type: Any, args: tuple[Any, ...], extras: tuple[Any, ...]
) —> TypeCheckerCallable | None:
if isclass(origin_type) and issubclass(origin_type, MySpecialType):
return check_my_special_type

return None

1.3.2 Registering your type checker lookup function with Typeguard
Just writing a type checker lookup function doesn’t do anything by itself. You’ll have to advertise your type checker
lookup function to Typeguard somehow. There are two ways to do that (pick just one):

1. Append to typeguard. checker_lookup_functions

2. Add an entry point to your project in the typeguard.checker_lookup group

If you’re packaging your project with standard packaging tools, it may be better to add an entry point instead of reg-
istering it manually, because manual registration requires the registration code to run first before the lookup function
can work.

To manually register the type checker lookup function with Typeguard:

from typeguard import checker_lookup_functions

checker_lookup_functions.append(my_checker_lookup)

For adding entry points to your project packaging metadata, the exact method may vary depending on your packaging
tool of choice, but the standard way (supported at least by recent versions of setuptools) is to add this to pyproject.
toml:

[project.entry-points]
typeguard.checker_lookup = {myplugin = "myapp.my_plugin_module:my_checker_lookup"}

The configuration above assumes that the globally unique (within the typeguard.checker_lookup namespace)
entry point name for your lookup function is myplugin, it lives in the myapp.my_plugin_module and the name of
the function there is my_checker_lookup.

Note: After modifying your project configuration, you may have to reinstall it in order for the entry point to become
discoverable.

1.3. Extending Typeguard 13

https://docs.python.org/3/library/importlib.metadata.html#entry-points

Typeguard, Release 4.1.5

1.4 Contributing to Typeguard

If you wish to contribute a fix or feature to Typeguard, please follow the following guidelines.

When you make a pull request against the main Typeguard codebase, Github runs the test suite against your modified
code. Before making a pull request, you should ensure that the modified code passes tests and code quality checks
locally.

1.4.1 Running the test suite

You can run the test suite two ways: either with tox, or by running pytest directly.

To run tox against all supported (of those present on your system) Python versions:

tox

Tox will handle the installation of dependencies in separate virtual environments.

To pass arguments to the underlying pytest command, you can add them after --, like this:

tox -- -k somekeyword

To use pytest directly, you can set up a virtual environment and install the project in development mode along with its
test dependencies (virtualenv activation demonstrated for Linux and macOS; on Windows you need venv\Scripts\
activate instead):

python -m venv venv
source venv/bin/activate
pip install -e .[test]

Now you can just run pytest:

pytest

1.4.2 Building the documentation

To build the documentation, run tox -e docs. This will place the documentation in build/sphinx/html where
you can open index.html to view the formatted documentation.

Typeguard uses ReadTheDocs to automatically build the documentation so the above procedure is only necessary if
you are modifying the documentation and wish to check the results before committing.

Typeguard uses pre-commit to perform several code style/quality checks. It is recommended to activate pre-commit
on your local clone of the repository (using pre-commit install) to ensure that your changes will pass the same
checks on GitHub.

14 Chapter 1. Quick links

https://tox.readthedocs.io/en/latest/install.html
https://pypi.org/project/pytest/
https://tox.readthedocs.io/en/latest/install.html
https://pypi.org/project/pytest/
https://pypi.org/project/pytest/
https://readthedocs.org/
https://pre-commit.com/#installation
https://pre-commit.com/#installation

Typeguard, Release 4.1.5

1.4.3 Making a pull request on Github

To get your changes merged to the main codebase, you need a Github account.

1.

e

Fork the repository (if you don’t have your own fork of it yet) by navigating to the main Typeguard repository
and clicking on “Fork™ near the top right corner.

Clone the forked repository to your local machine with git clone git@github.com/yourusername/
typeguard.

Create a branch for your pull request, like git checkout -b myfixname
Make the desired changes to the code base.

Commit your changes locally. If your changes close an existing issue, add the text Fixes #XXX. or Closes
#XXX. to the commit message (where XXX is the issue number).

6. Push the changeset(s) to your forked repository (git push)
7.
8
9

Navigate to Pull requests page on the original repository (not your fork) and click “New pull request”

. Click on the text “compare across forks”.
. Select your own fork as the head repository and then select the correct branch name.

10.

Click on “Create pull request”.

If you have trouble, consult the pull request making guide on opensource.com.

1.5 API reference

1.5.1 Type checking

typeguard.check_type (value, expected_type, *, forward_ref _policy=ForwardRefPolicy. WARN,,

typecheck_fail_callback=None,
collection_check_strategy=CollectionCheckStrategy. FIRST _ITEM)

Ensure that value matches expected_type.

The types from the typing module do not support isinstance() or issubclass() so a number of type
specific checks are required. This function knows which checker to call for which type.

This function wraps check_type_internal () in the following ways:
* Respects type checking suppression (suppress_type_checks())
e Forms a TypeCheckMemo from the current stack frame
* Calls the configured type check fail callback if the check fails

Note that this function is independent of the globally shared configuration in typeguard.config. This means
that usage within libraries is safe from being affected configuration changes made by other libraries or by the
integrating application. Instead, configuration options have the same default values as their corresponding fields
in TypeCheckConfiguration.

Parameters
* value (object) — value to be checked against expected_type
» expected_type (Any) — a class or generic type instance, or a tuple of such things

e forward_ref_policy (ForwardRefPolicy) - see TypeCheckConfiguration.
forward_ref_policy

1.5.

API reference 15

https://github.com/agronholm/typeguard
https://opensource.com/article/19/7/create-pull-request-github

Typeguard, Release 4.1.5

* typecheck_fail_callback (Optional[Callable[[TypeCheckError,
TypeCheckMemo], Any]]) — see :attr" TypeCheckConfiguration.typecheck_fail_callback

e collection_check_strategy (CollectionCheckStrategy) - see
TypeCheckConfiguration.collection_check_strategy

Return type
Any

Returns
value, unmodified

Raises
TypeCheckError — if there is a type mismatch

@typeguard.typechecked (target=None, *, forward_ref_policy=<unset>, typecheck_fail_callback=<unset>,

collection_check_strategy=<unset>, debug_instrumentation=<unset>)

Instrument the target function to perform run-time type checking.

This decorator recompiles the target function, injecting code to type check arguments, return values, yield values
(excluding yield from) and assignments to annotated local variables.

This can also be used as a class decorator. This will instrument all type annotated methods, including
@classmethod, @staticmethod, and @property decorated methods in the class.

Note: When Python is run in optimized mode (-0 or -00, this decorator is a no-op). This is a feature meant for
selectively introducing type checking into a code base where the checks aren’t meant to be run in production.

Parameters

* target (Optional[TypeVar(T_CallableOrType, bound= Callable].. ., Any])]) — the
function or class to enable type checking for

e forward_ref_policy (ForwardRefPolicy | Unset) - override for
TypeCheckConfiguration. forward_ref_policy

» typecheck_fail_callback (Union[Callable[[TypeCheckError, TypeCheckMemo],
Any], Unset]) — override for TypeCheckConfiguration. typecheck_fail_callback

e collection_check_strategy (CollectionCheckStrategy | Unset) — override for
TypeCheckConfiguration.collection_check_strategy

e debug_instrumentation (bool | Unset) — override for TypeCheckConfiguration.
debug_instrumentation

Return type
Any

1.5.2 Import hook

typeguard.install_import_hook (packages=None, *, cls=<class 'typeguard. TypeguardFinder'>)

Install an import hook that instruments functions for automatic type checking.

This only affects modules loaded after this hook has been installed.

Parameters

» packages (Iterable[str] | None) — an iterable of package names to instrument, or None
to instrument all packages

16

Chapter 1. Quick links

Typeguard, Release 4.1.5

* cls (type[TypeguardFinder]) — a custom meta path finder class

Return type
ImportHookManager

Returns
a context manager that uninstalls the hook on exit (or when you call .uninstall())

New in version 2.6.

class typeguard.TypeguardFinder (packages, original_pathfinder)

Wraps another path finder and instruments the module with @typechecked if should_instrument () returns

True.
Should not be used directly, but rather via install_import_hook().
New in version 2.6.

should_instrument (module_name)

Determine whether the module with the given name should be instrumented.

Parameters
module_name (str) — full name of the module that is about to be imported (e.g. xyz.abc)

Return type
bool

class typeguard.ImportHookManager (hook)
A handle that can be used to uninstall the Typeguard import hook.

uninstall(Q
Uninstall the import hook.

Return type
None

1.5.3 Configuration

typeguard.config: TypeCheckConfiguration
The global configuration object.

Used by @typechecked and install_import_hook (), and notably not used by check_type().

class typeguard.TypeCheckConfiguration(forward_ref _policy=ForwardRefPolicy. WARN,
typecheck_fail_callback=None, collec-
tion_check_strategy=CollectionCheckStrategy. FIRST _ITEM,
debug_instrumentation=False)

You can change Typeguard’s behavior with these settings.

typecheck_fail_callback: Callable[[TypeCheckError, TypeCheckMemo], Any]

Callable that is called when type checking fails.
Default: None (the TypeCheckError is raised directly)
forward_ref_policy: ForwardRefPolicy

Specifies what to do when a forward reference fails to resolve.

Default: WARN

1.5. API reference

17

Typeguard, Release 4.1.5

collection_check_strategy: CollectionCheckStrategy

Specifies how thoroughly the contents of collections (list, dict, etc.) are type checked.
Default: FIRST_ITEM

debug_instrumentation: bool

If set to True, the code of modules or functions instrumented by typeguard is printed to sys.
stderr after the instrumentation is done

Requires Python 3.9 or newer.
Default: False

class typeguard.CollectionCheckStrategy (value, names=None, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

Specifies how thoroughly the contents of collections are type checked.
This has an effect on the following built-in checkers:

* AbstractSet

e Dict

e List

e Mapping

* Set

e Tuple[<type>, ...] (arbitrarily sized tuples)
Members:

e FIRST_ITEM: check only the first item

e ALL_ITEMS: check all items

class typeguard.Unset

class typeguard.ForwardRefPolicy (value, names=None, *values, module=None, qualname=None,
type=None, start=1, boundary=None)

Defines how unresolved forward references are handled.

Members:
* ERROR: propagate the NameError when the forward reference lookup fails
* WARN: emit a TypeHintWarning if the forward reference lookup fails
» IGNORE: silently skip checks for unresolveable forward references

typeguard.warn_on_error (exc, memo)

Emit a warning on a type mismatch.
This is intended to be used as an error handler in TypeCheckConfiguration. typecheck_fail_callback.

Return type
None

18 Chapter 1. Quick links

Typeguard, Release 4.1.5

1.5.4 Custom checkers

typeguard.check_type_internal (value, annotation, memo)

Check that the given object is compatible with the given type annotation.
This function should only be used by type checker callables. Applications should use check_type () instead.
Parameters
e value (Any) — the value to check
* annotation (Any) - the type annotation to check against

* memo (TypeChecklemo) — a memo object containing configuration and information neces-
sary for looking up forward references

Return type
None

typeguard.load_plugins()

Load all type checker lookup functions from entry points.

All entry points from the typeguard.checker_lookup group are loaded, and the returned lookup functions
are added to typeguard.checker_lookup_functions.

Note: This function is called implicitly on import, unless the TYPEGUARD_DISABLE_PLUGIN_AUTOLOAD envi-
ronment variable is present.

Return type
None

typeguard.checker_lookup_functions: 1list[Callable[[Any, Tuple[Any, ...], Tuple[Any,
...]], Callable[[Any, Any, Tuple[Any, ...], TypeCheckMemo], Any] | None]]

A list of callables that are used to look up a checker callable for an annotation.

class typeguard.TypeCheckMemo (globals, locals, *, self_type=None, con-

fig=TypeCheckConfiguration(forward_ref_policy=<ForwardRefPolicy. WARN:
2>, typecheck_fail_callback=None,
collection_check_strategy=<CollectionCheckStrategy. FIRST ITEM: 1>,
debug_instrumentation=False))

Contains information necessary for type checkers to do their work.

globals: dict[str, Any]

Dictionary of global variables to use for resolving forward references.

locals: dict[str, Any]

Dictionary of local variables to use for resolving forward references.

self_type: type | None

When running type checks within an instance method or class method, this is the class object that
the first argument (usually named self or cls) refers to.

config: TypeCheckConfiguration

Contains the configuration for a particular set of type checking operations.

1.5. API reference 19

Typeguard, Release 4.1.5

1.5.5 Type check suppression

@typeguard. typeguard_ignore

Decorator to indicate that annotations are not type hints.

The argument must be a class or function; if it is a class, it applies recursively to all methods and classes defined
in that class (but not to methods defined in its superclasses or subclasses).

This mutates the function(s) or class(es) in place.

typeguard. suppress_type_checks (func=None)
Temporarily suppress all type checking.

This function has two operating modes, based on how it’s used:
1. as a context manager (with suppress_type_checks(Q): ...)
2. as a decorator (@suppress_type_checks)

When used as a context manager, check_type () and any automatically instrumented functions skip the actual
type checking. These context managers can be nested.

When used as a decorator, all type checking is suppressed while the function is running.
Type checking will resume once no more context managers are active and no decorated functions are running.
Both operating modes are thread-safe.

Return type
Union[Callable[ParamSpec, TypeVar(T)], ContextManager|[None]]

1.5.6 Exceptions and warnings

exception typeguard.InstrumentationWarning(message)
Emitted when there’s a problem with instrumenting a function for type checks.

exception typeguard.TypeCheckError (message)
Raised by typeguard’s type checkers when a type mismatch is detected.

exception typeguard.TypeCheckWarning(message)
Emitted by typeguard’s type checkers when a type mismatch is detected.

exception typeguard.TypeHintWarning

A warning that is emitted when a type hint in string form could not be resolved to an actual type.

1.6 Version history

This library adheres to Semantic Versioning 2.0.
4.1.5 (2023-09-11)

 Fixed Callable erroneously rejecting a callable that has the requested amount of positional arguments but they
have defaults (#400)

* Fixed a regression introduced in v4.1.4 where the elements of Literal got quotes removed from them by the
AST transformer (#399)

4.1.4 (2023-09-10)

20 Chapter 1. Quick links

https://semver.org/#semantic-versioning-200
https://github.com/agronholm/typeguard/issues/400
https://github.com/agronholm/typeguard/issues/399

Typeguard, Release 4.1.5

¢ Fixed AttributeError where the transformer removed elements from a PEP 604 union (#384)

e Fixed AttributeError: 'Subscript' object has no attribute 'slice' when encountering an an-
notation with a subscript containing an ignored type (imported within an if TYPE_CHECKING: block) (#397)

* Fixed type checking not being skipped when the target is a union (PEP 604 or typing.Union) where one of the
elements is an ignored type (shadowed by an argument, variable assignment or an if TYPE_CHECKING import)
(#394, #395)

* Fixed type checking of class instances created in __new__() in cases such as enums where this method is already
invoked before the class has finished initializing (#398)

4.1.3 (2023-08-27)
* Dropped Python 3.7 support

* Fixed @typechecked optimization causing compilation of instrumented code to fail when any block was left
empty by the AST transformer (eg if or try / except blocks) (#352)

* Fixed placement of injected typeguard imports with respect to __future__ imports and module docstrings
(#385)

4.1.2 (2023-08-18)

* Fixed Any being removed from a subscript that still contains other elements (#373)
4.1.1 (2023-08-16)

* Fixed suppress_type_checks () causing annotated variable assignments to always assign None (#380)
4.1.0 (2023-07-30)

* Added support for passing a tuple as expected_type to check_type (), making it more of a drop-in replace-
ment for isinstance() (#371)

* Fixed regression where Literal inside a Union had quotes stripped from its contents, thus typically causing
NameError to be raised when run (#372)

4.0.1 (2023-07-27)

* Fixed handling of typing_extensions.Literal on Python 3.8 and 3.9 when typing_extensions>=4.6.0
is installed (#363; PR by Alex Waygood)

* Fixed NameError when generated type checking code references an imported name from a method (#362)
* Fixed docstrings disappearing from instrumented functions (#359)

* Fixed @typechecked failing to instrument functions when there are more than one function within the same
scope (#355)

* Fixed frozenset not being checked (#367)
4.0.0 (2023-05-12)

* No changes
4.0.0rc6 (2023-05-07)

* Fixed @typechecked optimization causing compilation of instrumented code to fail when an if block was left
empty by the AST transformer (#352)

* Fixed the AST transformer trying to parse the second argument of typing.Annotated as a forward reference
(#353)

4.0.0rc5 (2023-05-01)

¢ Added InstrumentationWarning to the public API

1.6. Version history 21

https://github.com/agronholm/typeguard/issues/384
https://github.com/agronholm/typeguard/issues/397
https://github.com/agronholm/typeguard/issues/394
https://github.com/agronholm/typeguard/issues/395
https://github.com/agronholm/typeguard/issues/398
https://github.com/agronholm/typeguard/issues/352
https://github.com/agronholm/typeguard/issues/385
https://github.com/agronholm/typeguard/issues/373
https://github.com/agronholm/typeguard/issues/380
https://github.com/agronholm/typeguard/issues/371
https://github.com/agronholm/typeguard/issues/372
https://github.com/agronholm/typeguard/issues/363
https://github.com/agronholm/typeguard/issues/362
https://github.com/agronholm/typeguard/issues/359
https://github.com/agronholm/typeguard/issues/355
https://github.com/agronholm/typeguard/issues/367
https://github.com/agronholm/typeguard/issues/352
https://github.com/agronholm/typeguard/issues/353

Typeguard, Release 4.1.5

Changed @typechecked to skip instrumentation in optimized mode, as in typeguard 2.x
Avoid type checks where the types in question are shadowed by local variables

Fixed instrumentation using typing.Optional without a subscript when the subscript value was erased due to
being an ignored import

Fixed TypeError: isinstance() arg 2 must be a type or tuple of types when instrumented
code tries to check a value against a naked (str, not ForwardRef) forward reference

Fixed instrumentation using the wrong “self” type in the __new__() method

4.0.0rcd (2023-04-15)

Fixed imports guarded by if TYPE_CHECKING: when used with subscripts (SomeType[. . .]) being replaced
with Any[.. .] instead of just Any

Fixed instrumentation inadvertently mutating a function’s annotations on Python 3.7 and 3.8
Fixed Concatenatel[...] in Callable parameters causing TypeError to be raised

Fixed type checks for *args or **kwargs not being suppressed when their types are unusable (guarded by if
TYPE_CHECKING: or otherwise)

Fixed TypeError when checking against a generic NewType
Don’t try to check types shadowed by argument names (e.g. def foo(x: type, type: str): ...)

Don’t check against unions where one of the elements is Any

4.0.0rc3 (2023-04-10)

Fixed typing.Literal subscript contents being evaluated as forward references

Fixed resolution of forward references in type aliases

4.0.0rc2 (2023-04-08)

The .pyc files now use a version-based optimization suffix in the file names so as not to cause the interpreter to
load potentially faulty/incompatible cached bytecode generated by older versions

Fixed typed variable positional and keyword arguments causing compilation errors on Python 3.7 and 3.8

Fixed compilation error when a type annotation contains a type guarded by if TYPE_CHECKING:

4.0.0rc1 (2023-04-02)

BACKWARD INCOMPATIBLE check_type() no longer uses the global configuration. It now uses the
default configuration values, unless overridden with an explicit config argument.

BACKWARD INCOMPATIBLE Removed CallMemo from the API

BACKWARD INCOMPATIBLE Required checkers to use the configuration from memo.config, rather than
the global configuration

Added keyword arguments to @typechecked, allowing users to override settings on a per-function basis
Added support for using suppress_type_checks() as a decorator

Added support for type checking against nonlocal classes defined within the same parent function as the instru-
mented function

Changed instrumentation to statically copy the function annotations to avoid having to look up the function object
at run time

Improved support for avoiding type checks against imports declared in if TYPE_CHECKING: blocks

22

Chapter 1. Quick links

Typeguard, Release 4.1.5

Fixed check_type not returning the passed value when checking against Any, or when type checking is being
suppressed

Fixed suppress_type_checks () not ending the suppression if the context block raises an exception

Fixed checking non-dictionary objects against a TypedDict annotation (PR by Tolker-KU)

3.0.2 (2023-03-22)

Improved warnings by ensuring that they target user code and not Typeguard internal code
Fixed warn_on_error () not showing where the type violation actually occurred

Fixed local assignment to *args or **kwargs being type checked incorrectly

Fixed TypeError on check_type(..., None)
Fixed unpacking assignment not working with a starred variable (x, *y = ...) in the target tuple
Fixed variable multi-assignment (a = b = ¢ = ...) being type checked incorrectly

3.0.1 (2023-03-16)

Improved the documentation
Fixed assignment unpacking (a, b = ...) being checked incorrectly

Fixed @typechecked attempting to instrument wrapper decorators such as @contextmanager when applied to
a class

Fixed py . typed missing from the wheel when not building from a git checkout

3.0.0 (2023-03-15)

BACKWARD INCOMPATIBLE Dropped the argname, memo, globals and locals arguments from
check_type()

BACKWARD INCOMPATIBLE Removed the check_argument_types() and check_return_type()
functions (use @typechecked instead)

BACKWARD INCOMPATIBLE Moved install_import_hook to be directly importable from the
typeguard module

BACKWARD INCOMPATIBLE Changed the checking of collections (list, set, dict, sequence, map-
ping) to only check the first item by default. To get the old behavior, set typeguard.config.
collection_check_strategy to CollectionCheckStrategy.ALL_ITEMS

BACKWARD INCOMPATIBLE Type checking failures now raise typeguard.TypeCheckError instead of
TypeError

Dropped Python 3.5 and 3.6 support

Dropped the deprecated profiler hook (TypeChecker)

Added a configuration system

Added support for custom type checking functions

Added support for PEP 604 union types (X | Y) on all Python versions

Added support for generic built-in collection types (1ist[int] et al) on all Python versions
Added support for checking arbitrary Mapping types

Added support for the Self type

Added support for typing.Never (and typing_extensions.Never)

Added support for Never and NoReturn in argument annotations

1.6. Version history 23

Typeguard, Release 4.1.5

* Added support for LiteralString

* Added support for TypeGuard

* Added support for the subclassable Any on Python 3.11 and typing_extensions

* Added the possibility to have the import hook instrument all packages

* Added the suppress_type_checks () context manager function for temporarily disabling type checks

* Much improved error messages showing where the type check failed

¢ Made it possible to apply @typechecked on top of @classmethod / @staticmethod (PR by jacobpbrugh)

* Changed check_type() to return the passed value, so it can be used (to an extent) in place of typing.cast(),
but with run-time type checking

* Replaced custom implementation of is_typeddict() with the implementation from typing_extensions
v4.1.0

¢ Emit InstrumentationWarning instead of raising RuntimeError from the pytest plugin if modules in the
target package have already been imported

* Fixed TypeError when checking against TypedDict when the value has mixed types among the extra keys (PR
by biolds)

* Fixed incompatibility with typing_extensions v4.1+ on Python 3.10 (PR by David C.)
* Fixed checking of Tuple[()] on Python 3.11 and tuple[()] on Python 3.9+
* Fixed integers O and 1 passing for Literal[False] and Literal [True], respectively
* Fixed type checking of annotated variable positional and keyword arguments (*args and **kwargs)
* Fixed checks against unittest.Mock and derivatives being done in the wrong place
2.13.3 (2021-12-10)
* Fixed TypeError when using typeguard within exec () (where __module__ is None) (PR by Andy Jones)

* Fixed TypedDict causing TypeError: TypedDict does not support instance and class checks
on Python 3.8 with standard library (not typing_extensions) typed dicts

2.13.2 (2021-11-23)

* Fixed typing_extensions being imported unconditionally on Python < 3.9 (bug introduced in 2.13.1)
2.13.1 (2021-11-23)

* Fixed @typechecked replacing abstract properties with regular properties

* Fixed any generic type subclassing Dict being mistakenly checked as TypedDict on Python 3.10
2.13.0 (2021-10-11)

* Added support for returning NotImplemented from binary magic methods (__eq__(Q) et al)

* Added support for checking union types (e.g. Type[Union[X, Y]])

* Fixed error message when a check against a Literal fails in a union on Python 3.10

* Fixed NewType not being checked on Python 3.10

* Fixed unwarranted warning when @typechecked is applied to a class that contains unannotated properties

 Fixed TypeError in the async generator wrapper due to changes in __aiter__() protocol

* Fixed broken TypeVar checks — variance is now (correctly) disregarded, and only bound types and constraints
are checked against (but type variable resolution is not done)

24 Chapter 1. Quick links

Typeguard, Release 4.1.5

2.12.1 (2021-06-04)
* Fixed AttributeError when __code__ is missing from the checked callable (PR by epenet)
2.12.0 (2021-04-01)

¢ Added @typeguard_ignore decorator to exclude specific functions and classes from runtime type checking
(PR by Claudio Jolowicz)

2.11.1 (2021-02-16)
* Fixed compatibility with Python 3.10
2.11.0 (2021-02-13)
* Added support for type checking class properties (PR by Ethan Pronovost)
* Fixed static type checking of @typechecked decorators (PR by Kenny Stauffer)
* Fixed wrong error message when type check against a bytes declaration fails
* Allowed memoryview objects to pass as bytes (like MyPy does)
* Shortened tracebacks (PR by prescod)
2.10.0 (2020-10-17)
* Added support for Python 3.9 (PR by Csergd Balint)
* Added support for nested Literal
» Added support for TypedDict inheritance (with some caveats; see the user guide on that for details)
* An appropriate TypeError is now raised when encountering an illegal Literal value
* Fixed checking NoReturn on Python < 3.8 when typing_extensions was not installed
* Fixed import hook matching unwanted modules (PR by Wouter Bolsterlee)
* Install the pytest plugin earlier in the test run to support more use cases (PR by Wouter Bolsterlee)
2.9.1 (2020-06-07)
* Fixed ImportError on Python < 3.8 when typing_extensions was not installed
2.9.0 (2020-06-06)
* Upped the minimum Python version from 3.5.2 to 3.5.3

* Added support for typing.NoReturn

Added full support for typing_extensions (now equivalent to support of the typing module)

Added the option of supplying check_type () with globals/locals for correct resolution of forward references

* Fixed erroneous TypeError when trying to check against non-runtime typing.Protocol (skips the check for
now until a proper compatibility check has been implemented)

* Fixed forward references in TypedDict not being resolved
* Fixed checking against recursive types
2.8.0 (2020-06-02)
* Added support for the Mock and MagicMock types (PR by prescod)
* Added support for typing_extensions.Literal (PR by Ryan Rowe)
* Fixed unintended wrapping of untyped generators (PR by prescod)

* Fixed checking against bound type variables with check_type () without a call memo

1.6. Version history 25

Typeguard, Release 4.1.5

* Fixed error message when checking against a Union containing a Literal

2.7.1 (2019-12-27)

* Fixed @typechecked returning None when called with always=True and Python runs in optimized mode

* Fixed performance regression introduced in v2.7.0 (the getattr_static() call was causing a 3x slowdown)

2.7.0 (2019-12-10)

* Added support for typing.Protocol subclasses

¢ Added support for typing.AbstractSet

* Fixed the handling of total=False in TypedDict

¢ Fixed no error reported on unknown keys with TypedDict

* Removed support of default values in TypedDict, as they are not supported in the spec

2.6.1 (2019-11-17)

* Fixed import errors when using the import hook and trying to import a module that has both a module docstring
and __future__ imports in it

* Fixed AttributeError when using @typechecked on a metaclass

¢ Fixed @typechecked compatibility with built-in function wrappers

* Fixed type checking generator wrappers not being recognized as generators

¢ Fixed resolution of forward references in certain cases (inner classes, function-local classes)

¢ Fixed AttributeError when a class has contains a variable that is an instance of a class thathasa __call__()
method

* Fixed class methods and static methods being wrapped incorrectly when @typechecked is applied to the class

* Fixed AttributeError when @typechecked is applied to a function that has been decorated with a decorator
that does not properly wrap the original (PR by Joel Beach)

* Fixed collections with mixed value (or key) types raising TypeError on Python 3.7+ when matched against
unparametrized annotations from the typing module

* Fixed inadvertent TypeError when checking against a type variable that has constraints or a bound type ex-
pressed as a forward reference

2.6.0 (2019-11-06)

* Added a PEP 302 import hook for annotating functions and classes with @typechecked
* Added a pytest plugin that activates the import hook

¢ Added support for typing.TypedDict

* Deprecated TypeChecker (will be removed in v3.0)

2.5.1 (2019-09-26)

* Fixed incompatibility between annotated Iterable, Iterator, AsyncIterable or AsyncIterator return
types and generator/async generator functions

* Fixed TypeError being wrapped inside another TypeError (PR by russok)

2.5.0 (2019-08-26)

* Added yield type checking via TypeChecker for regular generators

¢ Added yield, send and return type checking via @typechecked for regular and async generators

26

Chapter 1. Quick links

https://peps.python.org/pep-0302/

Typeguard, Release 4.1.5

* Silenced TypeChecker warnings about async generators
* Fixed bogus TypeError on Type[Any]
* Fixed bogus TypeChecker warnings when an exception is raised from a type checked function
* Accept a bytearray where bytes are expected, as per python/typing#552
* Added policies for dealing with unmatched forward references
* Added support for using @typechecked as a class decorator
* Added check_return_type() to accompany check_argument_types()
* Added Sphinx documentation
2.4.1 (2019-07-15)
* Fixed broken packaging configuration
2.4.0 (2019-07-14)
e Added PEP 561 support
* Added support for empty tuples (Tuple[(1)
* Added support for typing.Literal
* Make getting the caller frame faster (PR by Nick Sweeting)
2.3.1 (2019-04-12)
* Fixed thread safety issue with the type hints cache (PR by Kelsey Francis)
2.3.0 (2019-03-27)
* Added support for typing.IO and derivatives
* Fixed return type checking for coroutine functions
* Dropped support for Python 3.4
2.2.2 (2018-08-13)
* Fixed false positive when checking a callable against the plain typing.Callable on Python 3.7
2.2.1 (2018-08-12)

¢ Argument type annotations are no longer unioned with the types of their default values, except in the case of
None as the default value (although PEP 484 still recommends against this)

 Fixed some generic types (typing.Collection among others) producing false negatives on Python 3.7
» Shortened unnecessarily long tracebacks by raising a new TypeError based on the old one

e Allowed type checking against arbitrary types by removing the requirement to supply a call memo to
check_type()

e Fixed AttributeError when running with the pydev debugger extension installed
» Fixed getting type names on typing.* on Python 3.7 (fix by Dale Jung)
2.2.0 (2018-07-08)
* Fixed compatibility with Python 3.7
* Removed support for Python 3.3
* Added support for typing.NewType (contributed by reinhrst)
2.1.4 (2018-01-07)

1.6. Version history 27

https://github.com/python/typing/issues/552
https://peps.python.org/pep-0561/

Typeguard, Release 4.1.5

* Removed support for backports.typing, as it has been removed from PyPI
* Fixed checking of the numeric tower (complex -> float -> int) according to PEP 484
2.1.3 (2017-03-13)
* Fixed type checks against generic classes
2.1.2 (2017-03-12)
* Fixed leak of function objects (should’ve used a WeakValueDictionary instead of WeakKeyDictionary)
* Fixed obscure failure of TypeChecker when it’s unable to find the function object
* Fixed parametrized Type not working with type variables
» Fixed type checks against variable positional and keyword arguments
2.1.1 (2016-12-20)
* Fixed formatting of README.rst so it renders properly on PyPI
2.1.0 (2016-12-17)
* Added support for typings.Type (available in Python 3.5.2+)
* Added a third, sys.setprofile() based type checking approach (typeguard.TypeChecker)
» Changed certain type error messages to display “function” instead of the function’s qualified name
2.0.2 (2016-12-17)
* More Python 3.6 compatibility fixes (along with a broader test suite)
2.0.1 (2016-12-10)
* Fixed additional Python 3.6 compatibility issues
2.0.0 (2016-12-10)
* BACKWARD INCOMPATIBLE Dropped Python 3.2 support
* Fixed incompatibility with Python 3.6
* Use inspect.signature() in place of inspect.getfullargspec
* Added support for typing.NamedTuple
1.2.3 (2016-09-13)
* Fixed @typechecked skipping the check of return value type when the type annotation was None
1.2.2 (2016-08-23)
* Fixed checking of homogenous Tuple declarations (Tuple[bool, ...])
1.2.1 (2016-06-29)
* Use backports.typing when possible to get new features on older Pythons
* Fixed incompatibility with Python 3.5.2
1.2.0 (2016-05-21)
* Fixed argument counting when a class is checked against a Callable specification
 Fixed argument counting when a functools.partial object is checked against a Callable specification
* Added checks against mandatory keyword-only arguments when checking against a Callable specification

1.1.3 (2016-05-09)

28 Chapter 1. Quick links

Typeguard, Release 4.1.5

* Gracefully exit if check_type_arguments can’t find a reference to the current function
1.1.2 (2016-05-08)
* Fixed TypeError when checking a builtin function against a parametrized Callable
1.1.1 (2016-01-03)
* Fixed improper argument counting with bound methods when typechecking callables
1.1.0 (2016-01-02)
 Eliminated the need to pass a reference to the currently executing function to check_argument_types()
1.0.2 (2016-01-02)
* Fixed types of default argument values not being considered as valid for the argument
1.0.1 (2016-01-01)

* Fixed type hints retrieval being done for the wrong callable in cases where the callable was wrapped with one or
more decorators

1.0.0 (2015-12-28)

e Initial release

1.6. Version history 29

Typeguard, Release 4.1.5

30 Chapter 1. Quick links

PYTHON MODULE INDEX

t

typeguard, 15

31

Typeguard, Release 4.1.5

32 Python Module Index

C

check_type () (in module typeguard), 15
check_type_internal () (in module typeguard), 19
checker_lookup_functions (in module typeguard),
19
collection_check_strategy
guard. TypeCheckConfiguration
17
CollectionCheckStrategy (class in typeguard), 18
config (in module typeguard), 17
config (typeguard.TypeCheckMemo attribute), 19

D

(type-
attribute),

debug_instrumentation (type-
guard. TypeCheckConfiguration attribute),
18

F

forward_ref policy (type-
guard.TypeCheckConfiguration attribute),

17
ForwardRefPolicy (class in typeguard), 18

G

globals (typeguard. TypeCheckMemo attribute), 19

ImportHookManager (class in typeguard), 17
install_import_hook () (in module typeguard), 16
InstrumentationWarning, 20

L

load_plugins () (in module typeguard), 19
locals (typeguard. TypeCheckMemo attribute), 19

M

module
typeguard, 15

P

Python Enhancement Proposals

INDEX

PEP 302, 26
PEP 561, 27
PEP 604, 10, 11

S

self_type (typeguard. TypeCheckMemo attribute), 19
should_instrument() (typeguard.TypeguardFinder

method), 17
suppress_type_checks () (in module typeguard), 20
T
typecheck_fail_callback (type-
guard.TypeCheckConfiguration attribute),

17
TypeCheckConfiguration (class in typeguard), 17
typechecked () (in module typeguard), 16
TypeCheckError, 20
TypeCheckMemo (class in typeguard), 19
TypeCheckWarning, 20
typeguard

module, 15

typeguard_ignore() (in module typeguard), 20
TypeguardFinder (class in typeguard), 17
TypeHintWarning, 20

U

uninstall) (typeguard.ImportHookManager method),
17
Unset (class in typeguard), 18

W

warn_on_error () (in module typeguard), 18

33

	Quick links
	User guide
	Checking types directly
	Using the decorator
	Using the import hook
	Notes on forward reference handling
	Using the pytest plugin
	Setting configuration options
	Suppressing type checks
	Temporarily disabling type checks
	Permanently suppressing type checks for selected functions

	Suppressing the @typechecked decorator in production
	Debugging instrumented code

	Features
	What does Typeguard check?
	What does Typeguard NOT check?
	Other limitations
	Local references to nested classes
	Using @typechecked on top of other decorators

	Special considerations for if TYPE_CHECKING:
	Support for generator functions
	Support for PEP 604 unions on Pythons older than 3.10
	Support for generic built-in collection types on Pythons older than 3.9
	Support for mock objects
	Supported standard library annotations

	Extending Typeguard
	Adding new type checkers
	Registering your type checker lookup function with Typeguard

	Contributing to Typeguard
	Running the test suite
	Building the documentation
	Making a pull request on Github

	API reference
	Type checking
	Import hook
	Configuration
	Custom checkers
	Type check suppression
	Exceptions and warnings

	Version history

	Python Module Index
	Index

