User Manual for glossaries.sty v4.52

Nicola L.C. Talbot
dickimaw-books.com/contact

2022-11-03

This document is also available as HTML (glossaries-user.html).
Abstract

The glossaries package provides a means to define terms or acronyms or sym-
bols that can be referenced within your document. Sorted lists with collated
locations can be generated either using TgX or using a supplementary indexing
application. Sample documents are provided with the glossaries package. These
are listed in §18.

glossaries—extra

Additional features not provided here may be available through the extension package
glossaries—extra which, if required, needs to be installed separately. New features will
be added to glossaries—extra. Versions of the glossaries package after v4.21 will mostly
be just bug fixes or minor maintenance. The most significant update to the glossaries
package since then is version 4.50, which involved the integration of mfirstuc v2.08
and the phasing out the use of the now deprecated textcase package.

Note that glossaries—extra provides an extra indexing option (bib2gls) which isn’t
available with just the base glossaries package.

J

If you require multilingual support you must also install the relevant language module.
Each language module is called glossaries-(language), where (language) is the root lan-
guage name. For example, glossaries-frenchor glossaries-german. Ifalanguage mod-
ule is required, the glossaries package will automatically try to load it and will give a warning
if the module isn’t found. See §1.5 for further details. If there isn’t any support available for
your language, use the nolangwarn package option to suppress the warning and provide
your own translations. (For example, use the title key in \printglossary.)

http://www.dickimaw-books.com/contact
glossaries-user.html

[i
=
Documents have wide-ranging styles when it comes to presenting glossaries or lists

of terms or notation. People have their own preferences and to a large extent this is
determined by the kind of information that needs to go in the glossary. They may
just have symbols with terse descriptions or they may have long technical words with
complicated descriptions. The glossaries package is flexible enough to accommodate
such varied requirements, but this flexibility comes at a price: a big manual.

« If you’re freaking out at the size of this manual, start with “The glossaries pack-
age: a guide for beginners” (glossariesbegin.pdf). You should find it in the same
directory as this document or try

texdoc glossariesbegin

Once you've got to grips with the basics, then come back to this manual to find out
how to adjust the settings.

The glossaries bundle includes the following documentation:

The glossaries package: a guide for beginners (glossariesbegin.pdf)
If you want some brief information and examples to get you going, start with the guide
for beginners.

User Manual for glossaries.sty (glossaries-user.pdf)

This document is the main user guide for the glossaries package.

Documented Code for glossaries (glossaries—code.pdf)

Advanced users wishing to know more about the inner workings of all the packages
provided in the glossaries bundle should read “Documented Code for glossaries v4.52”.

CHANGES
Change log.

README . md

Package summary.

Depends.txt

List of all packages unconditionally required by glossaries. Other unlisted packages
may be required under certain circumstances. For help on installing packages see, for
example, How do I update my TgX distribution?’ or (for Linux users) Updating TgX on
Linux.?

ltex.stackexchange.com/questions/55437
2tex.stackexchange.com/questions/14925

https://www.tug.org/texdoc/
glossaries-code.pdf
CHANGES
README.md
Depends.txt
https://tex.stackexchange.com/questions/55437
https://tex.stackexchange.com/questions/14925
https://tex.stackexchange.com/questions/14925
http://tex.stackexchange.com/questions/55437
http://tex.stackexchange.com/questions/14925

Related resources:
- glossaries-extra and bib2gls: An Introductory Guide.?
« glossaries FAQ*
« glossaries gallery’
« a summary of all glossary styles provided by glossaries and glossaries-extra®

« glossaries performance’ (comparing document build times for the different options pro-
vided by glossaries and glossaries-extra).

« Using LaTeX to Write a PhD Thesis® (chapter 6).

« Incorporating makeglossaries or makeglossaries-1lite or bib2gls into the doc-
ument build’

« The glossaries-extra package'®
« bib2gls!
[i

|
If you use hyperref and glossaries, you must load hyperref first (although, in general,

hyperref should be loaded after other packages).

*mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
*dickimaw-books.com/faq.php?category=glossaries
dickimaw-books.com/gallery/#glossaries
®dickimaw-books.com/gallery/glossaries-styles/
’dickimaw-books.com/gallery/glossaries-performance.shtml
8dickimaw-books.com/latex/thesis/
dickimaw-books.com/latex/buildglossaries/
Octan.org/pkg/glossaries-extra

ctan.org/pkg/bib2gls

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/faq.php?category=glossaries
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/bib2gls
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/faq.php?category=glossaries
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/bib2gls

Contents

List of Tables

List of Examples

I. User Guide

1. Introduction

1.1.
1.2.
1.3.

1.4.
1.5.

1.6.

1.7.

2.1.
2.2.
2.3.
2.4.
2.5.

Rollback
Integrating Other Packages and Known Issues
Indexing Options
1.3.1. Option 1 ("noidx™)
1.3.2. Option 2 (makeindex)
1.3.3. Option3 (xindy) oo i
1.3.4. Option 4 (bib2gls) o o i i
1.35. Option5 (funsrt”)
1.3.6. Option 6 (“standalone™
Dummy Entries for Testing
Multi-Lingual Support. Lo Lo
1.5.1. Changing the Fixed Names
1.5.2. Creating a New Language Module
Generating the Associated Glossary Files
1.6.1. Using the makeglossaries Perl Script
1.6.2. Using the makeglossaries-lite LuaScript
1.6.3. Using xindy explicitly (Option3)
1.6.4. Using makeindex explicitly (Option2)
Note to Front-End and Script Developers
1.7.1. Makelndexand Xindy
1.7.2. EntryLabels.
1.73. Bib2GlIs

. Package Options

General Options
Sectioning, Headings and TOC Options
Glossary Appearance Options
Indexing Options
Sorting Options e

vi

vii

[

O 00 N DN

14
18
22
27
29
36
43
45
48
53
57
61
64
65
66
66
68
68

2.6.
2.7.
2.8.
2.9.

Contents

Glossary Type Options v i i v
Acronym and Abbreviation Options
Deprecated Acronym Style Options
Other Options

2.10. Setting Options After the Package isLoaded

. Setting Up

3.1.
3.2.

Option1
Options2and3

. Defining Glossary entries

4.1.
4.2.
4.3.

4.4.
4.5.

4.6.
4.7.
4.8.

Plurals
Other Grammatical Constructs
Additional Keys
43.1. DocumentKeys
43.2. StorageKeys L.
Expansion
Sub-Entries
45.1. Hierarchy
4.52. Homographs
Loading Entries FromaFile.
Moving Entries to Another Glossary
Drawbacks With Defining Entries in the Document Environment .
48.1. Technicallssues.
48.2. GoodPracticeIssues

. Referencing Entries in the Document

5.1

5.2.

Links to Glossary Entries
51.1. Options L
5.1.2. The \gls-Like Commands (First Use Flag Queried)
5.1.3. The \glstext-Like Commands (First Use Flag Not Queried)
5.1.4. Changing the Format of the \gls-like Link Text.
51.5. Hooks
5.1.6. Enabling and Disabling Hyperlinks to Glossary Entries . . .
Using Glossary Terms Without Indexing

. Acronyms and Other Abbreviations
Displaying the Long, Short and Full Forms (Independent of First Use)

6.1.
6.2.

6.3.
6.4.

Changing the Acronym Style
6.2.1. Predefined Acronym Styles
6.2.2. Defining A Custom Acronym Style
Displaying the List of Acronyms
Upgrading From the glossary Package

ii

127
138
139
140
140
142
148
149
150
151
153
156
156
157
158

159
159
162
164
168
174
180
181
184

Contents

7. Unsetting and Resetting Entry Flags
7.1. Counting the Number of Times an Entry has been Used (First Use Flag Unset) 232

8. Displaying a Glossary
8.1. \print(...)glossary Options

8.2. Glossary Markup

9. Defining New Glossaries

10.Adding an Entry to the Glossary Without Generating Text

11. Cross-Referencing Entries
11.1. Customising Cross-Reference Text

12. Number Lists

12.1. Encap Values (Location Formats)
12.2. Range Formations L L o

12.3. Locations
12.4. Page Precedence

12.5. Problematic Locations
12.6. Iterating Over Locations

13. Glossary Styles
13.1. Predefined Styles

13.1.1. ListStyles o
13.1.2. Longtable Styles
13.1.3. Longtable Styles (Ragged Right)
13.1.4. Longtable Styles (booktabs)
13.1.5. Supertabular Styleso
13.1.6. Supertabular Styles (Ragged Right)
13.1.7. Tree-Like Styles

13.1.8. Multicols

Style

13.1.9. In-Line Style
13.2. Defining your own glossary style
13.2.1. Commands For Use in Glossary Styles
13.2.2. Hyper Group Navigation
13.2.3. Glossary Style Commands

14.Xindy (Option 3)
14.1. Required Styles

14.2. Language and Encodings oL
14.3. Locations and Numberlists

14.4. Glossary Groups

iii

228

239
241
244

251
254

259
262

265
266
271
273
276
277
288

291
293
296
299
303
306
308
311
314
319
321
324
325
329
331

337

Contents

15. Utilities
15.1. hyperref
15.2. Case-Changing
153. Loopso
154. Conditionals
15.5. Measuring
15.6. Fetching and Updating the Value of a Field

16. Prefixes or Determiners

17. Accessibility Support
17.1. Accessibility Keys
17.2. Incorporating Accessibility Support
17.3. Incorporating the Access Field Values . . .
17.4. Obtaining the Access Field Values
17.5. Developer’sNote

18.Sample Documents
18.1. Basic
18.2. Acronyms and FirstUse
18.3. Non-Page Locations
18.4. Multiple Glossaries
18.5. Sorting
18.6. ChildEntries
18.7. Cross-Referencing
18.8. CustomKeys
18.9. Xindy (Option3)
18.10.No Indexing Application (Option 1)
18.11.0ther

19. Troubleshooting

Il. Summaries and Index

Symbols

Terms

Glossary Entry Keys Summary

\Gls-Like and \Glstext-Like Options Summary

\print(...)glossary Options Summary

iv

352
352
353
355
357
364
365

368

376
376
379
381
384
387

388
388
394
412
423
435
442
456
459
463
475
476

492

493
494
495
502
511

514

Contents

Acronym Style Summary 518
Glossary Styles Summary 522
Command Summary 538
Command Summary: @ e 538
Command Summary: A L 539
Command Summary: B 547
Command Summary: C 547
Command Summary: D 549
Command Summary: E o 552
Command Summary: F o 552
Command Summary: G 554
Command Summary: Glo 554
Command Summary: Gls L 557
Command Summary: Glsxtr 622
Command Summary: H 635
Command Summary: I 636
Command Summary: L 641
Command Summary: M 642
Command Summary: N 644
Command Summary: O L 646
Command Summary: Po 646
Command Summary: R 650
Command Summary: S 651
Command Summary: T e 655
Command Summary: W 656
Command Summary: X 656
Environment Summary 657
Package Option Summary 658
Index 668

List of Tables

1.1. Glossary Options: ProsandCons 10
1.2. Customised Text 46
1.3. Commands and package options that have no effect when using xindy or
makeindex explicitly oo oo 57
4.1. KeytoField Mappings. 149
6.1. Synonyms provided by the shortcuts package option 199
6.2. The effect of using xspace with \oldacronym. 227
12.1. Predefined Hyperlinked Location Formats 267
13.1. Glossary Styles 294
13.2. Multicolumn Styles 320

Vi

List of Examples

WO No W

[S S
W= o

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

Simple document withno glossary, 3
Simple document with unsorted glossaries 5
Simple document that uses TgX to sort entries 12
Simple document that uses makeindex to sort entries 15
Simple document that uses xindy to sort entries 19
Simple document that uses bib2gls to sortentries 24
Simple document with an unsorted list of all defined entries 28
Simple document with standalone entries 31
Mixing Alphabetical and Order of Definition Sorting 100
Customizing Standard Sort (Options 2o0r3) 101
Defining CustomKeys oo 141
Defining Custom Storage Key (Acronyms and Initialisms) 142
Defining Custom Storage Key (Acronyms and Non-Acronyms with Descrip-

tons) e e 145
Hierarchical Divisions — Greek and Roman Mathematical Symbols 150
Loading Entries from Another File 153
Custom Entry Displayin Text 179
Custom Format for Particular Glossary 179
First Use With Hyperlinked Footnote Description 181
Suppressing Hyperlinks on First Use Just For Acronyms 182
Only Hyperlink in Text Mode Not MathMode 182
One Hyper Link Per Entry Per Chapter 183
Simple document with acronyms 000 191
Defining and Using an Acronym 194
Defining and Using an Acronym (Rollback) 202
Small-Caps Acronym 204
Adapting a Predefined Acronym Style 206
Defining a Custom Acronym Style 213
Italic and Upright Abbreviations 220
Abbreviations with Full Stops (Periods) 223
Don’t index entries that are onlyusedonce 238
Switch to Two Column Mode for Glossary 248
Dual Entries 257
Changing the Font Used to Display Entry Names in the Glossary 292
Creating a completely new style 333
Creating a new glossary style based on an existing style 335

vii

36.
37.
38.
39.
40.
41.
42.
43.

List of Examples

Example: creating a glossary style that uses the useri, ..., user6 keys. . . . 335
Custom Font for Displaying a Location 342
Custom Numbering System for Locations 343
LocationsasDice 344
Locations as Words not Digits 346
Defining Determiners 369
Using Prefixes e 372
Adding Determiner to Glossary Style 374

viil

Part |I.

User Guide

1. Introduction

\usepackage [(options)]{glossaries}

The glossaries package is provided to assist generating lists of terms, symbols or acronyms.
For convenience, these lists are all referred to as glossaries in this manual. The terms, symbols
and acronyms are collectively referred to as glossary entries.

The package has a certain amount of flexibility, allowing the user to customize the format
of the glossary and define multiple glossaries. It also supports glossary styles that include
an associated symbol (in addition to a name and description) for each glossary entry.

There is provision for loading a database of glossary entries. Only those entries indexed
in the document will be displayed in the glossary. (Unless you use Option 5, which doesn’t
use any indexing but will instead list all defined entries in order of definition.)

It’s not necessary to actually have a glossary in the document. You may be interested
in using this package just as means to consistently format certain types of terms, such as
acronyms, or you may prefer to have descriptions scattered about the document and be able
to easily link to the relevant description (Option 6).

The simplest document is one without a glossary:

\documentclass{article}
\usepackage [
sort=none 7% no sorting or indexing required

]

{glossaries}

\newglossaryentry
{cafe}’, label
{% definition:
name={café},
description={small restaurant selling refreshments}

¥

\setacronymstyle{long-short}
\newacronym

{html}) label

{HTML}), short form

1. Introduction

{hypertext markup languagel}’, long form

\newglossaryentry

{pi}) label

{% definition:
name={\ensuremath{\pi}},
description={Archimedes' Constant}

}

\newglossaryentry

{distancel}’, label

{% definition:
name={distancel},
description={the length between two points},
symbol={m}

}

\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafel}, \gls{html}, \gls{pi}.

\Gls{distance} (\glsentrydesc{distance}) is measured in
\glssymbol{distance}.
\end{document?}

(This is a trivial example. For a real document I recommend you use siunitx for units.)

First use: café, hypertext markup language (HTML), 7. Next use: café,
HTML, .
Distance (the length between two points) is measured in m.

Example 1: Simple document with no glossary N\EXIE

The glossaries—extra package, which is distributed as a separate bundle, extends the capa-
bilities of the glossaries package. The simplest document with a glossary can be created with

glossaries—extra (which internally loads the glossaries package):

\documentclass{article}
\usepackage [

sort=none,’, no sorting or indexing required
abbreviations,y create list of abbreviations

=

glossaries
—extra

% This file is embedded in glossaries-user.pdf
% Example 1 Simple document with no glossary
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[
 sort=none % no sorting or indexing required
] {glossaries}

\newglossaryentry
{cafe}% label
 {% definition:
 name={café},
 description={small restaurant selling refreshments}
}

\setacronymstyle{long-short} \newacronym
{html}% label
 {HTML}% short form
 {hypertext markup language}% long form

\newglossaryentry
{pi}% label
 {% definition:
 name={\ensuremath{\pi}},
 description={Archimedes' Constant}
}

% This is a trivial example. For a real document I recommend you use siunitx for units
 \newglossaryentry
 {distance}% label
 {% definition:
 name={distance},
 description={the length between two points},
 symbol={m}
 }
\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}. Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} (\glsentrydesc{distance}) is measured in \glssymbol{distance}.
\end{document}

Nicola Talbot
Simple document with no glossary (source code)
Example document that defines some glossary entries and references them in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example001.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example001.pdf

1. Introduction

symbols,% create list of symbols

postdot, % append a full stop after the descriptions
stylemods,style=index % set the default glossary style
l{glossaries-extra}

\newglossaryentry 7% glossaries.sty
{cafe}’, label
{/ definition:
name={café},
description={small restaurant selling refreshments}

3

\setabbreviationstyle{long-short}), glossaries-extra.sty

\newabbreviation J glossaries-extra.sty
{btml}J, label

{HTML}), short form

{hypertext markup languagel}’, long form

% requires glossaries-extra.sty 'symbols' option
\glsxtrnewsymbol

[description={Archimedes' constantl}] options
{pi}) label

{\ensuremath{\pi}}/, symbol

\newglossaryentry 7% glossaries.sty

{distance}), label

{% definition:
name={distance},
description={the length between two points},
symbol={m}

}

\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafel}, \gls{html}, \gls{pi}.

\Gls{distance} is measured in \glssymbol{distancel}.
\printunsrtglossaries % list all defined entries
\end{document}

1. Introduction

Example 2: Simple document with unsorted glossaries N\EFIE

First use: café, hypertext markup language (HTML), 7. Next use: café,
HTML, .
Distance is measured in m.

Glossary

café small restaurant selling refreshments.

distance (m) the length between two points.

Symbols

7 Archimedes’ constant.

Abbreviations

HTML hypertext markup language.

Note the difference in the way the abbreviation (HTML) and symbol (7) are defined in the
two above examples. The abbreviations, postdot and stylemods options are specific to
glossaries—extra. Other options are passed to the base glossaries package.

glossaries—extra

In this user manual, commands and options displayed in tan, such as \new-
abbreviation and stylemods, are only available with the glossaries-extra package.
There are also some commands and options (such as \makeglossaries and symbols)
that are provided by the base glossaries package but are redefined by the glossaries
—extra package. See the glossaries—extra user manual for further details of those com-
mands.

7

One of the strengths of the glossaries package is its flexibility, however the drawback of
this is the necessity of having a large manual that covers all the various settings. If you are
daunted by the size of the manual, try starting off with the much shorter guide for beginners
(glossariesbegin.pdf).

There’s a common misconception that you have to have Perl installed in order to use
the glossaries package. Perl is not a requirement (as demonstrated by the above ex-

% This file is embedded in glossaries-user.pdf
% Example 2 Simple document with unsorted glossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[sort=none,% no sorting or indexing required
 abbreviations,% create list of abbreviations
 symbols,% create list of symbols
 postdot, % append a full stop after the descriptions
 stylemods,style=index % set the default glossary style
]{glossaries-extra}

\newglossaryentry % glossaries.sty
{cafe}% label
 {% definition:
 name={café},
 description={small restaurant selling refreshments}
}

\setabbreviationstyle{long-short}% glossaries-extra.sty
\newabbreviation % glossaries-extra.sty
{html}% label
 {HTML}% short form
 {hypertext markup language}% long form
 % requires glossaries-extra.sty 'symbols' option
 \glsxtrnewsymbol [description={Archimedes' constant}]% options
 {pi}% label
 {\ensuremath{\pi}}% symbol
 % This is a trivial example. For a real document I recommend you use siunitx for units
 \newglossaryentry % glossaries.sty
{distance}% label
 {% definition:
 name={distance}, description={the length between two points}, symbol={m} }
\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}. Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} is measured in \glssymbol{distance}.
\printunsrtglossaries % list all defined entries

\end{document}

Nicola Talbot
Simple document with unsorted glossaries (source code)
Example document that defines some glossary entries, references them in the text, and displays three simple unsorted glossaries. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example002.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example002.pdf

1. Introduction

amples) but it does increase the available options, particularly if you use an extended
Latin alphabet or a non-Latin alphabet.

This document uses the glossaries-extra package with bib2gls (Option 4). For example,
when viewing the PDF version of this document in a hyperlinked-enabled PDF viewer (such
as Adobe Reader or Okular) if you click on the word “indexing” you’ll be taken to the entry in
the main glossary where there’s a brief description of the term. This is the way the glossaries
mechanism works. An indexing application (bib2gls in this case) is used to generate the
sorted list of terms. The indexing applications are CLI tools, which means they can be run
directly from a command prompt or terminal, or can be integrated into some text editors, or
you can use a build tool such as arara to run them.

In addition to standard glossaries, this document has “standalone” definitions (Option 6).
For example, if you click on the command \gls, the hyperlink will take you to main part of
the document where the command is described. The index and summaries are also glossaries.
The technique used is too complicated to describe in this manual, but an example can be
found in “bib2gls: Standalone entries and repeated lists (a little book of poisons)” TUGboat,
Volume 43 (2022), No. 1.

Neither of the above two examples require an indexing application. The first is just using
the glossaries package for consistent formatting, and there is no list. The second has lists but
they are unsorted (see Option 5).

The remainder of this introductory section covers the following:

+ §1.3 lists the available indexing options.

+ §1.4 lists the files provided that contain dummy glossary entries which may be used
for testing.

« §1.5 provides information for users who wish to write in a language other than English.

+ §1.6 describes how to use an indexing application to create the sorted glossaries for
your document (Options 2 or 3).

In addition to the examples provided in this document, there are some sample documents
provided with the glossaries package. They are described in §18.

The glossaries package comes with a number of sample documents that illustrate the var-
ious functions. These are listed in §18.

1.1. Rollback

The following rollback releases are available:

« Version 4.49 (2021-11-01):

https://tug.org/TUGboat/tb2022-1/tb133talbot-bib2gls-reorder.pdf
https://tug.org/TUGboat/tb2022-1/tb133talbot-bib2gls-reorder.pdf

1. Introduction

=

[\usepackage{glossaries}[=v4.49]

Note that this should also rollback mfirstuc to version 2.07 if you have a later version
installed.

« Version 4.46 (2020-03-19):

[\usepackage{glossaries} [=v4.46]

If you rollback using latexrelease to an earlier date, then you will need to specify v4.46 for
glossaries as there are no earlier rollback versions available. You may want to consider using
one of the historic TgX Live Docker images instead. See, for example, Legacy Documents and
TeX Live Docker Images.'

1.2. Integrating Other Packages and Known Issues

If you use hyperref and glossaries, you must load hyperref first (although, in general, hyperref
should be loaded after other packages).

Occasionally you may find that certain packages need to be loaded after packages that are
required by glossaries but need to also be loaded before glossaries. For example, a package
(X) might need to be loaded after amsgen but before hyperref (which needs to be loaded
before glossaries). In which case, load the required package first (for example, amsgen), then
(X), and finally load glossaries.

\usepackage{amsgen}), load before (X)
\usepackage{(X)}% must be loaded after amsgen
\usepackage{hyperref}), load after (X)
\usepackage{glossaries}), load after hyperref

Some packages don’t work with some glossary styles. For example, classicthesis doesn’t
work with the styles that use the description environment, such as the list style. Since this is
the default style, the glossaries package checks for classicthesis and will change the default
to the index style if it has been loaded.

Some packages conflict with a package that’s required by a glossary style style pack-
age. For example, xtab conflicts with supertabular, which is required by glossary-super.
In this case, ensure the problematic glossary style package isn’t loaded. For example, use
the nosuper option and (with glossaries—extra) don’t use stylemods=super or stylemods=
all. The glossaries package now (v4.50+) checks for xtab and will automatically implement
nosuper if it has been loaded.

'dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

1. Introduction

The language-support is implemented using tracklang. This needs to know the document
languages that have to be supported. It currently (version 1.6 at the time of writing) can’t
detect the use of \babelprovide. The tracklang package is able to pick up known language
labels from the document class options, for example:

=

\documentclass [german] {article}
\usepackage [translate=true]{glossaries}

The above doesn’t load babel or polyglossia or translator, but the translate=true setting will
ensure that tracklang is loaded and the language-sensitive command provided by glossaries
will use the definitions in glossaries-german.1df (which needs to be installed separately,
see §1.5) because tracklang can pick up the german document class option.

The tracklang package is also able to pick up languages passed as package options to babel
or translator, provided they were loaded before tracklang. For example,

Ei

\usepackage [french] {babel}
\usepackage [translate=babel] {glossaries}

The tracklang package used to be able to detect languages identified by polyglossia’s \set-
mainlanguage and \setotherlanguage, but tracklang v1.5 can’t with newer versions of
polyglossia. You will need to upgrade to tracklang v1.6+ to allow this to work again.

In the event that tracklang can’t pick up the required languages, it’s also possible to identify
them with the languages option. For example:

=

\usepackage [nil] {babel}
\babelprovide{french}
\usepackage [languages=french] {glossaries}

1.3. Indexing Options

The basic idea behind the glossaries package is that you first define your entries (terms, sym-
bols or acronyms). Then you can reference these within your document (analogous to \cite
or \ref). You can also, optionally, display a list of the entries you have referenced in your
document (the glossary). This last part, displaying the glossary, is the part that most new
users find difficult. There are three options available with the base glossaries package (Op-
tions 1-3). The glossaries—extra extension package provides two extra options for lists (
Options 4 and 5) as well as an option for standalone descriptions within the document body
(Option 6).

An overview of Options 1-5 is given in Table 1.1 on page 10. Option 6 is omitted from

1. Introduction

the table as it doesn’t produce a list. For a more detailed comparison of the various methods,
see the glossaries performance page.? If, for some reason, you want to know what indexing
option is in effect, you can test the value of:

X

\glsindexingsetting

This is initialised to:

\ifglsxindy xindy\else makeindex\fi

If the sort=none or sort=clear options are used, \glsindexingsetting will be rede-
fined to none. If \makeglossaries isused \glsindexingsetting will be updated to either
makeindex or xindy as appropriate (that is, the conditional will no longer be part of the def-
inition). If \makenoidxglossaries is used then \glsindexingsetting will be updated to
noidx. This means that \glsindexingsetting can’t be fully relied on until the start of the
document environment. (If you are using glossaries—extra v1.49+, then this command will
also be updated to take the record setting into account.)

[i
;‘
If you are developing a class or package that loads glossaries, I recommend that you

don’t force the user into a particular indexing method by adding an unconditional
\makeglossaries into your class or package code. Aside from forcing the user into
a particular indexing method, it means that they’re unable to use any commands that
must come before \makeglossaries (such as \newglossary) and they can’t switch
off the indexing whilst working on a draft document. (If you are using a class or pack-
age that has done this, pass the disablemakegloss option to glossaries. For example,
via the document class options.)

7

Strictly speaking, Options 5 and 6 aren’t actually indexing options as no indexing is per-
formed. In the case of Option 5, all defined entries are listed in order of definition. In the
case of Option 6, the entry hypertargets and descriptions are manually inserted at appropri-
ate points in the document. These two options are included here for completeness and for
comparison with the actual indexing options.

1.3.1. Option 1 (“noidx™)

This option isn’t generally recommended for reasons given below. It’s best used with sort=
use (order of use) or sort=def (order of definition). Example Document:

2dickimaw-books.com/gallery/glossaries-performance.shtml

https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml

1. Introduction

Table 1.1.: Glossary Options: Pros and Cons

Option 1 2 3
Requires glossaries—extra?

Requires an external application? v Vv
v

Requires Perl?

SxS\»

Requires Java?
Can sort extended Latin alphabets b & X N/A
or non-Latin alphabets?

Efficient sort algorithm? b 4 N/A
Can use a different sort method for xt Xt N/A
each glossary?

Any problematic sort values? 4 vV v *
Are entries with identical sort X8

values treated as separate unique

entries?

Can automatically form ranges in X X
the location lists?

Can have non-standard locations b 4 0 1
in the location lists?

Maximum hierarchical depth 00 3 0o 00 00
(style-dependent)

\glsdisplaynumberlist X X X
reliable?

\newglossaryentry allowed in b 4 v Vv X< v
document environment? (Not

recommended.)

Requires additional write v Vv *
registers?

Default value of sanitizesort false true true true¥true
package option

®

*Strips standard BIEX accents (that is, accents generated by core KIEX commands) so,
for example, \AA is treated the same as A.

TOnly with the hybrid method provided with glossaries-extra.

*Provided sort=none is used.

SEntries with the same sort value are merged.

ORequires some setting up.

IThe locations must be set explicitly through the custom location field provided by
glossaries—-extra.

#Unlimited but unreliable.

*Entries are defined in bib format. \newglossaryentry should not be used explicitly.

"Provided docdef=true or docdef=restricted but not recommended.
*Provided docdef=false or docdef=restricted.
*Irrelevant with sort=none. (The record=only option automatically switches this on.)

10

1. Introduction

\documentclass{article}
\usepackage [style=indexgroup] {glossaries}
\makenoidxglossaries 7 use TeX to sort
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffint{name={puffin},
description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphal},
sort={alphal},description={a variable}}
% an acronym:
\setacronymstyle{short-long}
\newacronym{arpanet}{ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrotl}.
\gls{arpanet} and \gls{alphal.
Next use: \gls{arpanet}.
\printnoidxglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the document preamble
with \loadglsentries (after \makenoidxglossaries). Note that six entries have been
defined but only five are referenced (indexed) in the document so only those five appear in
the glossary.

11

1. Introduction

Example 3: Simple document that uses TgX to sort entries N\EFIE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary
A

« a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D
duck a waterbird. 1
P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This uses the indexgroup style, which puts a heading at the start of each letter group. The
letter group is determined by the first character of the sort value. For a preview of all available
styles, see Gallery: Predefined Styles.> The number 1 after each description is the number
list (or location list). This is the list of locations (page numbers, in this case) where the entry
was indexed. In this example, all entries were indexed on page 1.

This option doesn’t require an external indexing application but, with the default alpha-
betic sorting, it’s very slow with severe limitations. If you want a sorted list, it doesn’t
work well for extended Latin alphabets or non-Latin alphabets. However, if you use the
sanitizesort=false package option (the default for Option 1) then the standard BIEX ac-
cent commands will be ignored, so if an entry’s name is set to \ 'elite then the sort value
will default to elite if sanitizesort=false is used and will default to the literal string
\'elite if sanitizesort=true is used.

A
Previously, it was also possible to strip accents from UTF-8 characters, but that’s not
possible following updates to the ETgX kernel. The kernel updates are beneficial as they
make it possible to use UTF-8 characters in labels, but the trick of stripping accents was
a hack that no longer works.

J

If you have any other kinds of commands that don’t expand to ASCII characters, such as
\alpha, then you must use sanitizesort=true or change the sort method (sort=use or

%dickimaw-books.com/gallery/index.php?label=glossaries-styles

12

% This file is embedded in glossaries-user.pdf
% Example 3 Simple document that uses TeX\ to sort entries
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries}
\makenoidxglossaries % use TeX to sort
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printnoidxglossary
\end{document}

Nicola Talbot
Simple document that uses TeX to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example003.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example003.pdf
https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles
https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles

1. Introduction

sort=def) in the package options or explicitly set the sort key when you define the relevant
entries, as shown in the above example which has:

\newglossaryentry{alpha}{name={\ensuremath{\alphal},
sort={alpha},description={a variable}

3

[glossaries-extra

The glossaries—extra package has a modified symbols package option that provides
\glsxtrnewsymbol, which automatically sets the sort key to the entry label (instead
of the name).

This option works best with the sort=def or sort=use setting. For any other setting,
be prepared for a long document build time, especially if you have a lot of entries defined.
This option is intended as a last resort for alphabetical sorting. This option allows a
mixture of sort methods. (For example, sorting by word order for one glossary and order
of use for another.) This option is not suitable for hierarchical glossaries and does not form
ranges in the location lists. If you really can’t use an indexing application consider using
Option 5 instead.

Summary:

1. Add

[\makenoidxglossaries

to your preamble (before you start defining your entries, as described in §4).

2. Put

=

[\printnoidxglossary

where you want your list of entries to appear (described in §8). Alternatively, to display
all glossaries use the iterative command:

=

[\printnoidxglossaries

3. Run KIgX twice on your document. (As you would do to make a table of contents
appear.) For example, click twice on the “typeset” or “build” or “pdfEIEX” button in
your editor.

13

1. Introduction

1.3.2. Option 2 (makeindex)

Example document:

\documentclass{article}
\usepackage [style=indexgroup] {glossaries}
\makeglossaries 7 open indexing files
\newglossaryentry{parrot}{name={parrotl},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alpha}l},
sort={alpha},description={a variable}}
% an acronym:
\setacronymstyle{short-long}
\newacronym{arpanet}{ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the preamble with
\loadglsentries (after \makeglossaries). The result is the same as for Example 3 on
page 12.

14

1. Introduction

Example 4: Simple document that uses makeindex to sort entries N\EFIE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary
A

« a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D
duck a waterbird. 1
P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This option uses a CLI application called makeindex to sort the entries. This application
comes with all modern TgX distributions, but it’s hard-coded for the non-extended Latin
alphabet. It can’t correctly sort accent commands (such as \' or \c) and fails with UTF-8
characters, especially for any sort values that start with a UTF-8 character (as it separates the
octets resulting in an invalid file encoding). This process involves making KIgX write the
glossary information to a temporary file which makeindex reads. Then makeindex writes
a new file containing the code to typeset the glossary. Then \printglossary reads this file
in on the next run.

(@]

=
There are other applications that can read makeindex files, such as texindy and

xindex, but the glossaries package uses a customized ist style file (created by \make-
glossaries) that adjusts the special characters and input keyword and also ensures
that the resulting file (which is input by \printglossary) adheres to the glossary
style. If you want to use an alternative, you will need to ensure that it can honour the
settings in the ist file.

J

This option works best if you want to sort entries according to the English alphabet and
you don’t want to install Perl or Java. This method can also work with the restricted shell
escape since makeindex is considered a trusted application, which means you should be
able to use the automake=immediate or automake=true package option provided the shell
escape hasn’t been completely disabled.

15

% This file is embedded in glossaries-user.pdf
% Example 4 Simple document that uses makeindex to sort entries
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries}
\makeglossaries % open \dglspl {indexingfile}
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

Nicola Talbot
Simple document that uses makeindex to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example004.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example004.pdf

1. Introduction

This method can form ranges in the number list but only accepts limited number formats:
\arabic, \roman, \Roman, \alph and \Alph.

This option does not allow a mixture of sort methods. All glossaries must be sorted accord-
ing to the same method: word/letter ordering or order of use or order of definition. If you
need word ordering for one glossary and letter ordering for another you’ll have to explicitly
call makeindex for each glossary type.

glossaries-extra

The glossaries—extra package allows a hybrid mix of Options 1 and 2 to provide word/
letter ordering with Option 2 and order of use/definition with Option 1. See the
glossaries—extra documentation for further details. See also the glossaries-extra al-
ternative to sampleSort.tex in §18.5.

Summary:

1. If you want to use makeindex’s —g option you must change the quote character using
\GlsSetQuote. For example:

\GlsSetQuote{+}

_B

This must be used before \makeglossaries. Note that if you are using babel, the
shorthands aren’t enabled until the start of the document, so you won’t be able to use
the shorthands in definitions that occur in the preamble.

2. Add

B

[\makeglossaries

to your preamble (before you start defining your entries, as described in §4).

3. Put

B

[\printglossary

where you want your list of entries to appear (described in §8). Alternatively, to display
all glossaries use the iterative command:

B

[\printglossaries

16

1. Introduction

4. Run EIEX on your document. This creates files with the extensions glo and ist (for
example, if your EIEX document is called myDoc . tex, then you’ll have two extra files
called myDoc.glo and myDoc.ist). If you look at your document at this point, you
won’t see the glossary as it hasn’t been created yet. (If you use glossaries—extra you’ll
see the section heading and some boilerplate text.)

If you have used package options such as symbols there will also be other sets of files

corresponding to the extra glossaries that were created by those options.

5. Run makeindex with the glo file as the input file and the ist file as the style so that
it creates an output file with the extension gls:

makeindex -s myDoc.ist -o myDoc.gls myDoc.glo

(Replace myDoc with the base name of your KIEX document file. Avoid spaces in the
file name if possible.)

[i
=
The file extensions vary according to the glossary type. See §1.6.4 for further

details. makeindex must be called for each set of files.

If you don’t know how to use the command prompt, then you can probably access
makeindex via your text editor, but each editor has a different method of doing this.
See Incorporating makeglossaries or makeglossaries-lite or bib2gls into the document
build* for some examples.

Alternatively, run makeindex indirectly via the makeglossaries script:

makeglossaries myDoc

Note that the file extension isn’t supplied in this case. (Replace makeglossaries with
makeglossaries-1lite if you don’t have Perl installed.) This will pick up all the file
extensions from the aux file and run makeindex the appropriate number of times with
all the necessary switches.

The simplest approach is to use arara and add the following comment lines to the start
of your document:

=

% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex

*dickimaw-books.com/latex/buildglossaries/

17

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

(Replace makeglossaries with makeglossarieslite in the second line above if you
don’t have Perl installed. Note that there’s no hyphen in this case.)

The default sort is word order (“sea lion” comes before “seal”). If you want letter or-
dering you need to add the -1 switch:

makeindex -1 -s myDoc.ist -o myDoc.gls myDoc.glo

(See §1.6.4 for further details on using makeindex explicitly.) If you use makeglos-
saries or makeglossaries-1lite then use the order=1letter package option and
the -1 option will be added automatically.

6. Once you have successfully completed the previous step, you can now run EIEX on
your document again.

You’ll need to repeat the last step if you have used the toc option (unless you’re using
glossaries—extra) to ensure the section heading is added to the table of contents. You’ll also
need to repeat steps 5 and 6 if you have any cross-references which can’t be indexed until
the indexing file has been created.

1.3.3. Option 3 (xindy)

Example document:

\documentclass{article}
\usepackage [xindy, style=indexgroup] {glossaries}
\makeglossaries 7 open indexing files
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffint{name={puffin},
description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphal},
sort={alphal},description={a variable}}
% an acronym:
\setacronymstyle{short-long}
\newacronym{arpanet}{ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}

18

1. Introduction

\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alphal}.

Next use: \gls{arpanet}.

\printglossary

\end{document}

\.

You can place all your entry definitions in a separate file and load it in the preamble with
\loadglsentries (after \makeglossaries). The result is the same as for Example 3 on
page 12 and Example 4 on page 15.

Example 5: Simple document that uses xindy to sort entries N\EEE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and a. Next use: ARPANET.

Glossary

A

« a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D
duck a waterbird. 1
P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This option uses a CLI application called xindy to sort the entries. This application is more
flexible than makeindex and is able to sort extended Latin alphabets or non-Latin alphabets,
however it does still have some limitations.

The xindy application comes with both TgX Live and MikTgX, but since xindy is a Perl
script, you will also need to install Perl, if you don’t already have it. In a similar way to
Option 2, this option involves making ETEX write the glossary information to a temporary
file which xindy reads. Then xindy writes a new file containing the code to typeset the
glossary. Then \printglossary reads this file in on the next run.

This is the best option with just the base glossaries package if you want to sort according
to a language other than English or if you want non-standard location lists, but it can require
some setting up (see §14). There are some problems with certain sort values:

« entries with the same sort value are merged by xindy into a single glossary line so

19

% This file is embedded in glossaries-user.pdf
% Example 5 Simple document that uses xindy to sort entries
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[xindy,style=indexgroup]{glossaries}
\makeglossaries % open \dglspl {indexingfile}
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

Nicola Talbot
Simple document that uses xindy to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example005.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example005.pdf

1. Introduction

you must make sure that each entry has a unique sort value;
« xindy forbids empty sort values;

+ xindy automatically strips control sequences, the math-shift character $ and braces
{3} from the sort value, which is usually desired but this can cause the sort value to
collapse to an empty string which xindy forbids.

In these problematic cases, you must set the sort field explicitly, as in the above example

which has:

\newglossaryentry{alpha}{name={\ensuremath{\alphal},
sort={alpha},description={a variable}

b

glossaries-extra

The glossaries—extra package has a modified symbols package option that provides
\glsxtrnewsymbol, which automatically sets the sort key to the entry label (instead
of the name).

All glossaries must be sorted according to the same method (word/letter ordering, order
of use, or order of definition).

[glossaries—extra

The glossaries—extra package allows a hybrid mix of Options 1 and 3 to provide word/
letter ordering with Option 3 and order of use/definition with Option 2. See the
glossaries—extra documentation for further details.

Summary:

1. Add the xindy option to the glossaries package option list:

=

[\usepackage [xindy]{glossaries}

If you are using a non-Latin script you’ll also need to either switch off the creation of
the number group:

=

[\usepackage [xindy={glsnumbers=false}]{glossaries}

or use either \GlsSetXdyFirstLetterAfterDigits{(letter)} (to indicate the first
letter group to follow the digits) or \GlsSetXdyNumberGroupOrder{(spec)} to indi-
cate where the number group should be placed (see §14).

20

1. Introduction

2. Add \makeglossaries to your preamble (before you start defining your entries, as
described in §4).

3. Run EIEX on your document. This creates files with the extensions glo and xdy (for
example, if your EIEX document is called myDoc . tex, then you’ll have two extra files
called myDoc.glo and myDoc.xdy). If you look at your document at this point, you
won’t see the glossary as it hasn’t been created yet. (If you're using the glossaries—extra
extension package, you’ll see the section header and some boilerplate text.)

If you have used package options such as symbols there will also be other sets of files
corresponding to the extra glossaries that were created by those options.

4. Run xindy with the glo file as the input file and the xdy file as a module so that it
creates an output file with the extension gls. You also need to set the language name
and input encoding, as follows (all on one line):

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.glg -o
myDoc.gls myDoc.glo

(Replace myDoc with the base name of your EIEX document file. Avoid spaces in the
file name. If necessary, also replace english with the name of your language and ut£8
with your input encoding, for example, -L german -C din5007-utf8.)

The file extensions vary according to the glossary type. See §1.6.3 for further
details. xindy must be called for each set of files.

It’s much simpler to use makeglossaries instead:

makeglossaries myDoc

Note that the file extension isn’t supplied in this case. This will pick up all the file
extensions from the aux file and run xindy the appropriate number of times with all
the necessary switches.

There’s no benefit in using makeglossaries-1lite with xindy. (Remember that xindy
is a Perl script so if you can use xindy then you can also use makeglossaries, and if
you don’t want to use makeglossaries because you don’t want to install Perl, then
you can’t use xindy either.)

If you don’t know how to use the command prompt, then you can probably access
xindy or makeglossaries via your text editor, but each editor has a different method
of doing this. See Incorporating makeglossaries or makeglossaries-lite or bib2gls into
the document build® for some examples.

dickimaw-books.com/latex/buildglossaries/

21

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

Again, a convenient method is to use arara and add the follow comment lines to the
start of your document:

=

% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex

The default sort is word order (“sea lion” comes before “seal”). If you want letter or-
dering you need to add the order=1etter package option:

=

[\usepackage [xindy,order=letter]{glossaries}

(and return to the previous step). This option is picked up by makeglossaries. If you
are explicitly using xindy then you’ll need to add -M ord/letorder to the options
list. See §1.6.3 for further details on using xindy explicitly.

5. Once you have successfully completed the previous step, you can now run KIEX on
your document again. As with makeindex (Option 2), you may need to repeat the
previous step and this step to ensure the table of contents and cross-references are
resolved.

1.3.4. Option 4 (bib2gls)

This option is only available with the glossaries-extra extension package. This method uses glossaries
bib2gls to both fetch entry definitions from bib files and to hierarchically sort and collate. ~extra

Example document:

\documentclass{article}

\usepackage [record,style=indexgroup] {glossaries-extra}
\setabbreviationstyle{short-long}

% data in sample-entries.bib:
\GlsXtrLoadResources[src={sample-entries}]
\begin{document}

\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.

Next use: \gls{arpanet}.
\printunsrtglossary

\end{document}

Note that the abbreviation style must be set before \G1sXtrLoadResources. The file sample-
entries.bib contains:

22

1. Introduction

\.

@entry{parrot,
name={parrot},
description={a brightly coloured tropical bird}
}
@entry{duck,
name={duck},
description={a waterbird}
}
Qentry{puffin,
name={puffin},
description={a seabird with a brightly coloured bill}
}
Qentry{penguin,
name={penguin},
description={a flightless black and white seabird}
}
@symbol{alpha,
name={\ensuremath{\alpha}},
description={a variable}
}
@abbreviation{arpanet,
short={ARPANET},
long={Advanced Research Projects Agency Network}
}

The result is slightly different from the previous examples. Letter groups aren’t created by
default with bib2gls so, even though the glossary style supports letter groups, there’s no
group information.

23

1. Introduction

Example 6: Simple document that uses bib2gls to sort entries N\EFIE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary

a a variable 1

ARPANET Advanced Research Projects Agency Network 1
duck a waterbird 1

parrot a brightly coloured tropical bird 1

puffin a seabird with a brightly coloured bill 1

All entries must be provided in one or more bib files. (See the bib2gls user manual for
the required format.) In this example, the terms “parrot”, “duck”, “puffin” and “penguin” are
defined using @atentry, the symbol alpha (o) is defined using @symbol and the abbreviation
“ARPANET” is defined using @abbreviation.

[i
(L
Note that the sort key should not be used. Each entry type (Gentry, @symbol,

@abbreviation) has a particular field that’s used for the sort value by default (name,
the label, short). You will break this mechanism if you explicitly use the sort key.
See bib2gls gallery: sorting” for examples.

“dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

The glossaries—extra package needs to be loaded with the record package option:

[\usepackage [record] {glossaries-extra}

or (equivalently)

\usepackage [record=only]{glossaries-extra}

or (with glossaries—extra v1.37+ and bib2gls v1.8+):

\usepackage [record=nameref]{glossaries-extralt

The record=nameref option is the best method if you are using hyperref.

24

% This file is embedded in glossaries-user.pdf
% Example 6 Simple document that uses bib2gls to sort entries
% arara: pdflatex
% arara: bib2gls
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents*}{sample-entries.bib}
@entry{parrot,
 name={parrot},
 description={a brightly coloured tropical bird}
}
@entry{duck,
 name={duck},
 description={a waterbird}
}
@entry{puffin,
 name={puffin},
 description={a seabird with a brightly coloured bill}
}
@entry{penguin,
 name={penguin},
 description={a flightless black and white seabird}
}
@symbol{alpha,
 name={\ensuremath{\alpha}},
 description={a variable}
}
@abbreviation{arpanet,
 short={ARPANET},
 long={Advanced Research Projects Agency Network}
}
\end{filecontents*}
\usepackage[record,style=indexgroup]{glossaries-extra}
\setabbreviationstyle{short-long}
\GlsXtrLoadResources[src={sample-entries}]% data in sample-entries.bib

\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printunsrtglossary
\end{document}

Nicola Talbot
Simple document that uses bib2gls to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are no letter groups (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example006.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example006.pdf
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

1. Introduction

Each resource set is loaded with \GlsXtrLoadResources. For example:

\GlsXtrLoadResources
[% definitions in entriesl.bib and entries2.bib:
src={entriesl,entries2},

sort={de-CH-1996}J, sort according to this locale
]

The bib files are identified as a comma-separated list in the value of the src key. The sort
option identifies the sorting method. This may be a locale identifier for alphabetic sorting,
but there are other sort methods available, such as character code or numeric. One resource
set may cover multiple glossaries or one glossary may be split across multiple resource sets,
forming logical sub-blocks.

If you want to ensure that all entries are selected, even if they haven’t been referenced
in the document, then add the option selection=all. (There are also ways of filtering the
selection or you can even have a random selection by shuffling and truncating the list. See
the bib2gls user manual for further details.)

The glossary is displayed using:

\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

\printunsrtglossaries

The document is built using:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

If letter groups are required, you need the --group switch:

bib2gls --group myDoc

or with arara:

% arara: bib2gls: { group: on }

0 (8L 0B L6

25

1. Introduction

(You will also need an appropriate glossary style.)

Unlike Options 2 and 3, this method doesn’t create a file containing the typeset glossary
but simply determines which entries are needed for the document, their associated locations
and (if required) their associated letter group. This option allows a mixture of sort methods.
For example, sorting by word order for one glossary and order of use for another or even
sorting one block of the glossary differently to another block in the same glossary. See
bib2gls gallery: sorting.®

This method supports Unicode and uses the Common Locale Data Repository, which pro-
vides more extensive language support than xindy. (Except for Klingon, which is supported
by xindy, but not by the CLDR.) The locations in the number list may be in any format. If
bib2gls can deduce a numerical value it will attempt to form ranges otherwise it will simply
list the locations.

Summary:

1. Use glossaries—extra with the record package option:

B

[\usepackage [record]{glossaries-extra}

2. Use \GlsXtrLoadResources to identify the bib file(s) and bib2gls options. The bib
extension may be omitted:

\GlsXtrLoadResources [src={terms.bib,abbreviations.bib},sort=
en]

__B

3. Put

B

[\printunsrtglossary

where you want your list of entries to appear. Alternatively to display all glossaries
use the iterative command:

B

[\printunsrtglossaries

4. Run KIgX on your document.

5. Run bib2gls with just the document base name.

®dickimaw-books.com/gallery/index.php?label=1label=bib2gls-sorting

26

https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

1. Introduction

6. Run KTgX on your document.

See glossaries-extra and bib2gls: An Introductory Guide’ or the bib2gls user manual for
further details of this method, and also Incorporating makeglossaries or makeglossaries-lite
or bib2gls into the document build.?

1.3.5. Option 5 (“unsrt”)

This option is only available with the extension package glossaries—extra. No indexing appli- glossaries
cation is required. -extra

Example document:

\documentclass{article}
\usepackage [style=indexgroup] {glossaries-extra}
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffint{name={puffin},
description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphal},
description={a variable}}
% an abbreviation:
\setabbreviationstyle{short-long}
\newabbreviation{arpanet}{ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printunsrtglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the preamble with
\loadglsentries. There’s no “activation” command (such as \makeglossaries for Op-
tions 2 and 3).

The result is different from the previous examples. Now all entries are listed in the glossary,
including “penguin” which hasn’t been referenced in the document, and the list is in the order

"mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
8dickimaw-books.com/latex/buildglossaries/

27

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

that the entries were defined. There are no number lists.

Example 7: Simple document with an unsorted list of all defined entries N\EFIE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary

P

parrot a brightly coloured tropical bird
D

duck a waterbird

P

puffin a seabird with a brightly coloured bill
penguin a flightless black and white seabird

A

a a variable
ARPANET Advanced Research Projects Agency Network

Note that the letter groups are fragmented because the list isn’t in alphabetical order, so there
are two “P” letter groups.

The \printunsrtglossary command simply iterates over the set of all defined entries
associated with the given glossary and lists them in the order of definition. This means
that child entries must be defined immediately after their parent entry if they must be kept
together in the glossary. Some glossary styles indent entries that have a parent but it’s the
indexing application that ensures the child entries are listed immediately after the parent. If
you're opting to use this manual approach then it’s your responsibility to define the entries
in the correct order.

The glossaries—extra package requires entries to be defined in the preamble by default. It’s
possible to remove this restriction, but bear in mind that any entries defined after \print-
unsrtglossary won't be listed.

The glossary is displayed using:

\printunsrtglossary

28

% This file is embedded in glossaries-user.pdf
% Example 7 Simple document with an unsorted list of all defined entries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries-extra}
\newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an abbreviation:
 \setabbreviationstyle{short-long}
\newabbreviation{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
% entries are listed in order of definition
 \printunsrtglossary
\end{document}

Nicola Talbot
Simple document with an unsorted list of all defined entries (source code)
Example document that defines some entries, references a subset of them in the document and displays an unsorted list of the defined entries: parrot, duck, puffin, penguin, alpha and ARPANET. There are four letter groups with a repeated letter: P, D, P, A (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example007.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example007.pdf

1. Introduction

Alternatively all glossaries can be displayed using the iterative command:

=

[\printunsrtglossaries

This method will display all defined entries, regardless of whether or not they have been
used in the document. Note that this uses the same command for displaying the glossary as
Option 4. This is because bib2gls takes advantage of this method by defining the wanted
entries in the required order and setting the locations (and letter group information, if re-
quired). See the glossaries—extra manual for further details.

Therefore, the above example document has a glossary containing the entries: parrot,
duck, puffin, penguin, o and ARPANET (in that order). Note that the “penguin” entry has
been included even though it wasn’t referenced in the document.

This just requires a single EIEX call:

pdflatex myDoc \

unless the glossary needs to appear in the table of contents, in which case a second run is
required:

pdflatex myDoc
pdflatex myDoc

(Naturally if the document also contains citations, and so on, then additional steps are re-
quired. Similarly for all the other options above.)
See the glossaries—extra documentation for further details of this method.

1.3.6. Option 6 (“standalone”)

This option is only available with the glossaries-extra extension package. (You can just use
the base glossaries package for the first case, but it’s less convenient. You’d have to manually
insert the entry target before the sectioning command and use \glsentryname{(label)}
or \Glsentryname{(label)} to display the entry name.) Instead of creating a list, this has
standalone definitions throughout the document. The entry name may or may not be in a
section heading.

You can either define entries in the preamble (or in an external file loaded with \loadgls-
entries), as with Option 5, for example:

=

\documentclass{article}

\usepackage [colorlinks]{hyperref}

29

glossaries
—extra

1. Introduction

\usepackage [sort=none,
nostyles’, <- no glossary styles are required
l{glossaries-extra}

\newglossaryentry{set}{name={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

\newglossaryentry{function}{name={function},
description={a rule that assigns every element in the
domain \gls{set} to an element in the range \gls{setl}},
symbol={\ensuremath{f (x)}}

}

\newcommand*{\termdef} [1]{/
\section{\glsxtrglossentry{#1} \glsentrysymbol{#1}}/
\begin{quote}\em\Glsentrydesc{#1}.\end{quote}’,

}

\begin{document}

\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl{set}.

\termdef{set}
More detailed information about \glspl{set} with examples.
\termdef{function}

More detailed information about \glspl{function} with examples.

\end{document}

This allows the references to hyperlink to the standalone definitions rather than to a glossary.

30

1. Introduction

Example 8: Simple document with standalone entries NERE
Contents

1 Introduction 1

2 set S 1

3 function f(z) 1

1 Introduction

Sample document about functions and sets.

2 set S
A collection of any kind of objects.

More detailed information about sets with examples.

3 function f(z)

A rule that assigns every element in the domain set to an element
in the range set.

More detailed information about functions with examples.

Or you can use bib2gls if you want to manage a large database of terms. For example:

\documentclass{article}
\usepackage [colorlinks] {hyperref}
\usepackage [record,
nostyles’), <- no glossary styles are required
l{glossaries-extra}

\GlsXtrLoadResources [src={terms},sort=none,save-locations=false]

\newcommand*{\termdef} [1]{/

31

% This file is embedded in glossaries-user.pdf
% Example 8 Simple document with standalone entries
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[colorlinks]{hyperref}
\usepackage[sort=none,
 nostyles% <- no glossary styles are required
]{glossaries-extra}

\newglossaryentry{set}{name={set},
 description={a collection of any kind of objects},
 symbol={\ensuremath{\mathcal{S}}}
}

\newglossaryentry{function}{name={function},
 description={a rule that assigns every element in the
 domain \gls{set} to an element in the range \gls{set}},
 symbol={\ensuremath{f(x)}} }
\newcommand*{\termdef}[1]{%
 \section{\glsxtrglossentry{#1} \glsentrysymbol{#1}}%
 \begin{quote}\em\Glsentrydesc{#1}.\end{quote}%
}
\begin{document}
\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl{set}.

\termdef{set}

More detailed information about \glspl{set} with examples.

\termdef{function}

More detailed information about \glspl{function} with examples.
\end{document}

Nicola Talbot
Simple document with standalone entries (source code)
Example document that defines entries and displays them in the document. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example008.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example008.pdf

1. Introduction

\section{\glsxtrglossentry{#1} \glossentrysymbol{#1}}J
\glsadd{#1}/), <- index this entry
\begin{quote}\em\Glsentrydesc{#1}.\end{quotel}’

}

\begin{document}

\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl{set}.

\termdef{set}
More detailed information about \glspl{set} with examples.
\termdef{function}

More detailed information about \glspl{function} with examples.
\end{document}

Where the file terms.bib contains:

Qentry{set,
name={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

@entry{function,
name={function},
description={a rule that assigns every element in the domain
\gls{set} to an element in the range \gls{setl}},
symbol={\ensuremath{f (x) }}

}

The advantage in this approach (with \loadglsentries or bib2gls) is that you can use an
existing database of entries shared across multiple documents, ensuring consistent notation
for all of them.

In both cases, there’s no need to load all the glossary styles packages, as they’re not re-
quired, so I've used the nostyles package option to prevent them from being loaded.

In the first case, you just need to define the terms (preferably in the preamble or in a file
that’s input in the preamble). No external tool is required. Just run ETEX as normal. (Twice
to ensure that the table of contents is up to date.)

32

1. Introduction

pdflatex myDoc
pdflatex myDoc

In the second case, you need the record package option (as in Option 4) since bib2gls is
needed to select the required entries, but you don’t need a sorted list:

Ei

[\GlsXtrLoadResources [src={terms},sort=nonel]

This will ensure that any entries indexed in the document (through commands like \gls or
\glsadd) will be selected by bib2gls, but it will skip the sorting step. (The chances are you
probably also won’t need location lists either. If so, you can add the option save-locations
=false.)

Remember that for this second case you need to run bib2gls as per Option 4:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
pdflatex myDoc

For both cases (with or without bib2gls), instead of listing all the entries using \print-
unsrtglossary, you use \glsxtrglossentry{(label)} where you want the name (and
anchor with hyperref) to appear in the document. This will allow the link text created by
commands like \gls to link to that point in the document. The description can simply be
displayed with \glsentrydesc{(label)} or \Glsentrydesc{label}, as in the above exam-
ples. In both examples, I've defined a custom command \termdef to simplify the code and
ensure consistency. Extra styling, such as placing the description in a coloured frame, can
be added to this custom definition as required.

(Instead of using \glsentrydesc or \Glsentrydesc, you can use \glossentrydesc
{(label)}, which will obey category attributes such as glossdesc and glossdescfont. See
the glossaries—extra manual for further details.)

The symbol (if required) can be displayed with either \glsentrysymbol{(label)} or \gloss-
entrysymbol{(label)}. In the first example, I've used \glsentrysymbol. In the second I've
used \glossentrysymbol. The latter is necessary with bib2gls if the symbol needs to go
in a section title as the entries aren’t defined on the first EKIgX run.

In normal document text, \glsentrysymbol will silently do nothing if the entry hasn’t
been defined, but when used in a section heading it will expand to an undefined internal
command when written to the aux file, which triggers an error.

The \glossentrysymbol command performs an existence check, which triggers a warn-
ing if the entry is undefined. (All entries will be undefined before the first bib2gls call.)
You need at least glossaries—extra v1.42 to use this command in a section title. (\gloss-
entrysymbol is defined by the base glossaries package but is redefined by glossaries—extra.)

33

1. Introduction

If hyperref has been loaded, this will use \texorpdfstring to allow a simple expansion for
the PDF bookmarks (see the glossaries—extra user manual for further details).

If you want to test if the symbol field has been set, you need to use \ifglshassymbol
outside of the section title. For example:

\ifglshassymbol{#11}/
{\section{\glsxtrglossentry{#1} \glossentrysymbol{#1}}}
{\section{\glsxtrglossentry{#1}}}

__ B

In both of the above examples, the section titles start with a lowercase character (because
the name value is all lowercase in entry definitions). You can apply automatic case change
with the glossname category attribute. For example:

\glssetcategoryattribute{general}{glossname}{firstuc}

or (for title-case)

\glssetcategoryattribute{general}{glossname}{title}

8 LB

However, this won’t apply the case change in the table of contents or bookmarks. Instead
you can use helper commands provided by glossaries—extra v1.49+ but make sure you have
up-to-date versions of glossaries and mfirstuc.

In the second example, you can instead use bib2gls to apply a case change. For example,

to apply sentence case to the name field:

\GlsXtrLoadResources [src={terms},
sort=none,save-locations=false,
replicate-fields={name=text},
name-case-change=firstuc

]

(Or name-case-change=title for title case.) This copies the name value to the text field
and then applies a case change to the name field (leaving the text field unchanged). The
name in the section titles now starts with a capital but the link text produced by commands
like \g1s is still lowercase.

In the first example (without bib2gls) you can do this manually. For example:

34

1. Introduction

\newglossaryentry{set}{name={Set}, text={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

A more automated solution can be obtained with the standalone helper commands for the

PDF bookmark and heading text (glossaries—extra v1.49+).

Note that if you use the default save-locations=true with bib2gls, it’s possible to
combine Options 4 and 6 to have both standalone definitions and an index. In this case, a
glossary style is required. In the example below, I've use bookindex, which is provided in the
glossary-bookindex package (bundled with glossaries—extra). I don’t need any of the other
style packages, so I can still keep the nostyles option and just load glossary-bookindex:

\usepackage [record=nameref,), <- using bib2gls
nostyles,’ <- don't load default style packages
stylemods=bookindex,’ <- load glossary-bookindex.sty
style=bookindex), <- set the default style to 'bookindex'
l{glossaries-extra}

I also need to sort the entries, so the resource command is now:

\GlsXtrLoadResources [src={terms},% definitions in terms.bib
sort=en-GB,’% sort by this locale
replicate-fields={name=text},
name-case-change=firstuc

]

At the end of the document, I can add the glossary:

=

\printunsrtglossary[title=Index,target=falsel

Note that I've had to switch off the hypertargets with target=false (otherwise there would
be duplicate targets). If you want letter group headings you need to use the --group switch:

bib2gls --group myDoc

or if you are using arara:

35

1. Introduction

B

[% arara: bib2gls: { group: on }

The bookindex style doesn’t show the description, so only the name and location is dis-
played. Remember that the name has had a case change so it now starts with an initial capital.
If you feel this is inappropriate for the index, you can adjust the bookindex style so that it
uses the text field instead. For example:

\renewcommand*{\glsxtrbookindexname} [1]{%
\glossentrynameother{#1}{text}}

_ B

See the glossaries—extra user manual for further details about this style.

Note that on the first KIEX run none of the entries will be defined. Once they are defined,
the page numbers may shift due to the increased amount of document text. You may therefore
need to repeat the document build to ensure the page numbers are correct.

If there are extra terms that need to be included in the index that don’t have a description,
you can define them with @index in the bib file. For example:

@index{element}
@index{member,alias={element}}

They can be used in the document as usual:

The objects that make up a set are the \glspl{element}
or \glspl{member}.

_ B LB

See glossaries-extra and bib2gls: An Introductory Guide’ or the bib2gls user manual for
further details.

1.4. Dummy Entries for Testing

In addition to the sample files described in §18, glossaries also provides some files containing
lorum ipsum dummy entries. These are provided for testing purposes and are on TgX’s path
(in tex/latex/glossaries/test-entries) so they can be included via \input or \load-
glsentries. The glossaries—extra package provides bib versions of all these files for use
with bib2gls. The files are as follows:

O example-glossaries-brief.tex

These entries all have brief descriptions. For example:

‘mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

36

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

1. Introduction

\newglossaryentry{lorem}{name={lorem},description={ipsum}}

O example-glossaries-long.tex

These entries all have long descriptions. For example:

\newglossaryentry{loremipsum}{name={lorem ipsum},
description={dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida
mauris.}}

O example-glossaries-multipar.tex

These entries all have multi-paragraph descriptions. For example:

\longnewglossaryentry{loremi-ii}{name={lorem 1--2}}%
{h

Lorem ipsum ...

Nam dui ligula...

}

O example-glossaries-symbols.tex

These entries all use the symbol key. For example:

\newglossaryentry{alpha}{name={alpha},
symbol={\ensuremath{\alpha}},
description={Quisque ullamcorper placerat ipsum.}}

O example-glossaries-symbolnames.tex

Similar to the previous file but the symbol key isn’t used. Instead the symbol is stored in

the name key. For example:

\newglossaryentry{sym.alpha}t{sort={alpha},
name={\ensuremath{\alpha}l},
description={Quisque ullamcorper placerat ipsum.}}

=

37

1. Introduction

O example-glossaries-user.tex

The top level (level 0) entries have the symbol key and all useri, ..., user6 keys set. For

example:

\newglossaryentry{sample-a}
{name={a name},
description={a description},
symbol={\ensuremath{\alpha}},
userl1={A},

user2={1},

user3={i},

user4={A-i},
userb5={25.2020788573521},
user6={1585-11-06}}

There are also some level 1 entries, which may or may not have the symbol and user keys

set. For example:

\newglossaryentry{sample-b-0}
{parent={sample-b},

name={b/0 name},
description={child 0 of b},
symbol={\ensuremath{\sigma}},
user2={0},

user4={a-i}}

There are no deeper hierarchical entries. Where set, the user1 key is an uppercase letter
(A-Z), the user2 key is an integer, the user3 key is a lowercase Roman numeral, the user4
key is in the form (alpha)-(roman) where (alpha) is either an upper or lowercase letter (a-z
or A-Z) and (roman) is either an upper or lowercase Roman numeral. The user5 key is a
random number (in the range (—50, +50) for top level (level 0) entries and (—1, +1) for child
entries). The user6 key is a random date between 1000-01-01 and 2099-12-31.

O example-glossaries-images.tex

These entries use the user1 key to store the name of an image file. (The images are pro-
vided by the mwe package and should be on TgX’s path.) One entry doesn’t have an associated
image to help test for a missing key. The descriptions are long to allow for tests with the text
wrapping around the image. For example:

38

1. Introduction

\longnewglossaryentry{sedfeugiat}{name={sed feugiatl,
userl={example-imagel}}J
{h

Cum sociis natoque. ..

Etiam. ..

b

0 example-glossaries—acronym.tex

These entries are all acronyms. For example:

\newacronym[type={\glsdefaulttype}]{1id}{LID}{lorem ipsum
dolor}

glossaries—extra

If you use the glossaries—extra extension package, then \newacronym is redefined to
use \newabbreviation with the category key set to acronym (rather than the default
abbreviation). This means that you need to set the abbreviation style for the acronym
category. For example:

=

\setabbreviationstyle[acronym] {long-short}

0 example-glossaries—acronym-desc.tex

This file contains entries that are all acronyms that use the description key. For example:

\newacronym[type={\glsdefaulttype},
description={fringilla a, euismod sodales,
sollicitudin vel, wisi}]{nd1}{NDL}{nam dui ligula}

glossaries—extra

If you use the glossaries—extra extension package, then \newacronym is redefined to
use \newabbreviation with the category key set to acronym (rather than the default
abbreviation). This means that you need to set the abbreviation style for the acronym
category. For example:

39

1. Introduction

\setabbreviationstyle[acronym]{long-short-desc}

0 example-glossaries—acronyms-lang.tex

These entries are all acronyms, where some of them have a translation supplied in the

userl key. For example:

\newacronym[type={\glsdefaulttype},useri={love itself}]
{1iH{LI}{lorem ipsum}

glossaries—extra

If you use the glossaries—extra extension package, then \newacronym is redefined to
use \newabbreviation with the category key set to acronym (rather than the default
abbreviation). This means that you need to set the abbreviation style for the acronym
category. For example:

=

\setabbreviationstyle[acronym]{long-short-user}

.

O example-glossaries—-parent.tex

These are hierarchical entries where the child entries use the name key. For example:

\newglossaryentry{sedmattis}{name={sed mattis},
description={erat sit amet}}

\newglossaryentry{gravida}{parent={sedmattis},
name={gravidal},description={malesuadal}

0 example-glossaries-childnoname.tex

These are hierarchical entries where the child entries don’t use the name key. For example:

=

\newglossaryentry{scelerisque}{name={scelerisquel,
description={at}}

\newglossaryentry{vestibulum}{parent={scelerisque},

40

1. Introduction

description={eu, nulla}} J

[jexample—glossaries—longchild.tex

These entries all have long descriptions and there are some child entries. For example:

\newglossaryentry{longsedmattis}{name={sed mattis},

description=

{erat sit amet dolor sit amet, consectetuer adipiscing elit.

Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
Curabitur dictum gravida mauris.}}

\newglossaryentry{longgravida}{parent={longsedmattis},name=
{gravida}l,

description=

{malesuada libero, nonummy eget, consectetuer id, vulputate a,
magna. Donec vehicula augue eu neque. Pellentesque habitant morbi trilstique
senectus et netus et malesuada fames ac turpis egestas. Mauris ut
leo.}}

[jexample—glossaries—childmultipar.tex

This consists of parent entries with single paragraph descriptions and child entries with
multi-paragraph descriptions. Some entries have the user1 key set to the name of an image

file provided by the mwe package. For example:

\newglossaryentry{hiersedmattis}{name={sed mattis},useri={example-
image},

description=
{Erat sit amet dolor sit amet, consectetuer adipiscing elit.

Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. (urabitur
dictum gravida mauris. Ut pellentesque augue sed urna. Vestibulum
diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam
at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit
amet massa. Fusce blandit. Aliquam erat volutpat.l}}

\longnewglossaryentry{hierloremi-ii}
{name={lorem 1--2},parent={hiersedmattis}}/
Lk

Lorem ipsum ...

41

1. Introduction

Nam dui ligula...

3

O example-glossaries-cite.tex

These entries use the user1 key to store a citation key (or comma-separated list of citation
keys). The citations are defined in xampl .bib, which should be available on all modern TgX
distributions. One entry doesn’t have an associated citation to help test for a missing key.
For example:

Ej
\newglossaryentry{fusce}{name={fusce},
description={suscipit cursus sem},useri={article-minimall}}

O example-glossaries—url.tex

These entries use the user1 key to store an URL associated with the entry. For example:

\newglossaryentry{aenean-url}{name={aenean},
description={adipiscing auctor est},

userl={http://uk.tug.org/}}

The sample file glossary-lipsum-examples.texinthe doc/latex/glossaries/samples
directory uses all these files. See also glossaries gallery.'’

The glossaries—extra package provides the additional test file: glossaries

. —extra
O example-glossaries—xr.tex

These entries use the see key provided by the base glossaries package and also the alias
and seealso keys that require glossaries-extra. For example:

\newglossaryentry{alias-lorem}{name={alias-lorem},
description={ipsum},alias={lorem}}

\newglossaryentry{amet}{name={amet},description={consectetuer},
see={dolor}}

\newglossaryentry{arcu}name={arcu},description={libero},
seealso={placerat,vitae,curabitur}

04ickimaw-books.com/gallery/#glossaries

42

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//glossary-lipsum-examples.tex
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/#glossaries

1. Introduction

1.5. Multi-Lingual Support
(i

The glossaries package uses the tracklang package to determine the document lan-
guages. Unfortunately, because there isn’t a standard language identification frame-
work provided with ETEX, tracklang isn’t always able to detect the selected languages
either as a result of using an unknown interface or where the interface doesn’t pro-
vide a way of detecting the language. In particular, tracklang can’t pick up languages
specified using babel’s \babelprovide. In the event that tracklang can’t detect the
language, use the languages package option. See §1.2 and also Localisation with
tracklang.tex for further details.

‘dickimaw-books.com/latex/tracklang/

As from version 1.17, the glossaries package can be used with xindy as well as makeindex.
If you are writing in a language that uses an extended Latin alphabet or non-Latin alphabet
it’s best to use Option 3 (xindy) or Option 4 (bib2gls) as makeindex (Option 2) is hard-
coded for the non-extended Latin alphabet and Option 1 can only perform limited ASCII
comparisons.

This means that with Options 3 or 4 you are not restricted to the A, ..., Z letter groups. If
you want to use xindy, remember to use the xindy package option. For example:

\documentclass[french]{article}
\usepackage [utf8]{inputenc}
\usepackage [T1]{fontenc}
\usepackage{babel}

\usepackage [xindy] {glossaries}

If you are using a non-Latin script, you may need the xindynoglsnumbers=option or use
\GlsSetXdyFirstLetterAfterDigits to indicate the first letter group that should follow
the number group.

If you want to use bib2gls, you need to use the record option with glossaries-extra and
supply the definitions in bib files. (See the bib2gls user manual for further details.)

[i

(L
Note that although a non-Latin character, such as é, looks like a plain character in your
tex file, with standard EIEX it’s actually a macro and can therefore cause problems.
(This issue doesn’t occur with XglIEX or Lual{TgX which both natively support UTF-8.)
Recent versions of the BTEX kernel have made significant improvements in handling

UTF-8. To ensure you have the best UTF-8 support, use at least mfirstuc v2.08+ with
glossaries v4.50+ (and, if required, glossaries—extra v1.49+).

With old versions of mfirstuc (pre v2.08), if you use a UTF-8 character at the start of an entry

43

https://www.dickimaw-books.com/latex/tracklang/
https://www.dickimaw-books.com/latex/tracklang/
https://www.dickimaw-books.com/latex/tracklang/

1. Introduction

name, you must place it in a group, or it will cause a problem for sentence case commands
(e.g. \G1s). For example:

=

% mfirstuc v2.07:
\newglossaryentry{elite}{name={{é}1ite},
description={select group or class}}

This isn’t necessary with glossaries v4.50+ and mfirstuc v2.08+.

% mfirstuc v2.08:
\newglossaryentry{elite}{name={élite},
description={select group or class}}

If you are using xindy or bib2gls, the application needs to know the encoding of the
tex file. This information is added to the aux file and can be picked up by makeglossaries
and bib2gls. If you use xindy explicitly instead of via \makeglossaries, you may need to
specify the encoding using the -C option. Read the xindy manual for further details of this
option.

If you have the double-quote character (") as an active character (for example, a babel
shorthand) and you want to use makeindex’s —g option, you’ll need to change makeindex’s
quote character using:

X

\G1lsSetQuote{(character)}

Note that (character) may not be one of 7 (question mark), | (pipe) or ! (exclamation mark).
For example:

=

\GlsSetQuote{+}

This must be done before \makeglossaries and any entry definitions. It’s only applicable
for makeindex. This option in conjunction with ngerman will also cause makeglossaries
to use the -g switch when invoking makeindex.

(i]
r =
Be careful of babel’s shorthands. These aren’t switched on until the start of the doc-
ument, so any entries defined in the preamble won’t be able to use those shorthands.
However, if you define the entries in the document and any of those shorthands hap-
pen to be special characters for makeindex or xindy (such as the double-quote) then
this will interfere with code that tries to escape any of those characters that occur in

44

1. Introduction

the sort key.

In general, it’s best not to use babel’s shorthands in entry definitions. For example:

\documentclass{article}

\usepackage [ngerman] {babel}
\usepackage{glossaries}

\GlsSetQuote{+}

\makeglossaries

\newglossaryentry{rnat{name=ribonukleinsdure,
sort={ribonukleins"aure},

description={eine Nukleins&dure}}

\begin{document}
\gls{rna}

\printglossaries
\end{document}

1.5.1. Changing the Fixed Names

The fixed names are produced using the commands listed in Table 1.2 on the following page.
If you aren’t using a language package such as babel or polyglossia that uses caption hooks,
you can just redefine these commands as appropriate. If you are using babel or polyglossia,
you need to use their caption hooks to change the defaults. See changing the words babel
uses or read the babel or polyglossia documentation. If you have loaded babel, then glossaries
will attempt to load translator, unless you have used the notranslate, translate=false or
translate=babel package options. If the translator package is loaded, the translations are
provided by dictionary files (for example, glossaries-dictionary-English.dict). See
the translator package for advice on changing translations provided by translator dictionaries.
If you can’t work out how to modify these dictionary definitions, try switching to babel’s

interface using translate=babel:

=

\documentclass[english,french]{article}
\usepackage{babel}

45

https://texfaq.org/FAQ-latexwords
https://texfaq.org/FAQ-latexwords

1. Introduction

\usepackage [translate=babel]{glossaries}

and then use babel’s caption hook mechanism. Note that if you pass the language options
directly to babel rather that using the document class options or otherwise passing the same
options to translator, then translator won'’t pick up the language and no dictionaries will be
loaded and babel’s caption hooks will be used instead.

Table 1.2.: Customised Text

Command Name Translator Key Word Purpose

\glossaryname Glossary Title of the main glossary.

\acronymname Acronyms Title of the list of acronyms (when
used with package option acronym).

\entryname Notation (glossaries) Header for first column in the

glossary (for 2, 3 or 4 column
glossaries that support headers).

\descriptionname Description Header for second column in the
(glossaries) glossary (for 2, 3 or 4 column
glossaries that support headers).
\symbolname Symbol (glossaries) Header for symbol column in the

glossary for glossary styles that
support this option.

\pagelistname Page List Header for the page list column in

(glossaries) the glossary for glossaries that

support this option.

\glssymbolsgroupname Symbols (glossaries) Header for symbols section of the
glossary for glossary styles that
support this option.

\glsnumbersgroupname Numbers (glossaries) Header for numbers section of the
glossary for glossary styles that
support this option.

As from version 4.12, multilingual support is provided by separate language modules that
need to be installed in addition to installing the glossaries package. You only need to install
the modules for the languages that you require. If the language module has an unmaintained
status, you can volunteer to take over the maintenance by contacting me at http://www.
dickimaw-books.com/contact.html. The translator dictionary files for glossaries are now
provided by the appropriate language module. For further details about information specific
to a given language, please see the documentation for that language module.

Examples of use:

+ Using babel and translator:

46

http://www.dickimaw-books.com/contact.html
http://www.dickimaw-books.com/contact.html

1. Introduction

\documentclass[english,french]{article}
\usepackage{babel}
\usepackage{glossaries}

(translator is automatically loaded).

+ Using babel:

\documentclass[english,french]{article}
\usepackage{babel}
\usepackage [translate=babel] {glossaries}

(translator isn’t loaded). The glossaries-extra package has translate=babel as the
default if babel has been loaded.

« Using polyglossia:

\documentclass{article}
\usepackage{polyglossia}
\setmainlanguage{english}
\usepackage{glossaries}

Due to the varied nature of glossaries, it’s likely that the predefined translations may not be
appropriate. If you are using the babel package and the glossaries package option translate
=babel, you need to be familiar with the advice given in changing the words babel uses. If
you are using the translator package, then you can provide your own dictionary with the
necessary modifications (using \deftranslation) and load it using \usedictionary. If
you simply want to change the title of a glossary, you can use the title key in commands
like \printglossary (but not the iterative commands like \printglossaries).

(i]
=
Note that the translator dictionaries are loaded at the beginning of the document, so

it won’t have any effect if you put \deftranslation in the preamble. It should be
put in your personal dictionary instead (as in the example below). See the translator
documentation for further details.

Your custom dictionary doesn’t have to be just a translation from English to another lan-
guage. You may prefer to have a dictionary for a particular type of document. For example,

47

https://texfaq.org/FAQ-latexwords

1. Introduction

suppose your institution’s in-house reports have to have the glossary labelled as “Nomen-
clature” and the location list should be labelled “Location”, then you can create a file called,
say, myinstitute-glossaries-dictionary-English.dict that contains the following:

=

\ProvidesDictionary{myinstitute-glossaries-dictionary}{English}
\deftranslation{Glossary}{Nomenclature}
\deftranslation{Page List (glossaries)}{Location}

You can now load it using:

=

[\usedictionary{myinstitute-glossaries-dictionary}

(Make sure that myinstitute-glossaries-dictionary-English.dict can be found by
TgX.) If you want to share your custom dictionary, you can upload it to CTAN.

If you are using babel and don’t want to use the translator interface, you can use the
package option translate=babel. For example:

\documentclass[british]{article}

\usepackage{babel}
\usepackage [translate=babel] {glossaries}

\addto\captionsbritish{%
\renewcommand*{\glossaryname}{List of Terms})
\renewcommand*{\acronymname}{List of Acronyms}J

}

Note that xindy and bib2gls provide much better multi-lingual support than makeindex,
so I recommend that you use Options 2 or 3 if you have glossary entries that contain non-
Latin characters. See §14 for further details on xindy, and see the bib2gls user manual for
further details of that application.

1.5.2. Creating a New Language Module

The glossaries package now uses the tracklang package to determine which language modules
need to be loaded. If you want to create a new language module, you should first read the
tracklang documentation.

To create a new language module, you need to at least create two files called: glossaries
-(lang) .1df and glossaries-dictionary-(Lang).dict where (lang) is the root language
name (for example, english) and (Lang) is the language name used by translator (for exam-
ple, English).

48

http://www.ctan.org/

1. Introduction

Here’s an example of glossaries-dictionary-English.dict:

\ProvidesDictionary{glossaries-dictionary}{English}

\providetranslation{Glossary}{Glossary}
\providetranslation{Acronyms}{Acronyms}
\providetranslation{Notation (glossaries)}{Notation}
\providetranslation{Description (glossaries)}{Description}
\providetranslation{Symbol (glossaries)}{Symbol}
\providetranslation{Page List (glossaries)}{Page List}
\providetranslation{Symbols (glossaries)}{Symbols}
\providetranslation{Numbers (glossaries)}{Numbers}

You can use this as a template for your dictionary file. Change English to the translator name
for your language (so that it matches the file name glossaries-dictionary-(Lang).dict)
and, for each \providetranslation, change the second argument to the appropriate trans-
lation.

Here’s an example of glossaries-english.1df:

\ProvidesGlossariesLang{english}

\glsifusedtranslatordict{English}
{h
\addglossarytocaptions{\CurrentTrackedLanguage},
\addglossarytocaptions{\CurrentTrackedDialectl}/
}
{h
\@ifpackageloaded{polyglossial,
{h
\newcommand*{\glossariescaptionsenglish}{/
\renewcommand*{\glossaryname}{\textenglish{Glossaryl}}/
\renewcommand*{\acronymname}{\textenglish{Acronyms}}/
\renewcommand*{\entryname}{\textenglish{Notation}}J
\renewcommand*{\descriptionname}{\textenglish{Description}}/
\renewcommand*{\symbolname}{\textenglish{Symbol}}J,
\renewcommand*{\pagelistname}{\textenglish{Page List}})
\renewcommand*{\glssymbolsgroupname}{\textenglish{Symbols}}/
\renewcommand*{\glsnumbersgroupname}{\textenglish{Numbers}}/
Y
Y
{h

49

1. Introduction

\newcommand*{\glossariescaptionsenglish}{’
\renewcommand*{\glossaryname}{Glossaryl}/
\renewcommand*{\acronymname}{Acronyms}J
\renewcommand*{\entryname}{Notation}y,
\renewcommand*{\descriptionname}{Description}
\renewcommand*{\symbolname}{Symbol}’
\renewcommand*{\pagelistname}{Page List})
\renewcommand*{\glssymbolsgroupname}{Symbols}
\renewcommand*{\glsnumbersgroupname}{Numbers}y

Y

Yh
\ifcsdef{captions\CurrentTrackedDialect}
{h

\csappto{captions\CurrentTrackedDialect}/,

{h
\glossariescaptionsenglish

Yh

Yh
{h

\ifcsdef{captions\CurrentTrackedLanguage}

{h
\csappto{captions\CurrentTrackedLanguagel’,

{h
\glossariescaptionsenglish
+h

Y

b

b

Yh

\glossariescaptionsenglish
}
\renewcommand*{\glspluralsuffix}{s}
\renewcommand*{\glsacrpluralsuffix}{\glspluralsuffix}
\renewcommand*{\glsupacrpluralsuffix}{\glstextup{\glspluralsuffix}}

This is a somewhat longer file, but again you can use it as a template. Replace English with
the translator language label (Lang) used for the dictionary file and replace english with the
root language name (lang). Within the definition of \glossariescaptions(lang), replace
the English text (such as “Glossaries”) with the appropriate translation.

The suffixes used to generate the plural forms when the plural hasn’t been specified are
given by \glspluralsuffix (for general entries). For acronyms defined with the base \new-
acronym, \glsupacrpluralsuffix is used for the small caps acronym styles where the
suffix needs to be set using \glstextup to counteract the effects of \textsc and \glsacr-

50

1. Introduction

pluralsuffix for other acronym styles. There’s no guarantee when these commands will be
expanded. They may be expanded on definition or they may be expanded on use, depending
on the glossaries configuration.

[i
(L
Therefore these plural suffix command definitions aren’t included in the \cap-

tions(language) hook as that’s typically not switched used until the start of the doc-
ument. This means that the suffix in effect will be for the last loaded language
that redefined these commands. It’s best to initialise these commands to the most
common suffix required in your document and use the plural, longplural, short-
plural etc keys to override exceptions.

If you want to add a regional variation, create a file called glossaries-(iso-lang)-(iso-
region) .1df, where (iso-lang) is the ISO language code and (iso-region) is the ISO country
code. For example, glossaries-en-GB.1df. This file can load the root language file and
make the appropriate changes, for example:

,

\ProvidesGlossariesLang{en-GB}
\RequireGlossariesLang{english}
\glsifusedtranslatordict{British}

{h
\addglossarytocaptions{\CurrentTrackedLanguagel’,
\addglossarytocaptions{\CurrentTrackedDialect}/
}
{h
\@ifpackageloaded{polyglossial}
{h
% Modify \glossariescaptionsenglish as appropriate for
% polyglossia
3
Lk
% Modify \glossariescaptionsenglish as appropriate for
% non-polyglossia
3
}

If the translations includes non-Latin characters, it’s a good idea to provide code that’s
independent of the input encoding. Remember that while some users may use UTF-8 (and
it’s now the default encoding with modern EIEX kernels), others may use Latin-1 or any
other supported encoding, but while users won’t appreciate you enforcing your preference
on them, it’s useful to provide a UTF-8 version.

The glossaries-irish.1df file provides this as follows:

51

1. Introduction

\ProvidesGlossariesLang{irish}

\glsifusedtranslatordict{Irish}

{h
\addglossarytocaptions{\CurrentTrackedLanguage}’
\addglossarytocaptions{\CurrentTrackedDialect}/

}

{h
\ifdefstring{\inputencodingname}{utf8}
{\input{glossaries-irish-utf8.1df}}/

{h
\ifdef\XeTeXinputencoding/ XeTeX defaults to UTF-8
{\input{glossaries-irish-utf8.1df}}J
{\input{glossaries-irish-noenc.1df}}

}

\ifcsdef{captions\CurrentTrackedDialect}

{h
\csappto{captions\CurrentTrackedDialect}/,
{h

\glossariescaptionsirish
Yh

Yh

{h
\ifcsdef{captions\CurrentTrackedLanguage}
{

\csappto{captions\CurrentTrackedLanguagel}’
{h
\glossariescaptionsirish
+h
/A
L
Yh
Yh
\glossariescaptionsirish

}

(Again you can use this as a template. Replace irish with your root language label and
Irish with the translator dictionary label.)

There are now two extra files: glossaries-irish-noenc.1df (no encoding information)
and glossaries-irish-utf8.1df (UTF-8).

These both define \glossariescaptionsirish but the *-noenc.1df file uses EIEX ac-
cent commands:

52

1. Introduction

\@ifpackageloaded{polyglossial,
{h

\newcommand*{\glossariescaptionsirish}{J
\renewcommand*{\glossaryname}{\textirish{Gluais}}/
\renewcommand*{\acronymname}{\textirish{Acrainmneacha}}/
\renewcommand*{\entryname}{\textirish{Ciall}}J,
\renewcommand*{\descriptionname}{\textirish{Tuairisc}}/
\renewcommand*{\symbolname}{\textirish{Comhartha}}J,
\renewcommand*{\glssymbolsgroupname}{\textirish{Comhartha\'\i}}

b
\renewcommand*{\pagelistname}{\textirish{Leathanaigh}}/
\renewcommand*{\glsnumbersgroupname}{\textirish{Uimhreachal}}/,
Yh
+h
{%

\newcommand*{\glossariescaptionsirish}{J
\renewcommand*{\glossaryname}{Gluais}y,
\renewcommand*{\acronymname}{Acrainmneachal,
\renewcommand*{\entryname}{Ciall}}
\renewcommand*{\descriptionname}{Tuairisc}/
\renewcommand*{\symbolname}{Comhartha}j,
\renewcommand*{\glssymbolsgroupname}{Comhartha\'\i}J,
\renewcommand*{\pagelistname}{Leathanaigh}
\renewcommand*{\glsnumbersgroupname}{Uimhreachal},

Y

}

whereas the x-ut£8. 1df file replaces the accent commands with the appropriate UTF-8 char-
acters.

1.6. Generating the Associated Glossary Files
(i)

=
This section is only applicable if you have chosen Options 2 or 4. You can ignore this

section if you have chosen any of the other options. If you want to alphabetically
sort your entries always remember to use the sort key if the name contains any EIgX
commands (except if you're using bib2gls).

If this section seriously confuses you, and you can’t work out how to run external tools like
makeglossaries or makeindex, you can try using the automake package option, described
in §2.5, but you will need TgX’s shell escape enabled. See also Incorporating makeglossaries

53

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

or makeglossaries-lite or bib2gls into the document build."!
In order to generate a sorted glossary with compact number lists, it is necessary to use
an external indexing application as an intermediate step (unless you have chosen Option 1,
which uses TgX to do the sorting or Option 5, which doesn’t perform any sorting). It is
this application that creates the file containing the code required to typeset the glossary.
If this step is omitted, the glossaries will not appear in your document. The two
indexing applications that are most commonly used with ETEX are makeindex and xindy.
As from version 1.17, the glossaries package can be used with either of these applications.
Previous versions were designed to be used with makeindex only. With the glossaries—extra
package, you can also use bib2gls as the indexing application. (See the glossaries—extra and
bib2gls user manuals for further details.) Note that xindy and bib2gls have much better
multi-lingual support than makeindex, so xindy or bib2gls are recommended if you’re not
writing in English. Commands that only have an effect when xindy is used are described in
§14.
(i]
L=
This is a multi-stage process, but there are methods of automating document compi-

lation using applications such as latexmk and arara. With arara you can just add
special comments to your document source:

B

%, arara: pdflatex
% arara: makeglossaries
% arara: pdflatex

With latexmk you need to set up the required dependencies.

J

The glossaries package comes with the Perl script makeglossaries which will run make-
index or xindy on all the indexing files using a customized style file (which is created by
\makeglossaries). See §1.6.1 for further details. Perl is stable, cross-platform, open source
software that is used by a number of TgX-related applications (including xindy and 1atexmk).
Most Unix-like operating systems come with a Perl interpreter. TgX Live also comes with
a Perl interpreter. As far as I know, MikTEX doesn’t come with a Perl interpreter so if you are
a Windows MikTEX user you will need to install Perl if you want to use makeglossaries or
xindy. Further information is available at http://www.perl.org/about.html and Mik-
TeX and Perl scripts (and one Python script).*

The advantages of using makeglossaries:

« It automatically detects whether to use makeindex or xindy and sets the relevant
application switches.

+ One call of makeglossaries will run makeindex/xindy for each glossary type.

4ickimaw-books.com/latex/buildglossaries/
2tex.stackexchange.com/questions/158796

54

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
http://www.perl.org/about.html
https://tex.stackexchange.com/questions/158796
https://tex.stackexchange.com/questions/158796
https://www.dickimaw-books.com/latex/buildglossaries/
http://tex.stackexchange.com/questions/158796

1. Introduction

« Ifthings go wrong, makeglossaries will scan the messages from makeindex or xindy
and attempt to diagnose the problem in relation to the glossaries package. This will
hopefully provide more helpful messages in some cases. If it can’t diagnose the prob-
lem, you will have to read the relevant transcript file and see if you can work it out
from the makeindex or xindy messages.

« If makeindex warns about multiple encap values, makeglossaries v2.18+ will detect
this and attempt to correct the problem. This correction is only provided by makeglos-
saries when makeindex is used since xindy uses the order of the attributes list to
determine which format should take precedence. (see §14.3.) This correction can be
switched off with the -e switch.

+ If makeindex warns about invalid or empty locations, makeglossaries v4.50+ will
detect this and attempt to alter the location to fit makeindex’s syntax. This may or
may not cause unexpected results in the location list, but it’s useful if the nonumber-
list option is used.

+ If makeindex has a warning that could be the result of a command occurring within
the location, makeglossaries v4.50+ will attempt to repair it by moving the command
out of the location and into the encap.

The first two items also apply to makeglossaries-1lite.
As from version 4.16, the glossaries package also comes with a Lua script called makeglos-
saries-1lite. This is a trimmed-down alternative to the makeglossaries Perl script. It
doesn’t have some of the options that the Perl version has and it doesn’t attempt to diagnose
any problems, but since modern TgX distributions come with LuaTgX (and therefore have
a Lua interpreter) you don’t need to install anything else in order to use makeglossaries
-lite so it’s an alternative to makeglossaries if you want to use Option 2 (makeindex).

If things go wrong and you can’t work out why your glossaries aren’t being generated cor-
rectly, you can use makeglossariesgui as a diagnostic tool. Once you've fixed the problem,
you can then go back to using makeglossaries or makeglossaries-lite.

Whilst I strongly recommended that you use the makeglossaries Perl script or the make-
glossaries-1lite Lua script, it is possible to use the glossaries package without using those
applications. However, note that some commands and package options have no effect if you
explicitly run makeindex/xindy. These are listed in Table 1.3 on page 57.

(i]
=
If you are choosing not to use makeglossaries because you don’t want to install Perl,

you will only be able to use makeindex as xindy also requires Perl. (Other useful Perl
scripts include epstopdf and latexmk, so it’s well-worth the effort to install Perl.)

J

Below, references to makeglossaries can usually be substituted with makeglossaries
-lite, except where noted otherwise.

If any of your entries use an entry that is not referenced outside the glossary (for example,
the entry is only referenced in the description of another entry), you will need to do an

55

1. Introduction

additional makeglossaries, makeindex or xindy run, as appropriate. For example, suppose

you have defined the following entries:

\newglossaryentry{citrusfruit}{name={citrus fruit},
description={fruit of any citrus tree. (See also
\gls{orangel})}}

\newglossaryentry{orange}t{name={orange},
description={an orange coloured fruit.}}

\.

and suppose you have \gls{citrusfruit} in your document but don’t reference the “or-
ange” entry, then the orange entry won'’t appear in your glossary until you first create the
glossary and then do another run of makeglossaries, makeindex or xindy. For example,
if the document is called myDoc . tex, then you must do:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

(In the case of Option 4, bib2gls will scan the description for instances of commands like
\gls to ensure they are selected but an extra bib2gls call is required to ensure the locations
are included, if location lists are required. See the and bib2gls manual for further details.)

Likewise, an additional makeglossaries and EIEX run may be required if the document
pages shift with re-runs. For example, if the page numbering is not reset after the table of
contents, the insertion of the table of contents on the second EIEX run may push glossary
entries across page boundaries, which means that the number lists in the glossary may need
updating.

The examples in this document assume that you are accessing makeglossaries, xindy
or makeindex via a terminal. Windows users can use the command prompt which is usually
accessed via the Start =¥ All Programs menu or Start =¥ All Programs =¥ Accessories menu or
Start =» Windows System.

Alternatively, your text editor may have the facility to create a function that will call the
required application. See Incorporating makeglossaries or makeglossaries-lite or bib2gls into
the document build."

If any problems occur, remember to check the transcript files (e.g. glg or alg) for messages.

3dickimaw-books.com/latex/buildglossaries/

56

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

Table 1.3.: Commands and package options that have no effect when using xindy or make-
index explicitly

Command or Package Option makeindex xindy

order=letter use -1 use -M ord/letorder
order=word default default
xindy=language={lang}, codepage={code} N/A use -L (lang) -C (code)
\GlsSetXdyLanguage{(lang)} N/A use -L (lang)
\G1lsSetXdyCodePage{(code)} N/A use -C (code)

1.6.1. Using the makeglossaries Perl Script

makeglossaries (options) (aux-file)

The makeglossaries script picks up the relevant information from the auxiliary (aux) file
and will either call xindy or makeindex, depending on the supplied information. Therefore,
you only need to pass the document’s name without the extension to makeglossaries. For
example, if your document is called myDoc . tex, type the following in your terminal:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

If you only want one glossary processed (for example, if you are working on a draft of a
large document and want to concentrate on one specific glossary) then include the (out-ext)
extension supplied to \newglossary, such as glo for the main glossary. Note that if you do
specify the extension and your document has multiple glossaries defined, then makeglos-
saries will tell you how many glossaries have been ignored unless the —-q has been used.

Windows users: TgX Live on Windows has its own internal Perl interpreter and provides
makeglossaries.exe asaconvenient wrapper for the makeglossaries Perl script. MikTEX
also provides a wrapper makeglossaries.exe but doesn’t provide a Perl interpreter (as far
as I know), which is still required even if you run MikTEgX’s makeglossaries. exe, so with
MikTgX you’ll need to install Perl. There’s more information about this at MikTeX and Perl
scripts (and one Python script).!*

When upgrading the glossaries package, make sure you also upgrade your version of
makeglossaries. The current version is 4.51.

Some of the options are only applicable to makeindex and some are only applicable to
xindy.

4tex.stackexchange.com/questions/158796

57

https://tex.stackexchange.com/questions/158796
https://tex.stackexchange.com/questions/158796
http://tex.stackexchange.com/questions/158796

1. Introduction

[=
L=
--help
Shows a summary of all available options.
[=
L=
—--version
Shows the version details.
[=
L=
-n

Dry run mode. This doesn’t actually run makeindex/xindy but just prints the command it
would execute based on the information given in the aux file and the supplied options.

s

~-d (directory)

Instructs makeglossaries to change to the given directory, which should be where the aux,
glo etc files are located. For example:

pdflatex -output-directory myTmpDir myDoc
makeglossaries -d myTmpDir myDoc

I —

|

—-€

Don’t check for multiple encaps (only applicable with makeindex). By default, if you are
using makeindex, makeglossaries will check the makeindex transcript for multiple encap
warnings.

The multiple encap warning is where different location encap values (location formats) are
used on the same location for the same entry. For example:

,

\documentclass{article}

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{sample}{name={sample},description={an examplel}}

\begin{document}

58

1. Introduction

\gls{sample}, \gls[format=textbf]{sample}.
\printglossaries
\end{document}

If you explicitly use makeindex, this will cause a warning and the location list will be “1, 1”.
That is, the page number will be repeated with each format. As from v2.18, makeglossaries
will check for this warning and, if found, will attempt to correct the problem by removing
duplicate locations and retrying. If you actually want the duplicate location, you can prevent
makeglossaries from checking and correcting the duplicates with -e.

There’s no similar check for xindy as xindy won’t produce any warning and will simply
discard duplicates.

l —

—

-q

Suppresses messages. The makeglossaries script attempts to fork the makeindex/xindy
process using open() on the piped redirection 2>&1 | and parses the processor output to
help diagnose problems. If this method fails makeglossaries will print an “Unable to fork”
warning and will retry without redirection. Without this redirection, the -q switch doesn’t
work as well. Some operating systems don’t support redirection.

I E
=
-Q
Suppresses the “Unable to fork” warning.
I E
=

-k

Don’t attempt redirection.

-m {application)

The makeindex application. Only the name is required if it’s on the operating system’s path,
otherwise the full path name will be needed.

If you want to use an application that is capable of reading makeindex files (including
support for makeindex style files via -s), then you can use -m to specify the alternative
application to use instead of makeindex. Note that both xindex and texindy can read
makeindex files using the default makeindex syntax but, as of the time of writing this, they
don’t support makeindex style files.

e

-x (application)

59

1. Introduction

The xindy application. Only the name is required if it’s on the operating system’s path,
otherwise the full path name will be needed.

I —

- =

Compress intermediate blanks. This will pass —c to makeindex. (Ignored if xindy should be

called.)
[=

| S

-r

Disable implicit page range formation. This will pass -r to makeindex. (Ignored if xindy

should be called.)
[=

==

-p (num)

Set the starting page number. This will pass -p (num) to makeindex. (Ignored if xindy
should be called.)

The following switches may be used to override settings written to the aux file.

I —

-1

Use letter ordering. This will pass -1 to makeindex or -M ord/letorder to xindy.

=
-L (language)
The language to pass to xindy. (Ignored if makeindex should be called.)
[=
=

g

Employ German word ordering. This will pass -g to makeindex. (Ignored if xindy should

be called.)
[==

==

-s (filename)

Set the style file. This will pass -s (filename) to makeindex or -M (basename) to xindy
(where (basename) is (filename) with the xdy extension removed). This will generate an
error if the extension is xdy when makeindex should be called, or if the extension isn’t xdy
when xindy should be called.

60

1. Introduction

-o (filename)

Sets the output file name. Note that this should only be used when only one glossary should
be processed. The default is to set the output filename to the basename supplied to make-
glossaries with the extension associated with the glossary (the (in-ext) argument of \new-
glossary).

-t (filename)

Sets the transcript file name. Note that this should only be used when only one glossary
should be processed. The default is to set the transcript filename to the basename supplied
to makeglossaries with the extension associated with the glossary (the (log-ext) argument
of \newglossary).

1.6.2. Using the makeglossaries-lite Lua Script

makeglossaries-lite (options) (aux-file)

The Lua alternative to the makeglossaries Perl script requires a Lua interpreter, which
should already be available if you have a modern TgX distribution that includes LuaTgX. Lua
is a light-weight, cross-platform scripting language, but because it’s light-weight it doesn’t
have the full-functionality of heavy-weight scripting languages, such as Perl. The make-
glossaries-1lite script is therefore limited by this and some of the options available to the
makeglossaries Perl script aren’t available here. (In particular the -d option.) Whilst it
may be possible to implement those features by requiring Lua packages, this would defeat
the purpose of providing this script for those don’t want the inconvenience of learning how
to install interpreters or their associated packages.

o

The script is actually supplied as makeglossaries-1lite.lua but TgX distributions
on Windows convert this to an executable wrapper makeglossaries-1lite.exe and
TEX Live on Unix-like systems provide a symbolic link without the extension.

The makeglossaries-1lite script can be invoked in the same way as makeglossaries.
For example, if your document is called myDoc . tex, then do

makeglossaries-lite myDoc \

Note that the arara rule doesn’t contain the hyphen:

61

1. Introduction

B

[% arara: makeglossarieslite

Some of the options are only applicable to makeindex and some are only applicable to
xindy.

[=
=
--help
Shows a summary of all available options.
[=
=
--version
Shows the version details.
[=
=

-n

Dry run mode. This doesn’t actually run makeindex/xindy but just prints the command it
would execute based on the information given in the aux file and the supplied options.

-q

Quiet mode. This suppresses some but not all messages.

-m (application)

The makeindex application. Only the name is required if it’s on the operating system’s path,
otherwise the full path name will be needed.

-x (application)

The xindy application. Only the name is required if it’s on the operating system’s path,
otherwise the full path name will be needed.

l —

—

—-C

Compress intermediate blanks. This will pass —c to makeindex. (Ignored if xindy should be

called.)

62

1. Introduction

I —

|

-r

Disable implicit page range formation. This will pass -r to makeindex. (Ignored if xindy
should be called.)

e

-p (num)

Set the starting page number. This will pass -p (num) to makeindex. (Ignored if xindy
should be called.)

The following switches may be used to override settings written to the aux file.

I —

| S

-1

Use letter ordering. This will pass -1 to makeindex or -M ord/letorder to xindy.

-L (language)

The language to pass to xindy. (Ignored if makeindex should be called.)

-g

Employ German word ordering. This will pass -g to makeindex. (Ignored if xindy should
be called.)

-s (filename)

Set the style file.

-o (filename)

Sets the output file name. Note that this should only be used when only one glossary should
be processed. The default is to set the output filename to the basename supplied to make-
glossaries with the extension associated with the glossary (the (in-ext) argument of \new-
glossary).

-t (filename)

63

1. Introduction

Sets the transcript file name. Note that this should only be used when only one glossary
should be processed. The default is to set the transcript filename to the basename supplied
to makeglossaries with the extension associated with the glossary (the (log-ext) argument
of \newglossary).

1.6.3. Using xindy explicitly (Option 3)

xindy comes with TEX Live. It has also been added to MikTgX, but if you don’t have it
installed, see How to use Xindy with MikTeX."

If you want to use xindy to process the glossary files, you must make sure you have used
the xindy package option:

Bl

\usepackage [xindy] {glossaries}

This is required regardless of whether you use xindy explicitly or whether it’s called implic-
itly via applications such as makeglossaries. This causes the glossary entries to be written
in raw xindy format, so you need to use -I xindy not -I tex.

To run xindy type the following in your terminal (all on one line):

xindy -L (language) -C (encoding) -I xindy -M (style) -t (base).glg -o
(base) .gls (base).glo

where (language) is the required language name, (encoding) is the encoding, (base) is the
name of the document without the tex extension and (style) is the name of the xindy style
file without the xdy extension. The default name for this style file is (base)xdy but can be
changed via \setStyleFile. You may need to specify the full path name depending on the
current working directory. If any of the file names contain spaces, you must delimit them
using double-quotes.

For example, if your document is called myDoc . tex and you are using UTF-8 encoding in
English, then type the following in your terminal:

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.glg -o
myDoc.gls myDoc.glo

Note that this just creates the main glossary. You need to do the same for each of the other
glossaries (including the list of acronyms if you have used the acronym package option),
substituting glg, gls and glo with the relevant extensions. For example, if you have used
the acronym package option, then you would need to do:

Btex.stackexchange.com/questions/71167

64

https://tex.stackexchange.com/questions/71167
http://tex.stackexchange.com/questions/71167

1. Introduction

xindy -L english -C utf8 -I xindy -M myDoc -t myDoc.alg -o
myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary
with \newglossary.

Note that if you use makeglossaries instead, you can replace all those calls to xindy
with just one call to makeglossaries:

makeglossaries myDoc

Note also that some commands and package options have no effect if you use xindy explicitly
instead of using makeglossaries. These are listed in Table 1.3 on page 57.

1.6.4. Using makeindex explicitly (Option 2)

If you want to use makeindex explicitly, you must make sure that you haven’t used the
xindy package option or the glossary entries will be written in the wrong format. To run
makeindex, type the following in your terminal:

makeindex -s (style).ist -t (base).glg -o (base).gls (base).glo

where (base) is the name of your document without the tex extension and (style)ist is
the name of the makeindex style file. By default, this is (base)ist, but may be changed
via \setStyleFile. Note that there are other options, such as -1 (letter ordering). See the
makeindex manual for further details.

For example, if your document is called myDoc . tex, then type the following at the termi-
nal:

makeindex -s myDoc.ist -t myDoc.glg -o myDoc.gls myDoc.glo

Note that this only creates the main glossary. If you have additional glossaries (for example, if
you have used the acronym package option) then you must call makeindex for each glossary,
substituting glg, gls and glo with the relevant extensions. For example, if you have used
the acronym package option, then you need to type the following in your terminal:

makeindex -s myDoc.ist -t myDoc.alg -o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary
with \newglossary.

Note that if you use makeglossaries instead, you can replace all those calls to makeindex
with just one call to makeglossaries:

65

1. Introduction

makeglossaries myDoc \

Note also that some commands and package options have no effect if you use makeindex
explicitly instead of using makeglossaries. These are listed in Table 1.3 on page 57.

1.7. Note to Front-End and Script Developers

The information needed to determine whether to use xindy, makeindex or bib2gls is stored
in the aux file. This information can be gathered by a front-end, editor or script to make the
glossaries where appropriate. This section describes how the information is stored in the
auxiliary file.

1.7.1. Makelndex and Xindy

The file extension of the indexing files used for each defined glossary (not including any
ignored glossaries) are given by:

X

\@newglossary{(glossary-label)}{ (log) }{{out-ext)}{(in-ext)}

where (in-ext) is the extension of the indexing application’s input file (the output file from
the glossaries package’s point of view), such as glo, (out-ext) is the extension of the indexing
application’s output file (the input file from the glossaries package’s point of view), such as
gls, and (log) is the extension of the indexing application’s transcript file, such as glg. The
label for the glossary is also given. This isn’t required with makeindex, but with xindy
it’s needed to pick up the associated language and encoding (see below). For example, the
information for the default main glossary is written as:

B

\@newglossary{main}{glg}t{gls}t{glo}

If glossaries-extra’s hybrid method has been used (with \makeglossaries[(sub-list)]), then
the sub-list of glossaries that need to be processed will be identified with:

X

\glsxtr@makeglossaries{(label-list)}

The indexing application’s style file is specified by:

\@istfilename{(filename)}

66

1. Introduction

The file extension indicates whether to use makeindex (ist) or xindy (xdy). Note that the
glossary information has a different syntax depending on which indexing application is sup-
posed to be used, so it’s important to call the correct one.

For example, with arara you can easily determine whether to run makeglossaries:

% arara: makeglossaries if found("aux", "@istfilename")

It’s more complicated if you want to explicitly run makeindex or xindy.

[i
=
Note that if you choose to explicitly call makeindex or xindy then the user will miss

out on the diagnostic information and the encap-clash fix that makeglossaries also
provides.

Word or letter ordering is specified by:

\@glsorder{(order)}

where (order) can be either word or letter (obtained from the order package option).
If xindy should be used, the language for each glossary is specified by:

\@xdylanguage{(glossary-label)}{ (language)}

where (glossary-label) identifies the glossary and (language) is the root language (for exam-
ple, english).
The codepage (file encoding) for all glossaries is specified by:

\@gls@codepage{(code-page)}

where (code) is the encoding (for example, utf8). The above two commands are omitted if
makeindex should be used.
If Option 1 has been used, the aux file will contain

\@gls@reference{(type)}{(label)}{(location)}

for every time an entry has been referenced.

67

1. Introduction

1.7.2. Entry Labels

If you need to gather labels for auto-completion, the writeglslabels package option will
create a file containing the labels of all defined entries (regardless of whether or not the entry
has been used in the document). As from v4.47, there is a similar option writeglslabel-
names that writes both the label and name (separated by a tab).

[glossaries—extra]

The glossaries—extra package also provides docdef=atom, which will create the
glsdefs file but will act like docdef=restricted.

1.7.3. Bib2Gls

If Option 4 has been used, the aux file will contain one or more instances of:

\glsxtr@resource{(options)}{(basename)}

where (basename) is the basename of the glstex file that needs to be created by bib2gls.
If stc={(bib list)} isn’t present in (options) then (basename) also indicates the name of the
associated bib file.

For example, with arara you can easily determine whether or not to run bib2gls:

=

% arara: bib2gls if found("aux", "glsxtr@resource")

(It gets more complicated if both \glsxtr@resource and \Q@istfilename are present as
that indicates the hybrid record=hybrid option.)

Remember that with bib2gls, the glossary entries will never be defined on the first KIEX
call (because their definitions are contained in the glstex file created by bib2gls). You can
also pick up labels from the records in aux file, which will be in the form:

X

\glsxtr@record{(label) }{(h-prefix)}{{counter)}{(format)}{(loc)}

or (with record=nameref):

\glsxtr@record@nameref{(label) }{(href
prefix) Y (counter) }{ (format) }{ (location) }{(title) }{(href anchor) }{{ href value) }

638

bib2gls

1. Introduction

or (with \glssee):

\glsxtr@recordsee{(label) }{(xr list)}

{label}{xr list} You can also pick up the commands defined with \glsxtrnewglslike, which
are added to the aux file for bib2gls’s benefit:

X
\@glsxtrOnewglslike{(label-prefix)}{(cs)}
If \GlsXtrSetAltModifier is used, then the modifier is identified with:
X
\@glsxtr@altmodifier{(character)}
Label prefixes (for the \dgls set of commands) are identified with:
I
\@glsxtr@prefixlabellist{(list)}

69

2. Package Options

This section describes the available glossaries package options. You may omit the =true for
boolean options. (For example, acronym is equivalent to acronym=true).

[glossaries—extra

The glossaries—extra package has additional options described in the glossaries-extra
manual. The extension package also has some different default settings to the base
package. Those that are available at the time of writing are included here. Future
versions of glossaries—extra may have additional package options or new values for
existing settings that aren’t listed here.

(i]

=
Note that (key)=(value) package options can’t be passed via the document class op-

tions. (This includes options where the (value) part may be omitted, such as acronym.)
This is a general limitation not restricted to the glossaries package. Options that aren’t
(key)=(value) (such as makeindex) may be passed via the document class options.

2.1. General Options
=n

| S

nowarn

This suppresses all warnings generated by the glossaries package. Don’t use this option if
you’re new to using glossaries as the warnings are designed to help detect common mistakes
(such as forgetting to use \makeglossaries). Note that if you use debug with any value
other than false it will override this option.

[=
L=
nolangwarn
This suppresses the warning generated by a missing language module.
[=
L=
noredefwarn

If you load glossaries with a class or another package that already defines glossary related
commands, by default glossaries will warn you that it’s redefining those commands. If you are

70

2. Package Options

aware of the consequences of using glossaries with that class or package and you don’t want
to be warned about it, use this option to suppress those warnings. Other warnings will still
be issued unless you use the nowarn option described above. (This option is automatically
switched on by glossaries-extra.)

|
debug=(value) initial: false

Debugging mode may write information to the transcript file or add markers to the document.
The following values are available:

hd

debug=false

Switches off debugging mode.
E

| A

debug=true

This will write the following line to the transcript file if any attempt at indexing occurs before
the associated files have been opened by \makeglossaries:

wrglossary ((glossary-type)) ((indexing info))

Note that this setting will also cancel nowarn.

(&]

|

debug=showtargets

As debug=true but also adds a marker where the glossary-related hyperlinks and targets
occur in the document.
The debug=showtargets option will additionally use:

\glsshowtarget{(target name)}

to show the hypertarget or hyperlink name when \glsdohypertarget is used by commands
like \glstarget and when \glsdohyperlink is used by commands like \gls. In math
mode or inner mode, this uses:

X

\glsshowtargetinner{(target name)>

which typesets the target name as:

71

2. Package Options

[\glsshowtargetfonttext{(target name)}]

just before the link or anchor. This uses the text-block command:

\glsshowtargetfonttext{(text)}

which checks for math-mode before applying the font change. In outer mode \glsshow-
target uses:

X

\glsshowtargetouter{(target name)?}

which by default places the target name in the margin with a symbol produced with:

\glsshowtargetsymbol{(target name)}

which defaults to a small right facing triangle.

The font used by both \glsshowtargetfonttext and \glsshowtargetouter is given
by the declaration:

X

\glsshowtargetfont initial: \ttfamily\footnotesize

3

debug=showaccsupp

As debug=true but also adds a marker where the glossary-related accessibility information
occurs (see glossaries—accsupp) using:

X

\glsshowaccsupp{(options) }{(PDF element)}{(value)}

glossaries-extra

The glossaries-extra package provides extra values debug=showwrgloss, that may be
used to show where the indexing is occurring, and debug=all, which switches on all
debugging options. See the glossaries-extra manual for further details.

J

The purpose of the debug mode can be demonstrated with the following example docu-
ment:

72

2. Package Options

,

\documentclass{article}

\usepackage{glossaries}
\newglossaryentry{samplel}{name={samplel},description={example}}
\newglossaryentry{sample2}{name={sample2},description={example}}
\glsadd{sample2}), <- does nothing here

\makeglossaries

\begin{document}

\gls{samplel}.

\printglossaries

\end{document}

In this case, only the “samplel” entry has been indexed, even though \glsadd{sample2}
appears in the source code. This is because \glsadd{sample2} has been used before the
associated file is opened by \makeglossaries. Since the file isn’t open yet, the information
can’t be written to it, which is why the “sample2” entry doesn’t appear in the glossary.

Without \makeglossaries the indexing is suppressed with Options 2 and 3 but, other
than that, commands like \gls behave as usual.

This situation doesn’t cause any errors or warnings as it’s perfectly legitimate for a user
to want to use glossaries to format the entries (for example, to show a different form on first
use) but not display any glossaries (or the user may prefer to use the unsorted Options 5 or
6). It’s also possible that the user may want to temporarily comment out \makeglossaries
in order to suppress the indexing while working on a draft version to speed compilation, or
the user may prefer to use Options 1 or 4 for indexing, which don’t use \makeglossaries.

Therefore \makeglossaries can’t be used to enable \newglossaryentry and commands
like \gls and \glsadd. These commands must be enabled by default. (It does, however,
enable the see key as that’s a more common problem. See below.)

The debug mode, enabled with the debug option,

=

\usepackage [debug] {glossaries}

will write information to the log file when the indexing can’t occur because the associated
file isn’t open. The message is written in the form

Package glossaries Info: wrglossary({type)) ({text)) on
input line (line number).

where (type) is the glossary label and (text) is the line of text that would’ve been written to
the associated file if it had been open. So if any entries haven’t appeared in the glossary but
you’re sure you used commands like \glsadd or \glsaddall, try switching on the debug

73

2. Package Options

option and see if any information has been written to the log file.

[©

=
savewrites=(boolean) default: true; initial: false

This is a boolean option to minimise the number of write registers used by the glossaries
package. The default is savewrites=false. With Options 2 and 3, one write register is
required per (non-ignored) glossary and one for the style file.

o

[In general, this package option is best avoided.

With all options except Options 1 and 414, another write register is required if the glsdefs
file is needed to save document definitions. With both Options 1 and 4, no write registers
are required (document definitions aren’t permitted and indexing information is written to
the aux file). If you really need document definitions but you want to minimise the number
of write registers then consider using docdef=restricted with glossaries-extra.

There are only a limited number of write registers, and if you have a large number of
glossaries or if you are using a class or other packages that create a lot of external files, you
may exceed the maximum number of available registers. If savewrites is set, the glossary
information will be stored in token registers until the end of the document when they will
be written to the external files.

(3]
This option can significantly slow document compilation and may cause the indexing

to fail. Page numbers in the number list will be incorrect on page boundaries due to
TgX’s asynchronous output routine. As an alternative, you can use the scrwfile package
(part of the KOMA-Script bundle) and not use this option.

By way of comparison, sample-multi2.tex provided with bib2gls has a total of 15
glossaries. With Options 2 or 3, this would require 46 associated files and 16 write registers.
(These figures don’t include standard files and registers provided by the kernel or hyperref,
such as aux and out.) With bib2gls, no write registers are required and there are only 10
associated files for that particular document (9 resource files and 1 transcript file).

[i
=
If you want to use TgX’s shell escape to call makeindex or xindy from your document

and use savewrites, then use automake=immediate or automake=makegloss or
automake=lite.

translate=(value) default: true; initial: varies

74

2. Package Options

This can take one of the values listed below. If no supported language package has been
loaded the default is translate=false otherwise the default is translate=true for the
base glossaries package and translate=babel for glossaries—extra.

B

| S

translate=true

If babel has been loaded and the translator package is installed, translator will be loaded
and the translations will be provided by the translator package interface. You can modify
the translations by providing your own dictionary. If the translator package isn’t installed
and babel is loaded, the glossaries-babel package will be loaded and the translations will
be provided using babel’s \addto\captions(language) mechanism. If polyglossia has been
loaded, glossaries—polyglossia will be loaded.

B

|

translate=false

Don’t provide translations, even if babel or polyglossia has been loaded. (Note that babel
provides the command \glossaryname so that will still be translated if you have loaded

babel.)

translate=babel

Don’t load the translator package. Instead load glossaries—babel.

A
I recommend you use translate=babel if you have any problems with the trans-

lations or with PDF bookmarks, but to maintain backward compatibility, if babel has
been loaded the default is translate=true.

See §1.5.1 for further details.

| —

notranslate

This is equivalent to translate=false and may be passed via the document class options.

l —

|l

languages

This automatically implements translate=babel (which means that translator won’t au-
tomatically be loaded) but will also add the list of languages to tracklang’s list of tracked
languages. Each element in the (list) may be an ISO language tag (such as pt-BR) or one of

75

2. Package Options

tracklang’s known language labels (such as british).

[©

=
hyperfirst=(boolean) default: true; initial: true

If true, terms on first use will have a hyperlink, if supported, unless the hyperlink is explicitly
suppressed using starred versions of commands such as \gls*. If false, only subsequent use
instances will have a hyperlink (if supported).

Note that nohypertypes overrides hyperfirst=true. This option only affects com-
mands that check the first use flag, such as the \gls-like commands (for example, \gls
or \glsdisp), but not the \glstext-like commands (for example, \glslink or \glstext).

The hyperfirst setting applies to all glossary types (unless identified by nohypertypes
or defined with \newignoredglossary). It can be overridden on an individual basis by
explicitly setting the hyper key when referencing an entry (or by using the plus or starred
version of the referencing command).

It may be that you only want to suppress hyperlinks for just the acronyms (where the first
use explains the meaning of the acronym) but not for ordinary glossary entries (where the
first use is identical to subsequent use). In this case, you can use hyperfirst=false and
apply \glsunsetall to all the regular (non-acronym) glossaries. For example:

\usepackage [acronym,hyperfirst=false]{glossaries}
% acronym and glossary entry definitions

% at the end of the preamble
\glsunsetall [main]

Alternatively you can redefine the hook

\glslinkcheckfirsthyperhook

which is used by the commands that check the first use flag, such as \gls. Within the
definition of this command, you can use \glslabel to reference the entry label and \gls-
type to reference the glossary type. You can also use \ifglsused to determine if the entry
has been used. You can test if an entry is an acronym by checking if it has the long key
set using \ifglshaslong (or if the short key has been set using \ifglshasshort). For
example, to switch off the hyperlink on first use just for acronyms:

=

\renewcommand*{\glslinkcheckfirsthyperhook}{%
\ifglsused{\glslabel}{}J
{h

76

2. Package Options

\ifglshaslong{\glslabel}{\setkeys{glslink}{hyper=false}}/
Y
}

Note that this hook isn’t used by the commands that don’t check the first use flag, such
as \glstext. (You can, instead, redefine \glslinkpostsetkeys, which is used by both the
\gls-like and \glstext-like commands.)

[glossaries-extra

The glossaries—extra package provides a method of disabling the first use hyperlink
according to the entry’s associated category. For example, if you only want to switch
off the first use hyperlink for abbreviations then you simply need to set the nohyper-
first attribute for the abbreviation and, if appropriate, acronym categories. (Instead
of using the hyperfirst package option.) See the glossaries-extra manual for further
details.

I —

|

writeglslabels

This option will create a file called \ jobname.glslabels at the end of the document. This
file simply contains a list of all defined entry labels (including those in any ignored glossaries).
It’s provided for the benefit of text editors that need to know labels for auto-completion. If
you also want the name, use writeglslabelnames. (See also glossaries—extra’s docdef=
atom package option.)

| bib2gls
| SR

Note that with bib2g1s the file will only contain the entries that bib2gls has selected
from the bib files.

[=
=
writeglslabelnames
Similar to writeglslabels but writes both the label and name (separated by a tab).
=
undefaction=(value) initial: error

Only available with glossaries-extra, the value for this option may be one of:

B

| A

undefaction=error

77

2. Package Options

Generates an error if a referenced entry is undefined (default, and the only available setting
with just the base glossaries package).

B

| S

undefaction=warn

Only warns if a referenced entry is undefined (automatically activated with Option 4).

|

docdef=(value) default: true; initial: false

Only available with glossaries—extra, this option governs the use of \newglossaryentry.
Available values:

(&]

| A

docdef=false

This setting means that \newglossaryentry is not permitted in the document environment
(default with glossaries—extra and for Option 1 with just the base glossaries package).

B

| S

docdef=restricted

This setting means that \newglossaryentry is only permitted in the document environ-
ment if it occurs before \printglossary (not available for some indexing options, such as
Option 4).

(&]

| S

docdef=atom

This setting is as docdef=restricted but creates the glsdefs file for use by atom (without
the limitations of docdef=true).

B

| S

docdef=true

This setting means that \newglossaryentry is permitted in the document environment
where it would normally be permitted by the base glossaries package. This will create the
glsdefs file if \newglossaryentry is found in the document environment.

2.2. Sectioning, Headings and TOC Options

=
toc=(boolean) default: true; initial: varies

78

2. Package Options

Adds the glossaries to the table of contents (toc file). Note that an extra KIgX run is required
with this option. Alternatively, you can switch this function on and off using

X

\glstoctrue

and

\glstocfalse

You can test whether or not this option is set using:

X

\ifglstoc (true)\else (false)\fi initial: \iffalse

The default value is toc=false for the base glossaries package and toc=true for glossaries
—-extra.

)

=
numberline=(boolean) default: true; initial: false

When used with toc=true option, this will add \numberline{} in the final argument of
\addcontentsline. This will align the table of contents entry with the numbered section
titles. Note that this option has no effect with toc=false. If toc=true is used without
numberline, the glossary title will be aligned with the section numbers rather than the
section titles.

=

=
section=(name) default: section

This option indicates the sectional unit to use for the glossary. The value (name) should
be the control sequence name without the leading backslash or following star (for example,
just chapter not \chapter or chapterx).

The default behaviour is for the glossary heading to use \chapter, if that command ex-
ists, or \section otherwise. The starred or unstarred form is determined by the numbered-
section option.

Example:

Bl

\usepackage [section=subsection] {glossaries}

You can omit the value if you want to use \section:

79

2. Package Options

[\usepackage [section] {glossaries}

is equivalent to

[\usepackage [section=section] {glossaries}

You can change this value later in the document using

\setglossarysection(name)

where (name) is the sectional unit.
The start of each glossary adds information to the page header via \glsglossarymark
(see §8.2).

=
ucmark=(boolean) default: true; initial: varies

If ucmark=true, this will make \glsglossarymark use all caps in the header, otherwise no
case change will be applied. The default is ucmark=false, unless memoir has been loaded,
in which case the default is ucmark=true.

You can test if this option has been set using:

X

\ifglsucmark (true)\else (false)\fi initial: varies

For example:

\renewcommand{\glsglossarymark} [1]{%
\ifglsucmark
\markright{\glsuppercase{#1}1}/
\else
\markright{#1}%
\fi}

numberedsection=(value) default: nolabel; initial: false

The glossaries are placed in unnumbered sectional units by default, but this can be changed

80

2. Package Options

using numberedsection. This option can take one of the following values:

B

| S

numberedsection=false

No number, that is, use the starred form of sectioning command (for example, \chapter* or
\section*).

B

| A

numberedsection=nolabel

Use a numbered section, that is, the unstarred form of sectioning command (for example,
\chapter or \section), but no label is automatically added.

B

| S

numberedsection=autolabel

Use numbered sections with automatic labelling. Each glossary uses the unstarred form of
a sectioning command (for example, \chapter or \section) and is assigned a label (via
\label). The label is formed from the glossary’s label prefixed with:

X

\glsautoprefix

The default value of \glsautoprefix is empty. For example, if you load glossaries using:

=

\usepackage [section,numberedsection=autolabel]
{glossaries}

then each glossary will appear in a numbered section, and can be referenced using something
like:

=

The main glossary is in section~\ref{main} and
the list of acronyms is in section~\ref{acronym}.

If you can’t decide whether to have the acronyms in the main glossary or a separate list of
acronyms, you can use \acronymtype which is set to main if the acronym option is not used
and is set to acronym if the acronym option is used. For example:

=

[The list of acronyms is in section~\ref{\acronymtypel}.

81

2. Package Options

You can redefine the prefix if the default label clashes with another label in your document.
For example:

\renewcommand*{\glsautoprefix}{glo:}

B

will add glo: to the automatically generated label, so you can then, for example, refer to the
list of acronyms as follows:

The list of acronyms is in
section~\ref{glo:\acronymtype}.

Or, if you are undecided on a prefix:

0 LB

The list of acronyms is in
section~\ref{\glsautoprefix\acronymtype}.

]

numberedsection=nameref

This setting is like numberedsection=autolabel but uses an unnumbered sectioning com-
mand (for example, \chapter* or \sectionx). It’s designed for use with the nameref pack-
age. For example:

Ei

\usepackage{nameref}
\usepackage [numberedsection=nameref]{glossaries}

Alternatively, since nameref is automatically loaded by hyperref:

\usepackage{hyperref}
\usepackage [numberedsection=nameref] {glossaries}

Now \nameref{main} will display the (table of contents) section title associated with the
main glossary. As above, you can redefine \glsautoprefix to provide a prefix for the label.

82

2. Package Options

2.3. Glossary Appearance Options
[

=
savenumberlist=(boolean) default: true; initial: false

Options 2 and 3 only

This is a boolean option that specifies whether or not to gather and store the number list for
each entry. The default is savenumberlist=false with Options 2 and 3. (See \glsentry-
numberlist and \glsdisplaynumberlist in §5.2.) This setting is always true if you use
Option 1 as a by-product of the way that indexing method works.

bib2gls
| U
If you use the record option (with either no value or record=only or records=
nameref) then this package option has no effect. With bib2gls, the number lists
are automatically saved with the default save-locations=true and save-loclist
=true resource settings.

J

=
LCY
entrycounter=(boolean) default: true; initial: false
If set, this will create the counter:
[Ne
Ay

glossaryentry

Each top level (level 0) entry will increment and display that counter at the start of the entry
line when using glossary styles that support this setting. Note that if you also use sub-
entrycounter the option order makes a difference. If entrycounter is specified first, the
sub-entry counter will be dependent on the glossaryentry counter.

If you use this option (and are using a glossary style that supports this option) then you
can reference the entry number within the document using:

X

\glsrefentry{(label)}

where (label) is the label associated with that glossary entry. This will use \ref if either
entrycounter=true or subentrycounter=true, with the label (prefix)(label), where (la-
bel) is the entry’s label and (prefix) is given by:

X

[\GlsEntryCounterLabelPrefix initial: glsentry-

83

2. Package Options

If both entrycounter=false and subentrycounter=false, \gls{(label)} will be used
instead.

[i
=
If you use \glsrefentry, you must run EIgX twice after creating the indexing files

using makeglossaries, makeindex or xindy (or after creating the glstex file with
bib2gls) to ensure the cross-references are up-to-date. This is because the counter
can’t be incremented and labelled until the glossary is typeset.

The glossaryentry counter can be reset back to zero with:

\glsresetentrycounter

This does nothing if entrycounter=false. The glossaryentry counter can be simultaneously
incremented and labelled (using \refstepcounter and \label) with:

X

\glsstepentry{(label)}

This command is within the definition of \glsentryitem, which is typically used in glossary
styles at the start of top level (level 0) entries. The argument is the entry label.
The value of the glossaryentry counter can be displayed with:

\theglossaryentry

This command is defined when the glossaryentry counter is defined, so won’t be available
otherwise. The formatted value is more usually displayed with:

X

\glsentrycounterlabel

This will do \theglossaryentry.\space if entrycounter=true, otherwise does nothing.
This is therefore more generally useful in glossary styles as it will silently do nothing if the
setting isn’t on. This command is used within the definition of \glsentryitem.

If you want to test whether or not this option is currently enabled, use the conditional:

X

\ifglsentrycounter (true)\else (false)\fi initial: \iffalse

84

2. Package Options

You can later switch it off using:

\glsentrycounterfalse

and switch it back on with:

\glsentrycountertrue

but note that this won’t define glossaryentry if entrycounter=true wasn’t used initially.
You can also locally enable or disable this option for a specific glossary using the entry-
counter \print(...)glossary option.

counterwithin=(parent-counter)

If used, this option will automatically set entrycountertrue and the glossaryentry counter
will be reset every time (parent-counter) is incremented. An empty value indicates that
glossaryentry has no parent counter (but glossaryentry will still be defined).

=
The glossaryentry counter isn’t automatically reset at the start of each glossary, except

when glossary section numbering is on and the counter used by counterwithin is
the same as the counter used in the glossary’s sectioning command.

If you want the counter reset at the start of each glossary, you can modify the glossary
preamble (\glossarypreamble) to use \glsresetentrycounter. For example:

=
\renewcommand{\glossarypreamble}{’,
\glsresetentrycounter
}

or if you are using \setglossarypreamble, add it to each glossary preamble, as required.
For example:

,

\setglossarypreamble [acronym] {%
\glsresetentrycounter
The preamble text here for the list of acronyms.

}
\setglossarypreamble{,

85

2. Package Options

\glsresetentrycounter
The preamble text here for the main glossary.

}
(@
subentrycounter=(boolean) default: true; initial: false

If set, each level 1 glossary entry will be numbered at the start of its entry line when using
glossary styles that support this option. This option creates the counter

INO

| S

glossarysubentry

If the entrycounter option is used before subentrycounter, then glossarysubentry will be
added to the reset list for glossaryentry. If subentrycounter is used without entrycounter
then the glossarysubentry counter will be reset by \glsentryitem. If subentrycounter is
used before entrycounter then the two counters are independent.

o

There’s no support for deeper hierarchical levels. Some styles, such as those that don’t
support any hierarchy, may not support this setting or, for those that only support
level 0 and level 1, may use this setting for all child entries.

As with the entrycounter option, you can reference the number within the document
using \glsrefentry. There are analogous commands to those for entrycounter.
The glossarysubentry counter can be reset back to zero with:

\glsresetsubentrycounter

This does nothing if subentrycounter=false. This command is used within the definition
of \glsentryitem if entrycounter=false.

The glossarysubentry counter can be simultaneously incremented and labelled (using \ref-
stepcounter and \label) with:

X

\glsstepsubentry{(label)}

This command is used in \glssubentryitenm if subentrycounter=true, otherwise it does
nothing. The argument is the entry label and is passed to \1abel is as for \glsrefentry.

86

2. Package Options

The value of the glossarysubentry counter can be displayed with:

\theglossarysubentry

This command is defined when the glossarysubentry counter is defined, so won’t be available
otherwise. The formatted value is more usually displayed with:

X

\glssubentrycounterlabel

This will do \theglossarysubentry)\space if subentrycounter=true, otherwise does
nothing. This is therefore more generally useful in glossary styles as it will silently do nothing
if the setting isn’t on. This command is used in \glssubentryitem.

If you want to test whether or not this option is currently enabled, use the conditional:

X

\ifglssubentrycounter (true)\else (false)\fi initial: \iffalse

You can later switch it off using:

\glssubentrycounterfalse

and switch it back on with:

\glssubentrycountertrue

but note that this won’t define glossarysubentry if subentrycounter=true wasn’t used ini-
tially. You can also locally enable or disable this option for a specific glossary using the
subentrycounter \print(...>glossary option.

Sl
style=(style-name) initial: varies

This option sets the default glossary style to (style-name). This is initialised to style=list
unless classicthesis has been loaded, in which case the default is style=index. (The styles that
use the description environment, such as the list style, are incompatible with classicthesis.)
This setting may only be used for styles that are defined when the glossaries package is
loaded. This will usually be the styles in the packages glossary-list, glossary-long, glossary
-super or glossary—-tree, unless they have been suppressed through options such asnostyles.
Style packages can also be loaded by the stylemods option provided by glossaries—extra.

87

2. Package Options

Alternatively, you can set the style later using:

I
\setglossarystyle{(style-name)}
or use the style \print(...)glossary option. (See §13 for further details.)
[=
=

nolong

This prevents the glossaries package from automatically loading glossary-long (which means
that the longtable package also won’t be loaded). This reduces overhead by not defining
unwanted styles and commands. Note that if you use this option, you won’t be able to use
any of the glossary styles defined in the glossary-long package (unless you explicitly load
glossary-long).

(@]

= |
Some style packages implicitly load glossary-long, so this package may still end up

being loaded even if you use nolong.

| —

| S

nosuper

This prevents the glossaries package from automatically loading glossary-super (which means
that the supertabular package also won'’t be loaded). This reduces overhead by not defining
unwanted styles and commands. Note that if you use this option, you won’t be able to use
any of the glossary styles defined in the glossary-super package (unless you explicitly load
glossary-super).

(o]
=
This option is automatically implemented if xtab has been loaded as it’s incompatible
with supertabular. This option is also automatically implemented if supertabular isn’t
installed.

I —

|

nolist

This prevents the glossaries package from automatically loading glossary-list. This reduces
overhead by not defining unwanted styles. Note that if you use this option, you won’t be able
to use any of the glossary styles defined in the glossary-list package (unless you explicitly load
glossary-list). Note that since the default style is list (unless classicthesis has been loaded),

88

2. Package Options

you will also need to use the style option to set the style to something else.

I —

|

notree

This prevents the glossaries package from automatically loading glossary-tree. This reduces
overhead by not defining unwanted styles. Note that if you use this option, you won’t be able
to use any of the glossary styles defined in the glossary-tree package (unless you explicitly
load glossary-tree). Note that if classicthesis has been loaded, the default style is index, which
is provided by glossary-tree.

[©
= |
Some style packages implicitly load glossary-tree, so this package may still end up
being loaded even if you use notree.

[=
=

nostyles

This prevents all the predefined styles from being loaded. If you use this option, you need to
load a glossary style package (such as glossary-mcols). Also if you use this option, you can’t
use the style package option (unless you use stylemods with glossaries-extra). Instead you
must either use \setglossarystyle or the style \print(...)glossary option. Example:

=
\usepackage [nostyles]{glossaries}
\usepackage{glossary-mcols}
\setglossarystyle{mcoltree}

Alternatively:

\usepackage [nostyles,stylemods=mcols,style=mcoltree] {glossaries-
extra}

[=
| ——

nonumberlist

This option will suppress the associated number lists in the glossaries (see also §12). This
option can also be locally switched on or off for a specific glossary with the nonumberlist
\print(...)glossary options.

89

2. Package Options

A
Note that if you use Options 2 or 3 (makeindex or xindy) then the locations must still
be valid even if this setting is on. This package option merely prevents the number
list from being displayed, but both makeindex and xindy still require a location or
cross-reference for each term that’s indexed.

Remember that number list includes any cross-references, so suppressing the number list
will also hide the cross-references (in which case, you may want to use seeautonumber-
list).

[bib2gls
o
With bib2gls, it’s more efficient to use save-locations=false in the resource op-
tions if no locations are required.

I —

seeautonumberlist

If you suppress the number lists with nonumberlist, described above, this will also suppress
any cross-referencing information supplied by the see key in \newglossaryentry or \gls-
see. If you use seeautonumberlist, the see key will automatically implement nonumber-
list=false for that entry. (Note this doesn’t affect \glssee.) For further details see §11.

[=
al
counter=(counter-name) initial: page

This setting indicates that (counter-name) should be the default counter to use in the number
lists (see §12). This option can be overridden for a specific glossary by the (counter) optional
argument of \newglossary or the counter key when defining an entry or by the counter
option when referencing an entry.

This option will redefine:

X

\glscounter initial: page

to (counter-name).

[©

=
nopostdot=({boolean) default: true; initial: true

If true, this option suppresses the default terminating full stop in glossary styles that use the

90

2. Package Options

post-description hook:

\glspostdescription

The default setting is nopostdot=false for the base glossaries package and nopostdot=
true for glossaries-extra.

glossaries—extra

The glossaries—extra package provides postdot, which is equivalent to nopostdot=
false, and also postpunc, which allows you to choose a different punctuation char-
acter.

J

o)

=
nogroupskip=(boolean) default: true; initial: false

If true, this option suppresses the default vertical gap between letter groups used by some of
the predefined glossary styles. This option can also be locally switched on or off for a specific
glossary with the nogroupskip \print(...)glossary options.

This option is only relevant for glossary styles that use the conditional:

X

\ifglsnogroupskip (true)\else (false)\fi initial: \iffalse

to test for this setting.

[bib2gls
| C——

If you are using bib2gls without the ——group (or -g) switch then this option is irrel-
evant as there won’t be any letter groups.

--—
—a

jer
stylemods=(list) default: default

Loads the glossaries-extra-stylemods package, which patches the predefined glossary styles.
The (list) argument is optional. If present, this will also load glossary-(element).sty for each
(element) in the comma-separated (list). See the glossaries-extra manual for further details.

91

2. Package Options

2.4. Indexing Options

seenoindex=(value) initial: error

(This option is only relevant with makeindex and xindy.) The see key automatically indexes
the cross-referenced entry using \glssee. This means that if this key is used in an entry
definition before the relevant indexing file has been opened, the indexing can’t be performed.
Since this is easy to miss, the glossaries package by default issues an error message if the see
key is used before \makeglossaries.

This option may take one of the following values:

g

seenoindex=error

This is the default setting that issues an error message.

(&)

seenoindex=warn

This setting will trigger a warning rather than an error.

(%]

seenoindex=ignore

This setting will do nothing.

For example, if you want to temporarily comment out \makeglossaries to speed up the
compilation of a draft document by omitting the indexing, you can use seenoindex=warn
or seenoindex=ignore.

g

esclocations=(boolean) default: true; initial: false

Only applicable to makeindex and xindy. As from v4.50, the initial setting is now esc-
locations=false. Previously it was esclocations=true.

Both makeindex and xindy are fussy about the location syntax (makeindex more so than
xindy) so, if esclocations=true, the glossaries package will try to ensure that special char-
acters are escaped, which allows for the location to be substituted for a format that’s more
acceptable to the indexing application. This requires a bit of trickery to circumvent the prob-
lem posed by TgX’s asynchronous output routine, which can go wrong and also adds to the
complexity of the document build.

If you're sure that your locations will always expand to an acceptable format (or you’re
prepared to post-process the glossary file before passing it to the relevant indexing applica-

92

2. Package Options

tion) then use esclocations=false to avoid the complex escaping of location values. This
is now the default.

If, however, your locations (for example, \thepage with the default counter=page) ex-
pand to a robust command then you may need to use esclocations=true. You may addi-
tionally need to set the following conditional to true:

X

\ifglswrallowprimitivemods (true)\else (false)\fi initial: \iffalse

which will locally redefine some primitives in order to escape special characters without
prematurely expanding \thepage. Since this hack may cause some issues and isn’t necessary
for the majority of documents, this is off by default.

This conditional can be switched on with:

\glswrallowprimitivemodstrue

but remember that it will have no effect with esclocations=false. If can be switched off
with:

X

\glswrallowprimitivemodsfalse

If you are using makeindex and your location expands to content in the form (cs) {(num)}
, where (cs) is a command (optionally preceded by \protect) and (num) is a location ac-
ceptable to makeindex, then you can use makeglossaries to make a suitable adjustment
without esclocations=true. See §12.5 for furthe details.

This isn’t an issue for Options 1 or 4 as the locations are written to the aux file and both
methods use BIEX syntax, so no conversion is required.

o)

=
indexonlyfirst=(boolean) default: true; initial: false

If true, this setting will only index on first use. The default setting indexonlyfirst=false,
will index the entry every time one of the \gls-like or \glstext-like commands are used.
Note that \glsadd will always add information to the external glossary file (since that’s the
purpose of that command).

You can test if this setting is on using the conditional:

X

\ifglsindexonlyfirst (true)\else (false)\fi initial: \iffalse

93

2. Package Options

This setting can also be switched on with:

\glsindexonlyfirsttrue

and off with:

\glsindexonlyfirstfalse

[i
=
Resetting the first use flag with commands like \glsreset after an entry has been
indexed will cause that entry to be indexed multiple times if it’s used again after the
reset. Likewise unsetting the first use flag before an entry has been indexed will pre-
vent it from being indexed (unless specifically indexed with \glsadd).

You can customise the default behaviour by redefining

\glswriteentry{(label)}{(indexing code)}

where (label) is the entry’s label and (indexing code) is the code that writes the entry’s
information to the external file. The default definition of \glswriteentry is:

\newcommand*{\glswriteentry}[2]{/
\ifglsindexonlyfirst
\ifglsused{#1}{}{#2}/
\else
#2),
\fi
}

This does (indexing code) unless indexonlyfirst=true and the entry identified by (label)
has been marked as used

For example, suppose you only want to index the first use for entries in the acronym
glossary and not in the main (or any other) glossary:

=

\renewcommand*{\glswriteentry}[2]{%
\ifthenelse\equal{\glsentrytype{#1}}{acronym}
{\ifglsused{#1}{}{#2}3}%

{#2}7

94

2. Package Options

& |

Here I've used \ifthenelse to ensure the arguments of \equal are fully expanded before
the comparison is made. There are other methods of performing an expanded string com-
parison, which you may prefer to use.

With the glossaries—extra package it’s possible to only index first use for particular cate-
gories. For example, if you only want this enabled for abbreviations then you can set the
indexonlyfirst attribute for the abbreviation and, if appropriate, acronym categories. (In-
stead of using the indexonlyfirst package option.) See the glossaries—extra manual for
further details.

[©

(=
indexcrossrefs=({boolean) default: true; initial: true

This option is only available with glossaries—extra. If true, this will automatically index
(\glsadd) any cross-referenced entries that haven’t been marked as used at the end of the
document. Note that this increases the document build time. See glossaries—extra manual for
further details.

| bib2gls

| U
Note that bib2gls can automatically find dependent entries when it parses the bib
file. Use the selection option to determine the selection of dependencies.

J

[©

=
autoseeindex=(boolean) default: true; initial: true

This option is only available with glossaries—extra. The base glossaries package always
implements autoseeindex=true.

If true, this makes the see and seealso keys automatically index the entry (with \glssee)
when the entry is defined. This means that any entry with the see (or seealso) key will
automatically be added to the glossary. See the glossaries—extra manual for further details.

| bib2gls

| G
With bib2gls, use the selection resource option to determine the selection of de-
pendencies.

--—
—a

=
record=(value) default: only; initial: of £

This option is only available with glossaries—extra. See glossaries—extra manual for further

95

2. Package Options

details. A brief summary of available values:

(&)

record=off

This default setting indicates that bib2gls isn’t being used.

(&]

record=only

This setting indicates that bib2gls is being used to fetch entries from one or more bib files,
to sort the entries and collate the number lists, where the location information is the same
as for Options 1, 2 and 3.

hd

record=nameref

This setting is like record=only but provides extra information that allows the associated
title to be used instead of the location number and provides better support for hyperlinked
locations.

0

record=hybrid

This setting indicates a hybrid approach where bib2gls is used to fetch entries from one
or more bib files but makeindex or xindy are used for the indexing. This requires a more
complicated document build and isn’t recommended.

[

=
equations=(boolean) default: true; initial: false

This option is only available with glossaries—extra. If true, this option will cause the de-
fault location counter to automatically switch to equation when inside a numbered equation
environment.

[

=
floats=(boolean) default: true; initial: false

This option is only available with glossaries-extra. If true, this option will cause the default
location counter to automatically switch to the corresponding counter when inside a float.
(Remember that with floats it’s the \caption command that increments the counter so the
location will be incorrect if an entry is indexed within the float before the caption.)

l —

|

indexcounter

96

2. Package Options

This option is only available with glossaries—extra. This valueless option is primarily in-
tended for use with bib2gls and hyperref allowing the page location hyperlink target to be
set to the relevant point within the page (rather than the top of the page). Unexpected results
will occur with other indexing methods. See glossaries—extra manual for further details.

2.5. Sorting Options

This section is mostly for Options 2 and 3. Only the sort and order options are applicable
for Option 1.

[glossaries-extra

With Options 4, 5 and 6, only sort=none is applicable (and this is automatically im-
plemented by record=only and record=nameref). With bib2gls, the sort method
is provided in the optional argument of \GlsXtrLoadResources not with the sort
package option. There’s no sorting with Options 5 and 6.

sanitizesort=(boolean) default: true; initial: varies

This option determines whether or not to sanitize the sort value when writing to the external
indexing file. For example, suppose you define an entry as follows:

=

\newglossaryentry{hash}{name={\#},sort={},
description={hash symbol}}

The sort value () must be sanitized before writing it to the indexing file, otherwise ETEX will
try to interpret it as a parameter reference. If, on the other hand, you want the sort value
expanded, you need to switch off the sanitization. For example, suppose you do:

\newcommand{\mysortvalue}{AAA}

\newglossaryentry{sample}{%
name={sample},
sort={\mysortvalue},
description={an examplel}}

and you actually want \mysortvalue expanded, so that the entry is sorted according to AAA,
then use the package option sanitizesortfalse.
The default for Options 2 and 3 is sanitizesort=true, and the default for Option 1 is

97

2. Package Options

sanitizesort=false.

=

=
sort=(value) initial: standard

If you use Options 2 or 3, this package option is the only way of specifying how to sort
the glossaries. Only Option 1 allows you to specify sort methods for individual glossaries
via the sort key in the optional argument of \printnoidxglossary. If you have multiple
glossaries in your document and you are using Option 1, only use the package options sort
=def or sort=use if you want to set this sort method for all your glossaries.

B

| S

sort=none

This setting is only for documents that don’t use \makeglossaries (Options 2 or 3) or
\makenoidxglossaries (Option 1). It omits the code used to sanitize or escape the sort
value, since it’s not required. This can help to improve the document build speed, espe-
cially if there are a large number of entries. This setting may be used if no glossary is re-
quired or if \printunsrtglossary is used (Option 5). If you want an unsorted glossary
with bib2gls, use the resource option sort=none instead. This option will redefine \gls-
indexingsetting to none.

(@]

= |
This option will still assign the sort key to its default value. It simply doesn’t process

it. If you want the sort key set to an empty value instead, use sort=clear instead.

J

B

| S

sort=clear

As sort=none but sets the sort key to an empty value. This will affect letter group forma-
tions in \printunsrtglossary with Option 5. See the glossaries-extra manual for further
details. This option will redefine \glsindexingsetting to none. The remaining sort op-
tions listed below don’t change \glsindexingsetting.

[&
_—
sort=def

Entries are sorted in the order in which they were defined. With Option 1, this is imple-
mented by simply iterating over all defined entries so there’s no actual sorting. With Op-
tions 2 and 3, sorting is always performed (since that’s the purpose of makeindex and xindy).
This means that to obtain a list in order of definition, the sort key is assigned a numeric value

98

2. Package Options

that’s incremented whenever a new entry is defined.

B

| S

sort=use

Entries are sorted according to the order in which they are used in the document. With
Option 1, this order is obtained by iterating over a list that’s formed with the aux file is input
at the start of the document. With Options 2 and 3, again the sort key is assigned a numeric
value, but in this case the value is incremented, and the sort key is assigned, the first time
an entry is indexed.

Both sort=def and sort=use zero-pad the sort key to a six digit number using:

\glssortnumberfmt{(number)}

This can be redefined, if required, before the entries are defined (in the case of sort=def) or
before the entries are used (in the case of sort=use).

Note that the group styles (such as listgroup) are incompatible with the sort=use and
sort=def options.

B

| A

sort=standard

Entries are sorted according to the value of the sort key used in \newglossaryentry (if
present) or the name key (if sort key is missing).

When the standard sort option is in use, you can hook into the sort mechanism by redefin-
ing:

I

\glsprestandardsort{(sort cs)}{(type) }{(entry-label)}

where (sort cs) is a temporary control sequence that stores the sort value (which was either
explicitly set via the sort key or implicitly set via the name key) before any escaping of the
makeindex/xindy special characters is performed. By default \glsprestandardsort just
does:

X

\glsdosanitizesort

which sanitizes (sort cs) if sanitizesort=true (or does nothing if sanitizesort=false).

The other arguments, (type) and (entry-label), are the glossary type and the entry label
for the current entry. Note that (type) will always be a control sequence, but (label) will be
in the form used in the first argument of \newglossaryentry.

99

2. Package Options

[i
=
Redefining \glsprestandardsort won’t affect any entries that have already been
defined and will have no effect at all if you use another sort setting.

Example 9: Mixing Alphabetical and Order of Definition Sorting

Suppose I have three glossaries: main, acronym and notation, and let’s suppose I want
the main and acronym glossaries to be sorted alphabetically, but the notation type should
be sorted in order of definition.

For Option 1, the sort option can be used in \printnoidxglossary:

\printnoidxglossary [sort=word]
\printnoidxglossary [type=acronym,sort=word]
\printnoidxglossary[type=notation,sort=def]

For Options 2 or 3,1 can set sort=standard (which is the default), and I can either define
all my main and acronym entries, then redefine \glsprestandardsort to set (sort cs) to an
incremented integer, and then define all my notation entries. Alternatively, I can redefine
\glsprestandardsort to check for the glossary type and only modify (sort cs) if (type) is
notation.

The first method can be achieved as follows:

\newcounter{sortcount}

\renewcommand{\glsprestandardsort} [3]{%
\stepcounter{sortcount}y
\edef#1{\glssortnumberfmt{\arabic{sortcountl}}1}/

by

The second method can be achieved as follows:

\newcounter{sortcount}

\renewcommand{\glsprestandardsort} [3]{%
\ifdefstring{#2}{notation}y
{h
\stepcounter{sortcount}y
\edef#1{\glssortnumberfmt{\arabic{sortcount}}}/
Y

100

2. Package Options

{h
\glsdosanitizesort
T
+

(\ifdefstringisdefined by the etoolbox package, which is automatically loaded by glossaries.)
For a complete document, see the sample file sampleSort.tex.

Example 10: Customizing Standard Sort (Options 2 or 3)

Suppose you want a glossary of people and you want the names listed as (first-name)
(surname) in the glossary, but you want the names sorted by (surname), (first-name). You
can do this by defining a command called, say, \name{first-name}{surname} that you can use
in the name key when you define the entry, but hook into the standard sort mechanism to
temporarily redefine \name while the sort value is being set.

First, define two commands to set the person’s name:

B
\newcommand{\sortname} [2] {#2, #1}
\newcommand{\textname} [2] {#1 #2}

and \name needs to be initialised to \textname:

\let\name\textname

Now redefine \glsprestandardsort so that it temporarily sets \name to \sortname and
expands the sort value, then sets \name to \textname so that the person’s name appears as

(first-name) (surname) in the text:

\renewcommand{\glsprestandardsort}[3]{%
\let\name\sortname
\edef#1{\expandafter\expandonce\expandafter{#1}}J
\let\name\textname
\glsdosanitizesort

b

(The somewhat complicate use of \expandafter etc helps to protect fragile commands, but
care is still needed.)
Now the entries can be defined:

101

2. Package Options

\newglossaryentry{joebloggs}name={\name{Joe}{Bloggs}},
description={some information about Joe Bloggs}

\newglossaryentry{johnsmith}{name={\name{John}{Smith}},
description={some information about John Smith}}

For a complete document, see the sample file samplePeople. tex.

0

order

This may take two values:

]

order=word

Word order (“sea lion” before “seal”).

3

order=letter

Letter order (“seal” before “sea lion”).
(2

Note that with Options 2 and 3, the order option has no effect if you explicitly call
makeindex or xindy.

If you use Option 1, this setting will be used if you use sort=standard in the optional
argument of \printnoidxglossary:

=

\printnoidxglossary [sort=standard]

Alternatively, you can specify the order for individual glossaries:

\printnoidxglossary [sort=word]
\printnoidxglossary[type=acronym,sort=letter]

| bib2gls
| S

[With bib2gls, use the break-at option in \GlsXtrLoadResources instead of order.

102

2. Package Options

I —

|

makeindex
Option 2

The glossary information and indexing style file will be written in makeindex format. If you
use makeglossaries or makeglossaries-1lite, it will automatically detect that it needs to
call makeindex. If you don’t use makeglossaries, you need to remember to use makeindex
not xindy. The indexing style file will been given a ist extension.

You may omit this package option if you are using Option 2 as this is the default. It’s
available in case you need to override the effect of an earlier occurrence of xindy in the
package option list.

==

xindy={(options)}
Option 3

The glossary information and indexing style file will be written in xindy format. If you use
makeglossaries, it will automatically detect that it needs to call xindy. If you don’t use
makeglossaries, you need to remember to use xindy not makeindex. The indexing style
file will been given a xdy extension.

This package option may additionally have a value that is a (key)=(value) comma-separated
list to override some default options. Note that these options are irrelevant if you explicitly
call xindy. See §14 for further details on using xindy with the glossaries package.

You can test if this option has been set using the conditional:

X

\ifglsxindy (true)\else (false)\fi initial: \iffalse

Note that this conditional should not be changed after \makeglossaries otherwise the syn-
tax in the glossary files will be incorrect. If this conditional is false, it means that any option
other than Option 3 is in effect. (If you need to know which indexing option is in effect,
check the definition of \glsindexingsetting instead.)

The (options) value may be omitted. If set, it should be a (key)=(value) list, where the
following three options may be used:

language={(value)}

The language module to use, which is passed to xindy with the -L switch. The default is
obtained from \languagename but note that this may not be correct as xindy has a different
labelling system to babel and polyglossia.

The makeglossaries script has a set of mappings of known babel language names to
xindy language names, but new babel dialect names may not be included. The makeglos-
saries-1lite script doesn’t have this feature (but there’s no benefit in use makeglossaries

103

2. Package Options

-lite instead of makeglossaries when using xindy). The automake=option that calls
xindy explicitly also doesn’t use any mapping.

However, even if the appropriate mapping is available, \1anguagename may still not ex-
pand to the language required for the glossary. In which case, you need to specify the correct
xindy language. For example:

Ei

\usepackage [brazilian,english]{babel}
\usepackage [xindy=language=portuguese] {glossaries}

If you have multiple glossaries in different languages, use \GlsSetXdyLanguage to set the
language for each glossary.

codepage={(value)}

The codepage is the file encoding for the xindy files and is passed to xindy with the -C
switch. The default codepage is obtained from \inputencodingname. As from v4.50, if \in-
putencodingname isn’t defined, UTF-8 is assumed (which is identified by the label ut£8). If
this is incorrect, you will need to use the codepage option but make sure you use the xindy
codepage label (for example, cp1252 or 1atin9). See the xindy documentation for further
details.

(i]
=
The codepage may not simply be the encoding but may include a sorting rule, such as

ij-as-y-utf8 or din5007-utf8. See §14.2.

For example:

\usepackage [xindy=language=english, codepage=cp1252]
{glossaries}
=
glsnumbers={(boolean)?} default: true; initial: true

If true, this option will define the number group in the xindy style file, which by default will
be placed before the “A” letter group. If you don’t want this letter group, set this option to
false. Note that the “A” letter group is only available with Latin alphabets, so if you are using
a non-Latin alphabet, you will either need to switch off the number group or identify the

104

2. Package Options

letter group that it should come before with \GlsSetXdyNumberGroupOrder.
I —_—

|

xindygloss
Option 3

This is equivalent to xindy without any value supplied and may be used as a document class
option. The language and code page can be set via \GlsSetXdyLanguage and \GlsSetXdy-
CodePage if the defaults are inappropriate (see §14.2.)

[=

| S

xindynoglsnumbers
Option 3

This is equivalent to xindy={glsnumbers=false} and may be used as a document class
option.

=
automake=(value) default: immediate; initial: false

This option will attempt to use the shell escape to run the appropriate indexing application.
You will still need to run KIEX twice. For example, if the document in the file myDoc. tex
contains:

,

\usepackage [automake] {glossaries}

\makeglossaries
\newglossaryentry{sample}{name={sample},description={an examplel}}
\begin{document}

\gls{sample}

\printglossaries

\end{document}

Then the document build is now:

pdflatex myDoc
pdflatex myDoc

This will run makeindex on every KIgX run. If you have a large glossary with a complex
document build, this can end up being more time-consuming that simply running make-
index (either explicitly or via makeglossaries) the minimum number of required times.

105

2. Package Options

[i
=
Note that you will need to have the shell escape enabled (restricted mode for a direct
call to makeindex and unrestricted mode for xindy, makeglossaries or makeglos-
saries-lite). If you switch this option on and you are using LuaBIgX, then the
shellesc package will be loaded.

If this option doesn’t seem to work, open the log file in your text editor and search for
“runsystem”. For example, if the document is in a file called myDoc . tex and it has:

=

\usepackage [automake] {glossaries}

and you run KIgX in restricted mode, then if call was successful, you should find the following
line in the file myDoc. log:

runsystem(makeindex -s myDoc.ist -t myDoc.glg -o myDoc.gls
myDoc.glo) . ..executed safely (allowed).

The parentheses immediately after “ runsystem” show how the command was called. The

bit after the three dots . . . indicates whether or not the command was run and, if so, whether

it was successful. In the above case, it has “executed safely (allowed)”. This means that it was

allowed to run in restricted mode because makeindex is on the list of trusted applications.
If you change the package option to:

Ei

\usepackage [automake=makegloss] {glossaries}

and rerun EIgX in restricted mode, then the line in myDoc.log will now be:

runsystem(makeglossaries myDoc)...disabled (restricted).

This indicates that an attempt was made to run makeglossaries (rather than a direct call to
makeindex), which isn’t permitted in restricted mode. There will be a similar message with
automake=lite or if the xindy option is used. These cases require the unrestricted shell
escape.

[i
=
Think carefully before enabling unrestricted mode. Do you trust all the packages your

document is loading (either explicitly or implicitly via another package)? Do you trust
any code that you have copied and pasted from some third party? First compile your
document in restricted mode (or with the shell escape disabled) and search the log file

106

2. Package Options

l for “runsystem” to find out exactly what system calls are being attempted.

If the document is compiled in unrestricted mode, the corresponding line in the log file
should now be:

runsystem(makeglossaries myDoc) . ..executed.

This means that makeglossaries was run. If it has “failed” instead of “executed”, then it
means there was a fatal error. Note that just because the 1og file has “executed” doesn’t mean
that the application ran without a problem as there may have been some warnings or non-
fatal errors. If you get any unexpected results, check the indexing application’s transcript
file (for example, the glg file, myDoc.glg in the above, for the main glossary).

3

automake=false

No attempt is made to use the shell escape.

3

automake=true alias: delayed]

This is now a deprecated synonym for automake=delayed. This used to be the default if
the value to automake wasn’t supplied, but the default switched to the less problematic
automake=immediate in version 4.50.

3

automake=delayed

A direct call to makeindex or xindy (as appropriate) for each non-empty glossary will be
made at the end of the document using a delayed write to ensure that the glossary files are
complete. (It’s necessary to delay writing to the indexing files in order to ensure that \the-
page is correct.) Unfortunately, there are situations where the delayed write never occurs,
for example, if there are floats on the final page. In those cases, it’s better to use an immediate
write (any of the following options).

B

| S

automake=immediate

A direct call to makeindex or xindy (as appropriate) for each non-empty glossary will be
made at the start of \makeglossaries using an immediate write. This ensures that the
indexing files are read by the indexing application before they are opened (which will clear
their content).

If you are using xindy, then automake=makegloss is a better option that this one. Either
way, you will need Perl and the unrestricted mode, but with makeglossaries you get the

107

2. Package Options

benefit of the language mappings and diagnostics.

B

| S

automake=makegloss

A call tomakeglossaries will be made at the start of \makeglossaries using an immediate
write if the aux file exists. On the one hand, it’s better to use makeglossaries as it has some
extra diagnostic functions, but on the other hand it both requires Perl and the unrestricted
shell escape.

B

| S

automake=lite

A call to makeglossaries-1lite will be made at the start of \makeglossaries using an
immediate write if the aux file exists. There’s little benefit in this option over automake=
immediate and it has the added disadvantage of requiring the unrestricted mode.

(=
L=
automakegloss alias: makegloss
This valueless option is equivalent to automake=makegloss.
[=
L=
automakeglosslite alias: 1ite
This valueless option is equivalent to automake=1ite.
[=
L=

disablemakegloss

This valueless option indicates that \makeglossaries and \makenoidxglossaries should
be disabled. This option is provided in the event that you have to use a class or package that
disregards the advice in §1.3 and automatically performs \makeglossaries or \makenoidx-
glossaries but you don’t want this. (For example, you want to use a different indexing
method or you want to disable indexing while working on a draft document.)

Naturally, if there’s a particular reason why the class or package insists on a specific
indexing method, for example, it’s an editorial requirement, then you will need to abide
by that decision.

This option may be passed in the standard document class option list or passed using
\PassOptionsToPackage before glossaries is loaded. Note that this does nothing if \make-
glossaries or \makenoidxglossaries has already been used whilst enabled.

| —

| S

restoremakegloss

108

2. Package Options

Cancels the effect of disablemakegloss. This option may be used in \setupglossaries.
It issues a warning if \makeglossaries or \makenoidxglossaries has already been used
whilst enabled. Note that this option removes the check for \nofiles, as this option is an
indication that the output files are actually required.

For example, suppose the class customclass.cls automatically loads glossaries and does
\makeglossaries but you need an extra glossary, which has to be defined before \make-
glossaries, then you can do:

=

\documentclass[disablemakegloss]{customclass}
\newglossary*{functions}{Functions}
\setupglossaries{restoremakegloss}
\makeglossaries

or

\PassOptionsToPackage{disablemakegloss}{glossaries}
\documentclass{customclass}
\newglossary*{functions}{Functions}
\setupglossaries{restoremakegloss}

\makeglossaries

Note that restoring these commands doesn’t necessarily mean that they can be used. It
just means that their normal behaviour given the current settings will apply. For example, if
you use the record=only or record=nameref options with glossaries-extra then you can’t
use \makeglossaries or \makenoidxglossaries regardless of restoremakegloss.

2.6. Glossary Type Options

nohypertypes={(list)}

Use this option if you have multiple glossaries and you want to suppress the entry hyperlinks
for a particular glossary or glossaries. The value of this option should be a comma-separated
list of glossary types where \gls etc shouldn’t have hyperlinks by default. Make sure you
enclose the value in braces if it contains any commas. Example:

=

\usepackage [acronym,nohypertypes={acronym,notation}]
{glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}

109

2. Package Options

As illustrated above, the glossary doesn’t need to exist when you identify it in nohyper-
types.

[i
LA
The values must be fully expanded, so don’t try, for example, nohypertypes=

\acronymtype.

You may also use:

\GlsDeclareNoHyperList{(list)}

instead or additionally. See §5.1 for further details.

glossaries—extra

The glossaries—extra package has the nohyper category attribute which will suppress
the hyperlink for entries with the given category, which can be used as an alternative
to suppressing the hyperlink on a per-glossary basis.

I —

| S

nomain

This suppresses the creation of the main glossary and associated glo file, if unrequired. Note
that if you use this option, you must create another glossary in which to put all your entries
(either via the acronym (or acronyms) package option described in §2.7 or via the symbols,
numbers or index options described in §2.9 or via \newglossary described in §9). Even if
you don’t intend to display the glossary, a default glossary is still required.

If you don’t use the main glossary and you don’t use this option to suppress its creation,
makeglossaries will produce a warning:

Warning: File '(filename).glo' is empty.

Have you used any entries defined in glossary 'main'?
Remember to use package option 'nmomain' if

you don't want to use the main glossary.

If you did actually want to use the main glossary and you see this warning, check that you
have referenced the entries in that glossary via commands such as \gls.

| —

| S

symbols

This valueless option defines a new glossary type with the label symbols via

110

2. Package Options

\newglossary [slg] {symbols}{sls}{slo}{\glssymbolsgroupname}

It also defines

\printsymbols [(options)]

which is a synonym for

\printglossary[type=symbols, {(options)]

If you use Option 1, you need to use:

\printnoidxglossary [type=symbols, (options)]

to display the list of symbols.

[i
=
Remember to use the nomain package option if you're only interested in using this
symbols glossary and don’t intend to use the main glossary.

[glossaries-extra

The glossaries—extra package has a slightly modified version of this option which ad-
ditionally provides \glsxtrnewsymbol as a convenient shortcut method for defining
symbols. See the glossaries—extra manual for further details.

[=
=
numbers
This valueless option defines a new glossary type with the label numbers via
\newglossary [nlg] {numbers}{nls}{nlo}{\glsnumbersgroupname}
It also defines
I

\printnumbers [({options)]

which is a synonym for

\printglossary [type=numbers, {(options)]

111

2. Package Options

If you use Option 1, you need to use:

\printnoidxglossary [type=numbers, (options)]

to display the list of numbers.

a8

numbers glossary and don’t intend to use the main glossary.

Remember to use the nomain package option if you're only interested in using this

glossaries—extra

numbers. See the glossaries-extra manual for further details.

The glossaries—extra package has a slightly modified version of this option which ad-
ditionally provides \glsxtrnewnumber as a convenient shortcut method for defining

I —

index

| S

This valueless option defines a new glossary type with the label index via

~

\newglossary[ilg] {index}{ind}{idx}{\indexname}

It also defines

\newterm[(key=value list)]1{(entry-label)}

which is a synonym for

\newglossaryentry{{entry-label)}{type={index},name={entry-label},
description={\nopostdesc}, (options)}

and

\printindex [{options)] v4.02+

which is a synonym for

\printglossary [type=index, (options)]

If you use Option 1, you need to use:

112

2. Package Options

\printnoidxglossary[type=index, {options)]

to display this glossary.
[i

=
Remember to use the nomain package option if you're only interested in using this
index glossary and don’t intend to use the main glossary. Note that you can’t mix this
option with \index. Either use glossaries for the indexing or use a custom indexing

package, such as makeidx, imakeidx. (You can, of course, load one of those packages
and load glossaries without the index package option.)

Since the index isn’t designed for terms with descriptions, you might also want to dis-
able the hyperlinks for this glossary using the package option nohypertypes=index or the
command

[\GlsDeclareNoHyperList{index}

However, it can also be useful to link to the index in order to look up the term’s location
list to find other parts of the document where it might be used. For example, this manual
will have a hyperlink to the index for general terms, such as “table of contents”, or general
commands, such as \index, that aren’t defined anywhere in the document.

The example file sample-index. tex illustrates the use of the index package option.

I —

|

noglossaryindex

This valueless option switches off index if index has been passed implicitly (for example,
through global document options). This option can’t be used in \setupglossaries.

2.7. Acronym and Abbreviation Options

)

el
acronym=(boolean) default: true; initial: false

If true, this creates a new glossary with the label acronym. This is equivalent to:

\newglossary[alg]{acronym}{acr}{acn}{\acronymname}

113

2. Package Options

It will also provide (if not already defined)

\printacronyms [{options)]

that’s equivalent to

\printglossary[type=acronym, {(options)]

If you are using Option 1, you need to use

\printnoidxglossary [type=acronym, (options)]

to display the list of acronyms.
If the acronym package option is used, \acronymtype is set to acronym otherwise it is
set to \glsdefaulttype (which is normally the main glossary.) Entries that are defined
using \newacronym are placed in the glossary whose label is given by \acronymtype, unless
another glossary is explicitly specified with the type key.
[i
=
Remember to use the nomain package option if you're only interested in using this

acronym glossary. (That is, you don’t intend to use the main glossary.)

[glossaries-extra

The glossaries—extra extension package comes with an analogous abbreviations op-
tion, which creates a new glossary with the label abbreviations and sets the com-
mand \glsxtrabbrvtype to this. If the acronym option hasn’t also been used, then
\acronymtype will be set to \glsxtrabbrvtype. This enables both \newacronym
and \newabbreviation to use the same glossary.

Make sure you have at least v1.42 of glossaries—extra if you use the acronym (or
acronyms) package option with the extension package to avoid a bug that interferes
with the abbreviation style.

I —

| S

acronyms

This is equivalent to acronym=true and may be used in the document class option list.

I —

|

abbreviations

This valueless option provided by glossaries—extra creates a new glossary type with the
label abbreviations using:

114

2. Package Options

\newglossary[glg-abr]{abbreviations}{gls-abr}{glo-abr}{\abbrevia-
tionsname}

The label can be accessed with \glsxtrabbrvtype, which is analogous to \acronymtype.
See glossaries—extra manual for further details.

acronymlists={(label-list)}

This option is used to identify the glossaries that contain acronyms so that they can have
their entry format adjusted by \setacronymstyle. (It also enables \forallacronyms to
work.)

By default, if the list is empty when \setacronymstyle is used then it will automatically
add \acronymtype to the list.

If you have other lists of acronyms, you can specify them as a comma-separated list in the
value of acronymlists. For example, if you use the acronym package option but you also
want the main glossary to also contain a list of acronyms, you can do:

=

\usepackage [acronym,acronymlists=main]{glossaries}

No check is performed to determine if the listed glossaries exist, so you can add glossaries
you haven’t defined yet. For example:

=

\usepackage [acronym,acronymlists={main,acronym2}]
{glossaries}

\newglossary[alg2]{acronym2}{acr2}{acn2}/
{Statistical Acronyms}

You can use

\DeclareAcronymList{(list)}

instead of or in addition to the acronymlists option. This will add the glossaries given in
(list) to the list of glossaries that are identified as lists of acronyms. To replace the list of
acronym lists with a new list use:

X

\SetAcronymLists{(list)}

If the list is changed after \setacronymstyle then it will result in inconsistencies in the
formatting. If this does happen, and is for some reason unavoidable (such as \setacronym-

115

2. Package Options

style occurring in a package that loads glossaries), you will need to set the entry format to
match the style:

\DeclareAcronymList{(glossary-label)}
\defglsentryfmt [{glossary-label)]{\GlsUseAcrEntryDispStyle}{(style-name)}

You can determine if a glossary has been identified as being a list of acronyms using:

X

\glsIfListOfAcronyms{(glossary-label)}{(true)}{(false)}

glossaries-extra

This option and associated commands are incompatible with glossaries—extra’s
abbreviation mechanism. Lists of abbreviations don’t need identifying.

-—
—

=
shortcuts={(boolean)} default: false; initial: false

This option provides shortcut commands for acronyms. See §6 for further details. Alterna-
tively you can use:

X

\DefineAcronymSynonyms

glossaries—extra

The glossaries—extra package provides additional shortcuts.

2.8. Deprecated Acronym Style Options

The package options listed in this section were deprecated in version 4.02 (2013-12-05) and
have now been removed. You will need to use rollback with them (see §1.1). These options
started generating warnings in version 4.47 (2021-09-20) and as from version 4.50 will now
generate an error unless you use rollback.

If you want to change the acronym style, use \setacronymstyle instead. See §6 for
further details.

(S0

description Deprecated

116

2. Package Options

This option changed the definition of \newacronym to allow a description. This option may
be replaced by:

\setacronymstyle{long-short-desc}

or (with smallcaps)

\setacronymstyle{long-sc-short-desc}

or (with smaller)

\setacronymstyle{long-sm-short-desc}

or (with footnote)

\setacronymstyle{footnote-desc}

or (with footnote and smallcaps)

\setacronymstyle{footnote-sc-desc}

or (with footnote and smaller)

\setacronymstyle{footnote-sm-desc}

or (with dua)

D (B (B (B (B (B L0

\setacronymstyle{dua-desc}

=l

smallcaps Deprecated

This option changed the definition of \newacronym and the way that acronyms are displayed.
This option may be replaced by:

117

2. Package Options

\setacronymstyle{long-sc-short}

or (with description)

\setacronymstyle{long-sc-short-desc}

or (with description and footnote)

D (LB LD

\setacronymstyle{footnote-sc-desc}

‘IEIL

smaller Deprecated

This option changed the definition of \newacronym and the way that acronyms are displayed.
This option may be replaced by:

\setacronymstyle{long-sm-short}

or (with description)

\setacronymstyle{long-sm-short-desc}

or (with description and footnote)

\setacronymstyle{footnote-sm-desc}

0N -pN- RN -

footnote Deprecated

This option changed the definition of \newacronym and the way that acronyms are displayed.
This option may be replaced by:

Ei

\setacronymstyle{footnote}

or (with smallcaps)

118

2. Package Options

\setacronymstyle{footnote-sc}

or (with smaller)

\setacronymstyle{footnote-sm}

or (with description)

\setacronymstyle{footnote-desc}

or (with smallcaps and description)

\setacronymstyle{footnote-sc-desc}

or (with smaller and description)

\setacronymstyle{footnote-sm-desc}

OiN-NE-RE-RE - -

dua Deprecated

This option changed the definition of \newacronym so that acronyms are always expanded.
This option may be replaced by:

=

\setacronymstyle{dua}

or (with description)

\setacronymstyle{dua-desc}

119

2. Package Options

2.9. Other Options

Other available options that don’t fit any of the above categories are described below.

I —

|

accsupp

Only available with glossaries—extra, this option loads the glossaries—accsupp package,
which needs to be loaded either before glossaries—extra or while glossaries—extra is loaded
to ensure both packages are properly integrated.

I —

|

prefix

Only available with glossaries-extra, this option loads the glossaries—prefix package.

[

—
nomissingglstext=(boolean) default: true; initial: false

This option may be used to suppress the boilerplate text generated by \printglossary if
the indexing file is missing.

nfirstuc=(value) initial: unexpanded

The value may be either expanded or unexpanded and performs the same function as
mfirstuc’s expanded and unexpanded package options. Note that there’s no value corre-
sponding to mfirstuc’s other package option.

The default is mf irstuc=unexpanded to safeguard against glossary styles that convert the
description to sentence case. With older versions of mfirstuc (pre v2.08), fragile commands
in the description would not have been affected by the case change, but now, if the entire
description is passed to \MFUsentencecase, it will be expanded, which could break existing
documents.

=
compatible-2.07 Deprecated

Compatibility mode for old documents created using version 2.07 or below. This option is
now only available with rollback (see §1.1).

=
compatible-3.07 Deprecated

Compatibility mode for old documents created using version 3.07 or below. This option is

120

2. Package Options

now only available with rollback (see §1.1).

=

=
kernelglossredefs=(value) default: true; initial: false

As a legacy from the precursor glossary package, the standard glossary commands pro-
vided by the EIEX kernel (\makeglossary and \glossary) are redefined in terms of the
glossaries package’s commands. However, they were never documented in this user manual,
and the conversion guide (“Upgrading from the glossary package to the glossaries package”
(glossary2glossaries.pdf)) explicitly discourages their use.

The redefinitions of these commands was removed in v4.10, but unfortunately it turned
out that some packages had hacked the internal commands provided by glossaries and no
longer worked when they were removed, so they were restored in v4.41 with this option to
undo the effect with kernelglossredefs=true as the default. As from v4.50, the default is
now kernelglossredefs=false.

B

L

kernelglossredefs=false

Don’t redefine \glossary and \makeglossary. If they have been previously redefined by
kernelglossredefs their original definitions (at the time glossaries was loaded) will be
restored.

>

kernelglossredefs=true

Redefine \glossary and \makeglossary, but their use will trigger warnings.

B

| S

kernelglossredefs=nowarn

Redefine \glossary and \makeglossary without any warnings.

The only glossary-related commands provided by the KIgX kernel are \makeglossary and
\glossary. Other packages or classes may provide additional glossary-related commands or
environments that conflict with glossaries (such as \printglossary and theglossary). These
non-kernel commands aren’t affected by this package option, and you will have to find some
way to resolve the conflict if you require both glossary mechanisms. (The glossaries package
will override the existing definitions of \printglossary and theglossary.)

In general, if possible, it’s best to stick with just one package that provides a glossary
mechanism. (The glossaries package does check for the doc package and patches \Print-
Changes.)

121

2. Package Options

2.10. Setting Options After the Package is Loaded

Some of the options described above may also be set after the glossaries package has been
loaded using

X

\setupglossaries{(options)?}

The following package options can’t be used in \setupglossaries: xindy, xindygloss,
xindynoglsnumbers, makeindex, nolong, nosuper, nolist, notree, nostyles, nomain,
compatible-2.07, translate, notranslate, languages, acronym. These options have to
be set while the package is loading, except for the xindy sub-options which can be set using
commands like \G1sSetXdyLanguage (see §14 for further details).

l i

=
If you need to use this command, use it as soon as possible after loading glossaries
otherwise you might end up using it too late for the change to take effect. If you

try changing the sort option after you have started to define entries, you may get
unexpected results.

glossaries—extra

With glossaries—extra, use \glossariesextrasetup instead.

122

3. Setting Up

In the preamble you need to indicate which method you want to use to generate the glossary
(or glossaries). The available options with both glossaries and glossaries-extra are summa-
rized in §1.3. This chapter documents Options 1, 2 and 3, which are provided by the base
package. See the glossaries—extra and bib2gls manuals for the full documentation of the
other options.

If you don’t need to display any glossaries, for example, if you are just using the glossaries
package to enable consistent formatting, then skip ahead to §4.

3.1. Option 1

The command

\makenoidxglossaries

must be placed in the document preamble. This sets up the internal commands required to
make Option 1 work. If you omit \makenoidxglossaries none of the glossaries will

be displayed.

3.2. Options 2 and 3

The command

\makeglossaries

must be placed in the document preamble in order to create the customised makeindex (ist)
or xindy (xdy) style file (for Options 2 or 3, respectively) and to ensure that glossary entries
are written to the appropriate output files. If you omit \makeglossaries none of the
indexing files will be created.

[glossaries-extra]

If you are using glossaries—extra, \makeglossaries has an optional argument that
allows you to have a hybrid of Options 1 or 2 or Options 1 or 3. See glossaries—extra
manual for further details.

123

3. Setting Up

[i
=
Note that some of the commands provided by the glossaries package must not be used

after \makeglossaries as they are required when creating the customised style file.
If you attempt to use those commands after \makeglossaries you will generate an
error. Similarly, there are some commands that must not be used before \make-
glossaries because they require the associated indexing files to be open, if those
files should be created. These may not necessarily generate an error or warning as
a different indexing option may be chosen that doesn’t require those files (such as
Options 5 or 6).

The \makeglossaries command internally uses:

\writeist

to create the custom makeindex/xindy style file. This command disables itself by setting
itself to \relax so that it can only be used once. In general, there should be no reason to use
or alter this command.

The default name for the customised style file is given by \ jobname.ist (Option 2) or
\ jobname . xdy (Option 3). This name may be changed using:

X

\setStyleFile{(name)}

where (name) is the name of the style file without the extension.
There is a hook near the end of \writeist that can be set with:

\GlsSetWriteIstHook{(code)}

The (code) will be performed while the style file is still open, which allows additional content
to be added to it. The associated write register is:

X

\glswrite

Note that this register is defined by \writeist to prevent an unnecessary write register
from being created in the event that neither makeindex nor xindy is required.

If you use the \GlsSetWriteIstHook hook to write extra information to the style file,
make sure you use the appropriate syntax for the desired indexing application. For example,
with makeindex:

124

3. Setting Up

\GlsSetWriteIstHook{’
\write\glswrite{page_precedence "arnAR"}J
\write\glswrite{line_max 801}%

}

This changes the page precedence and the maximum line length used by makeindex.
Remember that if you switch to xindy, this will no longer be valid code.
You can suppress the creation of the customised xindy or makeindex style file using:

\noist

This is provided in the event that you want to supply your own customized style file that can’t
be replicated with the available options and commands provided by the glossaries package.
This command sets \writeist to \relax (making it do nothing) but will also update the
xindy attribute list if applicable.

If you have a custom xdy file created when using glossaries version 2.07 (2010-0710) or be-
low, you will need to use rollback and the compatible-2.07 package option with it. How-
ever, that is now so dated and the EIEX kernel has changed significantly since that time
that you may need to use a legacy distribution (see Legacy Documents and TeX Live Docker
Images).

Each glossary entry is assigned a number list that lists all the locations in the document
where that entry was used. By default, the location refers to the page number but this may
be overridden using the counter package option. The default form of the location number
assumes a full stop compositor (for example, 1.2), but if your location numbers use a different
compositor (for example, 1-2) you need to set this using

X

\glsSetCompositor{(character)}

{symbol} For example:

=

\glsSetCompositor{-}

This command must not be used after \makeglossaries. Note that with makeindex, any
locations with the wrong compositor (or one that hasn’t been correctly identified with \gls-
SetCompositor) will cause makeindex to reject the location with an invalid number/digit
message. As from v4.50, makeglossaries will check for this message and attempt a cor-
rection, but this can result in an incorrectly formatted location in the number list. See the
information about makeglossaries’s —e switch in §1.6.1 for further details.

'dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

125

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

3. Setting Up

An invalid page number will also cause xindy to fail with a “did not match any location-
class” warning. This is also something that makeglossaries will check for and will provided
diagnostic information, but it won’t attempt to make any correction.

If you use Option 3, you can have a different compositor for page numbers starting with
an upper case alphabetical character using:

X

\glsSetAlphaCompositor{(character)}

This command is only available with xindy. For example, if you want number lists containing
a mixture of A-1 and 2.3 style formats, then do:

=

\glsSetCompositor{.}\glsSetAlphaCompositor{-}

See §12 for further information about number lists.

126

4. Defining Glossary entries

bib2gls

If you want to use bib2gls, entries must be defined in bib files using the syntax
described in the bib2gls user manual.

Acronyms are covered in §6 but they use the same underlying mechanism as all the other
glossary entries, so it’s a good idea to read this chapter first. The keys provided for \new-
glossaryentry can also be used in the optional argument of \newacronym, although some
of them, such as first and plural, interfere with the acronym styles.

All glossary entries must be defined before they are used, so it is better to define them in
the document preamble to ensure this. In fact, some commands such as \longnewglossary-
entry may only be used in the preamble. See §4.8 for a discussion of the problems with
defining entries within the document instead of in the preamble. (The glossaries—extra pack-
age has an option that provides a restricted form of document definitions that avoids some
of the issues discussed in §4.8.)

(i]
=
Option 1 enforces the preamble-only restriction on \newglossaryentry. Option 4

requires that definitions are provided in bib format. Options 5 and 6 work best
with either preamble-only definitions or the use of the glossaries—extra package option
docdef=restricted.

7

Bear in mind that with docdef=restricted, the entries must be defined before any
entries are used, including when they are displayed in the glossary (for example, with \print-
unsrtglossary) or where they appear in the table of contents or list of floats. This is es-
sentially the same problem as defining a robust command mid-document and using it in a
section title or caption.

Only those entries that are indexed in the document (using any of the commands described
in §5.1, §10 or §11) will appear in the glossary. See §8 to find out how to display the glossary.

New glossary entries are defined using the command:

X

\newglossaryentry{(entry-label) }{{key=value list)}

This is a short command, so values in (key=value list) can’t contain any paragraph breaks.
Take care to enclose values containing any commas (,) or equal signs (=) with braces to hide
them from the (key)=(value) list parser.

127

4. Defining Glossary entries

If you have a long description that needs to span multiple paragraphs, use the following
instead:

X

\longnewglossaryentry{(entry-label) }{(key=value list)}{(description)}

Note that this command may only be used in the preamble (regardless of docdef).

A

| S

Be careful of unwanted spaces.

J

\longnewglossaryentry will remove trailing spaces in the description (via \unskip) but
won’t remove leading spaces. This command also appends \nopostdesc to the end of the
description, which suppresses the post-description hook (since the terminating punctuation
is more likely to be included in a multi-paragraph description). The glossaries-extra package
provides a starred version of \longnewglossaryentry that doesn’t append either \unskip
or \nopostdesc.

There are also commands that will only define the entry if it hasn’t already been defined:

X

\provideglossaryentry{(entry-label)}{(key=value list)}

and

\longprovideglossaryentry{(entry-label)}{(key=value list)}{(description)}

(These are both preamble-only commands.)

For all the above commands, the first argument, (entry-label), must be a unique label
with which to identify this entry. This can’t contain any non-expandable or fragile
commands. The reason for this restriction is that the label is used to construct internal
commands that store the associated information (similarly to commands like \1abel) and
therefore must be able to expand to a valid control sequence name. With modern EIgX
kernels, you should now be able to use UTF-8 characters in the label.

Be careful of babel’s options that change certain punctuation characters, such as colon
(:) or double-quote ("), to active characters.

The second argument, (key=value list), is a (key)=(value) list that supplies the relevant
information about this entry. There are two required fields: description and either name
or parent. The description is set in the third argument of \longnewglossaryentry and
\longprovideglossaryentry. With the other commands it’s set via the description key.

128

4. Defining Glossary entries

As is typical with (key)=(value) lists, values that contain a comma (,) or equal sign (=)
must be enclosed in braces. Available fields are listed below. Additional fields are provided
by the supplementary packages glossaries—prefix (§16) and glossaries—accsupp (§17) and also
by glossaries—extra. You can also define your own custom keys (see §4.3).

name={(text)}

The name of the entry (as it will appear in the glossary). If this key is omitted and the parent
key is supplied, this value will be the same as the parent’s name.

;‘
If the name key contains any commands, you must also use the sort key (described

below) if you intend sorting the entries alphabetically with Options 1, 2 or 3, otherwise
the entries can’t be sorted correctly.

description={(text)}

A brief description of this term (to appear in the glossary). Within this value, you can use:

X

\nopostdesc

to suppress the description terminator for this entry. For example, if this entry is a parent
entry that doesn’t require a description, you can do description={\nopostdesc}. If you
want a paragraph break in the description use:

X

\glspar

or, better, use \longnewglossaryentry. However, note that not all glossary styles support
multi-line descriptions. If you are using one of the tabular-like glossary styles that permit
multi-line descriptions and you really need an explicit line break, use \newline not \\ (but
in general, avoid \\ outside of tabular contexts anyway and use a ragged style if you are
having problems with line breaks in a narrow column).

[glossaries-extra]

With glossaries—extra, use \glsxtrnopostpunc instead of \nopostdesc to suppress
the post-description punctuation.

129

4. Defining Glossary entries

parent=(parent-label)

This key establishes the entry’s hierarchical level. The value must be the label of the parent
entry (not the name, although they may be the same). The (parent-label) value must match
the (entry-label) used when the parent entry was defined. See §4.5 for further details.

(i]

The parent entry must be defined before it’s referenced in the parent key of another
entry.

=

s

descriptionplural={(text)}

The plural form of the description, if required. If omitted, the value is set to the same as the
description key.

=)

==

text={(text)}

How this entry will appear in the document text when using \gls on subsequent use. If this
field is omitted, the value of the name key is used.

This key is automatically set by \newacronym. Although it is possible to override it by
using text in the optional argument of \newacronym, it will interfere with the acronym
style and cause unexpected results.

=]

==

first={(first)}

How the entry will appear in the document text on first use with \gls. If this field is omitted,
the value of the text key is used. Note that if you use \glspl, \Glspl, \GLSpl, \glsdisp
before using \gls, the first value won’t be used with \gls.

You may prefer to use acronyms (§6) or the abbreviations or the category post-link hook
(\glsdefpostlink) provided by glossaries—extra if you would like to automatically append
content on first use in a consistent manner. See, for example, Gallery: Units (glossaries-
extra.sty).!

Although it is possible to use first in the optional argument of \newacronym, it can
interfere with the acronym style and cause unexpected results.

plural={(text)}

'dickimaw-books.com/gallery/index.php?label=sample-units

130

https://www.dickimaw-books.com/gallery/index.php?label=sample-units
https://www.dickimaw-books.com/gallery/index.php?label=sample-units
https://www.dickimaw-books.com/gallery/index.php?label=sample-units

4. Defining Glossary entries

How the entry will appear in the document text when using \glspl on subsequent use. If
this field is omitted, the value is obtained by appending \glspluralsuffix to the value of
the text field.

Although it is possible to use plural in the optional argument of \newacronym, it can
interfere with the acronym style and cause unexpected results. Use shortplural instead, if
the default value is inappropriate.

firstplural={(text)}

How the entry will appear in the document text on first use with \glspl. If this field is omit-
ted, the value is obtained from the plural key, if the first key is omitted, or by appending
\glspluralsuffix to the value of the first field, if the first field is present. Note that
if you use \gls, \G1s, \GLS, \glsdisp before using \glspl, the firstplural value won’t
be used with \glspl.

Although it is possible to use firstplural in the optional argument of \newacronym, it

can interfere with the acronym style and cause unexpected results. Use shortplural and
longplural instead, if the default value is inappropriate.
(o]
= |
Prior to version 1.13, the default value of firstplural was always taken by append-
ing “s” to the first key, which meant that you had to specify both plural and first-
plural, even if you hadn’t used the first key.

symbol={(symbol)} initial: \relax

This field is provided to allow the user to specify an associated symbol. If omitted, the value
is set to \relax. Note that not all glossary styles display the symbol.

symbolplural={(symbol plural)}

This is the plural form of the symbol. If omitted, the value is set to the same as the symbol
key.

sort=(value) initial: (entry name)

This value indicates the text to be used by the sort comparator when ordering all the glossary
entries. If omitted, the value is given by the name field unless one of the package options sort
=def and sort=use have been used. With Option 2 it’s best to use the sort key if the name
contains commands (for example, \ensuremath{\alpha}) and with Options 2 and 3, it’s

131

4. Defining Glossary entries

strongly recommended as the indexing may fail if you don’t (see below).
You can also override the sort key by redefining \glsprestandardsort (see §2.5).

| bib2gls
| S

The sort key shouldn’t be used with bib2gls. It has a system of fallbacks that allow
different types of entries to obtain the sort value from the most relevant field. See the
bib2gls manual for further details, and see also bib2gls gallery: sorting.”

“dickimaw-books.com/gallery/index.php?label=1label=bib2gls-sorting

Option 1 by default strips the standard BIEX accents (that is, accents generated by core
ETEX commands) from the name key when it sets the sort key. So with Option 1:

Ei

\newglossaryentry{elite}{
name={\'elite},
description={select group of people}
}

This is equivalent to:

o

\newglossaryentry{elite}{
name={\"'elite},
description={select group of people}
sort={elite}

}

Unless you use the package option sanitizesort=true, in which case it’s equivalent to:

\newglossaryentry{elite}{
name={\'elitel},
description={select group of people}
sort={\'elite},

}

This will place the entry before the “A” letter group since the sort value starts with a symbol
(a literal backslash \). Note that Option 1 shouldn’t be used with UTF-8 characters. With old
KEIgX kernels, it was able to convert a UTF-8 character, such as &, to an ASCII equivalent but
this is no longer possible.

With Options 2 and 3, the default value of sort will either be set to the name key (if
sanitizesort=true) or it will set it to the expansion of the name key (if sanitizesort=
false).

132

https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

4. Defining Glossary entries

[i
=
Take care with xindy (Option 3): if you have entries with the same sort value they

will be treated as the same entry. If you use xindy and aren’t using the def or use
sort methods, always use the sort key for entries where the name just consists of
commands (for example name={\alpha}l).

Take care if you use Option 1 and the name contains fragile commands. You will either
need to explicitly set the sort key or use the sanitizesort=true package option
(unless you use the def or use sort methods).

7

=]

=
type=(glossary-label) initial: \glsdefaulttype

This specifies the label of the glossary in which this entry belongs. If omitted, the default
glossary identified by \glsdefaulttype is assumed unless \newacronym is used (see §6).
Six keys are provided for any additional information the user may want to specify. (For
example, an associated dimension or an alternative plural or some other grammatical con-
struct.) Alternatively, you can add new keys using \glsaddkey or \glsaddstoragekey (see

§4.3).

useri={(text)}

The first user key.

user2={(text)}

The second user key.

user3={(text)}

The third user key.

userd={(text)}

The fourth user key.

userb5={(text)}

133

4. Defining Glossary entries

The fifth user key.
=
user6={(text)}
The sixth user key.
=
nonumberlist={({boolean)?} default: true; initial: false

If the value is missing or is true, this will suppress the number list just for this entry. Con-
versely, if you have used the package option nonumberlist=true, you can activate the
number list just for this entry with nonumberlist={false}. (See §12.)

This key works by adding \glsnonextpages (nonumberlist={true})or \glsnextpages
(nonumberlist={falsel}) to the indexing information for Options 2 and 3. Note that this
means that if the entry is added to the glossary simply because it has an indexed descendent
(and has not been indexed itself) then the first indexed sub-entry that follows will have its
number list suppressed instead.

With Option 1, this key saves the appropriate command in the prenumberlist internal
field, which is used by \glsnoidxprenumberlist.

see={[(tag)] (xr-list)}

This key essentially provides a convenient shortcut that performs

\glssee[(tag)]{(entry-label)}{(xr-list)}

after the entry has been defined. (See §11.) It was originally designed for synonyms that may
not occur in the document text but needed to be included in the glossary in order to redirect
the reader. Note that it doesn’t index the cross-referenced entry (or entries) as that would
interfere with their number lists.

[i
(L
Using the see key will automatically add this entry to the glossary, but will not auto-

matically add the cross-referenced entry.

For example:

\newglossaryentry{courgette}{name={courgettel,
description={variety of small marrowl}}
\newglossaryentry{zucchini}{name={zucchini},

134

4. Defining Glossary entries

description={(North American)},
see={courgettel}}

This defines two entries (courgette and zucchini) and automatically adds a cross-reference
from zucchini to courgette. (That is, it adds “see courgette” to zucchini’s number list.) This
doesn’t automatically index courgette since this would create an unwanted location in cour-
gette’s number list. (Page 1, if the definitions occur in the preamble.)

Note that while it’s possible to put the cross-reference in the description instead, for ex-
ample:

=

\newglossaryentry{zucchini}{name={zucchini},
description={(North American) see \gls{courgettel}}}

this won’t index the zucchini entry, so if zucchini isn’t indexed elsewhere (with commands
like \gls or \glsadd) then it won’t appear in the glossary even if courgette does.

The referenced entry should be supplied as the value to this key. If you want to override
the “see” tag, you can supply the new tag in square brackets before the label. For example
see={[see also]{anotherlabel}}.

)

A

If you have suppressed the number list, the cross-referencing information won’t ap-
pear in the glossary, as it forms part of the number list.

You can override this for individual glossary entries using nonumberlist={false}. Al-
ternatively, you can use the seeautonumberlist package option. For further details, see
§11.

©

For Options 2 and 3, \makeglossaries must be used before any occurrence of \new-
glossaryentry that contains the see key.

Since it’s useful to suppress the indexing while working on a draft document, consider
using the seenoindex package option to warn about or ignore the see key while \make-
glossaries is commented out.

If you use the see key, you may want to consider using the glossaries—extra package which
additionally provides a seealso and alias key. If you want to avoid the automatic indexing
triggered by the see key, consider using Option 4. See also the FAQ item Why does the see
key automatically index the entry??

’dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex

135

https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex
https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex
https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex

4. Defining Glossary entries

| bib2gls
| S

The analogous bib2gls see, seealso and alias fields have a slightly different mean-
ing. The selection resource option determines the behaviour.

seealso={(xr-list)}

This key is only available with glossaries—extra and is similar to see but it doesn’t allow for
the optional tag. The glossaries—extra package provides \seealsoname and seealso={xr-
list} is essentially like see={[\seealsoname] (xr-list)} (Options 3 and 4 may treat these
differently).

alias={(xr-label)}

This key is only available with glossaries-extra and is another form of cross-referencing. An
entry can be aliased to another entry with alias={other-label}. This behaves like see=
{other-1label} but also alters the behaviour of commands like \gls so that they index the
entry given by (label) instead of the original entry. (See, for example, Gallery: Aliases.?)

| bib2gls
| SR

More variations with the alias key are available with bib2gls.

counter={(counter-name)}

This key will set the default location counter for the given entry. This will override the
counter assigned to the entry’s glossary in the final optional argument of \newglossary (if
provided) and the counter identified by the counter package option. The location counter
can be overridden by the counter option when using the \gls-like and \glstext-like com-
mands.

--—
—a

=
category=(category-label) initial: general

This key is only available with glossaries—extra and is used to assign a category to the entry.
The value should be a label that can be used to identify the category. See glossaries—extra
manual for further details.

The following keys are reserved for \newacronym (see §6) and also for \newabbreviation
(see the glossaries—extra manual): long, longplural, short and shortplural. You can

3dickimaw-books.com/gallery/index.php?label=aliases

136

https://www.dickimaw-books.com/gallery/index.php?label=aliases
https://www.dickimaw-books.com/gallery/index.php?label=aliases

4. Defining Glossary entries

use longplural and shortplural in the optional argument of \newacronym (or \new-
abbreviation) to override the defaults, but don’t explicitly use the long or short keys
as that may interfere with acronym style (or abbreviation style).

| bib2gls

| O
There are also special internal field names used by bib2gls. See the bib2gls manual
for further details.

The supplementary packages glossaries—prefix (§16) and glossaries—accsupp (§17) provide
additional keys.
[i
=
Avoid using any of the \gls-like or \glstext-like commands within the text, first,

short or long keys (or their plural equivalent) or any other key that you plan to access
through those commands. (For example, the symbol key if you intend to use \gls-
symbol.) Otherwise you can up with nested links, which can cause complications. You
can use them within the value of keys that won’t be accessed through those commands.
For example, the description key if you don’t use \glsdesc. Additionally, they’ll
confuse the formatting placeholder commands, such as \glslabel. The glossaries
—extra package provides \glsxtrp for this type of situation.

With older KIgX kernels and pre-2.08 versions of mfirstuc, if the name starts with non-Latin
character, you need to group the character, otherwise it will cause a problem for commands
like \G1s and \Glspl. For example:

=

% mfirstuc v2.07
\newglossaryentry{elite}{name={{\'e}lite},
description={select group or classl}}

Note that the same applies with inputenc:

% mfirstuc v2.07
\newglossaryentry{elite}{name={{é}1lite},
description={select group or class}}

This doesn’t apply for Xg{IEX or LuaB{IEX documents or with mfirstuc v2.08+.

% mfirstuc v2.08
\newglossaryentry{elite}{name={élite},
description={select group or class}}

137

4. Defining Glossary entries

See the mfirstuc manual for further details.

Note that in the above UTF-8 examples, you will also need to supply the sort key if you are
using Options 1 or 2 whereas xindy (Option 3) is usually able to sort non-Latin characters
correctly.

4.1. Plurals

You may have noticed from above that you can specify the plural form when you define an
entry. If you omit this, the plural will be obtained by appending:

X

\glspluralsuffix initial: s

to the singular form. This command may expand when the entry is defined, if expansion
is on for the relevant keys, or may not expand until the entry is referenced, if expansion is
off or if the suffix has been hidden inside non-expanding context (which can happen when
defining acronyms or abbreviations).

For example:

\newglossaryentry{cow}{name={cow},description={a fully grown
female of any bovine animall}}

defines a new entry whose singular form is “cow” and plural form is “cows”. However, if you
are writing in archaic English, you may want to use “kine” as the plural form, in which case
you would have to do:

Ei

\newglossaryentry{cow}{name={cow},plural={kine},
description={a fully grown female of any bovine animall}}

If you are writing in a language that supports multiple plurals (for a given term) then use
the plural key for one of them and one of the user keys to specify the other plural form.

For example:

\newglossaryentry{cow}{
name={cow},
description={a fully grown female of any bovine animal
(plural cows, archaic plural kine)},
userl={kinel}}

138

4. Defining Glossary entries

You can then use \glspl{cow} to produce “cows” and \glsuseri{cow} to produce “kine”.
You can, of course, define an easy to remember synonym. For example:

=

[\let\glsaltpl\glsuseri

Then you don’t have to remember which key you used to store the second plural. (Be careful
with using \1let as it doesn’t check if the command already exists.)

Alternatively, you can define your own keys using \glsaddkey, described in §4.3 (or sim-
ply use \glsdisp or \glslink with the appropriate text).

If you are using a language that usually forms plurals by appending a different letter, or
sequence of letters, you can redefine \glspluralsuffix as required. However, this must
be done before the entries are defined and is unreliable for multilingual documents. For
languages that don’t form plurals by simply appending a suffix, all the plural forms must be
specified using the plural key (and the firstplural key where necessary).

4.2. Other Grammatical Constructs

You can use the six user keys to provide alternatives, such as participles. For example:

\let\glsing\glsuseri
\let\glsd\glsuserii

\newcommand*{\ingkey}t{user1}
\newcommand*{\edkey}{user2}

\newcommand*{\newword} [3] [1{%
\newglossaryentry{#2}{/
name={#23},%
description={#3},%
\edkey={#2ed},’
\ingkey={#2ing},#1
1}

With the above definitions, I can now define terms like this:

\newword{play}{to take part in activities for enjoyment}
\newword [\edkey={ran}, \ingkey={running}]{run}{to move fast using
the legs}

and use them in the text:

139

4. Defining Glossary entries

Peter is \glsing{play} in the park today.
Jane \glsd{play} in the park yesterday.

Peter and Jane \glsd{run} in the park last week.

Alternatively, you can define your own keys using \glsaddkey, described below in §4.3.
It may, however, be simpler just to use \glslink or \glsdisp with the appropriate link text.

4.3. Additional Keys

You can define your own custom keys using the commands described in this section. There
are two types of keys: those for use within the document and those to store information used
behind the scenes by other commands.

For example, if you want to add a key that indicates the associated unit for a term, you
might want to reference this unit in your document. In this case use \glsaddkey described
in §4.3.1. If, on the other hand, you want to add a key to indicate to a glossary style or
acronym style that this entry should be formatted differently to other entries, then you can
use \glsaddstoragekey described in §4.3.2.

In both cases, a new command (no link cs) will be defined that can be used to access the
value of this key (analogous to commands such as \glsentrytext). This can be used in an
expandable context (provided any fragile commands stored in the key have been protected).
The new keys must be added using \glsaddkey or \glsaddstoragekey before glossary
entries are defined.

4.3.1. Document Keys

A custom key that can be used in the document is defined using:

\glsaddkey{(key)}{(default value)}{(no link cs)}{(no link ucfirst cs)}{(link
cs) H (link ucfirst cs)}H (link allcaps cs)}

where the arguments are as follows:

(key) is the new key to use in \newglossaryentry (or similar commands such as \long-
newglossaryentry);

(default value) is the default value to use if this key isn’t used in an entry definition (this
may reference the current entry label via \glslabel, but you will have to switch on
expansion via the starred version of \glsaddkey and protect fragile commands);

(no link cs) is the control sequence to use analogous to commands like \glsentrytext;

140

4. Defining Glossary entries
(no link ucfirst cs) is the control sequence to use analogous to commands like \Glsentry-
text;
(link cs) is the control sequence to use analogous to commands like \glstext;
(link ucfirst cs) is the control sequence to use analogous to commands like \Glstext;
(link allcaps cs) is the control sequence to use analogous to commands like \GLStext.

The starred version of \glsaddkey switches on expansion for this key. The unstarred version
doesn’t override the current expansion setting.

Example 11: Defining Custom Keys

Suppose I want to define two new keys, ed and ing, that default to the entry text followed
by “ed” and “ing”, respectively. The default value will need expanding in both cases, so I need

to use the starred form:

% Define "ed" key:
\glsaddkey=*
{ed}’ key
{\glsentrytext{\glslabel}ted}’, default value
{\glsentryed}), command analogous to \glsentrytext
{\Glsentryed}/, command analogous to \Glsentrytext
{\glsed}/, command analogous to \glstext
{\Glsed}/, command analogous to \Glstext
{\GLSed}/, command analogous to \GLStext

% Define "ing" key:
\glsaddkey=*
{ing}% key
{\glsentrytext{\glslabel}ing}) default value
{\glsentrying}), command analogous to \glsentrytext
{\Glsentrying}), command analogous to \Glsentrytext
{\glsing}) command analogous to \glstext
{\Glsing}) command analogous to \Glstext
{\GLSing}) command analogous to \GLStext

Now I can define some entries:

% No need to override defaults for this entry:
\newglossaryentry{jump}{name={jump},description={}}

141

4. Defining Glossary entries

% Need to override defaults on these entries:
\newglossaryentry{run}{name={run},

ed={ran},

ing={running},

description={}}

\newglossaryentry{waddle}{name={waddle},
ed={waddled},
ing={waddling},
description={}}

These entries can later be used in the document:

The dog \glsed{jump} over the duck.
The duck was \glsing{waddle} round the dog.

The dog \glsed{run} away from the duck.

\.

For a complete document, see the sample file sample-newkeys.tex.

4.3.2. Storage Keys

A custom key that can be used for simply storing information is defined using:

\glsaddstoragekey{(key)}{(default value)}{(no link cs)}

where the arguments are as the first three arguments of \glsaddkey, described above in
§4.3.1.

This is essentially the same as \glsaddkey except that it doesn’t define the additional com-
mands. You can access or update the value of your new field using the commands described
in §15.6.

Example 12: Defining Custom Storage Key (Acronyms and
Initialisms)

Suppose I want to define acronyms (an abbreviation that is pronounced as a word) and
other forms of abbreviations, such as initialisms, but I want them all in the same glossary
and I want the acronyms on first use to be displayed with the short form followed by the

142

4. Defining Glossary entries

long form in parentheses, but the opposite way round for other forms of abbreviations. (The
glossaries—extra package provides a simpler way of achieving this.)

Here I can define a new key that determines whether the term is actually an acronym
rather than some other form of abbreviation. I'm going to call this key abbrtype (since
type already exists):

Ei

\glsaddstoragekey

{abbrtypel}), key/field name

{word}), default value if not explicitly set

{\abbrtype}’, custom command to access the value if required

Now I can define a style that looks up the value of this new key to determine how to

display the full form:

\newacronymstyle
{mystylel}) style name
{’, Use the generic display
\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmtl}y
Y
{% Put the long form in the description
\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}/
% For the full format, test the value of the "abbrtype" key.
% If it's set to "word" put the short form first with
% the long form in brackets.
\renewcommand*{\genacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}t{word}
{% is a proper acronym
\protect\firstacronymfont{\glsentryshort{##1}}##2\space
(\glsentrylong{##13})’
Yh
{’, is another form of abbreviation
\glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort{##1}})%
Y
By
/» sentence case version:
\renewcommand*{\Genacrfullformat}[2]{%
\ifglsfieldeq{##1}{abbrtype}{word}
{% is a proper acronym
\protect\firstacronymfont{\Glsentryshort{##1}}##2\space

143

4. Defining Glossary entries

(\glsentrylong{##1})7%
}
{% is another form of abbreviation
\Glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort{##1}})%
Y
Y
% plural
\renewcommand*{\genplacrfullformat}[2] {7
\ifglsfieldeq{##1}{abbrtype}{word}’
{% is a proper acronym
\protect\firstacronymfont{\glsentryshortpl{##1}}##2\space
(\glsentrylong{##13})%
Y
{% is another form of abbreviation
\glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl{##1}})7
Y
Yh
% plural and sentence case
\renewcommand*{\Genplacrfullformat}[2]{}
\ifglsfieldeq{##1}{abbrtype}{word}/
{’, is a proper acronym
\protect\firstacronymfont{\Glsentryshortpl{##1}}##2\space
(\glsentrylong{##11})J,
Y
{% is another form of abbreviation
\Glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl{##1}})7
Y
Yh
% Just use the short form as the name part in the glossary:
\renewcommand*{\acronymentry} [1]{%
\acronymfont{\glsentryshort{##1}}}J
% Sort by the short form:
\renewcommand*{\acronymsort} [2] {##1}/,
% Just use the surrounding font for the short form:
\renewcommand*{\acronymfont} [1]{##1}J,
% Same for first use:
\renewcommand*{\firstacronymfont}[1]{\acronymfont{##1}}%
% Default plural suffix if the plural isn't explicitly set
\renewcommand*{\acrpluralsuffix}{\glspluralsuffix}y,

144

4. Defining Glossary entries

| >

Remember that the new style needs to be set before defining any terms:

\setacronymstyle{mystyle}

Since it may be a bit confusing to use \newacronym for something that’s not technically
an acronym, let’s define a new command for initialisms:

\newcommand*{\newinitialism} [4] []1{%
\newacronym[abbrtype=initialism,#1]{#2}{#3}{#4})
}

Now the entries can all be defined:

\newacronym{radar}{radar}{radio detecting and ranging}
\newacronym{laser}{laser}{light amplification by stimulated
emission of radiation}
\newacronym{scuba}{scuba}t{self-contained underwater breathing
apparatus}

\newinitialism{dsp}{DSP}{digital signal processing}
\newinitialism{atm}{ATM}{automated teller machine}

On first use, \gls{radar} will produce “radar (radio detecting and ranging)” but \gls{dsp}
will produce “DSP (digital signal processing)”.
For a complete document, see the sample file sample-storage-abbr. tex.

In the above example, if \newglossaryentry is explicitly used (instead of through \new-
acronym) the abbrtype key will be set to its default value of “word” but the \ifglshaslong
test in the custom acronym style will be false (since the long key hasn’t been set) so the
display style will switch to that given by \glsgenentryfmt and they’ll be no test performed
on the abbrtype field.

Example 13: Defining Custom Storage Key (Acronyms and
Non-Acronyms with Descriptions)

The previous example can be modified if the description also needs to be provided. Here
I've changed “word” to “acronym”:

145

4. Defining Glossary entries

\glsaddstoragekey

{abbrtypel}), key/field name

{acronym}), default value if not explicitly set

{\abbrtype}’ custom command to access the value if required

O

This may seem a little odd for non-abbreviated entries that are defined using \newglossary-
entry directly, but \ifglshaslong can be used to determine whether or not to reference
the value of this new abbrtype field.

The new acronym style has a minor modification that forces the user to specify a descrip-
tion. In the previous example, the line:

\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}’

needs to be changed to:

\renewcommand*{\GenericAcronymFields}{1}/

- R

Additionally, to accommodate the change in the default value of the abbrtype key, all in-
stances of

\ifglsfieldeq{##1}{abbrtype}{word}

need to be changed to:

\ifglsfieldeq{##1}{abbrtype}{acronym}

8 LB

Once this new style has been set, the new acronyms can be defined using the optional
argument to set the description:

\newacronym[description={system for detecting the position and
speed of aircraft, ships, etc}]{radar}{radar}{radio detecting
and ranging}

_ B

No change is required for the definition of \newinitialism but again the optional argu-
ment is required to set the description:

146

4. Defining Glossary entries

\newinitialism[description={mathematical manipulation of an
information signal}]{dsp}{DSP}{digital signal processing}

We can also accommodate contractions in a similar manner to the initialisms:

\newcommand*{\newcontraction} [4] [1{%
\newacronym[abbrtype=contraction,#1]{#2}{#3}{#4}/
}

The contractions can similarly been defined using this new command:

\newcontraction[description={front part of a ship below the
deck}]{focsle}{fo'c's'le}{forecastle}

B - R - R

Since the custom acronym style just checks if abbrtype is “acronym”, the contractions
will be treated the same as the initialisms, but the style could be modified by a further test
of the abbrtype value if required.

To test regular non-abbreviated entries, I've also defined a simple word:

\newglossaryentry{apple}{name={apple},description={a fruitl}}

B

Now for a new glossary style that provides information about the abbreviation (in addition
to the description):

&

\newglossarystyle
{mystylel}’ style name
{/, base it on the "list" style
\setglossarystyle{list}’
\renewcommand*{\glossentry}[2]{%
\item[\glsentryitem{##1}J
\glstarget{##1}{\glossentryname{##1}}]
\ifglshaslong{##1}%
{ (\abbrtype{##1}: \glsentrylong{##1})\space}r{}’
\glossentrydesc{##1}\glspostdescription\space ##2}/
}

This uses \ifglshaslong to determine whether or not the term is an abbreviation. (An
alternative is to use \ifglshasshort. The long and short keys are only set for acronyms/
abbreviations.)

147

4. Defining Glossary entries

Ifthe entry has an short/long value, the full form is supplied in parentheses and \abbrtype
(defined by \glsaddstoragekey earlier) is used to indicate the type of abbreviation.
With this style set, the “apple” entry is simply displayed in the glossary as:

apple a fruit.
but the abbreviations are displayed in the form

laser (acronym: light amplification by stimulated emission of radiation) device that creates
a narrow beam of intense light.

(for acronyms) or

DSP (initialism: digital signal processing) mathematical manipulation of an information
signal.

(for initalisms) or
fo’c’s’le (contraction: forecastle) front part of a ship below the deck.

(for contractions).
For a complete document, see sample-storage-abbr-desc. tex.

4.4. Expansion

When you define new glossary entries expansion is performed by default, except for the
name, description, descriptionplural, symbol, symbolplural and sort keys (these
keys all have expansion suppressed via \glssetnoexpandfield).

You can switch expansion on or off for individual keys using:

\glssetexpandfield{(field)}

or

\glssetnoexpandfield{(field)>}

respectively, where (field) is the internal field label corresponding to the key. In most cases,
this is the same as the name of the key except for those listed in Table 4.1 on the following
page.

Any keys that haven’t had the expansion explicitly set using \glssetexpandfield or
\glssetnoexpandfield are governed by

X

\glsexpandfields

148

4. Defining Glossary entries

Table 4.1.: Key to Field Mappings

Key Field
sort sortvalue
firstplural firstpl
description desc
descriptionplural descplural
userl useri
user? userii
user3 useriii
user4 useriv
userb userv
user6 uservi
longplural longpl
shortplural shortpl
and
X
\glsnoexpandfields

If your entries contain any fragile commands, I recommend you switch off expansion via
\glsnoexpandfields. (This should be used before you define the entries.)

o

Both \newacronym and \newabbreviation partially suppress expansion of some
keys regardless of the above expansion settings.

4.5. Sub-Entries

A sub-entry is created by setting the parent key. These will normally be sorted so that they
are placed immediately after their parent entry. However, some sort methods aren’t suitable
when there are sub-entries. In particular, sub-entries are problematic with Option 1, and
with Option 5 the sub-entries must be defined immediately after their parent entry (rather
than at any point after the parent entry has been defined).

The hierarchical level indicates the sub-entry level. An entry with no parent (a top level
entry) is a hierarchical level 0 entry. An entry with a parent has a hierarchical level that’s
one more than its parent’s level. The level is calculated when an entry is defined.

149

4. Defining Glossary entries

(o]

= |
The hierarchical level is stored in the level internal field. It can be accessed using

commands like \glsfieldfetch or (with glossaries—extra) \glsxtrusefield, but
neither the level nor the parent values should be altered as it can cause inconsis-
tencies in the sorting and glossary formatting. The indexing syntax for Options 2 and
3 is generated when the entry is first defined, so it’s too late to change the hierarchy
after that, and bib2gls obtains the hierarchical information from the bib files and
the resource options. Note, however, that glossaries—extra does allow the ability to lo-
cally alter the level with the 1eveloffset option, which is mainly intended for nested
glossary. See the glossaries—extra manual for further details and also Gallery: Inner or
Nested Glossaries.*

“dickimaw-books.com/gallery/index.php?label=bib2gls-inner

J

There are two different types of sub-entries: those that have the same name as their par-
ent (homographs, see §4.5.2) and those that establish a hierarchy (see §4.5.1). Both types
are considered hierarchical entries from the point of view of the glossaries package and the
indexing applications, but typically homographs will have the name key obtained from the
parent, rather than have it explicitly set, and have a maximum hierarchical level of 1.

Not all glossary styles support hierarchical entries and may display all the entries in a
flat format. Of the styles that support sub-entries, some display the sub-entry’s name whilst
others don’t. Therefore you need to ensure that you use a suitable style. (See §13 for a
list of predefined glossary styles.) If you want level 1 sub-entries automatically numbered
(in glossary styles that support it) use the subentrycounter package option (see §2.3 for
further details).

Note that the parent entry will automatically be added to the glossary if any of its child
entries are used in the document. If the parent entry is not referenced in the document, it
will not have a number list. Note also that makeindex has a restriction on the maximum
hierarchical depth.

4.5.1. Hierarchy

To create a glossary with hierarchical divisions, you need to first define the division, which
will be a top level (level 0) entry, and then define the sub-entries using the relevant higher
level entry as the value of the parent key. (In a hierarchical context, a higher level indicates
a numerically smaller level number, so level 0 is one level higher than level 1.) The top level
entry may represent, for example, a topic or classification. A level 1 entry may represent, for
example, a sub-topic or sub-classification.

Example 14: Hierarchical Divisions — Greek and Roman
Mathematical Symbols

Suppose I want a glossary of mathematical symbols that are divided into Greek letters and
Roman letters. Then I can define the divisions as follows:

150

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

4. Defining Glossary entries

\newglossaryentry{greekletter}{name={Greek letters},
description={\nopostdesc}}

\newglossaryentryromanletter{name={Roman letters},
description={\nopostdescl}}

Note that in this example, the top level entries don’t need a description so I have set the
descriptions to \nopostdesc. This gives a blank description and suppresses the description
terminator.

I can now define my sub-entries as follows:

\newglossaryentry{pi}tname={\ensuremath{\pi}},sort={pi},
description={ratio of the circumference of a circle to
the diameter},

parent={greekletter}

\newglossaryentry{C}{name={\ensuremath{C}}, sort={C},
description={Euler's constant},
parent={romanletterl}}

.

For a complete document, see the sample file sampletree.tex.

~

[glossaries-extra

If you want to switch to Option 5, you will need to move the definitions of the sub-
entries to immediately after the definition of their parent entry. So, in this case, “pi”
needs to be defined after “greekletter” and before “romanletter”.

4.5.2. Homographs

Sub-entries that have the same name as the parent entry don’t need to have the name key
explicitly set. For example, the word “glossary” can mean a list of technical words or a
collection of glosses. In both cases the plural is “glossaries”. So first define the parent entry:

B

\newglossaryentry{glossary}{name={glossary},
description={\nopostdesc},
plural={glossaries}}

151

4. Defining Glossary entries

As in the previous example, the parent entry has no description, so the description terminator
needs to be suppressed using \nopostdesc.
Now define the two different meanings of the word with the parent key set to the above
parent entry label:

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},

parent={glossary}}

\newglossaryentry{glossarycol}{
description={collection of glosses},
sort={2},

parent={glossary}}

Note that if I reference the parent entry (for example, \gls{glossary}), the location will be
added to the parent’s number list, whereas if I reference any of the child entries (for example,
\gls{glossarylist}), the location will be added to the child entry’s number list. Note also
that since the sub-entries have the same name, the sort key is required with Option 3 (xindy)
and recommended with Option 2 (makeindex). You can use the subentrycounter package
option to automatically number the level 1 child entries in the glossary (if you use a glossary
style that supports it). See §2.3 for further details.
In the above example, the plural form for both of the child entries is the same as the parent
entry, so the plural key was not required for the child entries. However, if the sub-entries
have different plurals, they will need to be specified. For example:

.

\newglossaryentry{bravo}{name={bravo},
description={\nopostdesc}}

\newglossaryentry{bravocry}{description={cry of approval
(pl. bravos)},

sort={1},

plural={bravos},

parent={bravo}}

\newglossaryentry{bravoruffian}{description={hired
ruffian or killer (pl. bravoes)},

sort={2},

plural={bravoes},

parent={bravo}}

For a complete document, see the sample file sample. tex.

152

4. Defining Glossary entries

4.6. Loading Entries From a File

You can store all your glossary entry definitions in another file and use:

\loadglsentries [(type)]{(filename)}

where (filename) is the name of the file containing all the \newglossaryentry, \longnew-
glossaryentry, \newacronym etc commands. The optional argument (type) is the name
of the glossary to which those entries should belong, for those entries where the type key
has been omitted (or, more specifically, for those entries whose type has been set to \gls-
defaulttype, which is what \newglossaryentry uses by default). See sampleDB. tex for
a complete example document.

(@]

= |
Commands like \newacronym, \newabbreviation, \newterm, \glsxtrnewsymbol

and \glsxtrnewnumber all set the type key to the appropriate glossary. This means
that the (type) optional argument won’t apply to those commands, unless they have
type={\glsdefaulttype}.

7

This is a preamble-only command. You may also use \input to load the file but don’t
use \include. If you find that your file is becoming unmanageably large, you may want to
consider switching to bib2gls and use an application such as JabRef to manage the entry
definitions.

[i
=
If you want to use \AtBeginDocument to \input all your entries automatically at
the start of the document, add the \AtBeginDocument command before you load the
glossaries package (and babel, if you are also loading that) to avoid the creation of the
glsdefs file and any associated problems that are caused by defining commands in
the document environment. (See §4.8.) Alternatively, if you are using glossaries—extra,
use the docdef=restricted package option.

Example 15: Loading Entries from Another File

Suppose I have a file called myentries.tex which contains:

\newglossaryentry{perl}{type={main},
name={Perl},
description={A scripting language}}

153

4. Defining Glossary entries

\newglossaryentry{tex}{name={\TeX},
description={A typesetting languagel},sort={TeX}}

\newglossaryentry{html}{type={\glsdefaulttype},
name={html},
description={A mark up languagel}}

and suppose in my preamble I use the command:

=

\loadglsentries[languages]{myentries}

then this will add the entries “tex” and “html” to the glossary whose type is given by languages,
but the entry “perl” will be added to the main glossary, since it explicitly sets the type to
main.

Now suppose I have a file myacronyms . tex that contains:

\newacronym{aca}{acat{a contrived acronym}

then (supposing I have defined a new glossary type called altacronym)

=

\loadglsentries[altacronym] {myacronyms}

will add “aca” to the glossary type acronym, if the package option acronym has been speci-
fied, or will add “aca” to the glossary type altacronym, if the package option acronym is not
specified. This is because \acronymtype is set to \glsdefaulttype if the acronym package
option is not used so the optional argument of \loadglsentries will work in that case, but
if the acronym option is used then \acronymtype will be redefined to acronym.

If you want to use \loadglsentries with the acronym package option set, there are two
possible solutions to this problem:

1. Change myacronyms.tex so that entries are defined in the form:

\newacronym[type={\glsdefaulttype}]{aca}t{acat{a
contrived acronym}

and do:

154

4. Defining Glossary entries

[\loadglsentries[altacronym]{myacronyms}

2. Temporarily change \acronymtype to the target glossary:

\let\orgacronymtype\acronymtype
\renewcommand{\acronymtype}{altacronym}
\loadglsentriesmyacronyms
\let\acronymtype\orgacronymtype

Note that only those entries that have been indexed in the text will appear in the relevant
glossaries. Note also that \1oadglsentries may only be used in the preamble.

A

Don’t use the see key in a large file of entries that may or may not be indexed in the
document. Similarly for seealso and alias with glossaries—extra. If you need them
and you need a large database of entries, consider switching to bib2gls.

Remember that you can use \provideglossaryentry rather than \newglossaryentry.
Suppose you want to maintain a large database of acronyms or terms that you’re likely to
use in your documents, but you may want to use a modified version of some of those entries.
(Suppose, for example, one document may require a more detailed description.) Then if you
define the entries using \provideglossaryentry in your database file, you can override
the definition by simply using \newglossaryentry before loading the file. For example,
suppose your file (called, say, terms. tex) contains:

=

\provideglossaryentry{mallard}{name={mallard},
description={a type of duckl}}

but suppose your document requires a more detailed description, you can do:

,

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{mallard}{name={mallard},
description={a dabbling duck where the male has a green head}}

\loadglsentries{terms}

155

4. Defining Glossary entries

Now the “mallard” definition in the terms. tex file will be ignored.

4.7. Moving Entries to Another Glossary

You can move an entry from one glossary to another using:

\glsmoveentry{(entry-label)}{(target glossary label)}

where (entry-label) is the unique label identifying the required entry and (target glossary
label) is the unique label identifying the glossary in which to put the entry. If you are using
Options 2 or 3, entries shouldn’t be moved after the indexing files have been opened by
\makeglossaries.

A

Simply changing the value of the type field using a command like \glsfielddef
won’t correctly move the entry, since the label needs to be removed from the old
glossary’s internal list and added to the new glossary’s internal list to allow commands
such as \glsaddall and \glsunsetall to work.

J

Note that no check is performed to determine the existence of the target glossary. If you
want to move an entry to a glossary that’s skipped by \printglossaries, then define an
ignored glossary with \newignoredglossary. (See §9.) With Options 4 and 5, it’s also pos-
sible to copy an entry to another glossary with \glsxtrcopytoglossary. See the glossaries
-extra manual for further details.

Unpredictable results may occur if you move an entry to a different glossary from its
parent or children.

4.8. Drawbacks With Defining Entries in the Document
Environment

Originally, \newglossaryentry (and \newacronym) could only be used in the preamble. I
reluctantly removed this restriction in version 1.13, but there are issues with defining com-
mands in the document environment instead of the preamble, which is why the restriction is
maintained for newer commands. This restriction is also reimposed for \newglossaryentry
by Option 1 because in that case the entries must be defined before the aux file is input. (The
glossaries—extra package automatically reimposes the preamble-only restriction but provides
the docdef package option to allow document definitions for Options 2 and 3 if necessary.)

156

4. Defining Glossary entries

| bib2gls

= |
With Option 4, all entry data should be supplied in bib files. From bib2gls’s point
of view, the entries are defined in the bib files. From TgX’s point of view, the entries

are defined in the glstex files that are input by \GlsXtrLoadResources, which is a
preamble-only command.

4.8.1. Technical Issues

1. If you define an entry mid-way through your document, but subsequently shuffle sec-
tions around, you could end up using an entry before it has been defined. This is
essentially the same problem as defining a command with \newcommand in the middle
of the document and then moving things around so that the command is used before
it has been defined.

2. Entry information is required when displaying the glossary. If this occurs at the start
of the document, but the entries aren’t defined until later, then the entry details are
being looked up before the entry has been defined. This means that it’s not possible
to display the content of the glossary unless the entry definitions are saved on the
previous EIEX run and can be picked up at the start of the document environment on
the next run (in a similar way that \label and \ref work).

3. If you use a package, such as babel, that makes certain characters active at the start of
the document environment, there can be a problem if those characters have a special
significance when defining glossary entries. These characters include " (double-quote),
! (exclamation mark), ? (question mark), and | (pipe). They must not be active when
defining a glossary entry where they occur in the sort key (and they should be avoided
in the label if they may be active at any point in the document). Additionally, the
comma (,) character and the equals (=) character should not be active when using
commands that have (key)=(value) arguments.

To overcome the first two problems, as from version 4.0 the glossaries package modifies
the definition of \newglossaryentry at the beginning of the document environment so that
the definitions are written to an external file (\ jobname.glsdefs) which is then read in at
the start of the document on the next run. This means that the entry can now be looked up
in the glossary, even if the glossary occurs at the beginning of the document.

There are drawbacks to this mechanism: if you modify an entry definition, you need a
second run to see the effect of your modification in \printglossary (if it occurs at the
start of the document); this method requires an extra \newwrite, which may exceed TgX’s
maximum allocation; unexpected expansion issues could occur.

Version 4.47 has introduced changes that have removed some of the issues involved, and
there are now warning messages if there is an attempt to multiply define the same entry
label.

The glossaries—extra package provides a setting (but not for Options 1 or 4) that allows
\newglossaryentry to occur in the document environment but doesn’t create the glsdefs

157

4. Defining Glossary entries

file. This circumvents some problems but it means that you can’t display any of the glossaries
before all the entries have been defined (so it’s all right if all the glossaries are at the end of
the document but not if any occur in the front matter).

4.8.2. Good Practice Issues

§4.8.1 above covers technical issues that can cause your document to have compilation errors
or produce incorrect output. This section focuses on good writing practice. The main reason
cited by users wanting to define entries within the document environment rather than in
the preamble is that they want to write the definition as they type in their document text.
This suggests a “stream of consciousness” style of writing that may be acceptable in certain
literary genres but is inappropriate for factual documents.

When you write technical documents, regardless of whether it’s a PhD thesis or an arti-
cle for a journal or proceedings, you must plan what you write in advance. If you plan in
advance, you should have a fairly good idea of the type of terminology that your document
will contain, so while you are planning, create a new file with all your entry definitions. If,
while you’re writing your document, you remember another term you need, then you can
switch over to your definition file and add it. Most text editors have the ability to have more
than one file open at a time. The other advantage to this approach is that if you forget the
label, you can look it up in the definition file rather than searching through your document
text to find the definition.

158

5. Referencing Entries in the
Document

Once you have defined a glossary entry using a command such as \newglossaryentry (§4)
or \newacronym (§6), you can refer to that entry in the document with one of the provided
commands that are describe in this manual. (There are some additional commands provided
by glossaries-extra.) The text produced at that point in the document (the link text) is de-
termined by the command and can also be governed by whether or not the entry has been
marked as used.

Some of these commands are more complicated than others. Many of them are robust and
can’t be used in fully expandable contexts, such as in PDF bookmarks.

The commands are broadly divided into:

1. Those that display text in the document (where the formatting can be adjusted by a
style or hook) and also index the entry (so that it’s added to the glossary) are described
in §5.1. This set of commands can be further sub-divided into those that mark the
entry as having been used (the \gls-like commands, §5.1.2) and those that don’t (the
\glstext-like commands, §5.1.3).

2. Those that display text in the document without indexing or applying any additional
formatting (§5.2). These typically aren’t robust or can partially expand so that they can
be used in PDF bookmarks (with a few exceptions).

There are additional commands specific to entries defined with \newacronym that are de-
scribed in §6.1.

5.1. Links to Glossary Entries

The text which appears at the point in the document when using any of the commands de-
scribed in §5.1.2 or §5.1.3 is referred to as the link text (even if there are no hyperlinks).
These commands also add content to an external indexing file that is used to generate the
relevant entry line in the glossary. This information includes an associated location that is
added to the number list for that entry. By default, the location refers to the page num-
ber. For further information on number lists, see §12. These external indexing file need to
be post-processed by makeindex or xindy if you have chosen Options 2 or 3. If you don’t
use \makeglossaries these external files won’t be created. (Options 1 and 4 write the
information to the aux file instead.)

159

5. Referencing Entries in the Document

[i
-
The link text isn’t scoped by default as grouping can interfere with spacing in math

mode. Any unscoped declarations in the link text may affect subsequent text.

Note that repeated use of these commands for the same entry can cause the number list
to become quite long, which may not be particular helpful to the reader. In this case, you
can use the non-indexing commands described in §5.2 or you can use the glossaries—-extra
package, which provides a means to suppress the automated indexing of the commands listed
in this chapter. (For example, in this manual, common terms such as glossary have too many
references in the document to list them all in their number list in the index. They have
a custom key created with \glsaddstoragekey that’s used to set their default indexing
option.)

(i]
r =
I strongly recommend that you don’t use the commands defined in this chapter in the
arguments of sectioning or caption commands, such as \chapter or \caption.

Aside from problems with expansion issues, PDF bookmarks and possible nested
hyperlinks in the table of contents (or list of whatever) any use of the commands de-
scribed in §5.1.2 will have their first use flag unset when they appear in the table of
contents (or list of whatever) which is usually too soon and will not match the actual
heading or caption in the document if there is a different first/subsequent use.

The above warning is particularly important if you are using the glossaries package in con-
junction with the hyperref package. Instead, use one of the expandable commands listed in
§5.2 (such as \glsentrytext). Alternatively, provide an alternative via the optional argu-
ment to the sectioning/caption command or use hyperref’s \texorpdfstring. Examples:

Ei

\chapterAn overview of \glsentrytext{perl}
\chapter[An overview of Perl]An overview of \gls{perl}
\chapter{An overview of \texorpdfstring{\gls{perl}}{Perl}}

(You can use \glstexorpdfstring instead of \texorpdfstring if you don’t know whether
or not hyperref will be needed.)

[glossaries-extra]

The glossaries—extra package provides commands for use in captions and section head-
ings, such as \glsfmttext, that overcome some of the problems.

If you want the link text to produce a hyperlink to the corresponding entry line in the
glossary, you should load the hyperref package before the glossaries package. That’s what
I’'ve done in this manual, so if you encounter a hyperlinked term, such as link text, you can
click on the word or phrase and it will take you to a brief description in this document’s

160

5. Referencing Entries in the Document

glossary or you can click on a command name, such as \gls, and it will take you to the
relevant part of the document where the command is described or you can click on a general
word or phrase, such as table of contents, and it will take you to the relevant line in the
index where you can find the number list to navigate to other parts of the document that are
pertinent. If, however, you click on “number list”, you’ll find it leads you to the location list
entry in the index instead. This is because number list has been aliased to location list using
the alias key. Whereas if you click on “page list” it will take you to the corresponding page
list entry in the glossary that has a cross-reference to location list, because the see key was
used instead.

(i]
=
If you use the hyperref package, I strongly recommend you use pdflatex rather than

latex to compile your document, if possible. The DVI format of KIEX has limitations
with the hyperlinks that can cause a problem when used with the glossaries package.
Firstly, the DVI format can’t break a hyperlink across a line whereas pdfEIEX can. This
means that long glossary entries (for example, the full form of an acronym) won’t
be able to break across a line with the DVI format. Secondly, the DVI format doesn’t
correctly size hyperlinks in subscripts or superscripts. This means that if you define a
term that may be used as a subscript or superscript, if you use the DVI format, it won’t
come out the correct size.

These are limitations of the DVI format not of the glossaries package.

J

It may be that you only want terms in certain glossaries to have hyperlinks, but not for
other glossaries. In this case, you can use the package option nohypertypes to identify the
glossary lists that shouldn’t have hyperlinked link text. See §2.1 for further details.

The way the link text is displayed depends on

\glstextformat{(text)}

For example, to make all link text appear in a sans-serif font, do:

=

[\renewcommand*{\glstextformat}[1]{\textsf{#1}}

Further customisation can be done via \defglsentryfmt or by redefining \glsentryfmt.
See §5.1.4 for further details.

Each entry has an associated conditional referred to as the first use flag. Some of the com-
mands described in this chapter automatically unset this flag and can also use it to determine
what text should be displayed. These types of commands are the \gls-like commands and
are described in §5.1.2. The commands that don’t reference or change the first use flag are
\glstext-like commands and are described in §5.1.3. See §7 for commands that unset (mark
the entry as having been used) or reset (mark the entry as not used) the first use flag without
referencing the entries.

161

5. Referencing Entries in the Document

The \gls-like and \glstext-like commands all take a first optional argument that is a
comma-separated list of (key)=(value) options, described below. They also have a star-
variant, which inserts hyper=false at the start of the list of options and a plus-variant,
which inserts hyper=true at the start of the list of options. For example \gls*{sample} is
the same as \gls [hyper=false] {sample} and \gls+{sample} is the same as \gls [hyper
=true] {sample}, whereas just \gls{sample} will use the default hyperlink setting which
depends on a number of factors (such as whether the entry is in a glossary that has been
identified in the nohypertypes list). You can override the hyper key in the variant’s op-
tional argument, for example, \gls* [hyper=true]{sample} but this creates redundancy
and is best avoided. The glossaries—extra package provides the option to add a third custom
variant and commands to override the behaviour of the star and plus variants.

[i
=
Avoid nesting these commands. For example don’t do \glslink{(label)}{\gls

{(label2)}} as this is likely to cause problems. By implication, this means that you
should avoid using any of these commands within the text, first, short or long
keys (or their plural equivalent) or any other key that you plan to access through
these commands. (For example, the symbol key if you intend to use \glssymbol.)
The glossaries—extra package provides \glsxtrp to use instead, which helps to miti-
gate against nesting problems.

5.1.1. Options

The keys listed below are available for the optional first argument of the \gls-like and
\glstext-like commands. The glossaries-extra package provides additional keys. (See the
glossaries—extra manual for further details.)

[©

(=
hyper=(boolean) default: true; initial: true

If true, this option can be used to enable/disable the hyperlink to the relevant entry line in the
glossary. If this key is omitted, the value is determined by the current settings. For example,
when used with a \gls-like command, if this is the first use and the hyperfirst=false
package option has been used, then the default value is hyper=false. The hyperlink can
be forced on using hyper=true unless the hyperlinks have been suppressed using \gls-
disablehyper. You must load the hyperref package before the glossaries package to ensure
the hyperlinks work.

format=(cs-name)

This specifies how to format the associated location number within the location list (see
§12.1).

162

5. Referencing Entries in the Document

(o]

= |
There is a special format glsignore which simply ignores its argument to create an

invisible location.

J

(=]

==

counter=(counter-name)

This specifies which counter to use for this location. This overrides the default counter used
by the entry, the default counter associated with the glossary (supplied in the final optional
argument of \newglossary) and the default counter identified by the counter package op-
tion. See also §12. The glossaries—extra package has additional options that affect the counter
used, such as floats and equations. This manual uses the f1loats option to automatically
switch the counter to table for any entries indexed in tables (such as those in Table 12.1 on
page 267).

[

(=
local=(boolean) default: true; initial: false

This is a boolean key that only makes a difference when used with \gls-like commands
that change the entry’s first use flag. If local=true, the change to the first use flag will be
localised to the current scope.

[O

=
noindex=(boolean) default: true; initial: false

If true, this option will suppress the indexing. Only available with glossaries-extra. This
manual doesn’t use noindex for common entries. Instead it uses format=glsignore, which
is preferable with bib2gls.

[©

(=
hyperoutside=({boolean) default: true; initial: true

If true, this will put the hyperlink outside of \glstextformat. Only available with glossaries
—extra.

(=]

=
wrgloss=(position) initial: before

This key determines whether to index before (wrgloss=before) or after (wrgloss=after)
the link text, which alters where the whatsit occurs. Only available with glossaries-extra.

=

==

textformat=(csname)

163

5. Referencing Entries in the Document

The value is the name of the control sequence (without the leading backslash) to encapsulate
the link text instead of the default \glstextformat. Only available with glossaries—extra.

==

prefix=(link-prefix)

This key locally redefines \glolinkprefix to the given value. Only available with glossaries
—extra.

==

thevalue=(location)

This key explicitly sets the location value instead of obtaining it from the location counter.
Only available with glossaries—extra.

==

theHvalue=(the-H-value)

This key explicitly sets the hyperlink location value instead of obtaining it from the location
counter. Only available with glossaries-extra.

=
prereset=(value) default: 1ocal; initial: none

Determines whether or not to reset the first use flag before the link text. Only available with
glossaries—extra.

=
preunset=(value) default: 1ocal; initial: none

Determines whether or not to unset the first use flag before the link text. Only available with
glossaries—extra.

=
postunset=(value) default: global; initial: global

Determines whether or not to unset the first use flag after the link text. Only available with
glossaries-extra.

5.1.2. The \gls-Like Commands (First Use Flag Queried)

This section describes the \gls-like commands that unset (mark as used) the first use flag
after the link text, and in most cases they use the current state of the flag to determine the text
to be displayed. As described above, these commands all have a star-variant (hyper=false)
and a plus-variant (hyper=true) and have an optional first argument that is a (key)=(value)

164

5. Referencing Entries in the Document

list. These commands use \glsentryfmt or the equivalent definition provided by \defgls-
entryfmt to determine the automatically generated text and its format (see §5.1.4).

Apart from \glsdisp, the commands described in this section also have a final optional
argument (insert) which may be used to insert material into the automatically generated
text.

[i
=
Since the commands have a final optional argument, take care if you actually want to
display an open square bracket after the command when the final optional argument
is absent. Insert an empty optional argument or \relax or an empty set of braces {3
immediately before the opening square bracket to prevent it from being interpreted as
the final argument. For example:

Ej

\gls{sample}[] [Editor's comment]
\gls{sample}{} [Editor's comment]
\gls{sample} \relax[Editor's comment]

Use of a semantic command can also help avoid this problem. For example:

\newcommand{\edcom} [1] [#1]
% later:
\gls{sample} \edcom{Editor's comment}

Don’t use any of the \gls-like or \glstext-like commands in the (insert) argument.

Take care using these commands within commands or environments that are processed
multiple times as this can confuse the first use flag query and state change. This includes
frames with overlays in beamer and the tabularx environment provided by tabularx. The
glossaries package automatically deals with this issue in amsmath’s align environment. You
can apply a patch to tabularx by placing the command \glspatchtabularx in the preamble.
This does nothing if tabularx hasn’t been loaded. There’s no patch available for beamer. See
§7 for more details and also §15.5.

Most of the commands below have case-changing variants to convert the link text to
sentence case or all caps. The sentence case conversion is performed by \glssentence-
case and the all caps is performed by \glsuppercase. Ensure you have at least version 2.08
of mfirstuc to use the modern ETEX3 case-changing commands instead of the now deprecated
textcase package. See the mfirstuc manual for further details.

X
\gls [{options)]{(entry-label)} [(insert)] modifiers: * +

This command typically determines the link text from the values of the text or first keys

165

5. Referencing Entries in the Document

supplied when the entry was defined using \newglossaryentry. However, if the entry was
defined using \newacronymand \setacronymstyle was used, then the link text will usually
be determined from the long or short keys (similarly for \newabbreviation).

The case-changing variants:

X
\G1s [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\GLS [{options)]{(entry-label)} [(insert)] modifiers: * +
(all caps).
There are plural forms that are analogous to \gls:
X
\glspl [{options)]{(entry-label)} [{insert)] modifiers: * +
Sentence case:
X
\G1spl [(options)]{(entry-label)} [(insert)] modifiers: * +
All caps:
X
[\GLSp1 [(options)] {({entry-label)} [{insert)] modifiers: * +

These typically determine the link text from the plural or firstplural keys supplied when
the entry was defined using \newglossaryentry or, if the entry was defined with \new-
acronym and \setacronymstyle was used, from the longplural or shortplural keys.
(Similarly for \newabbreviation.)

[i
=
Be careful when you use glossary entries in math mode especially if you are using

hyperref as it can affect the spacing of subscripts and superscripts in math mode. For
example, suppose you have defined the following entry:

Ej

\newglossaryentry{Falpha}{name={F\alpha},
description={sample}}

166

5. Referencing Entries in the Document

and later you use it in math mode:

=

$\gls{Falphal}2$

This will result in F,2 instead of F'2. In this situation it’s best to bring the superscript
into the hyperlink using the final (insert) optional argument:

=

$\gls{Falpha}[~2]$

X
\glsdisp [{options)] {(entry-label) }{(text)} modifiers: * +

This behaves in the same way as \gls, except that the (link text) is explicitly set. There’s no
final optional argument as any inserted material can be added to the (link text) argument.
Even though the first use flag doesn’t influence the link text, it’s still unset after the link text
and so may influence the post-link hook.

For example:

\newglossaryentry{locationcounter}{
name={location counter},
description={...}
}
% later in the document:
The \glsdisp{locationcounter}{counter} identifying the location.

This ensures that the entry is indexed and, if enabled, creates a hyperlink to the entry line
in the glossary. It will also follow the display style and have the link text encapsulated with
\glstextformat.

Since the actual text is being supplied, any case-changing can be placed in the argument.

For example:

\glsdisp{locationcounter}{Counters} associated with locations

However, a sentence case variant is provided:

X
\G1lsdisp [{options)]{(entry-label)}{(text)} modifiers: * +

167

5. Referencing Entries in the Document

This essentially does:

\glsdisp [{options)]{{entry-label)}{\glssentencecase{(text)}}

The main reason for providing this command is to set up a mapping for \makefirstuc. See
the mfirstuc manual for further details about mappings.

Don’t use any of the \gls-like or \glstext-like commands in the (link text) argument
of \glsdisp.

5.1.3. The \glstext-Like Commands (First Use Flag Not Queried)

This section describes the commands that don’t change or reference the first use flag. As
described above, these commands all have a star-variant (hyper=false) and a plus-variant
(hyper=true) and have an optional first argument that is a (key)=(value) list. These com-
mands also don’t use \glsentryfmt or the equivalent definition provided by \defgls-
entryfmt (see §5.1.4). They do, however, have their link text encapsulated with \glstext-
format.

Additional commands for acronyms are described in §6. (Additional commands for abbreviations
are described in the glossaries-extra manual.)

Apart from \glslink, the commands described in this section also have a final optional
argument (insert) which may be used to insert material into the automatically generated
text. See the caveat above in §5.1.2. As with the \gls-like commands described in §5.1.2,
these commands also have case-changing variants.

X
\glslink [{options)]{(entry-label)}{(text)} modifiers: * +

This command explicitly sets the link text as given in the final argument. As with \glsdisp,
there’s a sentence case variant to allow a sentence case mapping to be established:

X
\G1lslink [(options)]{(entry-label)}{(text)} modifiers: * +

See the mfirstuc package for further details.

Don’t use any of the \gls-like or \glstext-like commands in the argument of \gls-
link. By extension, this means that you can’t use them in the value of fields that are
used to form link text.

168

5. Referencing Entries in the Document

I
\glstext [(options)]{(entry-label)} [(insert)] modifiers: * +
This command always uses the value of the text key as the link text.
The case-changing variants are:
b §
\Glstext [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\GLStext [(options)]{(entry-label)} [(insert)] modifiers: * +

(all caps).
There’s no equivalent command for title case, but you can use the more generic command
\glsentrytitlecase in combination with \glslink. For example:

[\glslink{sample}{\glsentrytitlecase{sample}{text}}
(See §5.2.)
X
\glstirst [(options)]{(entry-label)} [(insert)] modifiers: * +
This command always uses the value of the first key as the link text.
The case-changing variants are:
X
\Glsfirst [(options)] {(entry-label)} [(insert)] modifiers: * +
(sentence case) and
I
\GLSfirst [(options)]{(entry-label)} [(insert)] modifiers: * +
(all caps).
i

The value of the first key (and firstplural key) doesn’t necessarily match the link
text produced by \gls (or \glspl) on first use as the link text used by \gls may be
modified through entry formatting commands like \defglsentryfmt. (Similarly, the

169

5. Referencing Entries in the Document

value of the text and plural keys don’t necessarily match the link text used by \gls
or \glspl on subsequent use.)

X
\glsplural [(options)]{(entry-label)} [(insert)] modifiers: * +
This command always uses the value of the plural key as the link text.
The case-changing variants are:
X
\Glsplural [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
I
\GLSplural [{options)] {(entry-label)} [{insert)] modifiers: * +
(all caps).
X
\glsfirstplural [{options)]{(entry-label)} [(insert)] modifiers: * +
This command always uses the value of the firstplural key as the link text.
The case-changing variants are:
X
\Glsfirstplural [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\GLSfirstplural [(options)]{(entry-label)} [(insert)] modifiers: * +
(all caps).
X
\glsname [(options)]{(entry-label)} [(insert)] modifiers: * +

This command always uses the value of the name key as the link text. Note that this may be
different from the values of the text or first keys. In general it’s better to use \glstext
or \glsfirst instead of \glsname, unless you have a particular need for the actual name.

170

5. Referencing Entries in the Document

(1)
[The name is displayed in the glossary using \glossentryname not \glsname.
The case-changing variants are:
I
\G1lsname [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\GLSname [(options)]{(entry-label)} [(insert)] modifiers: * +

(all caps).

In general it’s best to avoid \glsname with acronyms. Instead, consider using \acr-
long, \acrshort or \acrfull. Alternatively, for abbreviations defined with glossaries
-extra, use \glsxtrlong, \glsxtrshort or \glsxtrfull.

a8

X

\glssymbol [{options)] {{entry-label)} [{insert)] modifiers: * +

This command always uses the value of the symbol key as the link text.

(@]

|

[The symbol is displayed in the glossary using \glossentrysymbol not \glssymbol.

7

The case-changing variants are:

X
\Glssymbol [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\GLSsymbol [{options)] {{entry-label)} [{insert)] modifiers: * +
(all caps).
X
\glsdesc [(options)]{(entry-label)} [(insert)] modifiers: * +

171

5. Referencing Entries in the Document

This command always uses the value of the description key as the link text.

! (1) \
[The description is displayed in the glossary using \glossentrydesc not \glsdesc.

The case-changing variants are:

\Glsdesc [(options)]{(entry-label)} [(insert)] modifiers: * +

(sentence case) and

\GLSdesc [(options)]1{ (entry-label)} [(insert)] modifiers: * +

(all caps).

\glsuseri [(options)]{(entry-label)} [(insert)] modifiers: * +

This command always uses the value of the user1 key as the link text.
The case-changing variants are:

\Glsuseri [(options)]{(entry-label)} [(insert)] modifiers: * +

(sentence case) and

\GLSuseri [(options)]1{(entry-label)} [(insert)] modifiers: * +

(all caps).

\glsuserii [(options)]{(entry-label)} [{insert)] modifiers: * +

This command always uses the value of the user2 key as the link text.
The case-changing variants are:

X

\Glsuserii [(options)]{(entry-label)} [(insert)] modifiers: * +

172

5. Referencing Entries in the Document

(sentence case) and

X
\GLSuserii [(options)] {{entry-label)} [{insert)] modifiers: * +
(all caps).
X
\glsuseriii [(options)]{(entry-label)} [(insert)] modifiers: * +
This command always uses the value of the user3 key as the link text.
The case-changing variants are:
X
\Glsuseriii [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\GLSuseriii [{options)]{(entry-label)} [(insert)] modifiers: * +
(all caps).
X
\glsuseriv [(options)]{(entry-label)} [(insert)] modifiers: * +
This command always uses the value of the user4 key as the link text.
The case-changing variants are:
X
\Glsuseriv [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\GLSuseriv [(options)] {(entry-label)} [{insert)] modifiers: * +
(all caps).
X
\glsuserv [(options)] {(entry-label)} [(insert)] modifiers: * +

This command always uses the value of the user5 key as the link text.

173

5. Referencing Entries in the Document

The case-changing variants are:

X
\Glsuserv [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\GLSuserv [(options)]{(entry-label)} [(insert)] modifiers: * +
(all caps).
X
\glsuservi [(options)] {{entry-label)} [{insert)] modifiers: * +
This command always uses the value of the user6 key as the link text.
The case-changing variants are:
X
\Glsuservi [(options)] {(entry-label)} [{insert)] modifiers: * +
(sentence case) and
X
\GLSuservi [(options)]{(entry-label)} [(insert)] modifiers: * +

(all caps).

5.1.4. Changing the Format of the \gls-like Link Text

glossaries—extra

The glossaries—extra package provides ways of altering the display style according to
the category. See the glossaries-extra manual for further details.

7

The default entry format (display style) of the link text for the \gls-like commands is
governed by:

X

\glsentryfmt

The glossaries package defines this to simply use \glsgenentryfmt. The glossaries—extra
package redefines \glsentryfmt to allow it to integrated with the abbreviation styles.

174

5. Referencing Entries in the Document

o

The entry format is only applicable to the \gls-like commands, not the \glstext-like
commands. However, both sets of commands use \glstextformat for the font.

You can redefine \glsentryfmt (but beware of breaking abbreviations with glossaries
-extra), but if you only want the change the display style for a given glossary, use:

X

\defglsentryfmt [(glossary-type)]{(definition)}

instead of redefining \glsentryfmt. The optional first argument (glossary-type) is the
glossary type. This defaults to \glsdefaulttype if omitted. The second argument is the
entry format definition, which needs to use the placeholder commands described in this sec-
tion.

In the remainder of this section, (definition) refers to the argument of \defglsentryfmt
or to the definition of \glsentryfmt.
(]
=
Note that \glsentryfmt is the default display style for glossary entries. Once the

display style has been changed for an individual glossary using \defglsentry-
fmt, redefining \glsentryfmt won’t have an effect on that glossary, you must
instead use \defglsentryfmt again. Note that glossaries that have been identi-
fied as lists of acronyms (via the package option acronymlists or the command
\DeclareAcronymList, see §2.7) use \defglsentryfmt to set their display style.
(The glossaries—extra package provides abbreviation support within its redefinition of
\glsentryfmt.)

Within (definition) you may use the following commands:

\glslabel

This expands to the label of the entry being referenced.
You can also access the entry’s glossary type using:

\glstype

This is defined using \protected@edef so the replacement text is the actual glossary type
rather than \glsentrytype{\glslabel}.

X

\glsinsert

175

5. Referencing Entries in the Document

Expands to the final (insert) optional argument to \gls, \glspl and their case-changing
variants (or empty if (insert) was omitted).

X

\glsifplurald{(true)}{(false)}

If the plural commands \glspl, \G1spl or \GLSpl was used, this command expands to (true)
otherwise it expands to (false).

X

\glscapscase{(no change)}{(sentence)}{(all caps)}

If \gls, \glspl or \glsdisp were used, this expands to (no change). If the sentence case
commands \G1s or \Glspl were used, this expands to (sentence). If the all caps commands
\GLS or \GLSpl were used, this expands to (all caps).

X

\glscustomtext

Expands to the custom text supplied in \glsdisp. It’s always empty for \gls, \glspl and
their case-changing variants. (You can use etoolbox’s \ifdefempty to determine if \gls-
customtext is empty.)

[i
=
If \Glsdispisused, \glscustomtext will include the sentence case command (\gls-

sentencecase), but \glscapscase will expand to (no change) (since \Glsdisp sim-
ply uses \glsdisp without modifying the placeholder commands). However, the
generic \glsgenentryfmt doesn’t use \glscapscase (or \glsifplural) if \gls-
customtext isn’t empty.

\glsifhyperond{(true)}{(false)}

This will do (true) if the hyperlinks are on for the current reference, otherwise it will do
(false). 'The hyperlink may be off even if it wasn’t explicitly switched off with hyper=
false key or the use of a starred (*) command. It may be off because the hyperref package
hasn’t been loaded or because \glsdisablehyper has been used or because the entry is in
a glossary type that’s had the hyperlinks switched off (using nohypertypes) or because it’s
the first use and the hyperlinks have been suppressed on first use.

If you want to know if the calling command used to reference the entry was used with the

176

5. Referencing Entries in the Document

star (*) or plus (+) variant, you can use:

\glslinkvar{(unmodified)}{(star case)}{(plus case)}

This will do (unmodified) if the unmodified version was used, or will do (star case) if the
starred version was used, or will do (plus case) if the plus version was used. The custom
modifier provided by glossaries—extra’s \GlsXtrSetAltModifier will make \glslinkvar
expand to (unmodified).

Note that this doesn’t take into account if the hyper key was used to override the default
setting, so this command shouldn’t be used to guess whether or not the hyperlink is on for
this reference. This command is therefore of limited use. If you want to make the star or plus
behave differently, you can try \GlsXtrSetStarModifier or \GlsXtrSetPlusModifier
instead, if you are using glossaries—extra.

Note that you can also use commands such as \ifglsused within (definition) (see §7), but
don’t use \ifglsused in the post-link hook.

[glossaries-extra]

The glossaries-extra package has additional commands that may be used within (defi-
nition) to obtain information about the calling command.

The commands \glslabel, \glstype, \glsifplural, \glscapscase, \glsinsert and
\glscustomtext are typically updated at the start of the \gls-like and \glstext-like com-
mands so they can usually be accessed in the hook user commands, such as \glspostlink-
hook and \glslinkpostsetkeys.

A
This means that using commands like \gls within the fields that are accessed using the
\gls-like or \glstext-like commands (such as the first, text, long or short keys)
will cause a problem. The definitions of the placeholder commands can’t be scoped
otherwise they won’t be available for the post-link hook, and grouping can also cause
unwanted spacing issues in math mode.

\. v

If you only want to make minor modifications to \glsentryfmt, you can use the generic
entry formatting command:

X

\glsgenentryfmt

This uses the above commands to display just the first, text, plural or firstplural keys
(or the custom text) with the insert text appended. For example, to make the symbol appear
in parentheses for the symbols glossary:

177

5. Referencing Entries in the Document

=

\defglsentryfmt [symbols]{\glsgenentryfmt (\glsentrysymbol{\gls-
labell})}

The acronym styles use a similar method to adjust the formatting. For example, the long
—short style implements:

=

\defglsentryfmt [{type)]{\ifglshaslong{\glslabel}{\glsgenacfmt}{\gls-
genentryfmt}}

For each glossary that has been identified as a list of acronyms. This uses the generic entry
format command \glsgenentryfmt for general entries (that don’t have the long key set),
otherwise it uses the generic acronym format:

X

\glsgenacfmt

This uses the values from the long, short, longplural and shortplural keys, rather than
using the text, plural, first and firstplural keys. The first use singular text is obtained
via:

X

\genacrfullformat{(label)}{(insert)}

instead of from the first key, and the first use plural text is obtained via:

\genplacrfullformat{(label)}{(insert)}

instead of from the firstplural key. In both cases, (label) is the entry’s label and (insert)
is the insert text provided in the final optional argument of commands like \gls. The default
behaviour is to do the long form (or plural long form) followed by (insert) and a space and
the short form (or plural short form) in parentheses, where the short form is in the argument
of \firstacronymfont. There are also sentence case versions:

X

\Genacrfullformat{(label)}{(insert)}

and

\Genplacrfullformat{(label)}{(insert)}

178

5. Referencing Entries in the Document

See §6 for details on changing the style of acronyms.

Note that \glsentryfmt (or the formatting given by \defglsentryfmt) is not used
by the \glstext-like commands.

Example 16: Custom Entry Display in Text

Suppose you want a glossary of measurements and units, you can use the symbol key to
store the unit:

Ei

\newglossaryentry{distance}{name={distance},
description={The length between two points},
symbol={km}}

and now suppose you want \gls{distance} to produce “distance (km)” on first use, then
you can redefine \glsentryfmt as follows:

=

\renewcommand*{\glsentryfmt}y,
\glsgenentryfmt
\ifglsused{\glslabel}{}{\space (\glsentrysymbol{\glslabell})}’

(Note thatI've used \glsentrysymbol rather than \glssymbol to avoid nested hyperlinks.)
All of the link text will be formatted according to \glstextformat (described earlier). So

if you do, say:

\renewcommand{\glstextformat}[1]{\textbf{#1}}
\renewcommand*{\glsentryfmt}{J
\glsgenentryfmt
\ifglsused{\glslabel}{}{\space(\glsentrysymbol{\glslabel})}/
}

then \gls{distance} will produce “distance (km)”. This is different from using the post-
link hook which is outside of \glstextformat.
For a complete document, see the sample file sample-entryfmt.tex.

Example 17: Custom Format for Particular Glossary

Suppose you have created a new glossary called notation and you want to change the

179

5. Referencing Entries in the Document

way the entry is displayed on first use so that it includes the symbol, you can do:

\defglsentryfmt [notation] {\glsgenentryfmt
\ifglsused{\glslabel}{}{\space
(denoted \glsentrysymbol{\glslabell})}}

Now suppose you have defined an entry as follows:

\newglossaryentry{set}{type={notation},
name={set},
description={A collection of objects},
symbol={\ensuremathS}

}

The first time you reference this entry it will be displayed as: “set (denoted S)” (assuming
\gls was used).

Remember that if you use the symbol key, you need to use a glossary style that displays
the symbol, as many of the styles ignore it.

5.1.5. Hooks

Both the \gls-like and \glstext-like commands use:

\glslinkpostsetkeys

after the (options) are set. This macro does nothing by default but can be redefined. (For
example, to switch off the hyperlink under certain conditions.) The glossaries-extra package
additionally provides \glslinkpresetkeys.

There is also a hook (the post-link hook) that’s implemented at the end:

\glspostlinkhook

This is done after the link text has been displayed and also after the first use flag has been
unset (see example 29). This means that it’s too late to use \ifglsused in the definition
of \glspostlinkhook. The glossaries—extra package provides \glsxtrifwasfirstuse for
use in the post-link hook.

180

5. Referencing Entries in the Document

glossaries—extra

The glossaries-extra package redefines \glspostlinkhook to allow for additional
hooks that can vary according to the entry’s category. If you migrate over from only
using the base glossaries package to glossaries—extra and you have redefined \gls-
postlinkhook, consider moving your modifications to the category post-link hook to
avoid breaking the extended post-link hook features. See the glossaries—extra manual
for further details.

5.1.6. Enabling and Disabling Hyperlinks to Glossary Entries

If you load hyperref prior to loading the glossaries package, the \gls-like and \glstext-
like commands will automatically have hyperlinks to the relevant glossary entry, unless the
hyper option has been switched off (either explicitly or through implicit means, such as via
the nohypertypes package option).

You can disable or enable hyperlinks using:

X
\glsdisablehyper
and
X
\glsenablehyper

respectively. The effect can be localised by placing the commands within a group. Note that
you should only use \glsenablehyper if the commands \hyperlink and \hypertarget
have been defined, otherwise you will get undefined control sequence errors. If the hyperref
package is loaded before glossaries, \glsenablehyper will be use automatically.

You can disable just the first use links using the package option hyperfirst=false. Note
that this option only affects the \gls-like commands that recognise the first use flag.

Example 18: First Use With Hyperlinked Footnote Description

Suppose I want the first use to have a hyperlink to the description in a footnote instead of
hyperlinking to the relevant place in the glossary. First I need to disable the hyperlinks on
first use via the package option hyperfirst=false:

Ej

[\usepackage [hyperfirst=false] {glossaries}

Now I need to redefine \glsentryfmt (see §5.1.4):

181

5. Referencing Entries in the Document

\renewcommand*{\glsentryfmt}{J
\glsgenentryfmt
\ifglsused{\glslabel}{}{\footnote{\glsentrydesc{\glslabel}}}J
}

Now the first use won’t have hyperlinked text, but will be followed by a footnote. See the
sample file sample-FnDesc. tex for a complete document.

Note that the hyperfirst option applies to all defined glossaries. It may be that you only
want to disable the hyperlinks on first use for glossaries that have a different form on first
use (such as list of acronyms). This can be achieved by noting that since the entries that
require hyperlinking for all instances have identical first and subsequent text, they can be
unset via \glsunsetall (see §7) so that the hyperfirst option doesn’t get applied.

Example 19: Suppressing Hyperlinks on First Use Just For Acronyms

Suppose I want to suppress the hyperlink on first use for acronyms but not for entries in
the main glossary. I can load the glossaries package using:

=

[\usepackage [hyperfirst=false,acronym]{glossaries}

Once all glossary entries have been defined I then do:

\glsunsetall [main]

(Alternatively use the nohyperfirst category attribute with glossaries—extra.)

For more complex requirements, you might find it easier to switch off all hyperlinks via
\glsdisablehyper and put the hyperlinks (where required) within the definition of \gls-
entryfmt (see §5.1.4) via \glshyperlink (see §5.2).

Example 20: Only Hyperlink in Text Mode Not Math Mode

This is a bit of a contrived example, but suppose, for some reason, I only want the \gls-
like commands to have hyperlinks when used in text mode, but not in math mode. I can do
this by adding the glossary to the list of nohypertypes and redefining \glsentryfmt:

182

5. Referencing Entries in the Document

\GlsDeclareNoHyperList{main}

\renewcommand*{\glsentryfmt}{J,
\ifmmode
\glsgenentryfmt
\else
\glsifhyperon
{\glsgenentryfmt}), hyperlink already on
{\glshyperlink[\glsgenentryfmt]{\glslabell}}/
\fi
}

Note that this doesn’t affect the \glstext-like commands, which will have the hyperlinks
off unless they’re forced on using the plus variant or with an explicit use of hypertrue.
See the sample file sample-nomathhyper.tex for a complete document.

Example 21: One Hyper Link Per Entry Per Chapter

Here’s a more complicated example that will only have the hyperlink on the first time an
entry is used per chapter. This doesn’t involve resetting the first use flag. Instead it adds
a new key using \glsaddstoragekey (see §4.3.2) that keeps track of the chapter number
that the entry was last used in:

Ei

[\glsaddstoragekey{chapter}{0}{\glschapnum}

This creates a new user command called \glschapnum that’s analogous to \glsentrytext.
The default value for this key is 0. I then define my glossary entries as usual.

Next I redefine the hook \glslinkpostsetkeys (see §5.1.4) so that it determines the cur-
rent chapter number (which is stored in \currentchap using \edef). This value is then
compared with the value of the entry’s chapter key that I defined earlier. If they’re the
same, this entry has already been used in this chapter so the hyperlink is switched off using
xkeyval’s \setkeys command. If the chapter number isn’t the same, then this entry hasn’t
been used in the current chapter. The chapter field is updated using \glsfieldxdef (§15.6)
provided the user hasn’t switched off the hyperlink. (This test is performed using \glsif-
hyperon.)

=

\renewcommand*{\glslinkpostsetkeys}{/
\edef\currentchap{\arabic{chapter}}/

183

5. Referencing Entries in the Document

\ifnum\currentchap=\glschapnum{\glslabel}\relax
\setkeys{glslink}{hyper=false},
\else
\glsifhyperon{\glsfieldxdef{\glslabel}{chapter}{\currentchap}l}’
\fi
}

Note that this will be confused if you use \gls etc when the chapter counter is 0. (That is,
before the first \chapter.)
See the sample file sample-chap-hyperfirst.tex for a complete document.

5.2. Using Glossary Terms Without Indexing

The commands described in this section display entry details without adding any information
to the glossary. They don’t use \glstextformat or the entry format, they don’t have any
optional arguments, they don’t affect the first use flag and, apart from \glshyperlink and
the number list commands, they don’t produce hyperlinks.

[i
=
If you want to use the sentence case commands in PDF bookmarks, such as \Glsentry-
text, ensure you have at least version 2.08 of mfirstuc. Inside PDF bookmarks, those
commands will expand with the sentence case applied using the expandable \MFU-
sentencecase. Outside of PDF bookmarks those commands will expand to an inter-
nal robust command that applies the sentence case with \glssentencecase (which
defaults to \makefirstuc).

If you want to title case a field, you can use:

\glsentrytitlecase{(entry-label)}{(field)}

where (entry-label) is the label identifying the glossary entry, (field) is the internal field label
(see Table 4.1 on page 149). This internally uses \glscapitalisewords. Within PDF book-
marks, this command will expand to sentence case using the expandable \MFUsentencecase.
(The title case command \capitalisewords isn’t expandable.)

A
If your field contains formatting commands, you will need to redefine \gls-
capitalisewords touse \capitalisefmtwords instead of \capitalisewords. See
the mfirstuc manual for further details.

184

5. Referencing Entries in the Document

For example, to convert the description to title case for the entry identified by the label
“sample”:

Ej

[\glsentrytitlecase{sample}{desc}

(If you want title-casing in your glossary style, you might want to investigate the glossaries
-extra package.) This command will trigger an error if the entry is undefined.

If you want a hyperlink to an entry’s line in the glossary but don’t want the indexing or
formatting associated with the \gls-like and \glstext-like commands, you can use:

X

\glshyperlink [(text)]{(entry-label)}

This command provides a hyperlink but does not add any information to the glossary
file. The hyperlink text is given by the optional argument, which defaults to \glsentrytext
{(label)}. Note that the hyperlink will be suppressed if you have used \glsdisablehyper
or if you haven’t loaded the hyperref package.

If you use \glshyperlink, you need to ensure that the relevant entry has been added
to the glossary using any of the commands described in §5.1 or §10 otherwise you will
end up with an undefined hyperlink target.

The following commands in form form \glsentry(field) expand to the associated field
value for the entry identified by (entry-label) for the non-case-changing versions. Those
commands don’t check if the entry has been defined. The sentence case versions \Glsentry(field)
only expand in PDF bookmarks. In both cases, any fragile commands within the field values
will need to be protected or made robust if the field values are required in a moving argument.

There are also commands in the form \glossentry(field) for the name, description
and symbol that are used by the glossary styles. Those commands will issue a warning if the
entry hasn’t been defined. See §13 for further information.

X

\glsentryname{(entry-label)?}

Expands to the value of the name field. Note that within glossary styles, the name is displayed
using \glossentryname. The corresponding sentence case command is:

X

\Glsentryname{(entry-label)}

185

5. Referencing Entries in the Document

[i
A
In general it’s best to avoid \Glsentryname with acronyms or abbreviations. Instead,

consider using \Glsentrylong, \Glsentryshort or \Glsentryfull.

X
\glsentrytext{(entry-label)}
Expands to the value of the text field. The corresponding sentence case command is:
I
\Glsentrytext{(entry-label)}
I
\glsentryplurald{(entry-label)}
Expands to the value of the plural field. The corresponding sentence case command is:
X
\Glsentryplural{(entry-label)}
I
\glsentryfirst{(entry-label)}
Expands to the value of the first field. The corresponding sentence case command is:
b §
\Glsentryfirst{(entry-label)}
I
\glsentryfirstplural{(entry-label)}

Expands to the value of the firstplural field. The corresponding sentence case command
is:

X

\Glsentryfirstplural{(entry-label)}

186

5. Referencing Entries in the Document

\glsentrydesc{(entry-label)}

Expands to the value of the description field. Note that within glossary styles, the de-
scription is displayed using \glossentrydesc. The corresponding sentence case command
is:

X

\Glsentrydesc{(entry-label)}

\glsentrydescplural{(entry-label)}

Expands to the value of the descriptionplural field. The corresponding sentence case
command is:

\Glsentrydescplural{(entry-label)}

\glsentrysymbol{(entry-label)}

Expands to the value of the symbol field. Note that within glossary styles, the description is
displayed using \glossentrysymbol. The corresponding sentence case command is:

\Glsentrysymbol{(entry-label)}

\glsentrysymbolplural{(entry-label)}

Expands to the value of the symbolplural field. The corresponding sentence case command
is:

X
\Glsentrysymbolplural{(entry-label)}

X
\glsentryuseri{(entry-label)}

187

5. Referencing Entries in the Document

Expands to the value of the user1 field. The corresponding sentence case command is:

X

\Glsentryuseri{(entry-label)}

\glsentryuserii{(entry-label)}

Expands to the value of the user?2 field. The corresponding sentence case command is:

X

\Glsentryuserii{(entry-label)}

\glsentryuseriii{(entry-label)}

Expands to the value of the user3 field. The corresponding sentence case command is:

X

\Glsentryuseriii{(entry-label)}

\glsentryuseriv{(entry-label)}

Expands to the value of the user4 field. The corresponding sentence case command is:

X

\Glsentryuseriv{(entry-label)}

\glsentryuserv{(entry-label)}

Expands to the value of the userb5 field. The corresponding sentence case command is:

7

\Glsentryuserv{(entry-label)’}

188

5. Referencing Entries in the Document

\glsentryuservi{(entry-label)}

Expands to the value of the user6 field. The corresponding sentence case command is:

X

\Glsentryuservi{(entry-label)}

The next two commands, \glsentrynumberlist and \glsdisplaynumberlist, display
the entry’s number list. This information is readily available with Options 1 and 4 (where
the number list is stored in the 1oclist or location internal fields) but not for Options 2
and 3 (where the number list is simply part of the code to typeset the glossary written in the
glossary file).

If you need to parse the number list, split it into groups based on the location counter, or
extract a primary location then Option 4 (bib2gls) is your best option.

X

\glsentrynumberlist{(entry-label)}

Displays the number list for the given entry in the same format as it’s shown by default in
the glossary. The locations will have hyperlinks if supported.

This command is at its simplest with Option 4, where it just displays the value of the
location internal field that’s set by bib2gls in the glstex file. This will use the delimiters
supplied by bib2gls (\bibglsdeliml and \bibglslastDelimN) for individual locations as
well as \delimR for ranges, as used in the glossary.

With Option 1, \glsentrynumberlist passes the value of the entry’s loclist internal
field (that’s created when the aux file is input) to \glsnoidxloclist (which is also used by
\printnoidxglossary). This will result in a simple list with each location separated with
\delimN, as used in the glossary. Note that this doesn’t allow for ranges (as with \print-
noidxglossary).

With Options 2 and 3, you will need the savenumberlist package option, which will
attempt to gather the number list information when the glossary file is input by \print-
glossary. Since glossaries often occur at the end of the document, this means that the
information has to be saved in the aux file for the next EKIgX run. Therefore an extra KIEX
call is required if \glsentrynumberlist is needed with makeindex or xindy. This will use
the same \delimN and \delimR as used in the glossary.

X

\glsdisplaynumberlist{(entry-label)}

189

5. Referencing Entries in the Document

This attempts to display the number list with the separators:

I
\glsnumlistsep initial: ,\,
between each location except for the last pair and
I
\glsnumlistlastsep initial: | \&_,

between the last pair.

As with \glsentrynumberlist, this is again at its simplest with Option 4. This works by
locally setting \bibglsdelimN to \glsnumlistsep and \bibglslastDelimN to \glsnum-
listlastsep and then displaying the value of the location field. You can instead simply
redefine \bibglsdelimN and \bibglslastDelimN as desired and use \glsentrynumber-
list.

With Option 1, the number list information is stored in the loclist internal field, which
is in the format of an etoolbox internal list. So with Option 1, \glsdisplaynumberlist uses
etoolbox’s \forlistloop to iterate over the field value using the handler macro:

X

\glsnoidxdisplayloclisthandler{(location)}

Note that this doesn’t allow for ranges.

If hyperref has been loaded, \glsdisplaynumberlist doesn’t work with Options 2 and 3.
In which case, a warning will be triggered and \glsentrynumberlist will be used instead.
Without hyperref, the savenumberlist package option is still required, and an attempt will
be made to parse the formatted number list created by makeindex/xindy in order to obtain
the desired result.

A
\glsdisplaynumberlist is fairly experimental. It works best with Option 4, works
with limited results with Option 1, but for Options 2 or 3 it only works when the
default location format is used (that is, with the default f ormatglsnumberformat). This
command will only work with hyperref if you choose Options 1 or 4.

190

6. Acronyms and Other Abbreviations

(o]

r = |
The term “acronyms” is used here to describe the base glossary package’s mechanism
for dealing with acronyms, initialisms, contractions and anything else that may have a
shortened form for brevity. The term “abbreviations” is used to describe the enhanced
mechanism provided by the glossaries—extra package, which is incompatible with the
base acronym mechanism.

J

Acronyms internally use \newglossaryentry, so you can reference them with \gls and
\glspl as with other entries. Whilst it is possible to simply use \newglossaryentry ex-
plicitly with the first and text keys set to provide a full form on first use and a shortened
form on subsequent use, using \newacronym establishes a consistent format. It also makes
it possible to shift the (insert) optional argument of the \gls-like commands inside the full
form, so that it is placed before the parentheses.

The way the acronym is displayed on first use is governed by the acronym style that’s
identified with \setacronymstyle. This should be set before you define your acronyms.

For example:

\documentclass{article}

\usepackage{glossaries}
\setacronymstyle{long-short}

\newacronym{html }{HTML}{hypertext markup language}
\newacronym{xml}{XML}{extensible markup language}
\begin{document}

First use: \gls{html} and \gls{xzml}.

Next use: \gls{html} and \gls{xml}.

\end{document}
Example 22: Simple document with acronyms \ERE

First use: hypertext markup language (HTML) and extensible markup
language (XML).
Next use: HTML and XML.

191

% This file is embedded in glossaries-user.pdf
% Example 22 Simple document with acronyms
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}
\setacronymstyle{long-short}
\newacronym{html}{HTML}{hypertext markup language}
\newacronym{xml}{XML}{extensible markup language}
\begin{document}
First use: \gls{html} and \gls{xml}.

Next use: \gls{html} and \gls{xml}.
\end{document}

Nicola Talbot
Simple document with acronyms (source code)
Example document that defines some acronym entries and references them in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example022.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example022.pdf

6. Acronyms and Other Abbreviations

Acronyms are defined using:

\newacronym [(key=value list)]{(entry-label) }{(short)}{(long)}

This creates a glossary entry with the given label. This automatically sets type={\acronym-
typel} but if the acronym should go in another glossary you can set the type in the op-
tional argument (key=value list), which is added to the end of the (key=value list) in \new-
glossaryentry.

The \newacronym command also uses the long, longplural, short and shortplural
keys in \newglossaryentry to store the long and short forms and their plurals.

[glossaries-extra

If you use \newacronym with glossaries—extra, you need to first set the abbreviation
style for the acronym category with:

\setabbreviationstyle [acronym] {(style-name)}

J

Note that the same restrictions on (entry-label) in \newglossaryentry also apply to
\newacronym (see §4). Since \newacronym is defining the entry with \newglossaryentry,
you can use \glsreset to reset the first use flag.

A

Remember to declare the specified glossary type as a list of acronyms (via the package
option acronymlists or the command \DeclareAcronymList) if you have multiple
lists of acronyms. See §2.7. Alternatively, use glossaries—extra to have better support
for a mixed glossaries.

The optional argument (key=value list) allows you to specify additional information. Any
key that can be used in the second argument of \newglossaryentry can also be used here in
(key=value list), but be careful about overriding any keys that are set by the acronym style,
such as name, short and long.

For example, you may need to supply description (when used with one of the styles that
require a description, described in §6.2) or you can override plural forms of (short) or (long)
using the shortplural or longplural keys. For example:

=

\newacronym[longplural={diagonal matrices}]
{dm}{DM}{diagonal matrix}

If the first use uses the plural form, \glspl{dm} will display: diagonal matrices (DMs).
Aswith plural, if longplural is missing, it’s obtained by appending \glspluralsuffix
to the singular form. The short plural shortplural is obtained (if not explicitly set in (key

192

6. Acronyms and Other Abbreviations

=value list)) by appending:

X

\glsacrpluralsuffix initial: \glspluralsuffix

to the short form. These commands may be changed by the associated language files, but they
can’t be added to the usual caption hooks as there’s no guarantee when they’ll be expanded
(as discussed earlier in §1.5.2).

[glossaries—extra

A different approach is used by glossaries—extra, which has category attributes to de-
termine whether or not to append a suffix when forming the default value of short-
plural.

[i

=
Since \newacronym implicitly sets type={\acronymtype}, if you want to load a file
containing acronym definitions using \loadglsentries, the optional argument that

specifies the glossary will not have an effect unless you explicitly set type={\gls-
defaulttypel in the optional argument to \newacronym. See §4.6.

The following defines the acronym IDN and then uses it in the document text. It then
resets the first use flag and uses it again.

\setacronymstyle{long-short}
\newacronym{idn}{IDN}{identification number}
\begin{document}

First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}), reset first use

The \gls{idn}['s] prefix is a capital letter.
Next use:

the \gls{idn}['s] prefix is a capital letter.
\end{document}

The reset (\glsreset) makes the next instance of \gls behave as first use. Note also the
way the final (insert) optional argument is treated.

193

6. Acronyms and Other Abbreviations

Example 23: Defining and Using an Acronym N\EFIE

First use: identification number (IDN). Next use: IDN.
The identification number’s (IDN) prefix is a capital letter. Next use: the
IDN’s prefix is a capital letter.

If the acronym had simply been defined with:

\newglossaryentry{idn}{
nameIDN,
firstidentification number (IDN),
descriptionidentification number

b

then the first use of \gls{idn}['s] would have placed in the (insert) after the parentheses:

The identification number (IDN)’s prefix is a capital letter.

If you want to use one of the small caps acronym styles, described in §6.2, you need to use

lowercase characters for the shortened form:

\setacronymstyle{long-sc-short}
\newacronym{idn}{idn}{identification number}

€

Avoid nested definitions.

Recall from the warning in §4 that you should avoid using the \gls-like and \glstext-
like commands within the value of keys like text and first due to complications arising
from nested links. The same applies to acronyms defined using \newacronym.

For example, suppose you have defined:

\newacronym{ssi}{SSI}{server side includes}
\newacronym{html}{HTML}{hypertext markup language}

you may be tempted to do:

194

% This file is embedded in glossaries-user.pdf
% Example 23 Defining and Using an Acronym
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}
\setacronymstyle{long-short}
\newacronym{idn}{IDN}{identification number}
\begin{document}
First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use
 The \gls{idn}['s] prefix is a capital letter.
Next use: the \gls{idn}['s] prefix is a capital letter.
\end{document}

Nicola Talbot
Defining and Using an Acronym (source code)
Example document that defines an acronym and references it in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example023.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example023.pdf

6. Acronyms and Other Abbreviations

=

[\newacronym{shtml}{S\gls{html}}{\gls{ssi} enabled \gls{html}}

Don’t! This will break the case-changing commands, such as \G1ls, it will cause inconsis-
tencies on first use, and, if hyperlinks are enabled, will cause nested hyperlinks, and it will
index the nested entries every time the dependent entry is indexed, which creates unnec-
essary locations. It will also confuse the commands used by the entry formatting (such as
\glslabel).

Instead, consider doing:

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml}{SHTML}{SSI enabled HTML}

or if the font needs to match the style:

\newacronym
[description={\gls{ssi} enabled \gls{htmll}}]
{shtm1}{SHTML}{\acronymfont{SSI} enabled \acronymfont{HTML}}

Alternatively:

\newacronym

[description={\gls{ssi} enabled \gls{html}}]
{shtm1}{SHTML}

{server side includes enabled hypertext markup languagel

L BaL B

Similarly for the \glstext-like commands.

glossaries—extra

Other approaches are available with glossaries-extra. See the sections “Nested Links”
and “Multi (or Compound) Entries” in the glossaries-extra user manual.

6.1. Displaying the Long, Short and Full Forms
(Independent of First Use)

It may be that you want the long, short or full form regardless of whether or not the acronym
has already been used in the document. You can do so with the commands described in this
section.

195

6. Acronyms and Other Abbreviations

The \acr.. commands described below are part of the set of \glstext-like commands.
That is, they index and can form hyperlinks, and they don’t modify or test the first use flag.
However, unlike the other \glstext-like commands, their display is governed by \defgls-
entryfmt with \glscustomtext set to the appropriate link text. So, for example,

[\acrshort{(label)} [(insert)]

is similar to:

\glsdisp{%
\acronymfont{\glsentryshort{{label)}}{insert)}

except that the first use flag isn’t unset.
All caveats that apply to the \glstext-like commands also apply to the following com-
mands. (Including the above warning about nested links.)

glossaries—extra

If you are using glossaries—extra, don’t use the commands described in this section.
The glossaries—extra package provides analogous \glsxtr.. or \glsfmt.. commands.
For example, \glsxtrshort instead of \acrshort or, if needed in a heading, \gls-
fmtshort. (Similarly for the case-changing variants.)

7

The optional arguments are the same as those for the \glstext-like commands, and there
are similar star (*) and plus (+) variants that switch off or on the hyperlinks. As with the
\glstext-like commands, the link text is placed in the argument of \glstextformat.

X

\acrshort [(options)]{(entry-label)} [(insert)] modifiers: * +

This sets the link text to the short form (within the argument of \acronymfont) for the
acronym given by (entry-label). The short form is as supplied by the short key, which
\newacronym implicitly sets.

There are also analogous case-changing variants:

X

\Acrshort [(options)]{(entry-label)} [(insert)] modifiers: * +

(sentence case) and

X
\ACRshort [(options)]{(entry-label)} [(insert)] modifiers: * +

(all caps).

196

6. Acronyms and Other Abbreviations

There are also plural versions:

X
\acrshortpl [{options)]{(entry-label)} [(insert)] modifiers: * +
As \acrshort but uses the shortplural value.
X
\Acrshortpl [(options)1{(entry-label)} [{insert)] modifiers: * +
(sentence case) and
X
\ACRshortpl [{options)]{(entry-label)} [(insert)] modifiers: * +
(all caps).
X
\acrlong [(options)]{(entry-label)} [(insert)] modifiers: * +

This sets the link text to the long form for the acronym given by (entry-label). The long form
is as supplied by the 1ong key, which \newacronym implicitly sets.
There are also analogous case-changing variants:

X
\Acrlong [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\ACRlong[(options)] {(entry-label)} [(insert)] modifiers: * +
(all caps).
Again there are also plural versions:
X
\acrlongpl [(options)] {{entry-label)} [{insert)] modifiers: * +
As \acrlong but uses the longplural value.
X
\Acrlongpl [(options)]{(entry-label)} [(insert)] modifiers: * +

197

6. Acronyms and Other Abbreviations

(sentence case) and

X
\ACRlongpl [(options)] {{entry-label)} [{insert)] modifiers: * +
(all caps).
X
\acrfull [(options)]{(entry-label)} [(insert)] modifiers: * +

This sets the link text to show the full form according to the format governed by the acronym
style. This may not necessarily be the same format as that produced on the first use of \gls.
For example, the footnote style has the long form in a footnote on the first use of \gls but
\acrfull has the long form in parentheses instead.

There are also analogous case-changing variants:

X
\Acrfull [(options)]{(entry-label)} [(insert)] modifiers: * +
(sentence case) and
X
\ACRfull [(options)]{(entry-label)} [(insert)] modifiers: * +
(all caps).
The plural version is:
X
\acrfullpl [{options)]{(entry-label)} [{insert)] modifiers: * +
with case-changing variants:
X
\Acrfullpl [(options)] {(entry-label)} [{insert)] modifiers: * +
(sentence case) and
X
\ACRfullpl [(options)]1{(entry-label)} [(insert)] modifiers: * +

(all caps).
If you find the above commands too cumbersome to write, you can use the shortcuts
package option to activate the shorter command names listed in Table 6.1 on the next page.

198

6. Acronyms and Other Abbreviations

Table 6.1.: Synonyms provided by the shortcuts package option

Shortcut Command Equivalent Command

\acs \acrshort
\Acs \Acrshort
\acsp \acrshortpl
\Acsp \Acrshortpl
\acl \acrlong
\Acl \Acrlong
\aclp \acrlongpl
\Aclp \Acrlongpl
\act \acrfull
\Acf \Acrfull
\acfp \acrfullpl
\Acfp \Acrfullpl
\ac \gls

\Ac \Gls

\acp \glspl

\Acp \Glspl

It is also possible to access the long and short forms without indexing using commands
analogous to \glsentrytext (described in §5.2). These don’t include the acronym font com-
mands, such as \acronymfont.

X

\glsentrylong{(entry-label)}

Expands to the long form (that is, the value of the 1ong key, which is internally set by \new-
acronym). The corresponding sentence case command is:

\Glsentrylong{(entry-label)}

\glsentrylongpl{(entry-label)}

Expands to the long plural form (that is, the value of the longplural). The corresponding
sentence case command is:

\Glsentrylongpl{(entry-label)}

199

6. Acronyms and Other Abbreviations

\glsentryshort{(entry-label)}

Expands to the short form (that is, the value of the short key, which is internally set by
\newacronym). The corresponding sentence case command is:

b §
\Glsentryshort{(entry-label)’}
An similar command is available for the full form:
X
\glsentryfull{(entry-label)}

This command is redefined by the acronym style. Unlike \glsentrylong and \glsentry-
short, this does include \acronymfont, so if you need to use it in a section heading, you
may need to disable it in PDF bookmarks:

\pdfstringdefDisableCommands{), provided by hyperref
\let\acronymfont\@firstofone
\let\firstacronymfont\@firstofone

}

\Glsentryfull{(entry-label)}

This is like \glsentryfull but applies sentence case.
The analogous plural commands are:

\glsentryfullpl{(entry-label)}

(no case change) and

\Glsentryfullpl{(entry-label)}

(sentence case).

200

6. Acronyms and Other Abbreviations

6.2. Changing the Acronym Style

glossaries-extra

If you are using glossaries—extra, don’t use the commands described in this section.
Use \setabbreviationstyle to set the abbreviation style. This uses a different (but
more consistent) naming scheme. For example, long-noshort instead of dua. See the
“Abbreviations” chapter in the glossaries-extra manual for further details.

The acronym style is set using:

\setacronymstyle{(style-name)}

where (style name) is the name of the required style. The style must be set before the
acronyms are defined otherwise you will end up with inconsistencies.
For example:

\usepackage [acronym] {glossaries}
\makeglossaries
\setacronymstyle{long-sc-short}

\newacronym{html}{html}{hypertext markup language}
\newacronym{xml}{xml}{extensible markup language}

Unpredictable results will occur if you try to use multiple styles since each acronym style
redefines commands like \glsentryfull and \genacrfullformat that govern the way
the full form is displayed. The closest you can get to different styles if you only want to use
the base glossaries package is to adjust the entry format (see §5.1.4) or to provide a custom
acronym style such as in Example 12 on page 142.

[i
(L
If you need multiple styles, then use the glossaries—extra package, which has better

abbreviation management. See, for example, Gallery: Mixing Styles.*

“dickimaw-books.com/gallery/index.php?label=sample-name-font

The \setacronymstyle command will redefine \newacronym to use the newer acronym
mechanism introduced in version 4.02 (2013-12-05). The older mechanism was available, but
deprecated, for backward-compatibility until version 4.50 when it was removed. If the pre-
4.02 acronym styles are required, you will need to use rollback. As from v4.50, if you don’t
use \setacronymstyle, the first instance of \newacronym will automatically implement:

201

https://www.dickimaw-books.com/gallery/index.php?label=sample-name-font
https://www.dickimaw-books.com/gallery/index.php?label=sample-name-font

6. Acronyms and Other Abbreviations

=

[\setacronymstyle{long-short}

which is the closest match to the old default. The earlier Example 23 on page 194 can be
adjusted to use rollback to demonstrated the difference:

\usepackage{glossaries}[=v4.46]7 rollback to v4.46
% no \setacronymstyle so old style used
\newacronym{idn}{IDN}{identification number}
\begin{document}

First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}), reset first use
The \gls{idn}['s] prefix is a capital letter.

Next use:
the \gls{idn}['s] prefix is a capital letter.
\end{document}
This produces:
Example 24: Defining and Using an Acronym (Rollback) \EF 18

First use: identification number (IDN). Next use: IDN.
The identification number (IDN)’s prefix is a capital letter. Next use: the
IDN’s prefix is a capital letter.

The most noticeable difference is the way the (insert) optional argument is treated with \gls
onfirstuse (\gls{idn}['s]). With the old way, \newacronym simply set f irstidentification
number (IDN) when it internally used \newglossaryentry to define the acronym. The de-
fault entry format simply appends the (insert) after the value of the first key.

Unlike the original pre-4.02 behaviour of \newacronym, the styles set via \setacronym-
style don’t use the first key, but instead they use \defglsentryfmt to set a custom
display style that uses the long and short keys (or their plural equivalents). This means
that these styles cope better with plurals that aren’t formed by simply appending the sin-
gular form with the letter “s”. In fact, most of the predefined styles use \glsgenacfmt and
modify the definitions of commands like \genacrfullformat. If the original behaviour is
still required for some reason, use rollback.

In both the old and new implementation, the text key is set to the short form. Since the
first isn’t set with the new form, it will default to the value of the text key. This means
that with the new implementation, \glsfirst will produce the same result as \glstext.
This is why you need to use \acrlong or \acrfull instead. Alternatively, reset the first use
flag and use \gls.

202

% This file is embedded in glossaries-user.pdf
% Example 24 Defining and Using an Acronym (Rollback)
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}[=v4.46]% rollback to v4.46
 % no \setacronymstyle so old style used
 \newacronym{idn}{IDN}{identification number}
\begin{document}
First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use
 The \gls{idn}['s] prefix is a capital letter.
Next use: the \gls{idn}['s] prefix is a capital letter.
\end{document}

Nicola Talbot
Defining and Using an Acronym (Rollback) (source code)
Example document that defines an acronym and references it in the text using deprecated style with rollback. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example024.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example024.pdf

6. Acronyms and Other Abbreviations

When you use \setacronymstyle the name key is set to:

\acronymentry{(entry-label)}

and the sort key is set to

\acronymsort{(short)}{(long)}

These commands are redefined by the acronym styles. However, you can redefine them
again after the style has been set but before you use \newacronym. Protected expansion is
performed on \acronymsort when the acronym is defined.

6.2.1. Predefined Acronym Styles

The glossaries package provides a number of predefined acronym styles. These styles apply:

X

\firstacronymfont{(text)}

to the short form on first use and

\acronymfont{(text)}

on subsequent use. The styles modify the definition of \acronymfont and \firstacronym-
font asrequired. Usually, \firstacronymfont{(text)} simply does \acronymfont{(text)}
. If you want the short form displayed differently on first use, you can redefine \first-
acronymfont after the acronym style is set.

The predefined small caps styles that contain “sc” in their name (for example long-sc-short)
redefine \acronymfont to use \textsc, which means that the short form needs to be spec-
ified in lowercase if it should be rendered in small caps. This is because small caps has small
capital glyphs for lowercase letters but normal sized capital glyphs for uppercase letters,
which means there’s no visual difference between a normal upright font and a small caps
font if the text is in all caps.

203

6. Acronyms and Other Abbreviations

,

Example 25: Small-Caps Acronym N2 &2

\setacronymstyle{long-sc-short}

\newacronym{mathml}{MathML} 3
{matpematlcal markup language} MATEML
\begin{document}

\acrshort{mathml}

\end{document}

[i
=
Some fonts don’t support bold small caps, so you may need to redefine \glsnamefont
(see §8) to switch to medium weight if you are using a glossary style that displays
entry names in bold and you have chosen an acronym style that uses \textsc. (Al-
ternatively, switch to a font that does support bold small caps.)

The predefined glossary styles that contain “sm” in their name (for example long-sm-short)
redefine \acronymfont to use \textsmaller.
[i
(i
Note that the glossaries package doesn’t define or load any package that defines \text-

smaller. If you use one of the acronym styles that set \acronymfont to \text-
smaller you must explicitly load the relsize package or otherwise define \text-
smaller.

The remaining predefined styles redefine \acronymfont to simply do its argument with-
out any font change.
[i
(=
The predefined styles adjust \acrfull and \glsentryfull (and their plural and case-

changing variants) to reflect the style.

When acronyms are defined, \newacronym will set the sort key to:

\acronymsort{(short)}{(long)}

The acronym styles redefine this to suit the style. This command must fully expand in order
for the indexing application to pick up the correct sort value. If the sort key is set in the
optional argument of \newacronym, it will override this.

The name key is set to:

\acronymentry{(entry-label)}

204

% This file is embedded in glossaries-user.pdf
% Example 25 Small-Caps Acronym
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}
\setacronymstyle{long-sc-short}
\newacronym{mathml}{MathML}{mathematical markup language}
\begin{document}
\acrshort{mathml}
\end{document}

Nicola Talbot
Small-Caps Acronym (source code)
Example document that uses the long-sc-short acronym style, which renders the short form in a small-capital font. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example025.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example025.pdf

6. Acronyms and Other Abbreviations

Again, the acronym styles redefine this to suit the style. If the name key is set in the optional
argument of \newacronym, it will override this.

The type key is set to \acronymtype. If the type key is set in the optional argument of
\newacronymn, it will override this.

The shortplural is set to the short form appended by:

X

\acrpluralsuffix initial: \glsacrpluralsuffix

This is redefined by the acronym styles to the appropriate suffix. In most cases, it will simply
be defined to \glspluralsuffix, but the small caps styles define it to:

X

\glsupacrpluralsuffix

This uses:

\glstextup{(text)}

to cancel the effect of the small caps font command \textsc.

If the shortplural key is set in the optional argument of \newacronym, it will override
this default.

The longplural is set to the long form appended by \glspluralsuffix. If the long-
plural key is set in the optional argument of \newacronym, it will override this default.

Some styles set the description key to the long form, but others don’t. If you use a style
that doesn’t set it, you will have to supply the description in the optional argument of
\newacronym.

6.2.1.1. Long (Short)

With the “long (short)” styles, acronyms are displayed in the form:

(long) (\firstacronymfont{(short)})

on first use and

7

\acronymfont{(short)}

on subsequent use.

They also set \acronymsort so that it just expands to its first argument (short). This
means that the acronyms are sorted according to their short form. In addition, \acronym-
entry{label} is set to just the short form (enclosed in \acronymfont) and the description

205

6. Acronyms and Other Abbreviations

key is set to the long form.
I —

|

long-short

This is the default style that will be implemented if \setacronymstyle isn’t used (as from
v4.50, which has removed the default deprecated style). This shows the long form followed by
the short form in parentheses on first use and also with \acrfull. This redefines \acronym-
font to simply do its argument.

I —

| S

long-sc-short

This is like long-short but uses small caps for the short form, so it redefines \acronymfont
to use \textsc and \acrpluralsuffix to \glsacrpluralsuffix.

I —

|

long—sm-short

This is like long-short but uses \textsmaller for the short form, so it redefines \acronym-
font to use \textsmaller. This style will require relsize to be loaded.

I —

|

long-sp-short

This is like long-short but instead of simply using a space between the long and short form,
it uses:

X

\glsacspace{(label)}

This measures the short form for the given entry and, if the width is smaller than 3em, it will
use non-breaking space (~). Otherwise it will use \space.

[glossaries-extra]

Although the glossaries—extra package doesn’t support the base acronym styles, it
does redefine \glsacspace to use \glsacspacemax instead of the hard-coded 3em,
as \glsacspace may also be useful in abbreviation styles.

Example 26: Adapting a Predefined Acronym Style

Suppose I want to use the footnote-sc-desc style, but I want the name key set to the short
form followed by the long form in parentheses and the sort key set to the short form. Then
I need to specify the footnote-sc—desc style:

206

6. Acronyms and Other Abbreviations

\setacronymstyle{footnote-sc-desc}

and then redefine \acronymsort and \acronymentry:

\renewcommand*{\acronymsort}[2]{#1}) sort by short form
\renewcommand*{\acronymentry}[1]{) short (long) name
\acronymfont{\glsentryshort{#1}}\space (\glsentrylong{#1})1}/

_ B LB

(Pve used \space for extra clarity, but you can just use an actual space instead.)
Note that the default Computer Modern fonts don’t support bold small caps, so another
font is required. For example:

B

[\usepackage [T1]{fontenc}

The alternative is to redefine \acronymfont so that it always switches to medium weight to
ensure the small caps setting is used. For example:

B

\renewcommand*{\acronymfont}[1]{\textmd{\scshape #1}}

The sample file sampleFnAcrDesc. tex illustrates this example.

6.2.1.2. Short (Long)

With the “short (long)” styles, acronyms are displayed in the form:

\firstacronymfont{(short)} ({long))

on first use and

\acronymfont{(short)}

on subsequent use.

They also set \acronymsort{short}{long} to just (short). This means that the acronyms
are sorted according to their short form. In addition, \acronymentry{label} is set to just the
short form (enclosed in \acronymfont) and the description key is set to the long form.

| —

—

short-long

207

6. Acronyms and Other Abbreviations

This shows the short form followed by the long form in parentheses on first use and also
with \acrfull. This redefines \acronymfont to simply do its argument.

I —

|

[sc-short-long

This is like short-long but uses small caps for the short form, so it redefines \acronymfont
to use \textsc and \acrpluralsuffix to \glsacrpluralsuffix.

I —

|

sm-short-long

This is like short-long but uses \textsmaller for the short form, so it redefines \acronym-
font to use \textsmaller. This style will require relsize to be loaded.

6.2.1.3. Long (Short) User Supplied Description
l —

|

long-short-desc

This is like long-short but the description key must be provided in the optional argument of
\newacronym. The sort value command \acronymsort is redefined to expand to its second
argument ((long)), and \acronymentry is redefined to show the long form followed by the
short form in parentheses.

[=
=
long-sc-short-desc
This is like long-short-desc except that it uses small caps, as long-sc-short.
[=
=
long—-sm-short-desc
This is like long—short-desc except that it uses \textsmaller, as long-sm-short.
[=
=
long-sp-short-desc
This is like long-short-desc except that it uses \glsacspace, as long-sp-short.
6.2.1.4. Short (Long) User Supplied Description
[=
=

short-long-desc

208

6. Acronyms and Other Abbreviations

This is like short-long but the description key must be provided in the optional argument of
\newacronym. The sort value command \acronymsort is redefined to expand to its second
argument ((long)), and \acronymentry is redefined to show the long form followed by the
short form in parentheses.

[=
=
sc—short-long-desc
This is like short-long—desc except that it uses small caps, as long-sc-short.
[=
=
sm-short-long-desc

This is like short-long-desc except that it uses \textsmaller, as long-sm-short.

6.2.1.5. Do Not Use Acronym (DUA)

With these styles, the \gls-like commands always display the long form regardless of whether
the entry has been first useused or not. However, \acrfull and \glsentryfull will display
the long form followed by the short form, as per the long-short style.

| —

|

dua

The sort value command \acronymsort expands to just its second argument (the long form),
and \acronymentry shows just the long form.

| —

| S

dua-desc

The sort value command \acronymsort expands to just its second argument (the long form),
and \acronymentry shows just the long form.

6.2.1.6. Footnote

With these styles, the \gls-like commands show the short form followed by the long form
in a footnote on first use. The footnote is simply added with \footnote. The \acrfull set
of commands show the short form followed by the long form in parentheses (as per styles
like short-long). The definitions of \acronymsort and \acronymentry are as for the “short
(long)” styles described in §6.2.1.2.

(@]

= |
The footnote styles automatically set hyperfirst=false to prevent nested

hyperlinks.

209

6. Acronyms and Other Abbreviations

footnote

This defines \acronymentry, \acronymsort and \acronymfont in the same way as the
short-long style

I —

| S

footnote-sc

This defines \acronymentry, \acronymsort, \acronymfont and \acrpluralsuffixinthe
same way as the sc-short-long style

| —

| S

footnote-sm

This defines \acronymentry, \acronymsort and \acronymfont in the same way as the
sm-short-long style

I —

|

footnote—desc

This defines \acronymentry, \acronymsort and \acronymfont in the same way as the
short-long-desc style

I —

|

footnote-sc—desc

This defines \acronymentry, \acronymsort and \acronymfont in the same way as the
sc-short-long—-desc style

I —

|

footnote-sm-desc

This defines \acronymentry, \acronymsort and \acronymfont in the same way as the
sm-short-long-desc style

6.2.2. Defining A Custom Acronym Style

You may find that the predefined acronym styles that come with the glossaries package don’t
suit your requirements. In this case you can define your own style using:

)

X

\newacronymstyle{(name)}{(format def)}{(style defs)}

where (style name) is the name of the new style (avoid active characters). The second ar-
gument, (format def), is equivalent to the (definition) argument of \defglsentryfmt. You

210

6. Acronyms and Other Abbreviations

can simply use \glsgenacfmt or you can customize the display using commands like \if-
glsused, \glsifplural and \glscapscase. (See §5.1.4 for further details.)

If the style is likely to be used with a mixed glossary (that is, entries in that glossary are
defined both with \newacronym and \newglossaryentry) then you can test if the entry is
an acronym and use \glsgenacfmt if it is or \glsgenentryfmt if it isn’t. For example, the
long-short style sets (format def) as

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}

(You can use \ifglshasshort instead of \ifglshaslong to test if the entry is an acronym
if you prefer.)

The third argument, (style defs), can be used to redefine the commands that affect the
display style, such as \acronymfont and \genacrfullformat.

o

Bear in mind that you will need to use ## rather than to reference parameters in
command definitions within (style defs).

Note that \setacronymstyle redefines \glsentryfull and \acrfullfmt to use \gen-
acrfullformat (and similarly for the plural and case-changing variants). If this isn’t appro-
priate for the style (as in the case of styles like footnote and dua) \newacronymstyle should
redefine these commands within (style defs).

Within \newacronymstyle’s (style defs) argument you can also redefine:

\GenericAcronymFields

This should expand to the list of additional fields to be set in \newglossaryentry, when
it’s internally called by \newacronym. You can use the following token registers to access
information passed to the arguments of \newacronym.

X

\glskeylisttok

Contains the (key=value list) options.

\glslabeltok

Contains the (entry-label).

\glsshorttok

211

6. Acronyms and Other Abbreviations

Contains the (short) form argument.

\glslongtok

Contains the (long) form argument.
As with all token registers, you can obtain the value of the register with \the(register).
For example, the long-short style does:

\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}

which sets the description field to the long form of the acronym whereas the long-short
—desc style does:

[\renewcommand*{\GenericAcronymFields}{}

since the description needs to be specified by the user.
It may be that you want to define a new acronym style that’s based on an existing style.
Within (format def) of the new style, you can use

X
[\GlsUseAcrEntryDispStyle{(style-name)?}
to use the (format def) definition from the style given by (style name).
Within (display defs) of the new style, you can use
X

\GlsUseAcrStyleDefs{(style-name)}

to use the (display defs) from the style given by (style name).
For example, the long-sc-short acronym style is based on the long-short style with minor
modifications:

212

6. Acronyms and Other Abbreviations

\newacronymstyle{long-sc-short}

{% use the same display as long-short
\GlsUseAcrEntryDispStyle{long-short}/,

+h

{% use the same definitions as long-short
\GlsUseAcrStyleDefs{long-short}y
% Minor modifications:
\renewcommand{\acronymfont}[1]{\textsc{##1}})
\renewcommand*{\acrpluralsuffix}{\glstextup{\glspluralsuffix}}%

}

.

Example 27: Defining a Custom Acronym Style

Suppose I want my acronym on first use to have the short form in the text and the long
form with the description in a footnote. Suppose also that I want the short form to be put in
small caps in the main body of the document, but I want it in normal capitals in the list of
acronyms. In my list of acronyms, I want the long form as the name with the short form in
brackets followed by the description. That is, in the text I want \gls on first use to display:

\textsc{(short)}\footnote{(long): (description)}

on subsequent use:

\textsc{(short)}

and in the list of acronyms, each entry will be displayed in the form:

(long) ((short)) (description)

Let’s suppose it’s possible that I may have a mixed glossary. I can check this in the second
argument ((format def’)) of \newacronymstyle using:

Ei

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}

This will use \glsgenentryfmt if the entry isn’t an acronym, otherwise it will use \glsgen-
acfmt. The third argument ((display defs)) of \newacronymstyle needs to redefine \gen-
acrfullformat etc so that the first use displays the short form in the text with the long
form in a footnote followed by the description. This is done as follows:

213

6. Acronyms and Other Abbreviations

% No case change, singular first use:

\renewcommand*{\genacrfullformat}[2]{%
\firstacronymfont{\glsentryshort{##1}}##2
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}/,

Y

% Sentence case, singular first use:

\renewcommand*{\Genacrfullformat}[2]{%
\firstacronymfont{\Glsentryshort{##1}}##2
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}/,

By

% No case change, plural first use:

\renewcommand*{\genplacrfullformat}[2] {7
\firstacronymfont{\glsentryshortpl{##1}}##2J,
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}/

+h

% Sentence case, plural first use:
\renewcommand*{\Genplacrfullformat}[2]{%
\firstacronymfont{\Glsentryshortpl{##1}}#i#2J,
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}/
}

If you think it inappropriate for the short form to be capitalised at the start of a sentence you

can change the above to:

% No case change, singular first use:
\renewcommand*{\genacrfullformat} [2]{%
\firstacronymfont{\glsentryshort{##1}}##2
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}/,
+h

% No case change, plural first use:
\renewcommand*{\genplacrfullformat}[2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2},
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}/
+h

\let\Genacrfullformat\genacrfullformat
\let\Genplacrfullformat\genplacrfullformat

Another variation is to use \Glsentrylong and \Glsentrylongpl in the footnote instead
of \glsentrylong and \glsentrylongpl.

Now let’s suppose that commands such as \glsentryfull and \acrfull shouldn’t use
a footnote, but instead use the format: (long) ((short)). This means that the style needs to

214

6. Acronyms and Other Abbreviations

redefine \glsentryfull, \acrfullfmt and their plural and case-changing variants.

First, the non-linking commands:

\renewcommand*{\glsentryfull}[1]{’
\glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})7
By
\renewcommand*{\Glsentryfull}[1]{’
\Glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})7
+h
\renewcommand*{\glsentryfullpl}[1]{%
\glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%
+h
\renewcommand*{\Glsentryfullpl}[1]{%
\Glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%

}

Now for the linking commands:

\renewcommand*{\acrfullfmt}[3]{7
\glslink [##1]{##2}7,
\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})7
b
Y
\renewcommand*{\Acrfullfmt}[3]{%
\glslink [##1]{##2}7,
\Glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}3})7%
A
3
\renewcommand*{\ACRfullfmt}[3]{7
\glslink [##1]{##23},
\glsuppercase{/,
\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})7
3
h

215

6. Acronyms and Other Abbreviations

Y
\renewcommand*{\acrfullplfmt}[3]{%
\glslink [##1]{##2}7,
\glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})%
b
/A
\renewcommand*{\Acrfullplfmt} [3]{%
\glslink [##1]{##2}7,
\Glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})%
b
3
\renewcommand*{\ACRfullplfmt} [3]{%
\glslink [##1]##2%
\glsuppercase{%
\glsentrylongpl{##2}##3
(\acronymfont{\glsentryshortpl{##2}})%
3
h
}

(This may cause problems with long hyperlinks, in which case adjust the definitions so that,
for example, only the short form is inside the argument of \glslink.)

The style also needs to redefine \acronymsort so that the acronyms are sorted according
to the long form:

=

\renewcommand*{\acronymsort} [2] {##2}

If you prefer them to be sorted according to the short form you can change the above to:

=

\renewcommand*{\acronymsort} [2] {##1}

© 9

The acronym font needs to be set to \textsc and the plural suffix adjusted so that the “s
suffix in the plural short form doesn’t get converted to small caps:

Ei

\renewcommand*{\acronymfont} [1]{\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glsupacrpluralsuffix}y

There are a number of ways of dealing with the format in the list of acronyms. The simplest
way is to redefine \acronymentry to the long form followed by the upper case short form

216

6. Acronyms and Other Abbreviations

in parentheses:

\renewcommand*{\acronymentry}[1]{’
\Glsentrylong{##1}\space
(\glsuppercase\glsentryshort{##1})}

__ B

(Ive used \Glsentrylong instead of \glsentrylong to capitalise the name in the glossary.)

An alternative approach is to set \acronymentry to just the long form and redefine \Generic-
AcronymFields to set the symbol key to the short form and use a glossary style that displays
the symbol in parentheses after the name (such as the tree style) like this:

\renewcommand*{\acronymentry} [1]{\Glsentrylong{##1}}%
\renewcommand*{\GenericAcronymFields}{%
symbol={\protect\glsuppercase{\the\glsshorttok}}}/

I’'m going to use the first approach and set \GenericAcronymFields to do nothing:

\renewcommand*{\GenericAcronymFields}{1}/

Finally, this style needs to switch off hyperlinks on first use to avoid nested links:

\glshyperfirstfalse

Putting this all together:

B (0 [0 L B

\newacronymstyle{custom-fn}), new style name

{% entry format
\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentryfmt}y

Y

{h

\renewcommand*{\GenericAcronymFields}{}%
\glshyperfirstfalse

% No case change, singular first use:
\renewcommand*{\genacrfullformat}[2]{’
\firstacronymfont{\glsentryshort{##1}}##2
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}1}/
Y

% Sentence case, singular first use:

217

6. Acronyms and Other Abbreviations

\renewcommand*{\Genacrfullformat}[2]{/
\firstacronymfont{\Glsentryshort{##1}}##2
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}1}/

Y

% No case change, plural first use:

\renewcommand*{\genplacrfullformat} [2]{7
\firstacronymfont{\glsentryshortpl{##1}}##2},
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}/

/A

% Sentence case, plural first use:

\renewcommand*{\Genplacrfullformat}[2]{7
\firstacronymfont{\Glsentryshortpl{##1}}##2}
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}/

Y

% non-linking commands

\renewcommand*{\glsentryfull}[11{J

\glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})7%
/A
\renewcommand*{\Glsentryfull} [1]{7
\Glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})7%
Y
\renewcommand*{\glsentryfullpl}[1]{%
\glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%
Y
\renewcommand*{\Glsentryfullpl}[1]{%
\Glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})%

Y

% linking commands

\renewcommand*{\acrfullfmt} [3]{%

\glslink [##1]{##2},
\glsentrylong{##2}##3\space

(\acronymfont{\glsentryshort{##2}1})7
b

Y

\renewcommand*{\Acrfullfmt} [3]{%

\glslink [##1] {##21}%
\Glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})7

218

6. Acronyms and Other Abbreviations

b
Y
\renewcommand*{\ACRfullfmt}[3]{%
\glslink [##1] {##21}%
\glsuppercase{%
\glsentrylong{##2}##3\space
(\acronymfont{\glsentryshort{##2}})7
Y
b
Y
\renewcommand*{\acrfullplfmt} [3]{/
\glslink [##1]{##2}},
\glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})%
b
Y
\renewcommand*{\Acrfullplfmt}[3]{%
\glslink [##1] {##2}
\Glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})
b
By
\renewcommand*{\ACRfullplfmt}[3]{%
\glslink [##1]##2Y,
\glsuppercase{/,
\glsentrylongpl{##2}##3
(\acronymfont{\glsentryshortpl{##2}})%
Y
b
Y
% font
\renewcommand*{\acronymfont} [1]{\textsc{##1}}/
\renewcommand*{\acrpluralsuffix}{\glsupacrpluralsuffix}y
% sort
\renewcommand*{\acronymsort} [2] {##2}/,
% name
\renewcommand*{\acronymentry} [1]{/
\Glsentrylong{##1}\space
(\glsuppercase\glsentryshort{##1})1}/
}

Now I need to specify that I want to use this new style:

219

6. Acronyms and Other Abbreviations

[\setacronymstyle{custom-fn}

I also need to use a glossary style that suits this acronym style, for example altlist:

[\setglossarystyle{altlist}

Once the acronym style has been set, I can define my acronyms:

\newacronym[description={set of tags for use in
developing hypertext documents}]{html}{html}{Hyper
Text Markup Language}

\newacronym[description={language used to describe the
layout of a document written in a markup language}]{css}
{css}{Cascading Style Sheet}

The sample file sample-custom-acronym.tex illustrates this example.

Example 28: Italic and Upright Abbreviations

Suppose I want to have some acronyms in italic and some that just use the surrounding
font. Hard-coding this into the (short) argument of \newacronym can cause complications.

This example uses \glsaddstoragekey to add an extra field that can be used to store the
formatting declaration (such as \em).

Ei

\glsaddstoragekey{font}{}{\entryfont}

This defines a new field/key called font, which defaults to nothing if it’s not explicitly set.
This also defines a command called \entryfont that’s analogous to \glsentrytext. A new
style is then created to format acronyms that access this field.

There are two ways to do this. The first is to create a style that doesn’t use \glsgenacfmt
but instead provides a modified version that doesn’t use \acronymfont but instead uses

[{\entryfont{\glslabel}(short)}.

The full format given by commands such as \genacrfullformat need to be similarly ad-
justed. For example:

220

6. Acronyms and Other Abbreviations

\renewcommand*{\genacrfullformat} [2]{%
\glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})7

+h

This will deal with commands like \gls but not commands like \acrshort which still use
\acronymfont. Another approach is to redefine \acronymfont to look up the required font
declaration. Since \acronymfont doesn’t take the entry label as an argument, the following
will only work if \acronymfont is used in a context where the label is provided by \gls-
label. This is true in \gls, \acrshort and \acrfull. The redefinition is now:

=

\renewcommand*{\acronymfont}[1]{{\entryfont{\glslabel}##1}1}/,

So the new style can be defined as:

\newacronymstyle{long-font-short}
{h
\GlsUseAcrEntryDispStyle{long-short}/
3
{h
\GlsUseAcrStyleDefs{long-short}y
\renewcommand*{\genacrfullformat} [2]{7
\glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})7
/A
\renewcommand*{\Genacrfullformat} [2]{%
\Glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})7
Y
\renewcommand*{\genplacrfullformat}[2]{%
\glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})7
Yh
\renewcommand*{\Genplacrfullformat} [2]{%
\Glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})7
Y
\renewcommand*{\acronymfont}[1]{{\entryfont{\glslabell}##1}}/
\renewcommand*{\acronymentry} [1] {{\entryfont{##1}\glsentryshort
{##1}33,

221

6. Acronyms and Other Abbreviations

& |

Remember the style needs to be set before defining the entries:

\setacronymstyle{long-font-short}

The complete document is contained in the sample file sample-font-abbr. tex.

Some writers and publishing houses have started to drop full stops (periods) from uppercase
initials but may still retain them for lowercase abbreviations, while others may still use them
for both upper and lowercase. This can cause complications. Chapter 12 of The TgXbook dis-
cusses the spacing between words but, briefly, the default behaviour of TgX is to assume that
an uppercase character followed by a full stop and space is an abbreviation, so the space is the
default inter-word space whereas a lowercase character followed by a full stop and space is a
word occurring at the end of a sentence, which requires an inter-sentence space (which may
or may not be the same as an inter-word space). In the event that this isn’t true, you need to
make a manual adjustment using \, (backslash space) in place of just a space character for
an inter-word mid-sentence space and use \@ before the full stop to indicate the end of the
sentence.

For example:

I was awarded a B.Sc. and a Ph.D. (From the same place.)

is typeset as

I was awarded a B.Sc. and a Ph.D. (From the same place.)

The spacing is more noticeable with the typewriter font:

\ttfamily
I was awarded a B.Sc. and a Ph.D. (From the same place.)

is typeset as

I was awarded a B.Sc. and a Ph.D. (From the same place.)

The lowercase letter at the end of “B.Sc.” is confusing TgX into thinking that the full stop
after it marks the end of the sentence. Whereas the uppercase letter at the end of “Ph.D.” has

222

6. Acronyms and Other Abbreviations

confused TEX into thinking that the following full stop is just part of the abbreviation. These
can be corrected:

=

I was awarded a B.Sc.\and a Ph.D\@. (From the same place.)

This situation is a bit problematic for glossaries. The full stops can form part of the (short)
argument of \newacronym and the B.Sc.\, part can be dealt with by remembering to add
\L (for example, \gls{bsc}\ , but the end of sentence case is more troublesome as you need
to omit the sentence terminating full stop (to avoid two dots) which can make the source
code look a little strange but you also need to adjust the space factor, which is usually done
by inserting \@ before the full stop.

The next example shows one way of achieving this.

[glossaries—extra

The glossaries—extra package provides a much simpler way of doing this, which you
may prefer to use. See sample-initialisms.shtml®Gallery: Initialisms.

?dickimaw-books.com/gallery

Example 29: Abbreviations with Full Stops (Periods)

The post-link hook (\glspostlinkhook) is called at the very end of the \gls-like and
\glstext-like commands. This can be redefined to check if the following character is a full
stop. The amsgen package (which is automatically loaded by glossaries) provides an internal
command called \new@ifnextchar that can be used to determine if the given character
appears next. (For more information see the amsgen documentation. Alternatively, ETEX3
may provide a better way of doing this.)

It’s possible that I may also want acronyms or contractions (without full stops) in my
document, so I need some way to differentiate between them. Here I'm going to use the
same method as in Example 12 on page 142 where a new field is defined to indicate the type
of abbreviation:

=

\glsaddstoragekey{abbrtype}t{word}{\abbrtype}

\newcommand*{\newabbr} [1] []{\newacronym[abbrtype=initials,#1]}

Now I just use \newacronym for the acronyms, for example,

\newacronym{laser}{laser}{light amplification by stimulated
emission of radiation}

223

https://www.dickimaw-books.com/gallery
https://www.dickimaw-books.com/gallery

6. Acronyms and Other Abbreviations

and my new command \newabbr for initials, for example,

\newabbr{eg}t{e.g.}{exempli gratia}
\newabbr{ie}{i.e.}{id est}
\newabbr{bsc}{B.Sc.}{Bachelor of Science}
\newabbr{ba}{B.A.}{Bachelor of Arts}
\newabbr{agm}{A.G.M.}{annual general meeting}

Within \glspostlinkhook the entry’s label can be accessed using \glslabel and \ifgls-
fieldeq can be used to determine if the current entry has the new abbrtype field set to
“initials”. If it doesn’t, then nothing needs to happen, but if it does, a check is performed to
see if the next character is a full stop. If it is, this signals the end of a sentence otherwise it’s
mid-sentence.

Remember that internal commands within the document file (rather than in a class or
package) need to be placed between \makeatletter and \makeatother:

\makeatletter

\renewcommand{\glspostlinkhook}{%
\ifglsfieldeq{\glslabel}{abbrtype}{initials}’
{\new@ifnextchar.\doendsentence\doendword}
{3%

}

\makeatother

In the event that a full stop is found then \doendsentence is performed, but it will be fol-
lowed by the full stop, which needs to be discarded. Otherwise \doendword will be done,
but it won’t be followed by a full stop so there’s nothing to discard. The definitions for these
commands are:

=

\newcommand{\doendsentence}[1]{\spacefactor=10000 }
\newcommand{\doendword}{\spacefactor=1000 }

Now, I can just do \gls{bsc} mid-sentence and \gls{phd}. at the end of the sentence. The
terminating full stop will be discarded in the latter case, but it won’t be discarded in, say,
\gls{laser}. asthat doesn’t have the abbrtype field set to “initials”.

This also works on first use when the style is set to one of the (long) ({short)) styles but
it will fail with the (short) ({long)) styles as in this case the terminating full stop shouldn’t
be discarded. Since \glspostlinkhook is used after the first use flag has been unset for the
entry, this can’t be fixed by simply checking with \ifglsused. One possible solution to this
is to redefine \glslinkpostsetkeys to check for the first use flag and define a macro that
can then be used in \glspostlinkhook.

224

6. Acronyms and Other Abbreviations

The other thing to consider is what to do with plurals. One possibility is to check for plural
use within \doendsentence (using \glsifplural) and put the full stop back if the plural
has been used.

The complete document is contained in the sample file sample-dot-abbr.tex.

6.3. Displaying the List of Acronyms

The list of acronyms is just like any other type of glossary and can be displayed on its own
using the appropriate \print(...)glossary command, according to the indexing method.
For example, Option 1:

\printnoidxglossary[type=\acronymtypel

Options 2 or 3:

\printglossary[type=\acronymtype]

Or if you have used the acronym or acronyms package option:

\printacronyms

0 L0 LD

See §2.7.)

Alternatively, the list of acronyms can be displayed with all the other glossaries using
\printnoidxglossaries (Option 1) or \printglossaries (Options 2 or 3).

The remaining indexing methods require glossaries—extra, which has its own abbreviation
commands that are incompatible with the base acronym commands.

A

Care must be taken to choose a glossary style that’s appropriate to your acronym style.
Alternatively, you can define your own custom style (see §13.2 for further details).

225

6. Acronyms and Other Abbreviations

6.4. Upgrading From the glossary Package
(@]

= |
The old glossary package was made obsolete in 2007, when the first version of glossaries

was released, so this section is largely redundant but is retained in the event that
someone may happen to have an old document that needs to be converted to work
with a modern TgX distribution. See also the accompanying document “Upgrading
from the glossary package to the glossaries package” (glossary2glossaries.pdf).

J

Users of the obsolete glossary package may recall that the syntax used to define new
acronyms has changed with the replacement glossaries package. In addition, the old glossary
package created the command \ (acr-name) when defining the acronym (acr-name).

In order to facilitate migrating from the old glossary package to the new one, the glossaries
package provides the command:

X

\oldacronym[(label)]{(short)}{(long)}{(key=value list)}

This uses the same syntax as the glossary package’s method of defining acronyms. It is equiv-
alent to:

[\newacronym [(key=value list)]{(label)}{(short)}{(long)}

In addition, \oldacronym also defines the commands \(label), which is equivalent to \gls
{(label)}, and \(label)*, which is equivalent to the sentence case \G1s{(label)}. If (label) is
omitted, (short) is used. Since commands names must consist only of alphabetical characters,
(label) must also only consist of alphabetical characters. Note that \ (label) doesn’t allow you
to use the first optional argument of \gls or \G1ls — you will need to explicitly use \gls or
\G1s to change the settings.

(i]
=
Recall that, in general, BTEX ignores spaces following command names consisting of

alphabetical characters. This is also true for \(label) unless you additionally load the
xspace package, but be aware that there are some issues with using xspace. (See David
Carlisle’s explanation in Drawbacks of xspace.)

J

The glossaries package doesn’t load the xspace package since there are both advantages and
disadvantages to using \xspace in \(label). If you don’t use the xspace package, then you
need to explicitly force a space using \, (backslash space). On the other hand, you can follow
the \(label) command with the optional (insert) text in square brackets (the final optional
argument to \gls). If you use the xspace package you don’t need to escape the spaces but
you can’t use the optional argument to insert text (you will have to explicitly use \gls to
achieve that).

226

http://tex.stackexchange.com/questions/86565/drawbacks-of-xspace

6. Acronyms and Other Abbreviations

To illustrate this, suppose I define the acronym “abc” as follows:

=

[\oldacronym{abc}{example acronym}{}

This will create the command \abc and its starred version \abc*. Table 6.2 illustrates the
effect of \abc (on subsequent use) according to whether or not the xspace package has been
loaded. As can be seen from the final row in the table, the xspace package prevents the
optional argument from being recognised.

Table 6.2.: The effect of using xspace with \oldacronym

Code With xspace Without xspace
\abc. abc. abc.

\abc xyz abc xyz abcxyz
\abc\xyz abc xyz abc xyz

\abc* xyz Abc xyz Abc xyz

\abc['s] xyz abc [’s] xyz abc’s xyz

227

7. Unsetting and Resetting Entry Flags

When using the \gls-like commands it is possible that you may want to use the value given
by the first key, even though you have already used the glossary entry. Conversely, you
may want to use the value given by the text key, even though you haven’t used the glossary
entry.

The former can be achieved by one of the following commands:

b §
\glsreset{(entry-label)}
which globally resets the first use flag and
X
\glslocalreset{(entry-label)}
which locally resets the first use flag.
The latter can be achieved by one of the following commands:
I
\glsunset{(entry-label)}
which globally unsets the first use flag and
b §

\glslocalunset{(entry-label)}

which locally unsets the first use flag.
The above commands are for the specific entry identified by the argument (entry-label).
You can also reset or unset all entries for a given glossary or multiple glossaries using:

X
\glsresetall [(glossary labels list)]
which globally resets the first use flags and
I
\glslocalresetall [{glossary labels list)]

228

7. Unsetting and Resetting Entry Flags

which locally resets the first use flags or

\glsunsetall [(glossary labels list)]

which globally unsets the first use flags and

\glslocalunsetall [{(glossary labels list)]

which locally unsets the first use flags.

The optional argument (glossary labels list) should be a comma-separated list of glossary
labels. If omitted, the list of all non-ignored glossaries is assumed.

For example, to reset all entries in the main glossary and the acronym list:

\glsresetall [main,acronym]

glossaries—extra

The glossaries—extra package additional provides the options preunset and prereset
for the \gls-like commands, that will unset or reset the first use flag before the link
text, which will make the \gls-like command behave as though it was the subsequent
use or first use, irrespective of whether or not the entry has actually been used.

J

You can determine whether an entry’s first use flag is set with \ifglsused. With bib2gls,
you may need to use \GlsXtrIfUnusedOrUndefined instead.
[i
=
Be careful when using \gls-like commands within an environment or command ar-

gument that gets processed multiple times as it can cause unwanted side-effects when
the first use displayed text is different from subsequent use.

For example, the frame environment in beamer processes its argument for each overlay.
This means that the first use flag will be unset on the first overlay and subsequent overlays
will use the subsequent use form.

Consider the following example:

\documentclass{beamer}

\usepackage{glossaries}

229

7. Unsetting and Resetting Entry Flags

\newacronym{svm}{SVM}{support vector machine}
\begin{document}

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls{svm}
\item<+-> Stuff.

\end{itemize}

\end{frame}

\end{document}

On the first overlay, \gls{svm} produces “support vector machine (SVM)” and then unsets
the first use flag. When the second overlay is processed, \gls{svm} now produces “SVM”,
which is unlikely to be the desired effect. I don’t know anyway around this and I can only
offer the following suggestions.

1. Unset all acronyms at the start of the document and explicitly use \acrfull when you
want the full version to be displayed:

\documentclass{beamer}
\usepackage{glossaries}
\newacronym{svm}{SVM}{support vector machine}
\glsunsetall

\begin{document}

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \acrfull{svm}
\item<+-> Stuff.

\end{itemize}

\end{frame}

230

7. Unsetting and Resetting Entry Flags

l \end{document}

2. Explicitly reset each acronym on first use:

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \glsreset{svm}\gls{svm}
\item<+-> Stuff.

\end{itemize}

\end{frame}

Alternatively, with glossaries-extra:

\documentclass{beamer}
\usepackage{glossaries-extra}
\newabbreviation{svm}{SVM}{support vector machine}
\begin{document}

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls[prereset]{svm}
\item<+-> Stuff.
\end{itemize}
\end{frame}

\end{document}

3. Use the glossaries—extra package’s unset buffering mechanism:

\documentclass{beamer}

231

7. Unsetting and Resetting Entry Flags

\usepackage{glossaries-extra}
\newabbreviation{svm}{SVM}{support vector machine}
\begin{document}

\GlsXtrStartUnsetBuffering
\GlsXtrUnsetBufferEnableRepeatLocal
\begin{frame}
\GlsXtrResetLocalBuffer
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls{svm}
\item<+-> Stuff.

\end{itemize}

\end{frame}
\GlsXtrStopUnsetBuffering

\end{document}

See the glossaries—extra manual for further details.

These are non-optimal, but the beamer class is too complex for me to provide a program-
matic solution. Other potentially problematic environments are some tabular-like environ-
ments (but not tabular itself) that process the contents in order to work out the column widths
and then reprocess the contents to do the actual typesetting.

The amsmath environments, such as align, also process their contents multiple times, but
the glossaries package now checks for this. For tabularx, you need to explicitly patch it by
placing \glspatchtabularx in the preamble (or anywhere before the problematic use of
tabularx).

7.1. Counting the Number of Times an Entry has been
Used (First Use Flag Unset)

It’s possible to keep track of how many times an entry is used. That is, how many times
the first use flag is unset. Note that the supplemental glossaries—extra package improves
this function and also provides per-unit counting, which isn’t available with the glossaries
package.

232

7. Unsetting and Resetting Entry Flags

This function is disabled by default as it adds extra overhead to the document build time
and also switches \newglossaryentry (and therefore \newacronym) into a preamble-
only command.

To enable this function, use:

\glsenableentrycount

before defining your entries. This adds two extra (internal) fields to entries: currcount and
prevcount.

The currcount field keeps track of how many times \glsunset is used within the docu-
ment. A local unset (using \glslocalunset) performs a local rather than global increment
to currcount. Remember that not all commands use \glsunset. Only the \gls-like com-
mands do this.

The behaviour of the reset commands depend on the conditional:

X

\ifglsresetcurrcount (true)\else (false)\fi initial: \iffalse

If true, the reset commands \glsreset and \glslocalreset will reset the value of the
currcount field back to 0. This conditional can be set to true with:

X

[\glsresetcurrcounttrue

and to false with:

\glsresetcurrcountfalse

The default is false, as from version 4.50.

The prevcount field stores the final value of the currcount field from the previous run.
This value is read from the aux file at the beginning of the document environment.

You can access these fields using

\glsentrycurrcount{(entry-label)}

233

7. Unsetting and Resetting Entry Flags

for the currcount field, and

\glsentryprevcount{(entry-label)}

for the prevcount field.

i

[These commands are only defined if you have used \glsenableentrycount.

For example:

\documentclass{article}
\usepackage{glossaries}
\makeglossaries
\glsenableentrycount

\newglossaryentry{apple}{name={apple},description={a fruitl}}

\begin{document}
Total usage on previous run: \glsentryprevcount{applel}.

\gls{apple}. \gls{apple}. \glsadd{apple}\glsentrytext{apple}.
\glslink{apple}{apple}. \glsdisp{apple}{apple}. \Gls{applel}.

Number of times apple has been used: \glsentrycurrcount{apple}.
\end{document?}

On the first EIgX run, \glsentryprevcount{apple} produces 0. At the end of the docu-
ment, \glsentryprevcount{apple} produces 4. This is because the only commands that
have incremented the entry count are those that use \glsunset. That is: \gls, \glsdisp
and \Gls. The other commands used in the above example, \glsadd, \glsentrytext and
\glslink, don’t use \glsunset so they don’t increment the entry count. On the next ETEX
run, \glsentryprevcount{apple} now produces 4 as that was the value of the currcount
field for the “apple” entry at the end of the document on the previous run.

When you enable the entry count using \glsenableentrycount, you also enable the
following commands:

X
\cgls [(options)]1{(entry-label)} [(insert)] modifiers: * +

234

7. Unsetting and Resetting Entry Flags

(no case-change, singular, analogous to \gls)

X
\cglspl [{options)] {(entry-label)} [(insert)] modifiers: * +
(no case-change, plural, analogous to \glspl)
X
\cG1s [(options)]{(entry-label)} [(insert)] modifiers: * +
(first letter uppercase, singular, analogous to \G1s), and
X
\cGlspl [{options)]{(entry-label)} [(insert)] modifiers: * +

(first letter uppercase, plural, analogous to \Glspl).

glossaries—extra

[All caps versions are only available with glossaries-extra.

7

If you don’t use \glsenableentrycount, these commands behave like their counterparts
\gls, \glspl, \G1ls and \Glspl, respectively, but there will be a warning that you haven’t
enabled entry counting.

If you have enabled entry counting with \glsenableentrycount then these commands
test if \glsentryprevcount{(entry-label)} equals 1. If it doesn’t then the analogous \gls
etc will be used. If it is 1, then the first optional argument will be ignored and

[(cs format){(entry-label) }{(insert)}\glsunset{(entry-label)}

will be performed, where (cs format) is a command that takes two arguments. The command
used depends whether you have used \cgls, \cglspl, \cGls or \cGlspl.
The formatting command (cs format) will be one of the following:

\cglsformat{(entry-label)}{(insert)}

This command is used by \cgls and defaults to

\glsentrylong{(entry-label)} (insert)

if the entry given by (entry-label) has a long form or

\glsentryfirst{(entry-label)}(insert)

235

7. Unsetting and Resetting Entry Flags

otherwise.

\cglsplformat{(entry-label)}{(insert)}

This command is used by \cglspl and defaults to

\glsentrylongpl{(entry-label)} (insert)

if the entry given by (entry-label) has a long form or

\glsentryfirstplural{(label)}(insert)

otherwise.

\cGlsformat{(entry-label)}{(insert)}

This command is used by \cGls and defaults to

\Glsentrylong{(entry-label)}(insert)

if the entry given by (entry-label) has a long form or

[\Glsentryfirst{(entry-label)}(insert)

otherwise.

\cGlsplformat{(entry-label)}{(insert)}

This command is used by \cGlspl and defaults to

\Glsentrylongpl{(entry-label)}

{(entry-label)}(insert)

if the entry given by (entry-label) has a long form or

\Glsentryfirstplural{(entry-label)}(insert)

otherwise.

236

7. Unsetting and Resetting Entry Flags

This means that if the previous count for the given entry was 1, the entry won’t be hyperlinked
with the \cgls-like commands and those commands won’t index (that is, they won’t add
a line to the external glossary file). If you haven’t used any of the other commands that
index (such as \glsadd or the \glstext-like commands) then the entry won’t appear in the
glossary.

Remember that since these commands use \glsentryprevcount you need to run KIgX
twice to ensure they work correctly. The document build requires a second KIgX call before
running the indexing application. For example, if the document is in a file called myDoc . tex,
then the document build needs to be:

pdflatex myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

In the following document, the acronyms that have only been used once (on the previous

run) only have their long form shown with \cgls.

\documentclass{article}

\usepackage [colorlinks] {hyperref}
\usepackage [acronym] {glossaries}
\makeglossaries

\glsenableentrycount
\setacronymstyle{long-short}

\newacronym{html }{HTML}{hypertext markup language}
\newacronym{css}{CSS}{cascading style sheets}
\newacronym{xml}{XML}{extensible markup language}
\newacronym{sql}{SQL}{structured query language}
\newacronym{rdbms}{RDBMS}{relational database management system}
\newacronym{rdsms}{RDSMS}{relational data stream management system}

\begin{document}

These entries are only used once: \cgls{sql}, \cgls{rdbms},
\cgls{xml}. These entries are used multiple times:
\cgls{html}, \cgls{html}, \cgls{css}, \cgls{css}, \cgls{css},
\cgls{rdsms}, \cgls{rdsms}.

237

7. Unsetting and Resetting Entry Flags

\printglossaries
\end{document}

After a complete document build the list of acronyms only includes the entries HTML, CSS
and RDSMS. The entries SQL, RDBMS and XML only have their long forms displayed and
don’t have a hyperlink.

Example 30: Don’t index entries that are only used once N\EFIE

These entries are only used once: structured query language, relational
database management system, extensible markup language. These entries are
used multiple times: hypertext markup language (HTML), HTML, cascading
style sheets (CSS), CSS, CSS, relational data stream management system
(RDSMS), RDSMS.

Acronyms

CSS cascading style sheets. 1
HTML hypertext markup language. 1

RDSMS relational data stream management system. 1

| bib2gls

| U
With bib2gls there’s an analogous record counting set of commands. See glossaries
-extra and bib2gls manuals for further details.

238

% This file is embedded in glossaries-user.pdf
% Example 30 Don't index entries that are only used once
% arara: pdflatex
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[colorlinks]{hyperref}
\usepackage[acronym]{glossaries}
\makeglossaries

\glsenableentrycount

\setacronymstyle{long-short}

\newacronym{html}{HTML}{hypertext markup language}
\newacronym{css}{CSS}{cascading style sheets}
\newacronym{xml}{XML}{extensible markup language}
\newacronym{sql}{SQL}{structured query language}
\newacronym{rdbms}{RDBMS}{relational database management system}
\newacronym{rdsms}{RDSMS}{relational data stream management system}
\begin{document}
These entries are only used once: \cgls{sql}, \cgls{rdbms},
\cgls{xml}. These entries are used multiple times:
\cgls{html}, \cgls{html}, \cgls{css}, \cgls{css}, \cgls{css},
\cgls{rdsms}, \cgls{rdsms}.

\printglossaries
\end{document}

Nicola Talbot
Don't index entries that are only used once (source code)
Example document that only includes the entries that have been used more than once in the document (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example030.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example030.pdf

8. Displaying a Glossary

All defined glossaries may be displayed using the appropriate command, such as \print-
glossary, that matches the indexing method. These commands are collectively referred to
as the \print(...)glossary set of commands.

(@]

=
With Options 2, 3 or 4, if the glossary does not appear after you re-EIgX your docu-

ment, check the makeindex, xindy or bib2gls log files (glg or the (log-ext) argument
of \newglossary), as applicable, to see if there is a problem. With Option 1, you just
need two EIEX runs to make the glossaries appear, but you may need further runs to
make the number lists up-to-date. If you have used the automake option, check the
log file for “runsystem” lines (see the information about the automake option in §2.5
for further details).

Option 1 (must be used with \makenoidxglossaries in the document preamble):

\printnoidxglossary [(options)]

This displays the glossary identified by the type option in (options) or, if omitted, the glossary
identified by \glsdefaulttype. This command iterates over a list of entry labels, which it
will have to first sort with sort=standard. The list will only include those entries that have
been indexed and the appropriate glossary markup is added within the loop. This makes it
unsuitable for the tabular-like glossary styles, such as long and super.

The following is an iterative command:

\printnoidxglossaries

which internally uses \printnoidxglossary for each non-ignored glossary.
Options 2 and 3 (must be used with \makeglossaries in the document preamble):

\printglossary [{options)]

This displays the glossary identified by the type option in (options) or, if omitted, the glossary
identified by \glsdefaulttype. This command internally inputs the associated glossary

239

8. Displaying a Glossary

file (created by the relevant indexing application) if it exists. The glossary file contains the
markup to typeset the glossary. See §1.6 for information on how to create the glossary file.
The following is an iterative command:

X

\printglossaries

which internally uses \printglossary for each non-ignored glossary.

[i
=
While the external glossary files are missing, \printglossary will just do \null for

each missing glossary to assist dictionary style documents that just use \glsaddall
without inserting any text. This use of \null ensures that all indexing information is
written before the final page is shipped out. Once the external glossary files are present
\null will no longer be used. This can cause a spurious blank page on the first KIgX
run before the glossary files have been created. Once these files are present, \null will
no longer be used and so shouldn’t cause interference for the final document. With
glossaries—extra, placeholder text is used instead.

Options 4 and 5 (glossaries—extra only):

\printunsrtglossary [{options)]

This displays the glossary identified by the type option in (options) or, if omitted, the glossary
identified by \glsdefaulttype. This command is similar to \printnoidxglossary, in
that it iterates over a list of entry labels, but in this case all defined entries within the given
glossary are included and the list is in the order in which they were defined (that is, the order
in which they were added to the glossary’s internal label list).

The reason this command works with bib2gls is because bib2gls writes the entry def-
initions in the glstex file in the order obtained by the sort resource option, and bib2gls
will only include the entries that match the required selection criteria.

With Option 5 (that is, without bib2gls) the result will be in the order the entries were
defined in the tex file. There’s no attempt to gather child entries (see §4.5). This means that
if you don’t define child entries immediately after their parent, you will have a strange result
(depending on the glossary style).

As with \printnoidxglossary, the glossary markup is inserted during the loop but, un-
like that command, \printunsrtglossary performs the loop outside of the glossary style,
which means that there are no issues with the tabular-like styles. See the glossaries—extra
manual for further details.

240

8. Displaying a Glossary

The following is an iterative command:

\printunsrtglossaries

which internally uses \printunsrtglossary for each non-ignored glossary.
The glossaries—extra package also provides

\printunsrtinnerglossary [{options)]{(pre-code)}{{post-code)}

which is designed for inner or nested glossaries. It allows many, but not all, of the options
listed below. There’s an example available in the gallery: Inner or Nested Glossaries.! See
the glossaries—extra package for further details.

All the individual glossary commands \print(...)glossary have an optional argument.
Available options are listed in §8.1.

After the options have been set, the following command will be defined:

\currentglossary

This expands to the label of the current glossary (identified by the type option). It may be
used within glossary style hooks, if required.

8.1. \print(...)glossary Options

These options may be used in the optional argument of the \print(...)glossary set of com-
mands. Some options are available for all those commands, but those that aren’t are noted.
Before the options are set, the following commands are defined to their defaults for the given
glossary. They may then be redefined by applicable options.

type Identifies the glossary to display. The value should be the glossary label. Note that
you can only display an ignored glossary with \printunsrtglossary or \printunsrt-
innerglossary, otherwise (glossary-label) should correspond to a glossary that was defined
with \newglossary or \altnewglossary.

title Sets the glossary’s title (\glossarytitle). This option isn’t available with \print-
unsrtinnerglossary.

toctitle Sets the glossary’s table of contents title (\glossarytoctitle). This option
isn’t available with \printunsrtinnerglossary.

style The glossary style to use with this glossary (overriding the current style that was
either set with the style package option or with \setglossarystyle). This option isn’t
available with \printunsrtinnerglossary.

'dickimaw-books.com/gallery/index.php?label=bib2gls-inner

241

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

8. Displaying a Glossary

numberedsection This may be used to override the numberedsection package option,
and has the same syntax as that option (see §2.2). This option isn’t available with \print-
unsrtinnerglossary.

nonumberlist This may be used to override the nonumberlist package option. Note
that, unlike the valueless package option, this option is boolean.

nogroupskip This may be used to override the nogroupskip package option. Only rele-
vant if the glossary style uses the conditional \ifglsnogroupskip to test for this option.

nopostdot This may be used to override the nopostdot package option. This option is
only applicable if the glossary style uses \glspostdescription.

entrycounter This may be used to override the entrycounter package option. Note
that one of the package options entrycounter=true or subentrycounter=true must be
used to make \glsrefentry work correctly. The setting can then be switched off with this
option for individual glossaries where the setting shouldn’t apply.

subentrycounter This may be used to override the subentrycounter package option.
Note that one of the package options entrycounter=true or subentrycounter=true must
be used to make \glsrefentry work correctly. The setting can then be switched off with
this option for individual glossaries where the setting shouldn’t apply.

A
If you want to set both the entrycounter and subentrycounter settings, and you
haven’t already enabled them with the entrycounter and subentrycounter package
options, make sure you specify entrycounter first (but bear in mind \glsrefentry
won’t work). In general, it’s best to enable these settings via the package options and
switch them off for the glossaries where they don’t apply.

sort This key is only available with \printnoidxglossary.
[i

=
If you use the sort=use or sort=def values make sure that you select a glossary style

that doesn’t have a visual indicator between groups, as the grouping no longer makes
sense. Consider using the nogroupskip option.

If you don’t get an error with sort=use and sort=def but you do get an error with one
of the other sort options, then you probably need to use the sanitizesort=true package
option or make sure none of the entries have fragile commands in their sort field.

B

| S

sort=use

Order of use. There’s no actual sorting in this case. The order is obtained from the indexing

242

8. Displaying a Glossary

information in the aux file.

3

sort=def

Order of definition. There’s no actual sorting in this case. The order is obtained from the
glossary’s internal list of labels.

g

The above two settings don’t perform any actual sorting. The following settings sort
using simple character code comparisons and are therefore unsuitable for non-ASCI
documents.

For a locale-sensitive sort, you must use either xindy (Option 3) or bib2gls (Option 4).
Note that bib2gls provides many other sort options.

4 |

sort=nocase

Case-insensitive order.

]

sort=case

Case-sensitive order.

4

sort=word

Word order.

‘|

o~

sort=letter

Letter order.

]

sort=standard

Word or letter order according to the order package option.

The word and letter order sort methods use datatool’s \dt1lwordindexcompare and \dt1-
letterindexcompare handlers. The case-insensitive sort method uses datatool’s \dtli-
compare handler. The case-sensitive sort method uses datatool’s \dt1lcompare handler. See
the datatool documentation for further details.

label This key is only available with glossaries—extra and labels the glossary with \1abel
{(label)}. This is an alternative to the package option numberedsection=autolabel. This

243

8. Displaying a Glossary

option isn’t available with \printunsrtinnerglossary.

target This key is only available with glossaries-extra and can be used to switch off the
automatic hypertarget for each entry. (This refers to the target used by commands like \gls
and \glslink.)

This option is useful with \printunsrtglossary as it allows the same list (or sub-list) of
entries to be displayed multiple times without causing duplicate hypertarget names.

prefix This key is only available with glossaries—extra and provides another way of avoid-
ing duplicate hypertarget names. In this case it uses a different prefix for those names. This
locally redefines \glolinkprefix but note this will also affect the target for any entry ref-
erenced within the glossary with commands like \gls, \glslink or \glshyperlink.

targetnameprefix This key is only available with glossaries-extra. This is similar to
the prefix option, but it alters the prefix of the hypertarget anchors without changing
\glolinkprefix (soit won’t change the hyperlinks for any entries referenced in the glossary).

groups This key is only available with \printunsrtglossary and \printunsrtinner-
glossary. If true, the “unsrt” function that creates the code for typesetting the glossary will
insert letter group headers whenever a change is detected in the letter group label between
entries of the same hierarchical level. See the glossaries—extra manual for further details.

leveloffset This key is only available with \printunsrtglossary and \printunsrt-
innerglossary. It can be used to locally adjust the hierarchical level used by the glossary
style. See the glossaries—extra manual for further details and also Gallery: Inner or Nested
Glossaries.?

flatten This key is only available with \printunsrtglossary and \printunsrtinner-
glossary. It can be used to locally remove the hierarchical level used by the glossary style.
See the glossaries—extra manual for further details.

8.2. Glossary Markup

This section describes the commands that are used to display the glossary. If you want to
suppress the number lists you can use the nonumberlist option. If you want to save the
number lists for some other purpose outside of the glossary, you can use the savenumber-
list option. If you want information about an entry’s parent then you can use \ifgls-
hasparent (to determine if the entry has a parent) or \glsentryparent (to expand to the
parent’s label). The hierarchical level is provided in \subglossentry (and is 0 with \gloss-
entry) but it’s also stored in the level internal field.

If you're trying to work out how to parse the glossary in order to gather indexing infor-
mation, consider using bib2gls instead, which stores all the indexing information, such as
location lists and letter group labels, in internal fields. It can also store lists of sibling entries
or child entries. If you really want to input the glossary file in order to gather information
obtained by makeindex or xindy without actually displaying anything (by redefining the
markup commands to not produce any text), use \input rather than \printglossary.

The glossary is always started with:

?dickimaw-books.com/gallery/index.php?label=bib2gls-inner

244

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

8. Displaying a Glossary

\glossarysection[\glossarytoctitle]{\glossarytitle}

This creates the heading. This command sets the page header with:

\glsglossarymark{\glossarytoctitle}

If this is unsuitable for your chosen class file or page style package, you will need to redefine
\glsglossarymark. If \phantomsection is defined (hyperref) then \glossarysection
will start with:

\glsclearpage
\phantomsection

\glossarysection [(toc title)]{(title)}

By default, this command uses either \chapter* or \section*, depending on whether or
not \chapter is defined. This can be overridden by the section package option or the
\setglossarysection command. Numbered sectional units can be obtained using the
numberedsection package option. If the default unnumbered section setting is on, then the
(toc-title) will only be added to the table of contents if the toc option is set. If numbered-
section is on, the addition to the table of contents is left to the sectional command.

(@]

L

[Further information about these options and commands is given in §2.2.

\glsglossarymark(glossary title)

This sets the page header, if supported by the current page style. Originally the command
\glossarymark was provided for this purpose, but this command is also provided by other
packages and classes, notably memoir which has a different syntax. Therefore the com-
mand \glossarymark will only be defined if it doesn’t already exist. In which case, \gls-
glossarymark will simply use \glossarymark.

If memoir has been loaded, \glsglossarymark will be defined to use \markboth other-
wise, if some other class or package has defined \glossarymark, \glsglossarymark will
be defined to use \@mkboth (using the same definition as the glossaries package’s version of
\glossarymark).

If ucmark=true, the case change will be applied using \memUChead if memoir has been
loaded, otherwise it will use \glsuppercase.

So if you want to redefine the way the header mark is set for the glossaries, you need to

245

8. Displaying a Glossary

redefine \glsglossarymark not \glossarymark. For example, to only change the right
header:

=

[\renewcommand{\glsglossarymark} [1] {\markright{#1}}

or to prevent it from changing the headers:

=

\renewcommand{\glsglossarymark}[1]{}

If you want \glsglossarymark to use all caps in the header, use the ucmark option described
below.

With hyperref and unnumbered section headings, \phantomsection is need to create an
appropriate anchor (see the hyperref manual). This will need the page cleared for \chapterx,
which is done with:

X

\glsclearpage

If the section=chapter setting is on then \glsclearpage will use \cleardoublepage, if
it’s defined and if the \ifQopenright conditional (provided by classes with an openright
option such as book and report) isn’t defined or is defined and is true, otherwise \clearpage
is used.

Occasionally you may find that another package defines \cleardoublepage when it is
not required. This may cause an unwanted blank page to appear before each glossary If you
only want a single page cleared, you can redefine \glsclearpage. For example:

\renewcommand*{\glsclearpage}{\clearpage}

Note that this will no longer take the section package option into account.

\glossarytitle

This expands to the title that should be used by the glossary section header. It’s initialised to
the title provided in \newglossary when the glossary was defined. The title option will
redefined this command.

7

\glossarytoctitle

This expands to the table of contents title that’s supplied in the optional argument of the

246

8. Displaying a Glossary

glossary section command. It will only be added to the table of contents is the toc package
option is on, but it may also be used in the page header (depending on the definition of
\glsglossarymark and the current page style).

The \glossarytoctitle command is initialised to \glossarytitle. The toctitle op-
tion will redefine this command. If neither the title nor toctitle are used, \glossary-
toctitle will be defined via:

X

\glssettoctitle{(glossary-type)}

By default, this will redefine \glossarytoctitle to the title provided in \newglossary
when the glossary was defined.

This means that if neither title nor toctitle are set, the glossary’s associated title will
be used for both. If only title is used, then it will also apply to the table of contents title,
and if only toctitle is used, then \glossarytoctitle will be defined to that value but
\glossarytitle will be the glossary’s associated title.

After the heading, but before the main body of the glossary, is the glossary preamble which
is given by:

X

\glossarypreamble

You can redefine this before the glossary is shown. For example:

\renewcommand{\glossarypreamble}{Numbers in italic
indicate primary definitions.}

A glossary may have its own specific preamble. If it has one defined, then the \print(...)glossary
set of commands will locally redefine \glossarypreamble to that preamble instead. Since
this change is scoped, the previous definition will be restored after the \print(...)glossary
command.

You can globally assign a preamble to a specific glossary with:

\setglossarypreamble [(type)]{(text)}

If (type) is omitted, \glsdefaulttype is used. For example:

\setglossarypreamble{Numbers in italic
indicate primary definitions.}

247

8. Displaying a Glossary

This will set the given preamble text for just the main glossary, not for any other glossary.
The glossaries—extra package additionally provides:

I
\apptoglossarypreamble [{type)] {{text)}
which locally appends (text) to the preamble for the specific glossary and
b §
\pretoglossarypreamble [(type)] {(text)}
which locally prepends (text) to the preamble for the specific glossary.
There is also a postamble at the end of each glossary which is given by:
X

\glossarypostamble

This is less useful than a preamble and so there’s no analogous command to \setglossary-
preamble.

o

The preamble and postamble occur outside of theglossary and so shouldn’t be influ-
enced by the glossary style.

Example 31: Switch to Two Column Mode for Glossary

Suppose you are using the superheaderborder style, and you want the glossary to be in
two columns (you can’t use the longheaderborder style for this example as you can’t use the
longtable environment in two column mode), but after the glossary you want to switch back

to one column mode, you could do:

\renewcommand*{\glossarysection}[2] [1{/
\twocolumn [{\chapter*{#2}}]7
\setlength\glsdescwidth{0.6\1linewidth}
\glsglossarymark{\glossarytoctitlel}

}

\renewcommand*{\glossarypostamble}{\onecolumn}

(You may prefer to use the mcolalttree style if you’re not interested in the column headers
or borders.)

248

8. Displaying a Glossary

The actual glossary content is contained within the theglossary environment, which will
typically be in the form:

\begin{theglossary}\glossaryheader
\glsgroupheading{(group-label)}\relax\glsresetentrylist
\glossentry{(entry-label) }{(number-list)}
\subglossentry{(level)}{(entry-label)}{(number-list)}

7 o

\glsgroupskip
\glsgroupheading{(group-label)}\relax\glsresetentrylist
\glossentry{(entry-label) }{(number-list)}
\subglossentry{(level)}{(entry-label) }{(number-list)}

7

\end{theglossary}

The entire number list for each entry is encapsulated with:

\glossaryentrynumbers{(locations)}

This command allows \glsnonextpages, \glsnextpages, and the nonumberlist and save-
numberlist options to work. The \glossaryentrynumbers command is reset by:

X

\glsresetentrylist

With Option 1, this command is preceded by:

\glsnoidxprenumberlist{(entry-label)}

The default behaviour is to use the value of the prenumberlist internal field. This command
is not used with Options 2 and 3.

If you want to suppress the number list for a particular entry, you can add the following
to the entry’s description:

X

\glsnonextpages

Within the glossary, this will redefine \glossaryentrynumbers to ignore its argument and
then reset itself. This means that the next number list will be suppressed. Note that if the
entry doesn’t have a number list (for example, it’s a parent entry that only appears in the
glossary because it has an indexed descendent entry) then the next number list will be for
the first child entry that’s been indexed. This command does nothing outside of the glossary.

249

8. Displaying a Glossary

Similarly, if you want to override the nonumberlist option to ensure that the next number
list is shown, then use:

X

\glsnextpages

This command does nothing outside of the glossary.

(@]

= |
The nonumberlist key that may be used when defining an entry, works by automati-

cally adding \glsnonextpages or \glsnextpages to the indexing information before
\glossentry or \subglossentry with Options 2 and 3. With Option 1, the rele-
vant command is put in the prenumberlist internal field, but since \printnoidx-
glossary only uses \glsnoidxprenumberlist and \glossaryentrynumbers when
the loclist field is set, it won’t affect sub-entries.

. 7

The theglossary environment, and the other commands (\glossaryheader, \glsgroup-
skip, \glsgroupheading, \glossentry and \subglossentry)are all redefined by glossary
styles and are described in §13.2.

250

9. Defining New Glossaries

A new glossary can be defined using:

\newglossary [(log-ext)]{(glossary-label) }{ (in-ext) }{(out-ext) }{(title) }
[(counter)]

where (glossary-label) is the label to assign to this glossary. This label is used to reference
the glossary in the value of the type key when defining entries or, the similarly named, type
option in the \print(...)glossary commands.

[As with labels in general, (glossary-label) must not contain any active characters.

The arguments (in-ext) and (out-ext) specify the extensions of the input and output (from
TEX’s point of view) files for that glossary, (title) is the default title for this new glossary,
and the final optional argument (counter) specifies which location counter to use for the
associated number lists (see also §12). If not specified, the default location counter will be
the one identified in the counter option, if that option is used, otherwise it will be the page
counter.

The first optional argument (log-ext) specifies the extension for the indexing application’s
transcript file (this information is used by makeglossaries which picks up the information
from the aux file and also by the automake option). If omitted, glg is used.

The file extensions only apply to Options 2 and 3. For the other options, the indexing
information is written to the aux file for Options 1 and 4. No input file is required for
Option 1 and Option 4 always has the glstex file extension. Since the file extensions are
only relevant for Options 2 and 3, there is a starred version that omits those arguments:

X

\newglossary*{(glossary-label)}{(title)} [{counter)]

This is equivalent to

\newglossary [(glossary-label)-glg] {(glossary-label)}{{glossary-label)-gls}
{(glossary-label)-glo}{(title)} [{counter)]

251

9. Defining New Glossaries

Oor you can use:

\altnewglossary{(glossary-label)}{(tag)}{(title)} [{counter)]

which is equivalent to

\newglossary [(tag)-glgl {(glossary-label) }{(tag)-gls}{(tag)-glo}{(title)}
[(counter)]

Note that in both cases distinct file extensions are defined so these commands are still useful
with Options 2 and 3.

It may be that you have some terms that are so common that they don’t need to be listed.
In this case, you can define a special type of glossary that doesn’t create any associated files.
This is referred to as an “ignored glossary” and it’s ignored by commands that iterate over
all the glossaries, such as \printglossaries. To define an ignored glossary, use \new-
ignoredglossary where (glossary-label) is the glossary label (as above). This glossary type
will automatically be added to the nohypertypes list, since there are no hypertargets for the
entries in an ignored glossary. (The sample file sample-entryfmt.tex defines an ignored
glossary.)

An ignored glossary can’t be displayed with \printnoidxglossary or \printglossary
but can be displayed with \printunsrtglossary and \printunsrtinnerglossary.

glossaries—extra

The glossaries—extra package provides a starred version \newignoredglossaryx* that
doesn’t suppress hyperlinks (since ignored glossaries can be useful with bib2gls).
There is also an analogous \provideignoredglossary command.

You can test if a glossary is an ignored one using:

X
\ifignoredglossary{(glossary-label)}{(true)}{(false)} modifier: *

This does (true) if (glossary-label) was defined as an ignored glossary, otherwise it does

(false).

Note that the main (default) glossary is automatically created as:

\newglossary{main}{gls}{glo}{\glossaryname}

so it can be identified by the label main (unless the nomain package option is used). If the
doc package has been loaded (which uses the gls and glo extensions for the change log)
then the main glossary will instead be defined as:

252

9. Defining New Glossaries

\newglossary[glg2] {main}{gls2}{glo2}{\glossaryname}

If you are using a class or package that similarly requires gls and glo as file extensions,
you will need to use the nomain option and define your own custom glossary, but be aware
of other possible conflicts, such as different definitions of commands and environments like
\printglossary or theglossary.

The acronym (or acronyms) package option is equivalent to:

\newglossary[alg] {acronym}{acr}{acn}{\acronymname}

so it can be identified by the label acronym. If you are not sure whether the acronym option
has been used, you can identify the list of acronyms by the command:

X

\acronymtype initial: \glsdefaulttype

The default definition is simply \glsdefaulttype. The acronym or acronyms option will
redefine \acronymtype to acronym. If you want additional glossaries for use with acronyms,
remember to declare them with acronymlists.

The symbols package option creates a new glossary with the label symbols using:

\newglossary[slg] {symbols}{sls}{slo}{\glssymbolsgroupname}

.

The numbers package option creates a new glossary with the label numbers using:

\newglossary[nlg] {numbers}{nls}{nlo}{\glsnumbersgroupname}

.

The index package option creates a new glossary with the label index using:

\newglossary[ilg]{index}{ind}{idx}{\indexname}

[i
(L
With Options 2 and 3 all glossaries must be defined before \makeglossaries to en-
sure that the relevant output files are opened.

See §1.5.1 if you want to redefine \glossaryname, especially if you are using a
language package. (Similarly for \glssymbolsgroupname and \glsnumbersgroup-

name.) If you want to redefine \indexname, just follow the advice in How to change
LaTeX’s “fixed names”.

253

https://texfaq.org/FAQ-fixnam
https://texfaq.org/FAQ-fixnam

10. Adding an Entry to the Glossary
Without Generating Text

It is possible to \indexindexing an entry without

\glsadd [(options)] {{entry-label)}

This is similar to the \glstext-like commands, only it doesn’t produce any text. Therefore,
there is no hyper key available in (options) but all the other base options that can be used
with the \glstext-like commands can be passed to \glsadd. The glossaries—extra package
provides addition options, such as textformat, that aren’t applicable when there’s no link
text, so they are also not available. This ensures that the given entry is listed in the glossary
and that the current location is included in the entry’s number list.

This command is particularly useful to create an explicit range that covers an entire section
or block of text that might otherwise end up with a long, ragged number list. For example,
suppose I have defined an entry with the label “set™:

Ei

\newglossaryentry{set}{name={set},
description={a collection}}

Suppose I have a section about sets spanning from page 3 to page 8 with repeated use of
\gls{set} on pages 3, 5, 7 and 8. This will result in the number list “3, 5, 7, 8” which is
a bit untidy. It would look far more compact, and better emphasize that the section of the
document from page 3 to 8 covers sets, if the number list was simply “3-8”.

This can be done with an explicit range:

\glsadd[format=(]{set}
Lots of text about sets spanning page 3 to page 8.
\glsadd[format=)]{set}

See §12.1 for more information about the location encap.

254

10. Adding an Entry to the Glossary Without Generating Text

glossaries—extra

Explicit ranges can also be created using \glsstartrange and \glsendrange with
glossaries—extra. You can also add a subset of entries with \glsaddeach.

To add all entries that have been defined, use:

\glsaddall [(options)]

The optional argument is the same as for \glsadd, except there is also a key types which
can be used to specify which glossaries to use. This should be a comma-separated list. For
example, if you only want to add all the entries belonging to the list of acronyms (specified
by the glossary type \acronymtype) and a list of notation (specified by the glossary type
notation) then you can do:

,

\glsaddall [types={\acronymtype,notation}]

| bib2gls
| S

If you are using bib2gls with glossaries—extra, you can’t use \glsaddall. Instead use
the selection=all resource option to select all entries in the given bib files. (You
can use \glsaddeach with bib2gls.)

[i
(S
Note that \glsadd and \glsaddall add the current location to the number list. In
the case of \glsaddall, all entries in the listed glossaries will have the same location

in the number list (the location at the point in the document where \glsaddall was
used, which will be page 1 if it occurs in the preamble). If you want to use \glsadd-
all, it’s best to suppress the number list with the nonumberlist package option. (See
sections 2.3 and 12.)

If you want to ensure that all entry are added to the glossary, but only want the locations
of entries that have actually been used in the document, then you can use:

X

\glsaddallunused [{(glossary types)]

Note that in this case, the optional argument is simply a list of glossary labels. The options
available to \glsadd and \glsaddall aren’t available here. If the optional argument is
omitted, the list of all non-ignored glossaries is assumed.

This command implements:

255

10. Adding an Entry to the Glossary Without Generating Text

\glsadd[format=glsignorel{(entry-label)}

for each entry in each glossary listed in the optional argument if the entry has been marked as
used. Since \glsignore discards its argument, this effectively creates an invisible location.
This is necessary because makeindex and xindy require an associated location for each line
in the indexing file. (They are indexing applications not glossary applications, so they expect
page numbers.)

This means that \glsaddallunused adds \glsignore{(location)} to the number list of
all the unused entries. If any of those number lists have other locations (for example, the
first use flags was reset before \glsaddallunused or only the \glstext-like commands
were used or if any indexing occurs after \glsaddallunused) then this will cause spurious
commas or en-dashes in the number list that have been placed before or after the invisible
location.

(i]
=
If you want to use \glsaddallunused, it’s best to place the command at the end of the

document to ensure that all the commands you intend to use have already been used
and make sure to use the \gls-like commands and don’t issue any resets (\glsreset
etc).

[bib2gls
You can’t use \glsaddallunused with bib2gls. However, since bib2gls was de-
signed specifically for glossaries—extra, it recognises glsignore as a special format
that indicates the location shouldn’t be added to the location list but the entry should
be selected. So you can index an entry with format=glsignore to ensure that the
entry is selected without adding a location to the number list.

Alternatively, the selection=all resource option can be used, which will ensure all
entries are selected but only those indexed with one or more non-ignored locations
will have a location list.

Base glossaries package only:

\documentclass{article}

\usepackage{glossaries}

\makeglossaries
\newglossaryentry{cat}{name={cat},description={feline}}
\newglossaryentry{dog}{name={dog},description={canine}}
\begin{document}

\gls{cat}.

\printglossaries

\glsaddallunused 7 <- make sure dog is also listed

256

10. Adding an Entry to the Glossary Without Generating Text

l \end{document}

Corresponding glossaries—extra and bib2gls document code:

\documentclass{article}
\usepackage [record] {glossaries-extra}
\GlsXtrLoadResources[src=entries,selection=all]
\begin{document}

\gls{cat}.

\printunsrtglossaries

\end{document}

With the file entries.bib:

Q@entry{cat,name={cat},description={feline}}
@entry{dog,name={dog},description={canine}}

Example 32: Dual Entries

The example file sample-dual.tex makes use of \glsadd to allow for an entry that
should appear both in the main glossary and in the list of acronyms. This example sets

up the list of acronyms using the acronym package option:

=

\usepackage [acronym] {glossaries}

A new command (\newdualentry) is then defined to make it easier to define dual entries:

\newcommand*{\newdualentry} [5] []{%
\newglossaryentry{main-#2}{name={#4},7
text={#3\glsadd{#2}},%
description={#5},%

#1

Y

\newacronym{#2}{#3\glsadd{main-#2}}{#41}}
}

This has the following syntax:

257

10. Adding an Entry to the Glossary Without Generating Text

\newdualentry [(options)]{(label) }{(abbrv)}{(long)}{(description)}

You can then define a new dual entry:

\newdualentry{svm}J, label
{SVM}), abbreviation
{support vector machine}), long form
{Statistical pattern recognition techniquel}), description

Now you can reference the acronym with \gls{svm} or you can reference the entry in the
main glossary with \gls{main-svm}.

This is just an example. In general, think twice before you add this kind of duplication. If
all information (short, long and description) can be provided in a single list, it’s redundant to
provide a second list unless any of the short forms start with a different letter to the associated
long form, which may make it harder to lookup.

[bib2gls
| CE——

Note that with bib2gls, there are special dual entry types that implement this be-
haviour. That is, if an entry is referenced then its corresponding dual entry will au-
tomatically be selected as well. So there is less need for \glsadd with bib2gls. (Al-
though it can still be useful, for example with Option 6.)

258

11. Cross-Referencing Entries

[i
(S
You must use \makeglossaries (Options 2 or 3) or \makenoidxglossaries

(Option 1) before defining any entries that cross-reference other entries. If any of
the entries that you have cross-referenced don’t appear in the glossary, check that
you have put \makeglossaries/\makenoidxglossaries before all entry definitions.
The glossaries—extra package provides better cross-reference handling.

There are several ways of cross-referencing entry in the glossaries:

1. You can use commands such as \gls in the entries description. For example:

\newglossaryentry{apple}{name={apple},
description={firm, round fruit. See also \gls{pear}}}

Note that with this method, if you don’t use the cross-referenced term in the main part
of the document, you will need two runs of makeglossaries:

pdflatex filename
makeglossaries filename
pdflatex filename
makeglossaries filename
pdflatex filename

This is because the \gls in the description won’t be detected until the glossary has
been created (unless the description is used elsewhere in the document with \gls-
entrydesc). Take care not to use \glsdesc (or \Glsdesc) in this case as it will cause
a nested link.

2. After you have defined the entry, use

\glssee [(tag)]{(entry-label) }{(xr-list)}

259

11. Cross-Referencing Entries

where (xr-list) is a comma-separated list of entry labels to be cross-referenced, (entry-
label) is the label of the entry doing the cross-referencing and (tag) is the “see” tag.
(The default value of (tag) is \seename.)

This command is essentially performing:

[\glsadd [format={cross-ref-encap)]{({entry-label)}

where (cross-ref-encap) is a special form of location encap that includes (tag) and (xr-
list). Remember from §10 that makeindex always requires a location. This special
location encap discards the provided location (which \glssee sets to “Z” to push the
cross-reference to the end of the number list) and replaces it with the cross-reference
in the form “see (name(s))”.

This means that \glssee indexes (entry-label) so that (entry-label) appears in the
glossary but it doesn’t index any of the entries listed in (xr-list).

For example:

Ei

[\glssee[see also]{series}{FourierSeries,TaylorsTheorem}

This indexes the entry identified by the label “series” and adds a location to the “series”
number list that looks something like:

see also \glsentryname{FourierSeries} \&
\glsentryname{TaylorsTheorem}

(The actual format is performed with \glsseeformat.)

. As described in §4, you can use the see key when you define the entry. For example:

Ei

\newglossaryentry{MaclaurinSeries}{name={Maclaurin series},
description={Series expansion},
see={TaylorsTheorem}}

This key was provided as a simple shortcut that does:

\newglossaryentry{MaclaurinSeries}{name={Maclaurin series},
description={Series expansion}}
\glssee{MaclaurinSeries}{TaylorsTheorem}

260

11. Cross-Referencing Entries

This means that “MaclaurinSeries” will automatically be added to the glossary with
something like

[\emph{see} \glsentryname{TaylorsTheorem}

in its number list, but “TaylorsTheorem” will need to be indexed elsewhere to en-
sure that it also appears in the glossary otherwise, it would end up with the pream-
ble location (page 1) in its number list, assuming that the entry was defined in the
preamble.

You therefore need to ensure that you use the cross-referenced term with the com-
mands described in §5.1 or §10.

The “see” tag is produce using \seename, but can be overridden in specific instances
using square brackets at the start of the see value. For example:

=

\newglossaryentry{MaclaurinSeries}{name={Maclaurin series},
description={Series expansion},
see=[see also]{TaylorsTheorem}}

Take care if you want to use the optional argument of commands such as \newacronym
or \newterm as the value will need to be grouped. For example:

=

\newterm{seal}
\newterm[see={[see also]seal}]{sea lion}

Similarly if the value contains a list. For example:

\glossaryentry{lemon}
{
name={lemon},
description={Yellow citrus fruit}
}
\glossaryentry{lime}
{
name={1lime},
description={Green citrus fruit}
}
\glossaryentry{citrus}

{

name={citrus},

261

11. Cross-Referencing Entries

description={Plant in the Rutaceae family},
see={lemon,lime}

3

In both cases 2 and 3 above, the cross-referenced information appears in the number list,
whereas in case 1, the cross-referenced information appears in the description. (See the
sample-crossref.tex example file that comes with this package.) This means that in
cases 2 and 3, the cross-referencing information won’t appear if you have suppressed the
number list. In this case, you will need to activate the number list for the given entries using
nonumberlistfalse. Alternatively, if you just use the see key instead of \glssee, you can
automatically activate the number list using the seeautonumberlist package option.

| bib2gls
| S

bib2gls provides much better support for cross-references, including the ability to
only show the cross-reference in the location list (save-locations={see}) with-
out the actual locations. See, for example, index.php?label=bib2gls-xr®Gallery: Cross-
References (bib2gls).

“dickimaw-books.com/gallery

11.1. Customising Cross-Reference Text

When you use either the see key or the \glssee command, the cross-referencing informa-
tion will be typeset in the glossary (within the number list) according to:

X

\glsseeformat [(tag)] {(xr-list)}{(location)}

The default definition:

[\emph{(tag)} \glsseelist{(xr-list)}

Note that the (location) argument is always ignored. (makeindex will always assign a location
number, even if it’s not needed, so it needs to be discarded.) For example, if you want the tag
to appear in bold, you can do:

=

\renewcommand*{\glsseeformat} [3] [\seename] {\textbf{#1}
\glsseelist{#2}}

262

https://www.dickimaw-books.com/gallery
https://www.dickimaw-books.com/gallery

11. Cross-Referencing Entries

The list of labels is formatted by:

\glsseelist{(label-list)}

This iterates through the comma-separated list of entry labels (label-list) and formats each
entry in the list. The entries are separated by:

X

\glsseesep initial: ,

between all but the last pair, and

X

\glsseelastsep initial: ,

between the last pair.
Each entry item in the list is formatted with:

\glsseeitem{(entry-label)}

This does:

[\glshyperlink[\glsseeitemformat{#1}]{#1}

which creates a hyperlink, if enabled, to the cross-referenced entry. The hyperlink text is
given by:

X

\glsseeitemformat{(entry-label)}

This does:

\ifglshasshort{(entry-label)}
{\glsentrytext{({entry-label)}}), acronym
{\glsentryname{(entry-label)}}% non-acronym

which uses the text field for acronyms and the name field otherwise.

(@]

= |
When \glssee was first introduced in v1.17, the cross-referenced entry was displayed

with just \glsentryname, but this caused problems because back then the name field

263

11. Cross-Referencing Entries

had to be sanitized because it was written to the glossary file, which caused strange
results if the name contained any commands. So in v3.0, the default definition was
switched to using \glsentrytext to avoid the issue. In v3.08a, the information writ-
ten to the glossary file was changed and the name was no longer sanitized, but the new
definition was retained for backward-compatibility.

However, the original definition is more appropriate in some ways, as it makes more
sense for the cross-reference to show the name as it appears in the glossary, except for
acronyms which could have wide names if the long form is included. So in v4.50, which
had major compatibility-breaking changes to remove the unconditional dependency
on the now deprecated textcase package, the original use of name was restored for
non-acronyms, which brings it into line with glossaries—extra.

For example, to make the cross-referenced list use small caps with the text (not name)

field:

\renewcommand{\glsseeitemformat}[1]{7
\textsc{\glsentrytext{#1}}}

glossaries—extra

The glossaries—extra package redefines \glsseeitemformat to use \glsfmttext for
abbreviations and \glsfmtname otherwise. Additionally, it provides \glsxtrhier-
name which can be used as an alternative for hierarchical entries. See the glossaries
-extra manual for further details.

(i]

2
You can use \glsseeformat and \glsseelist in the main body of the text, but they

won’t automatically add the cross-referenced entries to the glossary. If you want them
added with that location, you can do:

=

Some information (see also
\glsseelist{FourierSeries,TaylorsTheorem},
\glsadd{FourierSeries}\glsadd{TaylorsTheorem}) .

264

12. Number Lists

Each entry in the glossary has an associated number list (or location list). By default, these
numbers (the entry locations) refer to the pages on which that entry has been indexed (using
any of the commands described in §5.1 and §10) and will also include any cross-references
obtained with \glssee (or the see key).

The locations in the number list are separated with:

\delimN

The number list can be suppressed using the nonumberlist package option, or an alterna-
tive counter can be set as the default using the counter package option. The glossaries—extra
package additionally provides the equations and floats options that can be used to auto-
matically switch the location counter in certain environments.

bib2gls

With bib2gls you can prevent the number list from being created with the save
-locations=false resource option, or only include the cross-references with the
save-locations=see option.

Number lists are more common with indexes rather than glossaries (although you can use
the glossaries package for indexes as well). However, Options 2 and 3 makes use of make-
index or xindy to hierarchically sort and collate the entries. These applications are readily
available with most modern TgX distributions, but because they are both designed as indexing
applications they both require that terms either have a valid location or a cross-reference.

[i
=
Even if you use nonumberlist, the locations must still be provided and acceptable to

the indexing application or they will cause an error during the indexing stage, which
will interrupt the document build. Empty locations are not permitted with Options 2
and 3. See §12.5.

If you’re not interested in the locations, each entry only needs to be indexed once, so con-
sider using indexonlyfirst, which can improve the document build time by only indexing
the first use of each term.

The \glsaddall command (see §10), which is used to automatically index all entries, iter-
ates over all defined entries (in non-ignored glossaries) and does \glsadd{(entry-label)} for
each entry (where (entry-label) is that entry’s label). This means that \glsaddall automat-

265

12. Number Lists

ically adds the same location to every entry’s number list, which looks weird if the number
list hasn’t been suppressed.

With Option 4, the indexing is performed by bib2gls, which was specifically designed for
the glossaries—extra package. So it will allow empty or unusual locations. (As from bib2gls
v3.0, empty locations will be converted to ignored locations.) Additionally, the selection=
all resource option option will select all entries without adding an unwanted location to the
number list. If bib2gls can deduce a numerical value for a location, it will attempt to form
a range over consecutive locations, otherwise it won’t try to form a range and the location
will just form an individual item in the list.

Option 1 also allows any location but it doesn’t form ranges. Any empty locations or
location with the glsignore format will result in an invisible location in the number list.

12.1. Encap Values (Location Formats)

The location encap or format is the encapsulating command used to format an entry location.
That is, it’s a command that takes an argument that will be the location.

(@]

= |
If you aren’t using hyperref then you can use the control sequence name of any text-

block command that takes a single argument. For example, format=emph. If you
require hyperlinks then it’s more complicated.

J

The “encap” usually refers to the control sequence name without the leading backslash
(such as textbf) and is essentially the same as the makeindex encap value that can be pro-
vided within the standard \index command.

A

Be careful not to use a declaration (such as \bfseries) instead of a text-block com-
mand (such as \textbf) as the effect is not guaranteed to be localised, either within
the number list or throughout the glossary.

There is a special format:

\glsignore{(text)}

which simply ignores its argument. With Options 1, 2 and 3 this creates an empty (invisible)
location which can lead to spurious commas or en-dashes if the number list contains other
locations. However, with bib2gls, this format identifies the location as a special ignored
location which won’t be added to the location list but will influence selection.

If you want to apply more than one style to a given location (for example, bold and italic)
you will need to create a command that applies both formats. For example:

266

12. Number Lists

[\newcommand*{\textbfem} [1]{\textbf{\emph{#1}}}

and use that command.
In this document, standard location format refer to the standard text block commands such
as \textbf or \emph or any of the commands listed in Table 12.1.

[i
=
If you use xindy instead of makeindex, you must use \GlsAddXdyAttribute to iden-

tify any non-standard formats that you want to use with the format key. So if you
use xindy with the above example \textbfem, you would need to add:

Ej

\GlsAddXdyAttribute{textbfem}

See §14 for further details.

If you are using hyperlinks and you want to change the font of the hyperlinked location
don’t use \hyperpage (provided by the hyperref package) as the locations may not refer to
a page number and the location argument may contain the range delimiter \delimR. In-
stead, the glossaries package provides hyperlink-supported encaps listed in Table 12.1. These
commands all use \glshypernumber (described below) and so shouldn’t be used in other
contexts.

The \hyper(xx) can also be used without hyperref, since \glshypernumber will simply
do its argument if \hyperlink hasn’t been defined. In which case, only the font change will
be applied.

Table 12.1.: Predefined Hyperlinked Location Formats

hyperrm serif (\textrm) hyperlink

hypersf sans-serif (\textsf) hyperlink
hypertt monospaced (\texttt) hyperlink
hyperbf bold (\textbf) hyperlink

hypermd medium weight (\textmd) hyperlink
hyperit italic (\textit) hyperlink

hypersl slanted (\textsl) hyperlink
hyperup upright (\textup) hyperlink
hypersc small caps (\textsc) hyperlink
hyperemph emphasized (\emph) hyperlink

If you want to make a new location format that supports hyperlinks, you will need to
define a command which takes one argument and use that with the location encapsulated
with \glshypernumber or the appropriate \hyper(xx) command. For example, if you want
the location number to be in a bold sans-serif font, you can define a command called, say,

267

12. Number Lists

\hyperbsf:

[\newcommand{\hyperbsf}[1]{\textbf{\hypersf{#1}}} \

Ei
and then use hyperbsf as the value for the format key.
[i
=
When defining a custom location format command that uses one of the \hyper (xx)

commands, make sure that the argument of \hyper(xx) is just the location. Any
formatting must be outside of \hyper(xx) (as in the above \hyperbfsf example).

Remember that if you use xindy, you will need to add this to the list of location xindy
attributes:

=

[\GlsAddXdyAttribute{hyperbsf}

Complications can arise if you use different encap values for the same location. For exam-
ple, suppose on page 10 you have both the default glsnumberformat and hyperbf encaps.
While it may seem apparent that hyperbf should override glsnumberformat in this situa-
tion, the indexing application may not know it. This is therefore something you need to be
careful about if you use the format key or if you use a command that implicitly sets it.

In the case of xindy, it only accepts one encap (according to the order of precedence given
in the xindy module) and discards the others for identical locations (for the same entry). This
can cause a problem if a discarded location forms the start or end of a range.

In the case of makeindex, it accepts different encaps for the same location, but warns about
it (“multiple encaps”). This leads to a number list with the same location repeated in different
formats. If you use the makeglossaries Perl script with Option 2 it will detect makeindex’s
warning and attempt to fix the problem, ensuring that the glsnumberformat encap always
has the least precedence unless it includes a range identifier. Other conflicting encaps will
have the last one override earlier ones for the same location with range identifiers taking
priority. If you actually want the repeat, you can disable this feature with the -e switch.

No discard occurs with Option 1 so again you get the same location repeated in differ-
ent formats. With Option 4, bib2gls will discard according to order of precedence, giving
priority to start and end ranges. (See the bib2gls manual for further details.)

The default location format is:

\glsnumberformat{(location(s))}

This will simply do its argument (location(s)) if hyperref hasn’t been loaded, otherwise it will

268

12. Number Lists

use:

\glshypernumber{(location(s))}

This will create a hyperlink to the location or will simply do its argument if hyperref hasn’t
been loaded. The (location(s)) argument may contain multiple locations. If so, they must be
separated with \delimR or \delimN. (Usually \delimN won’t occur. The \delimR separator
may occur with ranges and makeindex.) Any other markup is likely to cause a problem (see
§12.5).

Each location within \glshypernumber will have a hyperlink created with:

\hyperlink{{anchor)}{(text)}

where the (text) is the location encapsulated with:

\glswrglosslocationtextfmt{(location)}

This just does its argument by default.
The (anchor) is constructed from the location but requires the prefix and location counter,
which first have to be set with:

X

\setentrycounter [(prefix)]{(counter)}

This command will be automatically inserted before the location in the number list by the
appropriate indexing method. In the case of makeindex, this will be inserted at the start
of the encap information, but with xindy the counter will form part of the attribute and
a helper command has to be provided that uses \setentrycounter. With Option 1 the
command occurs inside the definition of \glsnoidxdisplayloc.

The (counter) will be stored in:

X

\glsentrycounter initial: \glscounter

and may be used in the hooks described below. Note that the prefix can’t be referenced as
\glswrglossdisableanchorcmds is also used when obtaining the prefix during indexing.
The (anchor) is then constructed as follows:

1. Use the \glswrglossdisableanchorcmds hook to disable problematic commands
(scoped).

2. Expand (protected)

269

12. Number Lists

(counter) (prefix)\glswrglosslocationtarget{(location)}

3. Sanitize the result.

For example:

\setentrycounter[]{page}’ page counter and empty prefix
\glshypernumber{1}

will essentially do:

\hyperlink{page.1}1

whereas

\setentrycounter[1]{equation}y
\glshypernumber{2}

will essentially do:

~

\hyperlink{equation.1.2}2

The initial hook to disable the problematic commands is:

\glswrglossdisableanchorcmds

By default, this is defined to:

\let\glstexorpdfstring\@secondoftwo

If hyperref is loaded the definition will also include:

\let\texorpdfstring\@secondoftwo
\pdfstringdefPreHook

The location is encapsulated with:

\glswrglosslocationtarget{(location)}

This must expand but may be used to make adjustments. The default definition is to simply
expand to its argument. The \glswrglossdisableanchorcmds hook may be used to alter

270

12. Number Lists

the definition if some condition is required, but bear in mind that \glswrglosslocation-
target won’t be used when the prefix is obtained during indexing.

Any leftover robust or protected commands will end up sanitized to prevent an obscure
error from occurring, but an invalid target name is likely to result. See §12.5 for an example.

The use of \setentrycounter to set the prefix and counter is necessary because the hy-
pertarget can’t be included in the indexing information supplied to makeindex or xindy,
because neither the makeindex nor xindy syntax supports it. Unfortunately, not all defini-
tions of \theH(counter) can be split into a prefix and location that can be recombined in this
way. This problem can occur, for example, with counter=equation when it depends on the
chapter counter. This can result in warnings in the form:

name{(target-name)} has been referenced but does not exist, replaced
by a fixed one

The sampleEq. tex sample file deals with this issue by redefining \theHequation as follows:

| bib2gls
| S

This issue is avoided with bib2gls and record=nameref as that syntax allows the
hyperlink target to be supplied with the indexing information.

\renewcommand*\theHequation{\theHchapter.\arabic{equation}}

12.2. Range Formations

There are two types of ranges: explicit and implicit. Neither are supported with Option 1.
Both are supported by Options 2, 3 and 4. Implicit ranges can be switched off using the
appropriate option for the required indexing application. The start and end of a range is
separated with:

X

\delimR

Options 2 and 3 can merge implicit and explicit ranges that overlap. With Option 4, individ-
ual locations can be merged into an explicit range, but an individual location on either side
of the explicit range won’t be merged into the explicit range.

As with \index, the characters (and) can be used at the start of the format value to
specify the beginning and ending of a number range. They must be in matching pairs with
the same encap. For example,

271

12. Number Lists

on one page to start the range and later:

q
[\gls[format=(emph] {sample}

[\gls [format=)emph] {sample}

to close the range. This will create an explicit range in the number list that’s encapsulated
with \emph. If the default glsnumberformat should be used, you can omit it and just have
the (and) characters.

glossaries—extra]

Explicit ranges can also be created using \glsstartrange and \glsendrange with
glossaries-extra.

Implicit ranges are formed by concatenating a sequence of three or more consecutive
locations. For example, if an entry is indexed on pages 3, 4, 5, and 6, this will be compacted
into “3-6”.

With Option 3, you can vary the minimum sequence length using \GlsSetXdyMinRange-
Length where the argument is either the minimum number or the keyword none, which
indicates that no implicit ranges should be formed. See §14.3 for further details.

[glossaries-extra

With Option 4, the minimum number for form implicit ranges is given by the min
-loc-range resource option. Again, the value is either the minimum number or the
keyword none, which indicates that no implicit ranges should be formed. It’s also
possible to compact a ragged sequence into a range with max-loc-diff. For example,
with max-loc-diff=2, the sequence “2, 4, 5, 6, 8” can be compressed into the range
“2-8”. Another range-related option is compact-ranges which allows ranges to be
more compact by omitting matching initial digits at the end of the range. For example,
“184-189” can be compacted into “184-9”.

J

With both makeindex and xindy (Options 2 and 3), you can replace the separator and the
closing number at the end of the range using:

X

\glsSetSuffixF{(suffix)}

272

12. Number Lists

to set the suffix for two consecutive locations and

\glsSetSuffixFF{(suffix)}

to set the suffix for three or more consecutive locations. Option 4 provides a similar feature
with the suffixF and suffixFF resource options.
For example:

\glsSetSuffixF{f.}
\glsSetSuffixFF{ff.}

_ B

Note that if you use xindy (Option 3), you will also need to set the minimum range length
to 1 if you want to change these suffixes:

\GlsSetXdyMinRangeLength{1}

B

If you use the hyperref package, you will need to use \nohyperpage in the suffix to ensure
that the hyperlinks work correctly. For example:

&

\glsSetSuffixF{\nohyperpage{f.}}
\glsSetSuffixFF{\nohyperpage{ff.}}

-

Note that \glsSetSuffixF and \glsSetSuffixFF must be used before \make-
glossaries and have no effect if \noist is used.

12.3. Locations

Each location in an entry’s number list is the result of indexing the entry at the point in
the document that corresponds to the location (typically where a command such as \gls
occurred). By default, this is the page number, but can be changed with the counter pack-
age option, the (counter) optional argument in \newglossary, the counter key in \new-
glossaryentry or the counter option in the \gls-like and \glstext-like commands (or
in \glsadd).

The syntax of the location must be valid for the given indexing application if you use
Options 2 or 3. In the case of makeindex, the syntax is quite restricted. The location may
be a digit (\arabic), upper or lowercase Roman numerals (\Roman or \roman) or upper
or lowercase ASCII letters (\Alph or \alph). The syntax also allows composite locations

273

12. Number Lists

formed by combining the allowed digits, numerals and letters with a compositor (which can
be identified with \glsSetCompositor).
The following locations are valid, assuming the default full stop compositor:

« “325”: a numeric location (\arabic);
« “IV”: a Roman numeral location (\Roman);
+ “B”: an alphabetic location (\Alph);
« “12.3.47: a composite location.
The following are invalid:
 “I-3.2”: mixed compositors not permitted;
« “X7”: a separator must be used in composite locations;
« “@”: letters must be ASCII;
« “\textsc{iv}”: commands not permitted in locations;

« “: locations can’t be empty.

A

Invalid locations will be rejected by makeindex, which will result in the entry being
dropped from the glossary if it has no valid locations.

In the case of xindy, the location syntax must be declared in the xdy style file. This covers
both the way that the location appears in the indexing file as a result of protected expansion
but also the counter used to obtain the location, and is described in more detail in §14.3. The
standard digit (\arabic), upper or lowercase Roman numerals (\Roman or \roman) or upper
or lowercase ASCII letters (\Alph or \alph) are automatically added for the page counter.

If a location doesn’t match any declared syntax, a warning will be written to x