This file documents the MGL script language. It corresponds to release 8.0 of the MathGL library. Please report any errors in this manual to mathgl.abalakin@gmail.org. More information about MGL and MathGL can be found at the project homepage, http://mathgl.sourceforge.net/.
Copyright © 2008-2012 Alexey A. Balakin.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License.”
MathGL library supports the simplest scripts for data handling and plotting. These scripts can be used independently (with the help of UDAV, mglconv, mglview programs and others
MGL script language is rather simple. Each string is a command. First word of string is the name of command. Other words are command arguments. Words are separated from each other by space or tabulation symbol. The upper or lower case of words is important, i.e. variables a and A are different variables. Symbol `#` starts the comment (all characters after # will be ignored). The exception is situation when `#` is a part of some string. Also options can be specified after symbol `;` (see Command options). Symbol `:` starts new command (like new line character) if it is not placed inside a string or inside brackets.
If string contain references to external parameters (substrings `$0`, `$1` ... `$9`) or definitions (substrings `$a`, `$b` ... `$z`) then before execution the values of parameter/definition will be substituted instead of reference. It allows one to use the same MGL script for different parameters (filenames, paths, condition and so on).
Argument can be a string, a variable (data arrays) or a number (scalars).
'b'
);
'abf'
).
new x 100 'x':copy !b !exp(1i*x)
will create real valued data x and complex data b, which is equal to exp(I*x), where I^2=-1. A temporary array can be used as variable too:
a(1)
or a(1,:)
or a(1,:,:)
is second row, a(:,2)
or a(:,2,:)
is third column, a(:,:,0)
is first slice and so on. Also you can extract a part of array from m-th to n-th element by code a(m:n,:,:)
or just a(m:n)
.
a('n*w^2/exp(t)')
if names for data columns was specified (by idset command or in the file at string started with ##
).
tmp[i,j] = sqrt(dat[i,5,j]+1)
. At this symbol ``` will return transposed data array: both ``sqrt(dat(:,5)+1)` and `sqrt(`dat(:,5)+1)` will produce temporary variable with data values equal to tmp[i,j] = sqrt(dat[j,5,i]+1)
.
Temporary variables can not be used as 1st argument for commands which create (return) the data (like `new`, `read`, `hist` and so on).
nan=#QNAN, inf=INFINITY, rnd=random value, pi=3.1415926..., on=1, off=0, all=-1, :=-1
, variables with suffixes (see Data information), names defined by define command, time values (in format "hh-mm-ss_DD.MM.YYYY", "hh-mm-ss" or "DD.MM.YYYY") are treated as number. Also results of formulas with sizes 1x1x1 are treated as number (for example, `pi/dat.nx`).
Before the first using all variables must be defined with the help of commands, like, new, var, list, copy, read, hist, sum and so on (see sections Data constructor, Data filling and Make another data).
Command may have several set of possible arguments (for example, plot ydat
and plot xdat ydat
). All command arguments for a selected set must be specified. However, some arguments can have default values. These argument are printed in [], like text ydat ['stl'='']
or text x y 'txt' ['fnt'='' size=-1]
. At this, the record [arg1 arg2 arg3 ...]
means [arg1 [arg2 [arg3 ...]]]
, i.e. you can omit only tailing arguments if you agree with its default values. For example, text x y 'txt' '' 1
or text x y 'txt' ''
is correct, but text x y 'txt' 1
is incorrect (argument 'fnt'
is missed).
You can provide several variants of arguments for a command by using `?` symbol for separating them. The actual argument being used is set by variant. At this, the last argument is used if the value of variant is large than the number of provided variants. By default the first argument is used (i.e. as for variant 0
). For example, the first plot will be drawn by blue (default is the first argument `b`), but the plot after variant 1
will be drawn by red dash (the second is `r|`):
fplot 'x' 'b'?'r' variant 1 fplot 'x^3' 'b'?'r|'
Below I show commands to control program flow, like, conditions, loops, define script arguments and so on. Other commands can be found in chapters MathGL core and Data processing. Note, that some of program flow commands (like define, ask, call, for, func) should be placed alone in the string.
'path'
¶Changes the current directory to path.
$N 'question'
¶Sets N-th script argument to answer which give the user on the question. Usually this show dialog with question where user can enter some text as answer. Here N is digit (0...9) or alpha (a...z).
$N smth
¶Sets N-th script argument to smth. Note, that smth is used as is (with `'` symbols if present). Here N is digit (0...9) or alpha (a...z).
name smth
¶Create scalar variable name
which have the numeric value of smth
. Later you can use this variable as usual number.
$N smth
¶Sets N-th script argument to character with value evaluated from smth. Here N is digit (0...9) or alpha (a...z).
$N smth
¶Sets N-th script argument to number with value evaluated from smth. Here N is digit (0...9) or alpha (a...z).
'funcname' [ARG1 ARG2 ... ARG9]
¶Executes function fname (or script if function is not found). Optional arguments will be passed to functions. See also func.
'funcname' [narg=0]
¶Define the function fname and number of required arguments. The arguments will be placed in script parameters $1, $2, ... $9. Note, script execution is stopped at func
keyword, similarly to stop command. See also return.
'filename'
¶Load additional MGL command from external module (DLL or .so), located in file filename. This module have to contain array with name mgl_cmd_extra
of type mglCommand
, which describe provided commands.
val
then CMD
¶Executes command CMD
only if val
is nonzero.
val
¶Starts block which will be executed if val
is nonzero.
dat 'cond'
¶Starts block which will be executed if dat satisfy to cond.
val
¶Starts block which will be executed if previous if
or elseif
is false and val
is nonzero.
dat 'cond'
¶Starts block which will be executed if previous if
or elseif
is false and dat satisfy to cond.
Starts block which will be executed if previous if
or elseif
is false.
Finishes if/elseif/else
block.
$N v1 v2 [dv=1]
¶Starts loop with $N-th argument changing from v1 to v2 with the step dv. Here N is digit (0...9) or alpha (a...z).
$N dat
¶Starts loop with $N-th argument changing for dat values. Here N is digit (0...9) or alpha (a...z).
Finishes for
loop.
Starts infinite loop.
val
¶Continue loop iterations if val is nonzero, or finishes loop otherwise.
dat 'cond'
¶Continue loop iterations if dat satisfy to cond, or finishes loop otherwise.
val
¶The code between once on
and once off
will be executed only once. Useful for large data manipulation in programs like UDAV.
Terminate execution.
val
¶Set variant of argument(s) separated by `?` symbol to be used in further commands.
eq1;... var1;... [dt=1
]
¶Make one step for ordinary differential equation(s) {var1` = eq1, ... } with time-step dt. Here variable(s) `var1`, ... are the ones, defined in MGL script previously. The Runge-Kutta 4-th order method is used for solution.
There are number of special comments for MGL script, which set some global behavior (like, animation, dialog for parameters and so on). All these special comments starts with double sign ##
. Let consider them.
v1 v2 [dv=1]
`Sets the parameter for animation loop relative to variable $0
. Here v1 and v2 are initial and final values, dv is the increment.
Adds the parameter val to the list of animation relative to variable $0
. You can use it several times (one parameter per line) or combine it with animation loop ##c.
Creates custom dialog for changing plot properties. Each line adds one widget to the dialog. Here $I is id ($0,$1...$9,$a,$b...$z), label is the label of widget, kind is the kind of the widget:
Now, it work in FLTK-based mgllab
and mglview
only.
There is LaTeX package mgltex
(was made by Diego Sejas Viscarra) which allow one to make figures directly from MGL script located in LaTeX file.
For using this package you need to specify --shell-escape
option for latex/pdflatex or manually run mglconv tool with produced MGL scripts for generation of images. Don`t forgot to run latex/pdflatex second time to insert generated images into the output document. Also you need to run pdflatex third time to update converted from EPS images if you are using vector EPS output (default).
The package may have following options: draft
, final
— the same as in the graphicx package; on
, off
— to activate/deactivate the creation of scripts and graphics; comments
, nocomments
— to make visible/invisible comments contained inside mglcomment
environments; jpg
, jpeg
, png
— to export graphics as JPEG/PNG images; eps
, epsz
— to export to uncompressed/compressed EPS format as primitives; bps
, bpsz
— to export to uncompressed/compressed EPS format as bitmap (doesn`t work with pdflatex); pdf
— to export to 3D PDF; tex
— to export to LaTeX/tikz document.
The package defines the following environments:
It writes its contents to a general script which has the same name as the LaTeX document, but its extension is .mgl. The code in this environment is compiled and the image produced is included. It takes exactly the same optional arguments as the \includegraphics
command, plus an additional argument imgext, which specifies the extension to save the image.
An example of usage of `mgl` environment would be:
\begin{mglfunc}{prepare2d} new a 50 40 '0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))' new b 50 40 '0.6*cos(pi*(x+1))*cos(1.5*pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))' \end{mglfunc} \begin{figure}[!ht] \centering \begin{mgl}[width=0.85\textwidth,height=7.5cm] fog 0.5 call 'prepare2d' subplot 2 2 0 : title 'Surf plot (default)' : rotate 50 60 : light on : box : surf a subplot 2 2 1 : title '"\#" style; meshnum 10' : rotate 50 60 : box surf a '#'; meshnum 10 subplot 2 2 2 : title 'Mesh plot' : rotate 50 60 : box mesh a new x 50 40 '0.8*sin(pi*x)*sin(pi*(y+1)/2)' new y 50 40 '0.8*cos(pi*x)*sin(pi*(y+1)/2)' new z 50 40 '0.8*cos(pi*(y+1)/2)' subplot 2 2 3 : title 'parametric form' : rotate 50 60 : box surf x y z 'BbwrR' \end{mgl} \end{figure}
It adds its contents to the general script, without producing any image.
Is exactly the same as `mgl`, but it writes its contents verbatim to its own file, whose name is specified as a mandatory argument.
Is exactly the same as `mglcode`, but it doesn`t produce any image, nor accepts optional arguments. It is useful, for example, to create a MGL script, which can later be post processed by another package like "listings".
It writes its contents verbatim to a file, specified as a mandatory argument, and to the LaTeX document, and numerates each line of code.
Exactly the same as `mglblock`, but it doesn`t write to a file. This environment doesn`t have arguments.
Is used to define MGL functions. It takes one mandatory argument, which is the name of the function, plus one additional argument, which specifies the number of arguments of the function. The environment needs to contain only the body of the function, since the first and last lines are appended automatically, and the resulting code is written at the end of the general script, after the stop command, which is also written automatically. The warning is produced if 2 or more function with the same name is defined.
Is used to contain multiline comments. This comments will be visible/invisible in the output document, depending on the use of the package options comments
and nocomments
(see above), or the \mglcomments
and \mglnocomments
commands (see bellow).
If many scripts with the same code are to be written, the repetitive code can be written inside this environment only once, then this code will be used automatically every time the `\mglplot` command is used (see below). It takes one optional argument, which is a name to be associated to the corresponding contents of the environment; this name can be passed to the `\mglplot` command to use the corresponding block of code automatically (see below).
The package also defines the following commands:
It takes one mandatory argument, which is MGL instructions separated by the symbol `:` this argument can be more than one line long. It takes the same optional arguments as the `mgl` environment, plus an additional argument setup, which indicates the name associated to a block of code inside a `mglsetup` environment. The code inside the mandatory argument will be appended to the block of code specified, and the resulting code will be written to the general script.
An example of usage of `\mglplot` command would be:
\begin{mglsetup} box '@{W9}' : axis \end{mglsetup} \begin{mglsetup}[2d] box : axis grid 'xy' ';k' \end{mglsetup} \begin{mglsetup}[3d] rotate 50 60 box : axis : grid 'xyz' ';k' \end{mglsetup} \begin{figure}[!ht] \centering \mglplot[scale=0.5]{new a 200 'sin(pi*x)' : plot a '2B'} \end{figure} \begin{figure}[!ht] \centering \mglplot[scale=0.5,setup=2d]{ fplot 'sin(pi*x)' '2B' : fplot 'cos(pi*x^2)' '2R' } \end{figure} \begin{figure}[!ht] \centering \mglplot[setup=3d]{fsurf 'sin(pi*x)+cos(pi*y)'} \end{figure}
This command takes the same optional arguments as the `mgl` environment, and one mandatory argument, which is the name of a MGL script. This command will compile the corresponding script and include the resulting image. It is useful when you have a script outside the LaTeX document, and you want to include the image, but you don`t want to type the script again.
This is like `\mglgraphics` but, instead of creating/including the corresponding image, it writes the contents of the MGL script to the LaTeX document, and numerates the lines.
This command can be used in the preamble of the document to specify a directory where LaTeX will save the MGL scripts and generate the corresponding images. This directory is also where `\mglgraphics` and `\mglinclude` will look for scripts.
Adjust the quality of the MGL graphics produced similarly to quality.
Activate/deactivate the creation of MGL scripts and images. Notice these commands have local behavior in the sense that their effect is from the point they are called on.
Make visible/invisible the contents of the mglcomment
environments. These commands have local effect too.
It just pretty prints the name of the package.
As an additional feature, when an image is not found or cannot be included, instead of issuing an error, mgltex
prints a box with the word `MGL image not found` in the LaTeX document.
The set of MathGL features is rather rich - just the number of basic graphics types is larger than 50. Also there are functions for data handling, plot setup and so on. In spite of it I tried to keep a similar style in function names and in the order of arguments. Mostly it is used for different drawing functions.
There are six most general (base) concepts:
SetQuality(MGL_DRAW_LMEM)
or quality 6
) or the list of vector primitives (default). After that the user may decide what he/she want: save to file, display on the screen, run animation, do additional editing and so on. This approach assures a high portability of the program - the source code will produce exactly the same picture in any OS. Another big positive consequence is the ability to create the picture in the console program (using command line, without creating a window)!
In addition to the general concepts I want to comment on some non-trivial or less commonly used general ideas - plot positioning, axis specification and curvilinear coordinates, styles for lines, text and color scheme.
Two axis representations are used in MathGL. The first one consists of normalizing coordinates of data points in axis range (see Axis settings). If SetCut()
is true
then the outlier points are omitted, otherwise they are projected to the bounding box (see Cutting). Also, the point will be omitted if it lies inside the box defined by SetCutBox()
or if the value of formula CutOff()
is nonzero for its coordinates. After that, transformation formulas defined by SetFunc()
or SetCoor()
are applied to the data point (see Curved coordinates). Finally, the data point is plotted by one of the functions.
The range of x, y, z-axis can be specified by SetRange()
or ranges functions. Its origin is specified by origin function. At this you can you can use NAN
values for selecting axis origin automatically.
There is 4-th axis c (color axis or colorbar) in addition to the usual axes x, y, z. It sets the range of values for the surface coloring. Its borders are automatically set to values of z-range during the call of ranges function. Also, one can directly set it by call SetRange('c', ...)
. Use colorbar function for drawing the colorbar.
The form (appearence) of tick labels is controlled by SetTicks()
function (see Ticks). Function SetTuneTicks switches on/off tick enhancing by factoring out acommon multiplier (for small coordinate values, like 0.001 to 0.002, or large, like from 1000 to 2000) or common component (for narrow range, like from 0.999 to 1.000). Finally, you may use functions SetTickTempl()
for setting templates for tick labels (it supports TeX symbols). Also, there is a possibility to print arbitrary text as tick labels the by help of SetTicksVal()
function.
Base colors are defined by one of symbol `wkrgbcymhRGBCYMHWlenupqLENUPQ`.
The color types are: `k` - black, `r` - red, `R` - dark red, `g` - green, `G` - dark green, `b` - blue, `B` - dark blue, `c` - cyan, `C` - dark cyan, `m` - magenta, `M` - dark magenta, `y` - yellow, `Y` - dark yellow (gold), `h` - gray, `H` - dark gray, `w` - white, `W` - bright gray, `l` - green-blue, `L` - dark green-blue, `e` - green-yellow, `E` - dark green-yellow, `n` - sky-blue, `N` - dark sky-blue, `u` - blue-violet, `U` - dark blue-violet, `p` - purple, `P` - dark purple, `q` - orange, `Q` - dark orange (brown).
You can also use “bright” colors. The “bright” color contain 2 symbols in brackets `{cN}`: first one is the usual symbol for color id, the second one is a digit for its brightness. The digit can be in range `1`...`9`. Number `5` corresponds to a normal color, `1` is a very dark version of the color (practically black), and `9` is a very bright version of the color (practically white). For example, the colors can be `{b2}` `{b7}` `{r7}` and so on.
Finally, you can specify RGB or RGBA values of a color using format `{xRRGGBB}` or `{xRRGGBBAA}` correspondingly. For example, `{xFF9966}` give you melone color.
The line style is defined by the string which may contain specifications for color (`wkrgbcymhRGBCYMHWlenupqLENUPQ`), dashing style (`-|;:ji=` or space), width (`123456789`) and marks (`*o+xsd.^v<>` and `#` modifier). If one of the type of information is omitted then default values used with next color from palette (see Palette and colors). Note, that internal color counter will be nullified by any change of palette. This includes even hidden change (for example, by box or axis functions). By default palette contain following colors: dark gray `H`, blue `b`, green `g`, red `r`, cyan `c`, magenta `m`, yellow `y`, gray `h`, green-blue `l`, sky-blue `n`, orange `q`, green-yellow `e`, blue-violet `u`, purple `p`.
Dashing style has the following meaning: space - no line (usable for plotting only marks), `-` - solid line (■■■■■■■■■■■■■■■■), `|` - long dashed line (■■■■■■■■□□□□□□□□), `;` - dashed line (■■■■□□□□■■■■□□□□), `=` - small dashed line (■■□□■■□□■■□□■■□□), `:` - dotted line (■□□□■□□□■□□□■□□□), `j` - dash-dotted line (■■■■■■■□□□□■□□□□), `i` - small dash-dotted line (■■■□□■□□■■■□□■□□), `{dNNNN}` - manual dash style (for v.2.3 and later, like `{df090}` for (■■■■□□□□■□□■□□□□)).
Marker types are: `o` - circle, `+` - cross, `x` - skew cross, `s` - square, `d` - rhomb (or diamond), `.` - dot (point), `^` - triangle up, `v` - triangle down, `<` - triangle left, `>` - triangle right, `#*` - Y sign, `#+` - squared cross, `#x` - squared skew cross, `#.` - circled dot. If string contain symbol `#` then the solid versions of markers are used.
You can provide user-defined symbols (see addsymbol) to draw it as marker by using `&` style. In particular, `&*`, `&o`, `&+`, `&x`, `&s`, `&d`, `&.`, `&^`, `&v`, `&<`, `&>` will draw user-defined symbol `*o+xsd.^v<>` correspondingly; and
`&#o`, `&#+`, `&#x`, `&#s`, `&#d`, `&#.`, `&#^`, `&#v`, `&#<`, `&#>` will draw user-defined symbols `YOPXSDCTVLR` correspondingly. Note, that wired version of user-defined symbols will be drawn if you set negative marker size (see marksize or size
in Command options).
One may specify to draw a special symbol (an arrow) at the beginning and at the end of line. This is done if the specification string contains one of the following symbols: `A` - outer arrow, `V` - inner arrow, `I` - transverse hatches, `K` - arrow with hatches, `T` - triangle, `S` - square, `D` - rhombus, `O` - circle, `X` - skew cross, `_` - nothing (the default). The following rule applies: the first symbol specifies the arrow at the end of line, the second specifies the arrow at the beginning of the line. For example, `r-A` defines a red solid line with usual arrow at the end, `b|AI` defines a blue dash line with an arrow at the end and with hatches at the beginning, `_O` defines a line with the current style and with a circle at the beginning. These styles are applicable during the graphics plotting as well (for example, 1D plotting).
The color scheme is used for determining the color of surfaces, isolines, isosurfaces and so on. The color scheme is defined by the string, which may contain several characters that are color id (see Line styles) or characters `#:|`. Symbol `#` switches to mesh drawing or to a wire plot. Symbol `|` disables color interpolation in color scheme, which can be useful, for example, for sharp colors during matrix plotting. Symbol `:` terminate the color scheme parsing. Following it, the user may put styles for the text, rotation axis for curves/isocontours, and so on. Color scheme may contain up to 32 color values.
The final color is a linear interpolation of color array. The color array is constructed from the string ids (including “bright” colors, see Color styles). The argument is the amplitude normalized in color range (see Axis settings). For example, string containing 4 characters `bcyr` corresponds to a colorbar from blue (lowest value) through cyan (next value) through yellow (next value) to the red (highest value). String `kw` corresponds to a colorbar from black (lowest value) to white (highest value). String `m` corresponds to a simple magenta color.
The special 2-axis color scheme (like in map plot) can be used if it contain symbol `%`. In this case the second direction (alpha channel) is used as second coordinate for colors. At this, up to 4 colors can be specified for corners: {c1,a1}, {c2,a1}, {c1,a2}, {c2,a2}. Here color and alpha ranges are {c1,c2} and {a1,a2} correspondingly. If one specify less than 4 colors then black color is used for corner {c1,a1}. If only 2 colors are specified then the color of their sum is used for corner {c2,a2}.
There are several useful combinations. String `kw` corresponds to the simplest gray color scheme where higher values are brighter. String `wk` presents the inverse gray color scheme where higher value is darker. Strings `kRryw`, `kGgw`, `kBbcw` present the well-known hot, summer and winter color schemes. Strings `BbwrR` and `bBkRr` allow one to view bi-color figure on white or black background, where negative values are blue and positive values are red. String `BbcyrR` gives a color scheme similar to the well-known jet color scheme.
For more precise coloring, you can change default (equidistant) position of colors in color scheme. The format is `{CN,pos}`, `{CN,pos}` or `{xRRGGBB,pos}`. The position value pos should be in range [0, 1]. Note, that alternative method for fine tuning of the color scheme is using the formula for coloring (see Curved coordinates).
When coloring by coordinate (used in map), the final color is determined by the position of the point in 3d space and is calculated from formula c=x*c[1] + y*c[2]. Here, c[1], c[2] are the first two elements of color array; x, y are normalized to axis range coordinates of the point.
Additionally, MathGL can apply mask to face filling at bitmap rendering. The kind of mask is specified by one of symbols `-+=;oOsS~<>jdD*^` in color scheme. Mask can be rotated by arbitrary angle by command mask or by three predefined values +45, -45 and 90 degree by symbols `\/I` correspondingly. Examples of predefined masks are shown on the figure below.
However, you can redefine mask for one symbol by specifying new matrix of size 8*8 as second argument for mask command. For example, the right-down subplot on the figure above is produced by code
mask '+' 'ff00182424f800':dens a '3+'
or just use manual mask style (for v.2.3 and later)
dens a '3{s00ff00182424f800}'
Text style is specified by the string which may contain: color id characters `wkrgbcymhRGBCYMHW` (see Color styles), and font style (`ribwou`) and/or alignment (`LRC`) specifications. At this, font style and alignment begin after the separator `:`. For example, `r:iCb` sets the bold (`b`) italic (`i`) font text aligned at the center (`C`) and with red color (`r`). Starting from MathGL v.2.3, you can set not single color for whole text, but use color gradient for printed text (see Color scheme).
The font styles are: `r` - roman (or regular) font, `i` - italic style, `b` - bold style. By default roman roman font is used. The align types are: `L` - align left (default), `C` - align center, `R` - align right, `T` - align under, `V` - align center vertical. Additional font effects are: `w` - wired, `o` - over-lined, `u` - underlined.
Also a parsing of the LaTeX-like syntax is provided. There are commands for the font style changing inside the string (for example, use \b for bold font): \a or \overline - over-lined, \b or \textbf - bold, \i or \textit - italic, \r or \textrm - roman (disable bold and italic attributes), \u or \underline - underlined, \w or \wire - wired, \big - bigger size, @ - smaller size. The lower and upper indexes are specified by `_` and `^` symbols. At this the changed font style is applied only on next symbol or symbols in braces {}. The text in braces {} are treated as single symbol that allow one to print the index of index. For example, compare the strings `sin (x^{2^3})` and `sin (x^2^3)`. You may also change text color inside string by command #? or by \color? where `?` is symbolic id of the color (see Color styles). For example, words `blue` and `red` will be colored in the string `#b{blue} and \colorr{red} text`. The most of functions understand the newline symbol `\n` and allows one to print multi-line text. Finally, you can use arbitrary (if it was defined in font-face) UTF codes by command \utf0x????
. For example, \utf0x3b1
will produce
α symbol.
The most of commands for special TeX or AMSTeX symbols, the commands for font style changing (\textrm, \textbf, \textit, \textsc, \overline, \underline), accents (\hat, \tilde, \dot, \ddot, \acute, \check, \grave, \bar, \breve) and roots (\sqrt, \sqrt3, \sqrt4) are recognized. The full list contain approximately 2000 commands. Note that first space symbol after the command is ignored, but second one is printed as normal symbol (space). For example, the following strings produce the same result \tilde a: `\tilde{a}`; `\tilde a`; `\tilde{}a`.
In particular, the Greek letters are recognizable special symbols: α - \alpha, β - \beta, γ - \gamma, δ - \delta, ε - \epsilon, η - \eta, ι - \iota, χ - \chi, κ - \kappa, λ - \lambda, μ - \mu, ν - \nu, o - \o, ω - \omega, ϕ - \phi, π - \pi, ψ - \psi, ρ - \rho, σ - \sigma, θ - \theta, τ - \tau, υ - \upsilon, ξ - \xi, ζ - \zeta, ς - \varsigma, ɛ - \varepsilon, ϑ - \vartheta, φ - \varphi, ϰ - \varkappa; A - \Alpha, B - \Beta, Γ - \Gamma, Δ - \Delta, E - \Epsilon, H - \Eta, I - \Iota, C - \Chi, K - \Kappa, Λ - \Lambda, M - \Mu, N - \Nu, O - \O, Ω - \Omega, Φ - \Phi, Π - \Pi, Ψ - \Psi, R - \Rho, Σ - \Sigma, Θ - \Theta, T - \Tau, Υ - \Upsilon, Ξ - \Xi, Z - \Zeta.The small part of most common special TeX symbols are: ∠ - \angle, ⋅ - \cdot, ♣ - \clubsuit, ✓ - \checkmark, ∪ - \cup, ∩ - \cap, ♢ - \diamondsuit, ◇ - \diamond, ÷ - \div, ↓ - \downarrow, † - \dag, ‡ - \ddag, ≡ - \equiv, ∃ - \exists, ⌢ - \frown, ♭ - \flat, ≥ - \ge, ≥ - \geq, ≧ - \geqq, ← - \gets, ♡ - \heartsuit, ∞ - \infty, ∫ - \int, \Int, ℑ - \Im, ♢ - \lozenge, ⟨ - \langle, ≤ - \le, ≤ - \leq, ≦ - \leqq, ← - \leftarrow, ∓ - \mp, ∇ - \nabla, ≠ - \ne, ≠ - \neq, ♮ - \natural, ∮ - \oint, ⊙ - \odot, ⊕ - \oplus, ∂ - \partial, ∥ - \parallel, ⊥ -\perp, ± - \pm, ∝ - \propto, ∏ - \prod, ℜ - \Re, → - \rightarrow, ⟩ - \rangle, ♠ - \spadesuit, ~ - \sim, ⌣ - \smile, ⊂ - \subset, ⊃ - \supset, √ - \sqrt or \surd, § - \S, ♯ - \sharp, ∑ - \sum, × - \times, → - \to, ∴ - \therefore, ↑ - \uparrow, ℘ - \wp.
The font size can be defined explicitly (if size>0) or relatively to a base font size as |size|*FontSize (if size<0). The value size=0 specifies that the string will not be printed. The base font size is measured in internal “MathGL” units. Special functions SetFontSizePT(), SetFontSizeCM(), SetFontSizeIN()
(see Font settings) allow one to set it in more “common” variables for a given dpi value of the picture.
MathGL have the fast variant of textual formula evaluation . There are a lot of functions and operators available. The operators are: `+` - addition, `-` - subtraction, `*` - multiplication, `/` - division, `%` - modulo, `^` - integer power. Also there are logical “operators”: `<` - true if x<y, `>` - true if x>y, `=` - true if x=y, `&` - true if x and y both nonzero, `|` - true if x or y nonzero. These logical operators have lowest priority and return 1 if true or 0 if false.
The basic functions are: `sqrt(x)` - square root of x, `pow(x,y)` - power x in y, `ln(x)` - natural logarithm of x, `lg(x)` - decimal logarithm of x, `log(a,x)` - logarithm base a of x, `abs(x)` - absolute value of x, `sign(x)` - sign of x, `mod(x,y)` - x modulo y, `step(x)` - step function, `int(x)` - integer part of x, `rnd` - random number, `random(x)` - random data of size as in x, `hypot(x,y)`=sqrt(x^2+y^2) - hypotenuse, `cmplx(x,y)`=x+i*y - complex number, `pi` - number π = 3.1415926…, inf=∞
Functions for complex numbers `real(x)`, `imag(x)`, `abs(x)`, `arg(x)`, `conj(x)`.
Trigonometric functions are: `sin(x)`, `cos(x)`, `tan(x)` (or `tg(x)`). Inverse trigonometric functions are: `asin(x)`, `acos(x)`, `atan(x)`. Hyperbolic functions are: `sinh(x)` (or `sh(x)`), `cosh(x)` (or `ch(x)`), `tanh(x)` (or `th(x)`). Inverse hyperbolic functions are: `asinh(x)`, `acosh(x)`, `atanh(x)`.
There are a set of special functions: `gamma(x)` - Gamma function Γ(x) = ∫0∞ tx-1 exp(-t) dt, `gamma_inc(x,y)` - incomplete Gamma function Γ(x,y) = ∫y∞ tx-1 exp(-t) dt, `psi(x)` - digamma function ψ(x) = Γ′(x)/Γ(x) for x≠0, `ai(x)` - Airy function Ai(x), `bi(x)` - Airy function Bi(x), `cl(x)` - Clausen function, `li2(x)` (or `dilog(x)`) - dilogarithm Li2(x) = -ℜ∫0xds log(1-s)/s, `sinc(x)` - compute sinc(x) = sin(πx)/(πx) for any value of x, `zeta(x)` - Riemann zeta function ζ(s) = ∑k=1∞k-s for arbitrary s≠1, `eta(x)` - eta function η(s) = (1 - 21-s)ζ(s) for arbitrary s, `lp(l,x)` - Legendre polynomial Pl(x), (|x|≤1, l≥0), `w0(x)` - principal branch of the Lambert W function, `w1(x)` - principal branch of the Lambert W function. Function W(x) is defined to be solution of the equation: W exp(W) = x.
The exponent integrals are: `ci(x)` - Cosine integral Ci(x) = ∫0xdt cos(t)/t, `si(x)` - Sine integral Si(x) = ∫0xdt sin(t)/t, `erf(x)` - error function erf(x) = (2/√π) ∫0xdt exp(-t2) , `ei(x)` - exponential integral Ei(x) = -PV(∫-x∞dt exp(-t)/t) (where PV denotes the principal value of the integral), `e1(x)` - exponential integral E1(x) = ℜ∫1∞dt exp(-xt)/t, `e2(x)` - exponential integral E2(x) = ℜ∫1∞dt exp(-xt)/t2, `ei3(x)` - exponential integral Ei3(x) = ∫0xdt exp(-t3) for x≥0.
Bessel functions are: `j(nu,x)` - regular cylindrical Bessel function of fractional order nu, `y(nu,x)` - irregular cylindrical Bessel function of fractional order nu, `i(nu,x)` - regular modified Bessel function of fractional order nu, `k(nu,x)` - irregular modified Bessel function of fractional order nu.
Elliptic integrals are: `ee(k)` - complete elliptic integral is denoted by E(k) = E(π/2,k), `ek(k)` - complete elliptic integral is denoted by K(k) = F(π/2,k), `e(phi,k)` - elliptic integral E(φ,k) = ∫0φdt √(1 - k2sin2(t)), `f(phi,k)` - elliptic integral F(φ,k) = ∫0φdt 1/√(1 - k2sin2(t))
Jacobi elliptic functions are: `sn(u,m)`, `cn(u,m)`, `dn(u,m)`, `sc(u,m)`, `sd(u,m)`, `ns(u,m)`, `cs(u,m)`, `cd(u,m)`, `nc(u,m)`, `ds(u,m)`, `dc(u,m)`, `nd(u,m)`.
Note, some of these functions are unavailable if MathGL was compiled without GSL support.
There is no difference between lower or upper case in formulas. If argument value lie outside the range of function definition then function returns NaN.
MathGL version 2.5 introduce user-defined functions `fn1()...fn9()` at formula evaluation, which are defined after symbol `\`. For example, "fn1(3)\x^_1" will produce "x^3". Also functions `sum`, `dsum`, `prod` are added at formula evaluation for summation, summation with variable sign and product evaluation. For example, "sum(_i^2,5)" will produce "30"=0+1^2+2^2+3^2+4^2, "dsum(_i^2,5)" will produce "10"=0-1^2+2^2-3^2+4^2, and "prod(1+_i,5)" will produce 5!="120". You can nest them for variables _i,_j,...,_z, like "sum(sum(_j+_i^2,5),5)" will give "200". Also you can use user-defined functions, like "sum(fn1(_i)-fn2(_i),4)\_1^4\_1^3" is the same as "sum(_i^4-_i^3,4)" and will produce "62".
Command options allow the easy setup of the selected plot by changing global settings only for this plot. Each option start from symbol `;`. Options work so that MathGL remember the current settings, change settings as it being set in the option, execute function and return the original settings back. So, the options are most usable for plotting functions.
The most useful options are xrange, yrange, zrange
. They sets the boundaries for data change. This boundaries are used for automatically filled variables. So, these options allow one to change the position of some plots. For example, in command Plot(y,"","xrange 0.1 0.9");
or plot y; xrange 0.1 0.9
the x coordinate will be equidistantly distributed in range 0.1 ... 0.9. See Using options, for sample code and picture.
val
¶Sets alpha value (transparency) of the plot. The value should be in range [0, 1]. See also alphadef.
val1 val2
¶Sets boundaries of x coordinate change for the plot. See also xrange.
val1 val2
¶Sets boundaries of y coordinate change for the plot. See also yrange.
val1 val2
¶Sets boundaries of z coordinate change for the plot. See also zrange.
val
¶Sets whether to cut or to project the plot points lying outside the bounding box. See also cut.
Adds string `txt` to internal legend accumulator. The style of described line and mark is taken from arguments of the last 1D plotting command. See also legend.
val
¶Set the value to be used as additional numeric parameter in plotting command.
You can use mglParse
class for executing MGL scripts from different languages.
This chapter contains a lot of plotting commands for 1D, 2D and 3D data. It also encapsulates parameters for axes drawing. Moreover an arbitrary coordinate transformation can be used for each axis. Additional information about colors, fonts, formula parsing can be found in General concepts. The full list of symbols used by MathGL for setting up plots can be found in Symbols for styles.
Some of MathGL features will appear only in novel versions. To test used MathGL version you can use following function.
'ver'
¶Return zero if MathGL version is appropriate for required by ver, i.e. if major version is the same and minor version is greater or equal to one in ver.
You don`t need to create canvas object in MGL.
Functions and variables in this group influences on overall graphics appearance. So all of them should be placed before any actual plotting function calls.
Restore initial values for all of parameters and clear the image.
val flag
¶Sets the value of internal binary flag to val. The list of flags can be found at define.h. The current list of flags are:
#define MGL_ENABLE_CUT 0x00000004 ///< Flag which determines how points outside bounding box are drown. #define MGL_ENABLE_RTEXT 0x00000008 ///< Use text rotation along axis #define MGL_AUTO_FACTOR 0x00000010 ///< Enable autochange PlotFactor #define MGL_ENABLE_ALPHA 0x00000020 ///< Flag that Alpha is used #define MGL_ENABLE_LIGHT 0x00000040 ///< Flag of using lightning #define MGL_TICKS_ROTATE 0x00000080 ///< Allow ticks rotation #define MGL_TICKS_SKIP 0x00000100 ///< Allow ticks rotation #define MGL_DISABLE_SCALE 0x00000200 ///< Temporary flag for disable scaling (used for axis) #define MGL_FINISHED 0x00000400 ///< Flag that final picture (i.e. mglCanvas::G) is ready #define MGL_USE_GMTIME 0x00000800 ///< Use gmtime instead of localtime #define MGL_SHOW_POS 0x00001000 ///< Switch to show or not mouse click position #define MGL_CLF_ON_UPD 0x00002000 ///< Clear plot before Update() #define MGL_NOSUBTICKS 0x00004000 ///< Disable subticks drawing (for bounding box) #define MGL_LOCAL_LIGHT 0x00008000 ///< Keep light sources for each inplot #define MGL_VECT_FRAME 0x00010000 ///< Use DrwDat to remember all data of frames #define MGL_REDUCEACC 0x00020000 ///< Reduce accuracy of points (to reduce size of output files) #define MGL_PREFERVC 0x00040000 ///< Prefer vertex color instead of texture if output format supports #define MGL_ONESIDED 0x00080000 ///< Render only front side of surfaces if output format supports (for debugging) #define MGL_NO_ORIGIN 0x00100000 ///< Don't draw tick labels at axis origin #define MGL_GRAY_MODE 0x00200000 ///< Convert all colors to gray ones #define MGL_FULL_CURV 0x00400000 ///< Disable omitting points in straight-line part(s) #define MGL_NO_SCALE_REL 0x00800000 ///< Disable font scaling in relative inplots
There are several functions and variables for setup transparency. The general function is alpha which switch on/off the transparency for overall plot. It influence only for graphics which created after alpha call (with one exception, OpenGL). Function alphadef specify the default value of alpha-channel. Finally, function transptype set the kind of transparency. See Transparency and lighting, for sample code and picture.
[val=on]
¶Sets the transparency on/off and returns previous value of transparency. It is recommended to call this function before any plotting command. Default value is transparency off.
val
¶Sets default value of alpha channel (transparency) for all plotting functions. Initial value is 0.5.
val
¶Set the type of transparency. Possible values are:
SetAlphaDef(0.3)
or less for lamp-like transparency.
See Types of transparency, for sample code and picture..
There are several functions for setup lighting. The general function is light which switch on/off the lighting for overall plot. It influence only for graphics which created after light call (with one exception, OpenGL). Generally MathGL support up to 10 independent light sources. But in OpenGL mode only 8 of light sources is used due to OpenGL limitations. The position, color, brightness of each light source can be set separately. By default only one light source is active. It is source number 0
with white color, located at top of the plot. See Lighting sample, for sample code and picture.
[val=on]
¶Sets the using of light on/off for overall plot. Function returns previous value of lighting. Default value is lightning off.
num
val
¶Switch on/off n-th light source separately.
num xdir ydir zdir
['col'='w' br=0.5
]
¶num xdir ydir zdir xpos ypos zpos
['col'='w' br=0.5 ap=0
]
¶The function adds a light source with identification n in direction d with color c and with brightness bright (which must be in range [0,1]). If position r is specified and isn`t NAN then light source is supposed to be local otherwise light source is supposed to be placed at infinity.
val
¶Set brightness of diffusive light (only for local light sources).
val
¶Sets the brightness of ambient light. The value should be in range [0,1].
val
¶Set to attach light settings to inplot/subplot. Note, OpenGL and some output formats don`t support this feature.
val [dz=0.25]
¶Function imitate a fog in the plot. Fog start from relative distance dz from view point and its density growths exponentially in depth. So that the fog influence is determined by law ~ 1-exp(-d*z). Here z is normalized to 1 depth of the plot. If value d=0
then the fog is absent. Note, that fog was applied at stage of image creation, not at stage of drawing. See Adding fog, for sample code and picture.
These variables control the default (initial) values for most graphics parameters including sizes of markers, arrows, line width and so on. As any other settings these ones will influence only on plots created after the settings change.
val
¶Sets relative width of rectangles in bars, barh, boxplot, candle, ohlc. Default value is 0.7
.
val
¶Sets size of marks for 1D plotting. Default value is 1
.
val
¶Sets size of arrows for 1D plotting, lines and curves (see Primitives). Default value is 1
.
val
¶Sets approximate number of lines in mesh, fall, grid2, and also the number of hachures in vect, dew, and the number of cells in cloud, and the number of markers in plot, tens, step, mark, textmark. By default (=0) it draws all lines/hachures/cells/markers.
val
¶Sets approximate number of visible faces. Can be used for speeding up drawing by cost of lower quality. By default (=0) it draws all of them.
'id'
¶Sets default name id as filename for saving (in FLTK window for example).
val
¶Changes the blur around lines and text (default is 1). For val>1 the text and lines are more sharped. For val<1 the text and lines are more blurred.
These variables and functions set the condition when the points are excluded (cutted) from the drawing. Note, that a point with NAN value(s) of coordinate or amplitude will be automatically excluded from the drawing. See Cutting sample, for sample code and picture.
val
¶Flag which determines how points outside bounding box are drawn. If it is true
then points are excluded from plot (it is default) otherwise the points are projected to edges of bounding box.
x1 y1 z1 x2 y2 z2
¶Lower and upper edge of the box in which never points are drawn. If both edges are the same (the variables are equal) then the cutting box is empty.
'cond'
¶Sets the cutting off condition by formula cond. This condition determine will point be plotted or not. If value of formula is nonzero then point is omitted, otherwise it plotted. Set argument as ""
to disable cutting off condition.
'fnt' [val=6
]
¶Font style for text and labels (see text). Initial style is `fnt`=`:rC` give Roman font with centering. Parameter val
sets the size of font for tick and axis labels. Default font size of axis labels is 1.4 times large than for tick labels. For more detail, see Font styles.
val
¶Sets to use or not text rotation.
val
¶Sets to scale text in relative inplot (including columnplot, gridplot, stickplot, shearplot) or not.
val
¶Enables/disables TeX-like command parsing at text output.
['name'='']
¶Load font typeface from path/name. Empty name will load default font.
'colors'
¶Sets the palette as selected colors. Default value is "Hbgrcmyhlnqeup"
that corresponds to colors: dark gray `H`, blue `b`, green `g`, red `r`, cyan `c`, magenta `m`, yellow `y`, gray `h`, blue-green `l`, sky-blue `n`, orange `q`, yellow-green `e`, blue-violet `u`, purple `p`. The palette is used mostly in 1D plots (see 1D plotting) for curves which styles are not specified. Internal color counter will be nullified by any change of palette. This includes even hidden change (for example, by box or axis functions).
[val=on
]
¶Sets the gray-scale mode on/off.
'id' 'hex' [angle]
¶'id' hex [angle]
¶Sets new bit matrix hex of size 8*8 for mask with given id. This is global setting which influence on any later usage of symbol id. The predefined masks are (see Color scheme): `-` give lines (0x000000FF00000000
), `+` give cross-lines (080808FF08080808
), `=` give double lines (0000FF00FF000000
), `;` give dash lines (0x0000000F00000000
), `o` give circles (0000182424180000
), `O` give filled circles (0000183C3C180000
), `s` give squares (00003C24243C0000
), `S` give solid squares (00003C3C3C3C0000
), `~` give waves (0000060990600000
), `<` give left triangles (0060584658600000
), `>` give right triangles (00061A621A060000
), `j` give dash-dot lines (0000002700000000
), `d` give pluses (0x0008083E08080000
), `D` give tacks (0x0139010010931000
), `*` give dots (0x0000001818000000
), `^` give bricks (0x101010FF010101FF
). Parameter angle set the rotation angle too. IMPORTANT: the rotation angle will be replaced by a multiple of 45 degrees at export to EPS.
angle
¶Sets the default rotation angle (in degrees) for masks. Note, you can use symbols `\`, `/`, `I` in color scheme for setting rotation angles as 45, -45 and 90 degrees correspondingly. IMPORTANT: the rotation angle will be replaced by a multiple of 45 degrees at export to EPS.
All warnings will be displayed automatically in special tool-window or in console.
You can use stop command or press corresponding toolbutton to stop drawing and script execution.
These large set of variables and functions control how the axis and ticks will be drawn. Note that there is 3-step transformation of data coordinates are performed. Firstly, coordinates are projected if Cut=true
(see Cutting), after it transformation formulas are applied, and finally the data was normalized in bounding box. Note, that MathGL will produce warning if axis range and transformation formulas are not compatible.
v1 v2
[add=off
]
¶v1 v2
[add=off
]
¶v1 v2
[add=off
]
¶v1 v2
[add=off
]
¶Sets or adds the range for `x`-,`y`-,`z`- coordinate or coloring (`c`). If one of values is NAN
then it is ignored. See also ranges.
dat [add=off
]
¶dat [add=off
]
¶dat [add=off
]
¶dat [add=off
]
¶Sets the range for `x`-,`y`-,`z`- coordinate or coloring (`c`) as minimal and maximal values of data dat. Parameter add=on
shows that the new range will be joined to existed one (not replace it).
x1 x2 y1 y2 [z1=0 z2=0]
¶Sets the ranges of coordinates. If minimal and maximal values of the coordinate are the same then they are ignored. Also it sets the range for coloring (analogous to crange z1 z2
). This is default color range for 2d plots. Initial ranges are [-1, 1].
xx yy [zz cc=zz]
¶Sets the ranges of `x`-,`y`-,`z`-,`c`-coordinates and coloring as minimal and maximal values of data xx, yy, zz, cc correspondingly.
x0 y0 [z0=nan]
¶Sets center of axis cross section. If one of values is NAN then MathGL try to select optimal axis position.
x1 x2
¶x1 y1 x2 y2
¶x1 y1 z1 x2 y2 z2
¶x1 y1 z1 c1 x2 y2 z2 c2
¶Additionally extend axis range for any settings made by SetRange
or SetRanges
functions according the formula min += (max-min)*p1 and max += (max-min)*p1 (or min *= (max/min)^p1 and max *= (max/min)^p1 for log-axis range when inf>max/min>100 or 0<max/min<0.01). Initial ranges are [0, 1]. Attention! this settings can not be overwritten by any other functions, including DefaultPlotParam()
.
val
¶Enable/disable accurate but slower primitive cutting at axis borders. In C/Fortran you can use mgl_set_flag(gr,val, MGL_FAST_PRIM);
. It automatically set on for ternary axis now.
'fx' 'fy' 'fz' ['fa'='']
¶Sets transformation formulas for curvilinear coordinate. Each string should contain mathematical expression for real coordinate depending on internal coordinates `x`, `y`, `z` and `a` or `c` for colorbar. For example, the cylindrical coordinates are introduced as SetFunc("x*cos(y)", "x*sin(y)", "z");
. For removing of formulas the corresponding parameter should be empty or NULL
. Using transformation formulas will slightly slowing the program. Parameter EqA set the similar transformation formula for color scheme. See Textual formulas.
how
¶Sets one of the predefined transformation formulas for curvilinear coordinate. Parameter how define the coordinates:
mglCartesian=0
Cartesian coordinates (no transformation, {x,y,z});
mglPolar=1
Polar coordinates: {x*cos(y), x*sin(y), z};
mglSpherical=2
Sperical coordinates: {x*sin(y)*cos(z), x*sin(y)*sin(z), x*cos(y)};
mglParabolic=3
Parabolic coordinates: {x*y, (x*x-y*y)/2, z}
mglParaboloidal=4
Paraboloidal coordinates: {(x*x-y*y)*cos(z)/2, (x*x-y*y)*sin(z)/2, x*y};
mglOblate=5
Oblate coordinates: {cosh(x)*cos(y)*cos(z), cosh(x)*cos(y)*sin(z), sinh(x)*sin(y)};
mglProlate=6
Prolate coordinates: {sinh(x)*sin(y)*cos(z), sinh(x)*sin(y)*sin(z), cosh(x)*cos(y)};
mglElliptic=7
Elliptic coordinates: {cosh(x)*cos(y), sinh(x)*sin(y), z};
mglToroidal=8
Toroidal coordinates: {sinh(x)*cos(z)/(cosh(x)-cos(y)), sinh(x)*sin(z)/(cosh(x)-cos(y)), sin(y)/(cosh(x)-cos(y))};
mglBispherical=9
Bispherical coordinates: {sin(y)*cos(z)/(cosh(x)-cos(y)), sin(y)*sin(z)/(cosh(x)-cos(y)), sinh(x)/(cosh(x)-cos(y))};
mglBipolar=10
Bipolar coordinates: {sinh(x)/(cosh(x)-cos(y)), sin(y)/(cosh(x)-cos(y)), z};
mglLogLog=11
Log-log coordinates: {lg(x), lg(y), lg(z)};
mglLogX=12
Log-x coordinates: {lg(x), y, z};
mglLogY=13
Log-y coordinates: {x, lg(y), z}.
val
¶The function sets to draws Ternary (tern=1
), Quaternary (tern=2
) plot or projections (tern=4,5,6
).
Ternary plot is special plot for 3 dependent coordinates (components) a, b, c so that a+b+c=1. MathGL uses only 2 independent coordinates a=x and b=y since it is enough to plot everything. At this third coordinate z act as another parameter to produce contour lines, surfaces and so on.
Correspondingly, Quaternary plot is plot for 4 dependent coordinates a, b, c and d so that a+b+c+d=1. MathGL uses only 3 independent coordinates a=x, b=y and d=z since it is enough to plot everything.
Projections can be obtained by adding value 4
to tern argument. So, that tern=4
will draw projections in Cartesian coordinates, tern=5
will draw projections in Ternary coordinates, tern=6
will draw projections in Quaternary coordinates. If you add 8
instead of 4
then all text labels will not be printed on projections.
Use Ternary(0)
for returning to usual axis. See Ternary axis, for sample code and picture. See Axis projection, for sample code and picture.
['dir'='xyzc']
¶Set the ticks step, number of sub-ticks and initial ticks position to be the most human readable for the axis along direction(s) dir. Also set SetTuneTicks(true)
. Usually you don`t need to call this function except the case of returning to default settings.
val [sub=0 org=nan 'fact'='']
¶val [sub=0 org=nan 'fact'='']
¶val [sub=0 org=nan 'fact'='']
¶val sub ['fact'='']
¶val sub ['fact'='']
¶val sub ['fact'='']
¶val ['fact'='']
¶Set the ticks step d, number of sub-ticks ns (used for positive d) and initial ticks position org for the axis along direction dir (use `c` for colorbar ticks). Variable d set step for axis ticks (if positive) or it`s number on the axis range (if negative). Zero value set automatic ticks. If org value is NAN then axis origin is used. Parameter fact set text which will be printed after tick label (like "\pi" for d=M_PI).
val1
'lbl1' [val2
'lbl2' ...]
¶val1
'lbl1' [val2
'lbl2' ...]
¶val1
'lbl1' [val2
'lbl2' ...]
¶val1
'lbl1' [val2
'lbl2' ...]
¶vdat 'lbls' [add=off
]
¶vdat 'lbls' [add=off
]
¶vdat 'lbls' [add=off
]
¶vdat 'lbls' [add=off
]
¶Set the manual positions val and its labels lbl for ticks along axis dir. If array val is absent then values equidistantly distributed in x-axis range are used. Labels are separated by `\n` symbol. If only one value is specified in MGL command then the label will be add to the current ones. Use SetTicks()
to restore automatic ticks.
'templ'
¶'templ'
¶'templ'
¶'templ'
¶Set template templ for x-,y-,z-axis ticks or colorbar ticks. It may contain TeX symbols also. If templ=""
then default template is used (in simplest case it is `%.2g`). If template start with `&` symbol then long
integer value will be passed instead of default type double
. Setting on template switch off automatic ticks tuning.
'dir' [dv=0
'tmpl'='']
¶Sets time labels with step val and template templ for x-,y-,z-axis ticks or colorbar ticks. It may contain TeX symbols also. The format of template templ is the same as described in http://www.manpagez.com/man/3/strftime/. Most common variants are `%X` for national representation of time, `%x` for national representation of date, `%Y` for year with century. If val=0 and/or templ="" then automatic tick step and/or template will be selected. You can use mgl_get_time
() function for obtaining number of second for given date/time string. Note, that MS Visual Studio couldn`t handle date before 1970.
val
[pos=1.15
]
¶Switch on/off ticks enhancing by factoring common multiplier (for small, like from 0.001 to 0.002, or large, like from 1000 to 2000, coordinate values - enabled if tune&1 is nonzero) or common component (for narrow range, like from 0.999 to 1.000 - enabled if tune&2 is nonzero). Also set the position pos of common multiplier/component on the axis: =0 at minimal axis value, =1 at maximal axis value. Default value is 1.15.
dx [dy=0 dz=0 dc=0]
¶Set value of additional shift for ticks labels.
val
¶Enable/disable drawing of ticks labels at axis origin. In C/Fortran you can use mgl_set_flag(gr,val, MGL_NO_ORIGIN);
.
val
[stt=1
]
¶The relative length of axis ticks. Default value is 0.1
. Parameter stt>0 set relative length of subticks which is in sqrt(1+stt)
times smaller.
'stl' ['tck'='' 'sub'='']
¶The line style of axis (stl), ticks (tck) and subticks (sub). If stl is empty then default style is used (`k` or `w` depending on transparency type). If tck or sub is empty then axis style is used (i.e. stl).
These functions control how and where further plotting will be placed. There is a certain calling order of these functions for the better plot appearance. First one should be subplot, multiplot or inplot for specifying the place. Second one can be title for adding title for the subplot. After it a rotate, shear and aspect. And finally any other plotting functions may be called. Alternatively you can use columnplot, gridplot, stickplot, shearplot or relative inplot for positioning plots in the column (or grid, or stick) one by another without gap between plot axis (bounding boxes). See Subplots, for sample code and picture.
nx ny m
['stl'='<>_^' dx=0 dy=0
]
¶Puts further plotting in a m-th cell of nx*ny grid of the whole frame area. The position of the cell can be shifted from its default position by relative size dx, dy. This function set off any aspects or rotations. So it should be used first for creating the subplot. Extra space will be reserved for axis/colorbar if stl contain:
From the aesthetical point of view it is not recommended to use this function with different matrices in the same frame. Note, colorbar can be invisible (be out of image borders) if you set empty style ``.
nx ny m dx dy
['style'='<>_^' sx sy]
¶Puts further plotting in a rectangle of dx*dy cells starting from m-th cell of nx*ny grid of the whole frame area. The position of the rectangular area can be shifted from its default position by relative size sx, sy. This function set off any aspects or rotations. So it should be used first for creating subplot. Extra space will be reserved for axis/colorbar if stl contain:
x1 x2 y1 y2 [rel=on]
¶Puts further plotting in some region of the whole frame surface. This function allows one to create a plot in arbitrary place of the screen. The position is defined by rectangular coordinates [x1, x2]*[y1, y2]. The coordinates x1, x2, y1, y2 are normalized to interval [0, 1]. If parameter rel=true
then the relative position to current subplot (or inplot with rel=false
) is used. This function set off any aspects or rotations. So it should be used first for creating subplot.
num ind [d=0]
¶Puts further plotting in ind-th cell of column with num cells. The position is relative to previous subplot (or inplot with rel=false
). Parameter d set extra gap between cells.
nx ny ind [d=0]
¶Puts further plotting in ind-th cell of nx*ny grid. The position is relative to previous subplot (or inplot with rel=false
). Parameter d set extra gap between cells.
num ind tet phi
¶Puts further plotting in ind-th cell of stick with num cells. At this, stick is rotated on angles tet, phi. The position is relative to previous subplot (or inplot with rel=false
).
num ind sx sy [xd yd]
¶Puts further plotting in ind-th cell of stick with num cells. At this, cell is sheared on values sx, sy. Stick direction is specified be xd and yd. The position is relative to previous subplot (or inplot with rel=false
).
'title' ['stl'='' size=-2
]
¶Add text title for current subplot/inplot. Parameter stl can contain:
Parameter size set font size. This function set off any aspects or rotations. So it should be used just after creating subplot. Note, that each call of this command will reserve extra space. So, you need to manually call subplot command after rasterize if you want to combine bitmap and vector graphics.
tetx tetz [tety=0]
¶Rotates a further plotting relative to each axis {x, z, y} consecutively on angles TetX, TetZ, TetY.
tet x y z
¶Rotates a further plotting around vector {x, y, z} on angle Tet.
sx sy
¶Shears a further plotting on values sx, sy.
ax ay [az=1]
¶Defines aspect ratio for the plot. The viewable axes will be related one to another as the ratio Ax:Ay:Az. For the best effect it should be used after rotate function. If Ax is NAN
then function try to select optimal aspect ratio to keep equal ranges for x-y axis. At this, Ay will specify proportionality factor, or set to use automatic one if Ay=NAN
.
There are 3 functions View()
, Zoom()
and Perspective()
which transform whole image. I.e. they act as secondary transformation matrix. They were introduced for rotating/zooming the whole plot by mouse. It is not recommended to call them for picture drawing.
val
¶Add (switch on) the perspective to plot. The parameter a = Depth/(Depth+dz) \in [0,1). By default (a=0
) the perspective is off.
tetx tetz [tety=0]
¶Rotates a further plotting relative to each axis {x, z, y} consecutively on angles TetX, TetZ, TetY. Rotation is done independently on rotate. Attention! this settings can not be overwritten by DefaultPlotParam()
. Use Zoom(0,0,1,1)
to return default view.
x1 y1 x2 y2
¶The function changes the scale of graphics that correspond to zoom in/out of the picture. After function call the current plot will be cleared and further the picture will contain plotting from its part [x1,x2]*[y1,y2]. Here picture coordinates x1, x2, y1, y2 changes from 0 to 1. Attention! this settings can not be overwritten by any other functions, including DefaultPlotParam()
. Use Zoom(0,0,1,1)
to return default view.
Functions in this group save or give access to produced picture. So, usually they should be called after plotting is done.
w h
¶Sets size of picture in pixels. This function should be called before any other plotting because it completely remove picture contents if clear=true
. Function just clear pixels and scale all primitives if clear=false
.
factor
¶Set factor for width and height in all further calls of setsize. This command is obsolete since v.2.4.2.
[val
=2]
¶Sets quality of the plot depending on value val: MGL_DRAW_WIRE=0
- no face drawing (fastest), MGL_DRAW_FAST=1
- no color interpolation (fast), MGL_DRAW_NORM=2
- high quality (normal), MGL_DRAW_HIGH=3
- high quality with 3d primitives (arrows and marks); MGL_DRAW_LMEM=0x4
- direct bitmap drawing (low memory usage); MGL_DRAW_DOTS=0x8
- for dots drawing instead of primitives (extremely fast).
These functions export current view to a graphic file. The filename fname should have appropriate extension. Parameter descr gives the short description of the picture. Just now the transparency is supported in PNG, SVG, OBJ and PRC files.
['fname'='']
¶Exports current frame to a file fname which type is determined by the extension. Parameter descr adds description to file (can be ""
). If fname=""
then the file `frame####.jpg` is used, where `####` is current frame id and name `frame` is defined by plotid class property.
x1 y1 [x2=-1
y2=-1
]
¶Set boundary box for export graphics into 2D file formats. If x2<0 (y2<0) then original image width (height) will be used. If x1<0 or y1<0 or x1>=x2|Width or y1>=y2|Height then cropping will be disabled.
There are no commands for making animation in MGL. However you can use features of mglconv
and mglview
utilities. For example, by busing special comments `##a ` or `##c `.
These functions change background image.
['col']
¶r g b
¶Clear the picture and fill background by specified color.
Force drawing the plot and use it as background. After it, function clear the list of primitives, like clf. This function is useful if you want save part of plot as bitmap one (for example, large surfaces, isosurfaces or vector fields) and keep some parts as vector one (like annotation, curves, axis and so on). Often, you need to manually call subplot command after rasterize to avoid extra space allocation or plot rotation.
'fname' [alpha=1
]
¶'fname' 'how' [alpha=1
]
¶Load PNG or JPEG file fname as background for the plot. Parameter alpha manually set transparency of the background. Parameter how can be: `a` for filling current subplot only, `s` for scaling (resizing) image to whole area, `c` for centering image, `m` for tessellate image as mosaic.
r g b
¶Fill background by the specified color. Values should be in range [0,1].
These functions draw some simple objects like line, point, sphere, drop, cone and so on. See Using primitives, for sample code and picture.
x y
['col'='r.']
¶x y z
['col'='r.']
¶Draws a mark (point `.` by default) at position p={x, y, z} with color col.
x y ex ey
['stl'='']
¶x y z ex ey ez
['stl'='']
¶Draws a 3d error box at position p={x, y, z} with sizes e={ex, ey, ez} and style stl. Use NAN for component of e to reduce number of drawn elements.
x1 y1 x2 y2
['stl'='']
¶x1 y1 z1 x2 y2 z2
['stl'='']
¶Draws a geodesic line (straight line in Cartesian coordinates) from point p1 to p2 using line style stl. Parameter num define the “quality” of the line. If num=2
then the straight line will be drawn in all coordinate system (independently on transformation formulas (see Curved coordinates). Contrary, for large values (for example, =100
) the geodesic line will be drawn in corresponding coordinate system (straight line in Cartesian coordinates, circle in polar coordinates and so on). Line will be drawn even if it lies out of bounding box.
x1 y1 dx1 dy1 x2 y2 dx2 dy2
['stl'='']
¶x1 y1 z1 dx1 dy1 dz1 x2 y2 z2 dx2 dy2 dz2
['stl'='']
¶Draws Bezier-like curve from point p1 to p2 using line style stl. At this tangent is codirected with d1, d2 and proportional to its amplitude. Parameter num define the “quality” of the curve. If num=2
then the straight line will be drawn in all coordinate system (independently on transformation formulas, see Curved coordinates). Contrary, for large values (for example, =100
) the spline like Bezier curve will be drawn in corresponding coordinate system. Curve will be drawn even if it lies out of bounding box.
x1 y1 x2 y2 x3 y3 x4 y4
['stl'='']
¶x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4
['stl'='']
¶Draws the solid quadrangle (face) with vertexes p1, p2, p3, p4 and with color(s) stl. At this colors can be the same for all vertexes or different if all 4 colors are specified for each vertex. Face will be drawn even if it lies out of bounding box. Argument stl can also contain mask specification (see Color scheme).
x1 y1 x2 y2
['stl'='']
¶x1 y1 z1 x2 y2 z2
['stl'='']
¶Draws the solid rectangle (face) with vertexes {x1, y1, z1} and {x2, y2, z2} with color stl. At this colors can be the same for all vertexes or separately if all 4 colors are specified for each vertex. Face will be drawn even if it lies out of bounding box. Argument stl can also contain mask specification (see Color scheme).
x0 y0 z0 wy wz
['stl'='' d1=0 d2=0
]
¶x0 y0 z0 wx wz
['stl'='' d1=0 d2=0
]
¶x0 y0 z0 wx wy
['stl'='' d1=0 d2=0
]
¶Draws the solid rectangle (face) perpendicular to [x,y,z]-axis correspondingly at position {x0, y0, z0} with color stl and with widths wx, wy, wz along corresponding directions. At this colors can be the same for all vertexes or separately if all 4 colors are specified for each vertex. Argument stl can also contain mask specification (see Color scheme). Parameters d1!=0, d2!=0 set additional shift of the last vertex (i.e. to draw quadrangle). Face will be drawn even if it lies out of bounding box.
x0 y0 r
['col'='r']
¶x0 y0 z0 r
['col'='r']
¶Draw the sphere with radius r and center at point p={x0, y0, z0} and color stl.
x0 y0 dx dy r
['col'='r' sh=1 asp=1
]
¶x0 y0 z0 dx dy dz r
['col'='r' sh=1 asp=1
]
¶Draw the drop with radius r at point p elongated in direction d and with color col. Parameter shift set the degree of drop oblongness: `0` is sphere, `1` is maximally oblongness drop. Parameter ap set relative width of the drop (this is analogue of “ellipticity” for the sphere).
x1 y1 z1 x2 y2 z2 r1
[r2=-1
'stl'='']
¶Draw tube (or truncated cone if edge=false
) between points p1, p2 with radius at the edges r1, r2. If r2<0 then it is supposed that r2=r1. The cone color is defined by string stl. Parameter stl can contain:
x0 y0 r
['col'='r']
¶x0 y0 z0 r
['col'='r']
¶Draw the circle with radius r and center at point p={x0, y0, z0}. Parameter col may contain
x1 y1 x2 y2 r
['col'='r']
¶x1 y1 z1 x2 y2 z2 r
['col'='r']
¶Draw the ellipse with radius r and focal points p1, p2. Parameter col may contain
x1 y1 x2 y2 r
['col'='r']
¶x1 y1 z1 x2 y2 z2 r
['col'='r']
¶Draw the rhombus with width r and edge points p1, p2. Parameter col may contain
x0 y0 x1 y1 a
['col'='r']
¶x0 y0 z0 x1 y1 a
['col'='r']
¶x0 y0 z0 xa ya za x1 y1 z1 a
['col'='r']
¶Draw the arc around axis pa (default is z-axis pa={0,0,1}) with center at p0 and starting from point p1. Parameter a set the angle of arc in degree. Parameter col may contain color of the arc and arrow style for arc edges.
x0 y0 x1 y1 num
['col'='r']
¶x0 y0 z0 x1 y1 z1 num
['col'='r']
¶Draw the polygon with num edges starting from p1. The center of polygon is located in p0. Parameter col may contain
'fname' [smooth=off]
¶Draw bitmap (logo) along whole axis range, which can be changed by Command options. Bitmap can be loaded from file or specified as RGBA values for pixels. Parameter smooth set to draw bitmap without or with color interpolation.
x y
'id' ['fnt'='' size=-1
]
¶x y z
'id' ['fnt'='' size=-1
]
¶Draws user-defined symbol with name id at position p with style specifying by fnt. The size of font is set by size parameter (default is -1
). The string fnt may contain color specification ended by `:` symbol; styles `a`, `A` to draw at absolute position {x, y} (supposed to be in range [0,1]) of picture (for `A`) or subplot/inplot (for `a`); and style `w` to draw wired symbol.
x y dx dy
'id' ['fnt'=':L' size=-1
]
¶x y z dx dy dz
'id' ['fnt'=':L' size=-1
]
¶The same as previous but symbol will be drawn rotated along direction d.
'id' xdat ydat
¶Add user-defined symbol with name id and contour {xdat, ydat}. You can use NAN
values to set break (jump) of contour curve.
These functions draw the text. There are functions for drawing text in arbitrary place, in arbitrary direction and along arbitrary curve. MathGL can use arbitrary font-faces and parse many TeX commands (for more details see Font styles). All these functions have 2 variant: for printing 8-bit text (char *
) and for printing Unicode text (wchar_t *
). In first case the conversion into the current locale is used. So sometimes you need to specify it by setlocale()
function. The size argument control the size of text: if positive it give the value, if negative it give the value relative to SetFontSize()
. The font type (STIX, arial, courier, times and so on) can be selected by function LoadFont(). See Font settings.
The font parameters are described by string. This string may set the text color `wkrgbcymhRGBCYMHW` (see Color styles). Starting from MathGL v.2.3, you can set color gradient for text (see Color scheme). Also, after delimiter symbol `:`, it can contain characters of font type (`rbiwou`) and/or align (`LRCTV`) specification. The font types are: `r` - roman (or regular) font, `i` - italic style, `b` - bold style, `w` - wired style, `o` - over-lined text, `u` - underlined text. By default roman font is used. The align types are: `L` - align left (default), `C` - align center, `R` - align right, `T` - align under, `V` - align center vertical. For example, string `b:iC` correspond to italic font style for centered text which printed by blue color.
If string contains symbols `aA` then text is printed at absolute position {x, y} (supposed to be in range [0,1]) of picture (for `A`) or subplot/inplot (for `a`). If string contains symbol `@` then box around text is drawn.
See Text features, for sample code and picture.
x y
'text' ['fnt'='' size=-1
]
¶x y z
'text' ['fnt'='' size=-1
]
¶Draws the string text at position p with fonts specifying by the criteria fnt. The size of font is set by size parameter (default is -1
).
x y dx dy
'text' ['fnt'=':L' size=-1
]
¶x y z dx dy dz
'text' ['fnt'=':L' size=-1
]
¶Draws the string text at position p along direction d with specified size. Parameter fnt set text style and text position: under (`T`) or above (`t`) the line.
x y
'fname' [n=0
'fnt'='' size=-1.4
]
¶x y z
'fname' [n=0
'fnt'='' size=-1.4
]
¶Draws unrotated n-th line of file fname at position {x,y,z} with specified size. By default parameters from font command are used.
ydat 'text' ['fnt'='']
¶xdat ydat 'text' ['fnt'='']
¶xdat ydat zdat 'text' ['fnt'='']
¶The function draws text along the curve between points {x[i], y[i], z[i]} by font style fnt. The string fnt may contain symbols `t` for printing the text under the curve (default), or `T` for printing the text under the curve. The sizes of 1st dimension must be equal for all arrays x.nx=y.nx=z.nx
. If array x is not specified then its an automatic array is used with values equidistantly distributed in x-axis range (see Ranges (bounding box)). If array z is not specified then z[i] equal to minimal z-axis value is used. String opt contain command options (see Command options).
These functions draw the “things for measuring”, like axis with ticks, colorbar with ticks, grid along axis, bounding box and labels for axis. For more information see Axis settings.
['dir'='xyz' 'stl'='']
¶Draws axes with ticks (see Axis settings). Parameter dir may contain:
Styles of ticks and axis can be overrided by using stl string. Option value
set the manual rotation angle for the ticks. See Axis and ticks, for sample code and picture.
['sch'='']
¶Draws colorbar. Parameter sch may contain:
See Colorbars, for sample code and picture.
vdat ['sch'='']
¶The same as previous but with sharp colors sch (current palette if sch=""
) for values v. See Sample `contd`, for sample code and picture.
'sch' x y [w=1 h=1]
¶The same as first one but at arbitrary position of subplot {x, y} (supposed to be in range [0,1]). Parameters w, h set the relative width and height of the colorbar.
vdat 'sch' x y [w=1 h=1]
¶The same as previous but with sharp colors sch (current palette if sch=""
) for values v. See Sample `contd`, for sample code and picture.
['dir'='xyz' 'pen'='B']
¶Draws grid lines perpendicular to direction determined by string parameter dir. If dir contain `!` then grid lines will be drawn at coordinates of subticks also. The step of grid lines is the same as tick step for axis. The style of lines is determined by pen parameter (default value is dark blue solid line `B-`).
['stl'='k' ticks=on
]
¶Draws bounding box outside the plotting volume with color col. If col contain `@` then filled faces are drawn. At this first color is used for faces (default is light yellow), last one for edges. See Bounding box, for sample code and picture.
'text' [pos=1
]
¶'text' [pos=1
]
¶'text' [pos=1
]
¶'text' [pos=1
]
¶'text' [pos=1
]
¶Prints the label text for axis dir=`x`,`y`,`z`,`t`,`c`, where `t` is “ternary” axis t=1-x-y; `c` is color axis (should be called after colorbar). The position of label is determined by pos parameter. If pos=0 then label is printed at the center of axis. If pos>0 then label is printed at the maximum of axis. If pos<0 then label is printed at the minimum of axis. Option value
set additional shifting of the label. See Text printing.
These functions draw legend to the graph (useful for 1D plotting). Legend entry is a pair of strings: one for style of the line, another one with description text (with included TeX parsing). The arrays of strings may be used directly or by accumulating first to the internal arrays (by function addlegend) and further plotting it. The position of the legend can be selected automatic or manually (even out of bounding box). Parameters fnt and size specify the font style and size (see Font settings). Option value
set the relative width of the line sample and the text indent. If line style string for entry is empty then the corresponding text is printed without indent. Parameter fnt may contain:
See Legend sample, for sample code and picture.
[pos=3
'fnt'='#']
¶Draws legend of accumulated legend entries by font fnt with size. Parameter pos sets the position of the legend: `0` is bottom left corner, `1` is bottom right corner, `2` is top left corner, `3` is top right corner (is default). Option value
set the space between line samples and text (default is 0.1).
x y
['fnt'='#']
¶Draws legend of accumulated legend entries by font fnt with size. Position of legend is determined by parameter x, y which supposed to be normalized to interval [0,1]. Option value
set the space between line samples and text (default is 0.1).
'text' 'stl'
¶Adds string text to internal legend accumulator. The style of described line and mark is specified in string style (see Line styles).
Clears saved legend strings.
val
¶Set the number of marks in the legend. By default 1 mark is used.
These functions perform plotting of 1D data. 1D means that data depended from only 1 parameter like parametric curve {x[i],y[i],z[i]}, i=1...n. By default (if absent) values of x[i] are equidistantly distributed in axis range, and z[i] equal to minimal z-axis value. The plots are drawn for each row if one of the data is the matrix. By any case the sizes of 1st dimension must be equal for all arrays x.nx=y.nx=z.nx
.
String pen specifies the color and style of line and marks (see Line styles). By default (pen=""
) solid line with color from palette is used (see Palette and colors). Symbol `!` set to use new color from palette for each point (not for each curve, as default). String opt contain command options (see Command options).
ydat ['stl'='']
¶xdat ydat ['stl'='']
¶xdat ydat zdat ['stl'='']
¶These functions draw continuous lines between points {x[i], y[i], z[i]}. If pen contain `a` then segments between points outside of axis range are drawn too. If pen contain `~` then number of segments is reduce for quasi-straight curves. See also area, step, stem, tube, mark, error, belt, tens, tape, meshnum. See Sample `plot`, for sample code and picture.
adat ['stl'='']
¶This functions draws radar chart which is continuous lines between points located on an radial lines (like plot in Polar coordinates). Option value
set the additional shift of data (i.e. the data a+value
is used instead of a). If value<0
then r=max(0, -min(value)
. If pen containt `#` symbol then "grid" (radial lines and circle for r) is drawn. If pen contain `a` then segments between points outside of axis range are drawn too. See also plot, meshnum. See Sample `radar`, for sample code and picture.
ydat ['stl'='']
¶xdat ydat ['stl'='']
¶xdat ydat zdat ['stl'='']
¶These functions draw continuous stairs for points to axis plane. If x.nx>y.nx then x set the edges of bars, rather than its central positions. See also plot, stem, tile, boxs, meshnum. See Sample `step`, for sample code and picture.
ydat cdat ['stl'='']
¶xdat ydat cdat ['stl'='']
¶xdat ydat zdat cdat ['stl'='']
¶These functions draw continuous lines between points {x[i], y[i], z[i]} with color defined by the special array c[i] (look like tension plot). String pen specifies the color scheme (see Color scheme) and style and/or width of line (see Line styles). If pen contain `a` then segments between points outside of axis range are drawn too. If pen contain `~` then number of segments is reduce for quasi-straight curves. See also plot, mesh, fall, meshnum. See Sample `tens`, for sample code and picture.
ydat ['stl'='']
¶xdat ydat ['stl'='']
¶xdat ydat zdat ['stl'='']
¶These functions draw tapes of normals for curve between points {x[i], y[i], z[i]}. Initial tape(s) was selected in x-y plane (for `x` in pen) and/or y-z plane (for `x` in pen). Argument pen can also contain mask specification (see Color scheme). The width of tape is proportional to barwidth and can be changed by option value
. See also plot, flow, barwidth. See Sample `tape`, for sample code and picture.
ydat ['stl'='']
¶xdat ydat ['stl'='']
¶xdat ydat zdat ['stl'='']
¶These functions draw continuous lines between points and fills it to axis plane. Also you can use gradient filling if number of specified colors is equal to 2*number of curves. If pen contain `#` then wired plot is drawn. If pen contain `a` then segments between points outside of axis range are drawn too. Argument pen can also contain mask specification (see Color scheme). See also plot, bars, stem, region. See Sample `area`, for sample code and picture.
ydat1 ydat2 ['stl'='']
¶xdat ydat1 ydat2 ['stl'='']
¶xdat1 ydat1 xdat2 ydat2 ['stl'='']
¶xdat1 ydat1 zdat1 xdat2 ydat2 zdat2 ['stl'='']
¶These functions fill area between 2 curves. Dimensions of arrays y1 and y2 must be equal. Also you can use gradient filling if number of specified colors is equal to 2*number of curves. If for 2D version pen contain symbol `i` then only area with y1<y<y2 will be filled else the area with y2<y<y1 will be filled too. If pen contain `#` then wired plot is drawn. If pen contain `a` then segments between points outside of axis range are drawn too. Argument pen can also contain mask specification (see Color scheme). See also area, bars, stem. See Sample `region`, for sample code and picture.
ydat ['stl'='']
¶xdat ydat ['stl'='']
¶xdat ydat zdat ['stl'='']
¶These functions draw vertical lines from points to axis plane. See also area, bars, plot, mark. See Sample `stem`, for sample code and picture.
ydat ['stl'='']
¶xdat ydat ['stl'='']
¶xdat ydat zdat ['stl'='']
¶These functions draw vertical bars from points to axis plane. Parameter pen can contain:
You can give different colors for positive and negative values if number of specified colors is equal to 2*number of curves. If x.nx>y.nx then x set the edges of bars, rather than its central positions. See also barh, cones, area, stem, chart, barwidth. See Sample `bars`, for sample code and picture.
vdat ['stl'='']
¶ydat vdat ['stl'='']
¶These functions draw horizontal bars from points to axis plane. Parameter pen can contain:
You can give different colors for positive and negative values if number of specified colors is equal to 2*number of curves. If x.nx>y.nx then x set the edges of bars, rather than its central positions. See also bars, barwidth. See Sample `barh`, for sample code and picture.
ydat ['stl'='']
¶xdat ydat ['stl'='']
¶xdat ydat zdat ['stl'='']
¶These functions draw cones from points to axis plane. If string contain symbol `a` then cones are drawn one above another (like summation). You can give different colors for positive and negative values if number of specified colors is equal to 2*number of curves. Parameter pen can contain:
See also bars, cone, barwidth. See Sample `cones`, for sample code and picture.
adat ['col'='']
¶The function draws colored stripes (boxes) for data in array a. The number of stripes is equal to the number of rows in a (equal to a.ny). The color of each next stripe is cyclically changed from colors specified in string col or in palette Pal (see Palette and colors). Argument col can also contain mask specification (see Color scheme). Spaces in colors denote transparent “color” (i.e. corresponding stripe(s) are not drawn). The stripe width is proportional to value of element in a. Chart is plotted only for data with non-negative elements. If string col have symbol `#` then black border lines are drawn. The most nice form the chart have in 3d (after rotation of coordinates) or in cylindrical coordinates (becomes so called Pie chart). See Sample `chart`, for sample code and picture.
adat ['stl'='']
¶xdat adat ['stl'='']
¶These functions draw boxplot (also known as a box-and-whisker diagram) at points x[i]. This is five-number summaries of data a[i,j] (minimum, lower quartile (Q1), median (Q2), upper quartile (Q3) and maximum) along second (j-th) direction. If pen contain `<`, `^` or `>` then boxes will be aligned left, right or centered at its x-coordinates. See also plot, error, bars, barwidth. See Sample `boxplot`, for sample code and picture.
vdat1 ['stl'='']
¶vdat1 vdat2 ['stl'='']
¶vdat1 ydat1 ydat2 ['stl'='']
¶vdat1 vdat2 ydat1 ydat2 ['stl'='']
¶xdat vdat1 vdat2 ydat1 ydat2 ['stl'='']
¶These functions draw candlestick chart at points x[i]. This is a combination of a line-chart and a bar-chart, in that each bar represents the range of price movement over a given time interval. Wire (or white) candle correspond to price growth v1[i]<v2[i], opposite case - solid (or dark) candle. You can give different colors for growth and decrease values if number of specified colors is equal to 2. If pen contain `#` then the wire candle will be used even for 2-color scheme. Argument pen can also contain mask specification (see Color scheme). "Shadows" show the minimal y1 and maximal y2 prices. If v2 is absent then it is determined as v2[i]=v1[i+1]. See also plot, bars, ohlc, barwidth. See Sample `candle`, for sample code and picture.
odat hdat ldat cdat ['stl'='']
¶xdat odat hdat ldat cdat ['stl'='']
¶These functions draw Open-High-Low-Close diagram. This diagram show vertical line for between maximal(high h) and minimal(low l) values, as well as horizontal lines before/after vertical line for initial(open o)/final(close c) values of some process (usually price). You can give different colors for up and down values (when closing values higher or not as in previous point) if number of specified colors is equal to 2*number of curves. See also candle, plot, barwidth. See Sample `ohlc`, for sample code and picture.
ydat yerr ['stl'='']
¶xdat ydat yerr ['stl'='']
¶xdat ydat xerr yerr ['stl'='']
¶These functions draw error boxes {ex[i], ey[i]} at points {x[i], y[i]}. This can be useful, for example, in experimental points, or to show numeric error or some estimations and so on. If string pen contain symbol `@` than large semitransparent mark is used instead of error box. See also plot, mark. See Sample `error`, for sample code and picture.
ydat rdat ['stl'='']
¶xdat ydat rdat ['stl'='']
¶xdat ydat zdat rdat ['stl'='']
¶These functions draw marks with size r[i]*marksize at points {x[i], y[i], z[i]}. If you need to draw markers of the same size then you can use plot function with empty line style ` `. For markers with size in axis range use error with style `@`. See also plot, textmark, error, stem, meshnum. See Sample `mark`, for sample code and picture.
ydat 'txt' ['stl'='']
¶ydat rdat 'txt' ['stl'='']
¶xdat ydat rdat 'txt' ['stl'='']
¶xdat ydat zdat rdat 'txt' ['stl'='']
¶These functions draw string txt as marks with size proportional to r[i]*marksize at points {x[i], y[i], z[i]}. By default (if omitted) r[i]=1. See also plot, mark, stem, meshnum. See Sample `textmark`, for sample code and picture.
ydat 'txt' ['stl'='']
¶xdat ydat 'txt' ['stl'='']
¶xdat ydat zdat 'txt' ['stl'='']
¶These functions draw string txt at points {x[i], y[i], z[i]}. If string txt contain `%x`, `%y`, `%z` or `%n` then it will be replaced by the value of x-,y-,z-coordinate of the point or its index. String fnt may contain:
See also plot, mark, textmark, table. See Sample `label`, for sample code and picture.
vdat 'txt' ['stl'='#']
¶x y vdat 'txt' ['stl'='#']
¶These functions draw table with values of val and captions from string txt (separated by newline symbol `\n`) at points {x, y} (default at {0,0}) related to current subplot. String fnt may contain:
Option value
set the width of the table (default is 1). See also plot, label. See Sample `table`, for sample code and picture.
dats 'ids' ['stl'='']
¶dats rngs 'ids' ['stl'='']
¶Draws Iris plots for determining cross-dependences of data arrays dats (see http://en.wikipedia.org/wiki/Iris_flower_data_set). Data rngs of size 2*dats.nx provide manual axis ranges for each column. String ids contain column names, separated by `;` symbol. Option value
set the text size for column names. You can add another data set to existing Iris plot by providing the same ranges rngs and empty column names ids. See also plot. See Sample `iris`, for sample code and picture.
ydat rdat ['stl'='']
¶ydat rval
['stl'='']
¶xdat ydat rdat ['stl'='']
¶xdat ydat rval
['stl'='']
¶xdat ydat zdat rdat ['stl'='']
¶xdat ydat zdat rval
['stl'='']
¶These functions draw the tube with variable radius r[i] along the curve between points {x[i], y[i], z[i]}. Option value
set the number of segments at cross-section (default is 25). See also plot. See Sample `tube`, for sample code and picture.
rdat zdat ['stl'='']
¶These functions draw surface which is result of curve {r, z} rotation around axis. If string pen contain symbols `x` or `z` then rotation axis will be set to specified direction (default is `y`). If string pen have symbol `#` then wire plot is produced. If string pen have symbol `.` then plot by dots is produced. See also plot, axial. See Sample `torus`, for sample code and picture.
x0
ydat ['stl'='']
¶x0
'y(x)' ['stl'='']
¶These functions draw Lamerey diagram for mapping x_new = y(x_old) starting from point x0. String stl may contain line style, symbol `v` for drawing arrows, symbol `~` for disabling first segment. Option value
set the number of segments to be drawn (default is 20). See also plot, fplot, bifurcation, pmap. See Sample `lamerey`, for sample code and picture.
dx
ydat ['stl'='']
¶dx
'y(x)' ['stl'='']
¶These functions draw bifurcation diagram for mapping x_new = y(x_old). Parameter dx set the accuracy along x-direction. String stl set color. Option value
set the number of stationary points (default is 1024). See also plot, fplot, lamerey. See Sample `bifurcation`, for sample code and picture.
ydat sdat ['stl'='']
¶xdat ydat sdat ['stl'='']
¶xdat ydat zdat sdat ['stl'='']
¶These functions draw Poincare map for curve {x, y, z} at surface s=0. Basically, it show intersections of the curve and the surface. String stl set the style of marks. See also plot, mark, lamerey. See Sample `pmap`, for sample code and picture.
These functions perform plotting of 2D data. 2D means that data depend from 2 independent parameters like matrix f(x_i,y_j), i=1...n, j=1...m. By default (if absent) values of x, y are equidistantly distributed in axis range. The plots are drawn for each z slice of the data. The minor dimensions of arrays x, y, z should be equal x.nx=z.nx && y.nx=z.ny
or x.nx=y.nx=z.nx && x.ny=y.ny=z.ny
. Arrays x and y can be vectors (not matrices as z). String sch sets the color scheme (see Color scheme) for plot. String opt contain command options (see Command options).
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The function draws surface specified parametrically {x[i,j], y[i,j], z[i,j]}. If string sch have symbol `#` then grid lines are drawn. If string sch have symbol `.` then plot by dots is produced. See also mesh, dens, belt, tile, boxs, surfc, surfa. See Sample `surf`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The function draws mesh lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]}. See also surf, fall, meshnum, cont, tens. See Sample `mesh`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The function draws fall lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]}. This plot can be used for plotting several curves shifted in depth one from another. If sch contain `x` then lines are drawn along x-direction else (by default) lines are drawn along y-direction. See also belt, mesh, tens, meshnum. See Sample `fall`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The function draws belts for surface specified parametrically {x[i,j], y[i,j], z[i,j]}. This plot can be used as 3d generalization of plot). If sch contain `x` then belts are drawn along x-direction else (by default) belts are drawn along y-direction. See also fall, surf, beltc, plot, meshnum. See Sample `belt`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The function draws vertical boxes for surface specified parametrically {x[i,j], y[i,j], z[i,j]}. Symbol `@` in sch set to draw filled boxes. See also surf, dens, tile, step. See Sample `boxs`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶xdat ydat zdat cdat ['sch'='']
¶The function draws horizontal tiles for surface specified parametrically {x[i,j], y[i,j], z[i,j]} and color it by matrix c[i,j] (c=z if c is not provided). If string sch contain style `x` or `y` then tiles will be oriented perpendicular to x- or y-axis. Such plot can be used as 3d generalization of step. See also surf, boxs, step, tiles. See Sample `tile`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The function draws density plot for surface specified parametrically {x[i,j], y[i,j], z[i,j]} at z equal to minimal z-axis value. If string sch have symbol `#` then grid lines are drawn. If string sch have symbol `.` then plot by dots is produced. See also surf, cont, contf, boxs, tile, dens[xyz]
. See Sample `dens`, for sample code and picture.
vdat zdat ['sch'='']
¶vdat xdat ydat zdat ['sch'='']
¶The function draws contour lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]} at z=v[k], or at z equal to minimal z-axis value if sch contain symbol `_`. Contours are plotted for z[i,j]=v[k] where v[k] are values of data array v. If string sch have symbol `t` or `T` then contour labels v[k] will be drawn below (or above) the contours. See also dens, contf, contd, axial, cont[xyz]
. See Sample `cont`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The same as previous with vector v of num-th elements equidistantly distributed in color range. Here num is equal to parameter value
in options opt (default is 7). If string sch contain symbol `.` then only contours at levels with saddle points will be drawn.
val
adat xdat ydat zdat ['sch'='']
¶Draws contour lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]} at a[i,j]=val. If string sch have symbol `t` or `T` then contour labels v[k] will be drawn below (or above) the contours.
vdat zdat ['sch'='']
¶vdat xdat ydat zdat ['sch'='']
¶The function draws solid (or filled) contour lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]} at z=v[k], or at z equal to minimal z-axis value if sch contain symbol `_`. Contours are plotted for z[i,j]=v[k] where v[k] are values of data array v (must be v.nx>2
). See also dens, cont, contd, contf[xyz]
. See Sample `contf`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The same as previous with vector v of num-th elements equidistantly distributed in color range. Here num is equal to parameter value
in options opt (default is 7).
v1 v2
adat xdat ydat zdat ['sch'='']
¶Draws solid (or filled) contour lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]} between a[i,j]=v1 and a[i,j]=v2.
vdat zdat ['sch'='']
¶vdat xdat ydat zdat ['sch'='']
¶The function draws solid (or filled) contour lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]} at z=v[k] (or at z equal to minimal z-axis value if sch contain symbol `_`) with manual colors. Contours are plotted for z[i,j]=v[k] where v[k] are values of data array v (must be v.nx>2
). String sch sets the contour colors: the color of k-th contour is determined by character sch[k%strlen(sch)]
. See also dens, cont, contf. See Sample `contd`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The same as previous with vector v of num-th elements equidistantly distributed in color range. Here num is equal to parameter value
in options opt (default is 7).
vdat xdat ydat zdat adat ['sch'='']
¶The function draws contour lines on surface specified parametrically {x[i,j], y[i,j], z[i,j]}. Contours are plotted for a[i,j]=v[k] where v[k] are values of data array v. If string sch have symbol `t` or `T` then contour labels v[k] will be drawn below (or above) the contours. If string sch have symbol `f` then solid contours will be drawn. See also cont, contf, surfc, cont[xyz]
.
xdat ydat zdat adat ['sch'='']
¶The same as previous with vector v of num-th elements equidistantly distributed in color range. Here num is equal to parameter value
in options opt (default is 7).
vdat zdat ['sch'='']
¶vdat xdat ydat zdat ['sch'='']
¶The function draws vertical cylinder (tube) at contour lines for surface specified parametrically {x[i,j], y[i,j], z[i,j]} at z=v[k], or at z equal to minimal z-axis value if sch contain symbol `_`. Contours are plotted for z[i,j]=v[k] where v[k] are values of data array v. See also cont, contf. See Sample `contv`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The same as previous with vector v of num-th elements equidistantly distributed in color range. Here num is equal to parameter value
in options opt (default is 7).
vdat zdat ['sch'='']
¶vdat xdat ydat zdat ['sch'='']
¶The function draws surface which is result of contour plot rotation for surface specified parametrically {x[i,j], y[i,j], z[i,j]}. Contours are plotted for z[i,j]=v[k] where v[k] are values of data array v. If string sch have symbol `#` then wire plot is produced. If string sch have symbol `.` then plot by dots is produced. If string contain symbols `x` or `z` then rotation axis will be set to specified direction (default is `y`). See also cont, contf, torus, surf3. See Sample `axial`, for sample code and picture.
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The same as previous with vector v of num-th elements equidistantly distributed in color range. Here num is equal to parameter value
in options opt (default is 3).
zdat ['sch'='']
¶xdat ydat zdat ['sch'='']
¶The function draws grid lines for density plot of surface specified parametrically {x[i,j], y[i,j], z[i,j]} at z equal to minimal z-axis value. See also dens, cont, contf, grid3, meshnum.
These functions perform plotting of 3D data. 3D means that data depend from 3 independent parameters like matrix f(x_i,y_j,z_k), i=1...n, j=1...m, k=1...l. By default (if absent) values of x, y, z are equidistantly distributed in axis range. The minor dimensions of arrays x, y, z, a should be equal x.nx=a.nx && y.nx=a.ny && z.nz=a.nz
or x.nx=y.nx=z.nx=a.nx && x.ny=y.ny=z.ny=a.ny && x.nz=y.nz=z.nz=a.nz
. Arrays x, y and z can be vectors (not matrices as a). String sch sets the color scheme (see Color scheme) for plot. String opt contain command options (see Command options).
adat val
['sch'='']
¶xdat ydat zdat adat val
['sch'='']
¶The function draws isosurface plot for 3d array specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]) at a(x,y,z)=val. If string contain `#` then wire plot is produced. If string sch have symbol `.` then plot by dots is produced. Note, that there is possibility of incorrect plotting due to uncertainty of cross-section defining if there are two or more isosurface intersections inside one cell. See also cloud, dens3, surf3c, surf3a, axial. See Sample `surf3`, for sample code and picture.
adat ['sch'='']
¶xdat ydat zdat adat ['sch'='']
¶Draws num-th uniformly distributed in color range isosurfaces for 3d data. Here num is equal to parameter value
in options opt (default is 3).
adat ['sch'='']
¶xdat ydat zdat adat ['sch'='']
¶The function draws cloud plot for 3d data specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]). This plot is a set of cubes with color and transparency proportional to value of a. The resulting plot is like cloud - low value is transparent but higher ones are not. The number of plotting cells depend on meshnum. If string sch contain symbol `.` then lower quality plot will produced with much low memory usage. If string sch contain symbol `i` then transparency will be inversed, i.e. higher become transparent and lower become not transparent. See also surf3, meshnum. See Sample `cloud`, for sample code and picture.
adat ['sch'='' sval=-1
]
¶xdat ydat zdat adat ['sch'='' sval=-1
]
¶The function draws density plot for 3d data specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]). Density is plotted at slice sVal in direction {`x`, `y`, `z`} if sch contain corresponding symbol (by default, `y` direction is used). If string stl have symbol `#` then grid lines are drawn. See also cont3, contf3, dens, grid3. See Sample `dens3`, for sample code and picture.
vdat adat ['sch'='' sval=-1
]
¶vdat xdat ydat zdat adat ['sch'='' sval=-1
]
¶The function draws contour plot for 3d data specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]). Contours are plotted for values specified in array v at slice sVal in direction {`x`, `y`, `z`} if sch contain corresponding symbol (by default, `y` direction is used). If string sch have symbol `#` then grid lines are drawn. If string sch have symbol `t` or `T` then contour labels will be drawn below (or above) the contours. See also dens3, contf3, cont, grid3. See Sample `cont3`, for sample code and picture.
adat ['sch'='' sval=-1
]
¶xdat ydat zdat adat ['sch'='' sval=-1
]
¶The same as previous with vector v of num-th elements equidistantly distributed in color range. Here num is equal to parameter value
in options opt (default is 7).
vdat adat ['sch'='' sval=-1
]
¶vdat xdat ydat zdat adat ['sch'='' sval=-1
]
¶The function draws solid (or filled) contour plot for 3d data specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]). Contours are plotted for values specified in array v at slice sVal in direction {`x`, `y`, `z`} if sch contain corresponding symbol (by default, `y` direction is used). If string sch have symbol `#` then grid lines are drawn. See also dens3, cont3, contf, grid3. See Sample `contf3`, for sample code and picture.
adat ['sch'='' sval=-1
]
¶xdat ydat zdat adat ['sch'='' sval=-1
]
¶The same as previous with vector v of num-th elements equidistantly distributed in color range. Here num is equal to parameter value
in options opt (default is 7).
adat ['sch'='' sval=-1
]
¶xdat ydat zdat adat ['sch'='' sval=-1
]
¶The function draws grid for 3d data specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]). Grid is plotted at slice sVal in direction {`x`, `y`, `z`} if sch contain corresponding symbol (by default, `y` direction is used). See also cont3, contf3, dens3, grid2, meshnum.
vdat adat bdat ['sch'='']
¶vdat xdat ydat zdat adat bdat ['sch'='']
¶The function draws lines at intersections of isosurfaces for 3d data a, b specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]). Isosurfaces are taken for values specified in array v. See also cont, cont3. See Sample `dcont`, for sample code and picture.
adat bdat ['sch'='' sval=-1
]
¶xdat ydat zdat adat bdat ['sch'='' sval=-1
]
¶The same as previous with vector v of num-th elements equidistantly distributed in color range. Here num is equal to parameter value
in options opt (default is 7).
tr g1 g2 adat rval
['sch'='' flag=0 num=3
]
¶Draws the isosurface for 3d array a at constant values of a=val. This is special kind of plot for a specified in accompanied coordinates along curve tr with orts g1, g2 and with transverse scale r. Variable flag is bitwise: `0x1` - draw in accompanied (not laboratory) coordinates; `0x2` - draw projection to \rho-z plane; `0x4` - draw normalized in each slice field. The x-size of data arrays tr, g1, g2 must be nx>2. The y-size of data arrays tr, g1, g2 and z-size of the data array a must be equal. See also surf3.
These plotting functions draw two matrix simultaneously. There are 5 generally different types of data representations: surface or isosurface colored by other data (SurfC, Surf3C), surface or isosurface transpared by other data (SurfA, Surf3A), tiles with variable size (TileS), mapping diagram (Map), STFA diagram (STFA). By default (if absent) values of x, y, z are equidistantly distributed in axis range. The minor dimensions of arrays x, y, z, c should be equal. Arrays x, y (and z for Surf3C, Surf3A
) can be vectors (not matrices as c). String sch sets the color scheme (see Color scheme) for plot. String opt contain command options (see Command options).
zdat cdat ['sch'='']
¶xdat ydat zdat cdat ['sch'='']
¶The function draws surface specified parametrically {x[i,j], y[i,j], z[i,j]} and color it by matrix c[i,j]. If string sch have symbol `#` then grid lines are drawn. If string sch have symbol `.` then plot by dots is produced. All dimensions of arrays z and c must be equal. Surface is plotted for each z slice of the data. See also surf, surfa, surfca, beltc, surf3c. See Sample `surfc`, for sample code and picture.
zdat cdat ['sch'='']
¶xdat ydat zdat cdat ['sch'='']
¶The function draws belts for surface specified parametrically {x[i,j], y[i,j], z[i,j]} and color it by matrix c[i,j]. This plot can be used as 3d generalization of plot). If sch contain `x` then belts are drawn along x-direction else (by default) belts are drawn along y-direction. See also belt, surfc, meshnum. See Sample `beltc`, for sample code and picture.
adat cdat val
['sch'='']
¶xdat ydat zdat adat cdat val
['sch'='']
¶The function draws isosurface plot for 3d array specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]) at a(x,y,z)=val. It is mostly the same as surf3 function but the color of isosurface depends on values of array c. If string sch contain `#` then wire plot is produced. If string sch have symbol `.` then plot by dots is produced. See also surf3, surfc, surf3a, surf3ca. See Sample `surf3c`, for sample code and picture.
adat cdat ['sch'='']
¶xdat ydat zdat adat cdat ['sch'='']
¶Draws num-th uniformly distributed in color range isosurfaces for 3d data. Here num is equal to parameter value
in options opt (default is 3).
zdat cdat ['sch'='']
¶xdat ydat zdat cdat ['sch'='']
¶The function draws surface specified parametrically {x[i,j], y[i,j], z[i,j]} and transparent it by matrix c[i,j]. If string sch have symbol `#` then grid lines are drawn. If string sch have symbol `.` then plot by dots is produced. All dimensions of arrays z and c must be equal. Surface is plotted for each z slice of the data. See also surf, surfc, surfca, surf3a. See Sample `surfa`, for sample code and picture.
adat cdat val
['sch'='']
¶xdat ydat zdat adat cdat val
['sch'='']
¶The function draws isosurface plot for 3d array specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]) at a(x,y,z)=val. It is mostly the same as surf3 function but the transparency of isosurface depends on values of array c. If string sch contain `#` then wire plot is produced. If string sch have symbol `.` then plot by dots is produced. See also surf3, surfc, surf3a, surf3ca. See Sample `surf3a`, for sample code and picture.
adat cdat ['sch'='']
¶xdat ydat zdat adat cdat ['sch'='']
¶Draws num-th uniformly distributed in color range isosurfaces for 3d data. At this array c can be vector with values of transparency and num=c.nx. In opposite case num is equal to parameter value
in options opt (default is 3).
zdat cdat adat ['sch'='']
¶xdat ydat zdat cdat adat ['sch'='']
¶The function draws surface specified parametrically {x[i,j], y[i,j], z[i,j]}, color it by matrix c[i,j] and transparent it by matrix a[i,j]. If string sch have symbol `#` then grid lines are drawn. If string sch have symbol `.` then plot by dots is produced. All dimensions of arrays z and c must be equal. Surface is plotted for each z slice of the data. Note, you can use map-like coloring if use `%` in color scheme. See also surf, surfc, surfa, surf3ca. See Sample `surfca`, for sample code and picture.
adat cdat bdat val
['sch'='']
¶xdat ydat zdat adat cdat bdat val
['sch'='']
¶The function draws isosurface plot for 3d array specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]) at a(x,y,z)=val. It is mostly the same as surf3 function but the color and the transparency of isosurface depends on values of array c and b correspondingly. If string sch contain `#` then wire plot is produced. If string sch have symbol `.` then plot by dots is produced. Note, you can use map-like coloring if use `%` in color scheme. See also surf3, surfca, surf3c, surf3a. See Sample `surf3ca`, for sample code and picture.
adat cdat bdat ['sch'='']
¶xdat ydat zdat adat cdat bdat ['sch'='']
¶Draws num-th uniformly distributed in color range isosurfaces for 3d data. Here parameter num is equal to parameter value
in options opt (default is 3).
zdat rdat ['sch'='']
¶xdat ydat zdat rdat ['sch'='']
¶xdat ydat zdat rdat cdat ['sch'='']
¶The function draws horizontal tiles for surface specified parametrically {x[i,j], y[i,j], z[i,j]} and color it by matrix c[i,j]. It is mostly the same as tile but the size of tiles is determined by r array. If string sch contain style `x` or `y` then tiles will be oriented perpendicular to x- or y-axis. This is some kind of “transparency” useful for exporting to EPS files. Tiles is plotted for each z slice of the data. See also surfa, tile. See Sample `tiles`, for sample code and picture.
udat vdat ['sch'='']
¶xdat ydat udat vdat ['sch'='']
¶The function draws mapping plot for matrices {ax, ay } which parametrically depend on coordinates x, y. The initial position of the cell (point) is marked by color. Height is proportional to Jacobian(ax,ay). This plot is like Arnold diagram ??? If string sch contain symbol `.` then the color ball at matrix knots are drawn otherwise face is drawn. See Mapping visualization, for sample code and picture.
re im dn
['sch'='']
¶xdat ydat re im dn
['sch'='']
¶Draws spectrogram of complex array re+i*im for Fourier size of dn points at plane z equal to minimal z-axis value. For example in 1D case, result is density plot of data res[i,j]=|\sum_d^dn exp(I*j*d)*(re[i*dn+d]+I*im[i*dn+d])|/dn with size {int(nx/dn), dn, ny}. At this array re, im parametrically depend on coordinates x, y. The size of re and im must be the same. The minor dimensions of arrays x, y, re should be equal. Arrays x, y can be vectors (not matrix as re). See Sample `stfa`, for sample code and picture.
These functions perform plotting of 2D and 3D vector fields. There are 5 generally different types of vector fields representations: simple vector field (Vect), vectors along the curve (Traj), vector field by dew-drops (Dew), flow threads (Flow, FlowP), flow pipes (Pipe). By default (if absent) values of x, y, z are equidistantly distributed in axis range. The minor dimensions of arrays x, y, z, ax should be equal. The size of ax, ay and az must be equal. Arrays x, y, z can be vectors (not matrices as ax). String sch sets the color scheme (see Color scheme) for plot. String opt contain command options (see Command options).
y1dat y2dat ['sch'='']
¶x1dat y1dat x2dat y2dat ['sch'='']
¶x1dat y1dat z1dat x2dat y2dat z2dat ['sch'='']
¶The function draws lines between points {x1, y1, z1} and {x2, y2, z2}. String pen specifies the color (see Line styles). By default (pen=""
) color from palette is used (see Palette and colors). The minor sizes of all arrays must be the same. The plots are drawn for each row if one of the data is the matrix. See also plot, traj. See Sample `lines`, for sample code and picture.
xdat ydat udat vdat ['sch'='']
¶xdat ydat zdat udat vdat wdat ['sch'='']
¶The function draws vectors {ax, ay, az} along a curve {x, y, z}. The length of arrows are proportional to \sqrt{ax^2+ay^2+az^2}. String pen specifies the color (see Line styles). By default (pen=""
) color from palette is used (see Palette and colors). Option value
set the vector length factor (if non-zero) or vector length to be proportional the distance between curve points (if value=0
). The minor sizes of all arrays must be equal and large 2. The plots are drawn for each row if one of the data is the matrix. See also vect. See Sample `traj`, for sample code and picture.
udat vdat ['sch'='']
¶xdat ydat udat vdat ['sch'='']
¶The function draws plane vector field plot for the field {ax, ay} depending parametrically on coordinates x, y at level z equal to minimal z-axis value. The length and color of arrows are proportional to \sqrt{ax^2+ay^2}. The number of arrows depend on meshnum. The appearance of the hachures (arrows) can be changed by symbols:
See also flow, dew. See Sample `vect`, for sample code and picture.
udat vdat wdat ['sch'='']
¶xdat ydat zdat udat vdat wdat ['sch'='']
¶This is 3D version of the first functions. Here arrays ax, ay, az must be 3-ranged tensors with equal sizes and the length and color of arrows is proportional to \sqrt{ax^2+ay^2+az^2}.
udat vdat wdat ['sch'='' sval]
¶xdat ydat zdat udat vdat wdat ['sch'='' sval]
¶The function draws 3D vector field plot for the field {ax, ay, az} depending parametrically on coordinates x, y, z. Vector field is drawn at slice sVal in direction {`x`, `y`, `z`} if sch contain corresponding symbol (by default, `y` direction is used). The length and color of arrows are proportional to \sqrt{ax^2+ay^2+az^2}. The number of arrows depend on meshnum. The appearance of the hachures (arrows) can be changed by symbols:
See also vect, flow, dew. See Sample `vect3`, for sample code and picture.
udat vdat ['sch'='']
¶xdat ydat udat vdat ['sch'='']
¶The function draws dew-drops for plane vector field {ax, ay} depending parametrically on coordinates x, y at level z equal to minimal z-axis value. Note that this is very expensive plot in memory usage and creation time! The color of drops is proportional to \sqrt{ax^2+ay^2}. The number of drops depend on meshnum. See also vect. See Sample `dew`, for sample code and picture.
udat vdat ['sch'='']
¶xdat ydat udat vdat ['sch'='']
¶The function draws flow threads for the plane vector field {ax, ay} parametrically depending on coordinates x, y at level z equal to minimal z-axis value. Option value
set the approximate number of threads (default is 5), or accuracy for stationary points (if style `.` is used) . String sch may contain:
See also pipe, vect, tape, flow3, barwidth. See Sample `flow`, for sample code and picture.
udat vdat wdat ['sch'='']
¶xdat ydat zdat udat vdat wdat ['sch'='']
¶This is 3D version of the first functions. Here arrays ax, ay, az must be 3-ranged tensors with equal sizes and the color of line is proportional to \sqrt{ax^2+ay^2+az^2}.
x0 y0
udat vdat ['sch'='']
¶x0 y0
xdat ydat udat vdat ['sch'='']
¶The same as first one (flow) but draws single flow thread starting from point p0={x0,y0,z0}. String sch may also contain: `>` or `<` for drawing in forward or backward direction only (default is both).
x0 y0 z0
udat vdat wdat ['sch'='']
¶x0 y0 z0
xdat ydat zdat udat vdat wdat ['sch'='']
¶This is 3D version of the previous functions.
udat vdat wdat ['sch'='']
¶xdat ydat zdat udat vdat ['sch'='']
¶The function draws flow threads for the 3D vector field {ax, ay, az} parametrically depending on coordinates x, y, z. Flow threads starts from given plane. Option value
set the approximate number of threads (default is 5). String sch may contain:
See also flow, pipe, vect. See Sample `flow3`, for sample code and picture.
pdat ['sch'='']
¶xdat ydat pdat ['sch'='']
¶xdat ydat zdat pdat ['sch'='']
¶The function draws gradient lines for scalar field phi[i,j] (or phi[i,j,k] in 3d case) specified parametrically {x[i,j,k], y[i,j,k], z[i,j,k]}. Number of lines is proportional to value
option (default is 5). See also dens, cont, flow.
udat vdat ['sch'='' r0=0.05
]
¶xdat ydat udat vdat ['sch'='' r0=0.05
]
¶The function draws flow pipes for the plane vector field {ax, ay} parametrically depending on coordinates x, y at level z equal to minimal z-axis value. Number of pipes is proportional to value
option (default is 5). If `#` symbol is specified then pipes start only from edges of axis range. The color of lines is proportional to \sqrt{ax^2+ay^2}. Warm color corresponds to normal flow (like attractor). Cold one corresponds to inverse flow (like source). Parameter r0 set the base pipe radius. If r0<0 or symbol `i` is specified then pipe radius is inverse proportional to amplitude. The vector field is plotted for each z slice of ax, ay. See also flow, vect. See Sample `pipe`, for sample code and picture.
udat vdat wdat ['sch'='' r0=0.05
]
¶xdat ydat zdat udat vdat wdat ['sch'='' r0=0.05
]
¶This is 3D version of the first functions. Here arrays ax, ay, az must be 3-ranged tensors with equal sizes and the color of line is proportional to \sqrt{ax^2+ay^2+az^2}.
These functions perform miscellaneous plotting. There is unstructured data points plots (Dots), surface reconstruction (Crust), surfaces on the triangular or quadrangular mesh (TriPlot, TriCont, QuadPlot), textual formula plotting (Plots by formula), data plots at edges (Dens[XYZ], Cont[XYZ], ContF[XYZ]). Each type of plotting has similar interface. There are 2 kind of versions which handle the arrays of data and coordinates or only single data array. Parameters of color scheme are specified by the string argument. See Color scheme.
dat ['sch'='' sval=nan
]
¶dat ['sch'='' sval=nan
]
¶dat ['sch'='' sval=nan
]
¶These plotting functions draw density plot in x, y, or z plain. If a is a tensor (3-dimensional data) then interpolation to a given sVal is performed. These functions are useful for creating projections of the 3D data array to the bounding box. See also ContXYZ, ContFXYZ, dens, Data manipulation. See Sample `dens_xyz`, for sample code and picture.
dat ['sch'='' sval=nan
]
¶dat ['sch'='' sval=nan
]
¶dat ['sch'='' sval=nan
]
¶These plotting functions draw contour lines in x, y, or z plain. If a is a tensor (3-dimensional data) then interpolation to a given sVal is performed. These functions are useful for creating projections of the 3D data array to the bounding box. Option value
set the number of contours. See also ContFXYZ, DensXYZ, cont, Data manipulation. See Sample `cont_xyz`, for sample code and picture.
dat ['sch'='' sval=nan
]
¶dat ['sch'='' sval=nan
]
¶dat ['sch'='' sval=nan
]
¶These plotting functions draw solid contours in x, y, or z plain. If a is a tensor (3-dimensional data) then interpolation to a given sVal is performed. These functions are useful for creating projections of the 3D data array to the bounding box. Option value
set the number of contours. See also ContFXYZ, DensXYZ, cont, Data manipulation. See Sample `contf_xyz`, for sample code and picture.
'y(x)' ['pen'='']
¶Draws command function `y(x)` at plane z equal to minimal z-axis value, where `x` variable is changed in xrange
. You do not need to create the data arrays to plot it. Option value
set initial number of points. See also plot.
'x(t)' 'y(t)' 'z(t)' ['pen'='']
¶Draws command parametrical curve {`x(t)`, `y(t)`, `z(t)`} where `t` variable is changed in range [0, 1]. You do not need to create the data arrays to plot it. Option value
set number of points. See also plot.
'z(x,y)' ['sch'='']
¶Draws command surface for function `z(x,y)` where `x`, `y` variable are changed in xrange, yrange
. You do not need to create the data arrays to plot it. Option value
set number of points. See also surf.
'x(u,v)' 'y(u,v)' 'z(u,v)' ['sch'='']
¶Draws command parametrical surface {`x(u,v)`, `y(u,v)`, `z(u,v)`} where `u`, `v` variable are changed in range [0, 1]. You do not need to create the data arrays to plot it. Option value
set number of points. See also surf.
idat xdat ydat ['sch'='']
¶idat xdat ydat zdat ['sch'='']
¶idat xdat ydat zdat cdat ['sch'='']
¶The function draws the surface of triangles. Triangle vertexes are set by indexes id of data points {x[i], y[i], z[i]}. String sch sets the color scheme. If string contain `#` then wire plot is produced. First dimensions of id must be 3 or greater. Arrays x, y, z must have equal sizes. Parameter c set the colors of triangles (if id.ny=c.nx) or colors of vertexes (if x.nx=c.nx). See also dots, crust, quadplot, triangulation. See Sample `triplot`, for sample code and picture.
vdat idat xdat ydat zdat cdat ['sch'='']
¶vdat idat xdat ydat zdat ['sch'='']
¶idat xdat ydat zdat ['sch'='']
¶The function draws contour lines for surface of triangles at z=v[k] (or at z equal to minimal z-axis value if sch contain symbol `_`). Triangle vertexes are set by indexes id of data points {x[i], y[i], z[i]}. Contours are plotted for z[i,j]=v[k] where v[k] are values of data array v. If v is absent then arrays of option value
elements equidistantly distributed in color range is used. String sch sets the color scheme. Array c (if specified) is used for contour coloring. First dimensions of id must be 3 or greater. Arrays x, y, z must have equal sizes. Parameter c set the colors of triangles (if id.ny=c.nx) or colors of vertexes (if x.nx=c.nx). See also triplot, cont, triangulation.
idat xdat ydat ['sch'='']
¶idat xdat ydat zdat ['sch'='']
¶idat xdat ydat zdat cdat ['sch'='']
¶The function draws the surface of quadrangles. Quadrangles vertexes are set by indexes id of data points {x[i], y[i], z[i]}. String sch sets the color scheme. If string contain `#` then wire plot is produced. First dimensions of id must be 4 or greater. Arrays x, y, z must have equal sizes. Parameter c set the colors of quadrangles (if id.ny=c.nx) or colors of vertexes (if x.nx=c.nx). See also triplot. See Sample `triplot`, for sample code and picture.
xdat ydat zdat ['sch'='']
¶xdat ydat zdat adat ['sch'='']
¶The function draws the arbitrary placed points {x[i], y[i], z[i]}. String sch sets the color scheme and kind of marks. If arrays c, a are specified then they define colors and transparencies of dots. You can use tens plot with style ` .` to draw non-transparent dots with specified colors. Arrays x, y, z, a must have equal sizes. See also crust, tens, mark, plot. See Sample `dots`, for sample code and picture.
xdat ydat zdat ['sch'='']
¶The function reconstruct and draws the surface for arbitrary placed points {x[i], y[i], z[i]}. String sch sets the color scheme. If string contain `#` then wire plot is produced. Arrays x, y, z must have equal sizes. See also dots, triplot.
These functions fit data to formula. Fitting goal is to find formula parameters for the best fit the data points, i.e. to minimize the sum \sum_i (f(x_i, y_i, z_i) - a_i)^2/s_i^2. At this, approximation function `f` can depend only on one argument `x` (1D case), on two arguments `x,y` (2D case) and on three arguments `x,y,z` (3D case). The function `f` also may depend on parameters. Normally the list of fitted parameters is specified by var string (like, `abcd`). Usually user should supply initial values for fitted parameters by ini variable. But if he/she don`t supply it then the zeros are used. Parameter print=true
switch on printing the found coefficients to Message (see Error handling).
Functions Fit() and FitS() do not draw the obtained data themselves. They fill the data fit by formula `f` with found coefficients and return it. At this, the `x,y,z` coordinates are equidistantly distributed in the axis range. Number of points in fit is defined by option value
(default is mglFitPnts=100). Note, that this functions use GSL library and do something only if MathGL was compiled with GSL support. See Nonlinear fitting hints, for sample code and picture.
res adat sdat 'func' 'var' [ini=0]
¶res xdat adat sdat 'func' 'var' [ini=0]
¶res xdat ydat adat sdat 'func' 'var' [ini=0]
¶res xdat ydat zdat adat sdat 'func' 'var' [ini=0]
¶Fit data along x-, y- and z-directions for array specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]) with weight factor s[i,j,k].
res adat 'func' 'var' [ini=0]
¶res xdat adat 'func' 'var' [ini=0]
¶res xdat ydat adat 'func' 'var' [ini=0]
¶res xdat ydat zdat adat 'func' 'var' [ini=0]
¶Fit data along x-, y- and z-directions for array specified parametrically a[i,j,k](x[i,j,k], y[i,j,k], z[i,j,k]) with weight factor 1.
x y
['pre'='' 'fnt'='' size=-1
]
¶Print last fitted formula with found coefficients (as numbers) at position p0. The string prefix will be printed before formula. All other parameters are the same as in Text printing.
RES xdat adat
¶RES xdat ydat adat
¶RES xdat ydat zdat adat
¶These functions make distribution (histogram) of data. They do not draw the obtained data themselves. These functions can be useful if user have data defined for random points (for example, after PIC simulation) and he want to produce a plot which require regular data (defined on grid(s)). The range for grids is always selected as axis range. Arrays x, y, z define the positions (coordinates) of random points. Array a define the data value. Number of points in output array res is defined by option value
(default is mglFitPnts=100).
dat 'eq'
¶dat 'eq' vdat
¶dat 'eq' vdat wdat
¶Fills the value of array `u` according to the formula in string eq. Formula is an arbitrary expression depending on variables `x`, `y`, `z`, `u`, `v`, `w`. Coordinates `x`, `y`, `z` are supposed to be normalized in axis range. Variable `u` is the original value of the array. Variables `v` and `w` are values of arrays v, w which can be NULL
(i.e. can be omitted).
dat xdat ydat zdat
¶Fills the value of array `u` according to the linear interpolation of triangulated surface, found for arbitrary placed points `x`, `y`, `z`. Interpolation is done at points equidistantly distributed in axis range. NAN value is used for grid points placed outside of triangulated surface. See Making regular data, for sample code and picture.
dat xdat vdat [sl=-1]
¶dat xdat ydat vdat [sl=-1]
¶dat xdat ydat zdat vdat
¶Fills by interpolated values of array v at the point {x, y, z}={X[i], Y[j], Z[k]
} (or {x, y, z}={X[i,j,k], Y[i,j,k], Z[i,j,k]
} if x, y, z are not 1d arrays), where X,Y,Z
are equidistantly distributed in axis range and have the same sizes as array dat. If parameter sl is 0 or positive then changes will be applied only for slice sl.
RES 'ham' ini_re ini_im [dz=0.1 k0=100
]
¶Solves equation du/dz = i*k0*ham(p,q,x,y,z,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Coordinates `x`, `y`, `z` are supposed to be normalized in axis range. Note, that really this ranges are increased by factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz set the step along evolutionary coordinate z. At this moment, simplified form of function ham is supported - all “mixed” terms (like `x*p`->x*d/dx) are excluded. For example, in 2D case this function is effectively ham = f(p,z) + g(x,z,u). However commutable combinations (like `x*q`->x*d/dy) are allowed. Here variable `u` is used for field amplitude |u|. This allow one solve nonlinear problems - for example, for nonlinear Shrodinger equation you may set ham="p^2 + q^2 - u^2"
. You may specify imaginary part for wave absorption, like ham = "p^2 + i*x*(x>0)"
, but only if dependence on variable `i` is linear (i.e. ham = hre+i*him). See PDE solving hints, for sample code and picture.
This chapter describe commands for allocation, resizing, loading and saving, modifying of data arrays. Also it can numerically differentiate and integrate data, interpolate, fill data by formula and so on. Class supports data with dimensions up to 3 (like function of 3 variables - x,y,z). Data arrays are denoted by Small Caps (like DAT) if it can be (re-)created by MGL commands.
There are many functions, which can create data for output (see Data filling, File I/O, Make another data, Global functions). Here I put most useful of them.
DAT [nx=1
'eq']
¶DAT nx ny
['eq']
¶DAT nx ny nz
['eq']
¶Default constructor. Allocates the memory for data array and initializes it by zero. If string eq is specified then data will be filled by corresponding formula as in fill.
DAT dat2 ['eq'='']
¶DAT val
¶Copy constructor. Allocates the memory for data array and copy values from other array. At this, if parameter eq or val is specified then the data will be modified by corresponding formula similarly to fill.
REDAT IMDAT dat2 ['eq'='']
¶Allocates the memory for data array and copy real and imaginary values from complex array dat2.
'name'
¶Allocates the memory for data array and copy values from other array specified by its name, which can be "invalid" for MGL names (like one read from HDF5 files).
DAT 'fname'
¶Reads data from tab-separated text file with auto determining sizes of the data.
DAT [nx=1 ny=1 nz=1
]
¶Creates or recreates the array with specified size and fills it by zero. This function does nothing if one of parameters mx, my, mz is zero or negative.
dat mx [my=0 mz=0]
¶Rearrange dimensions without changing data array so that resulting sizes should be mx*my*mz < nx*ny*nz. If some of parameter my or mz are zero then it will be selected to optimal fill of data array. For example, if my=0 then it will be change to my=nx*ny*nz/mx and mz=1.
dat ['dim'='yxz']
¶Transposes (shift order of) dimensions of the data. New order of dimensions is specified in string dim. This function can be useful also after reading of one-dimensional data.
dat n1 [n2=0]
¶Increase the dimensions of the data by inserting new (|n1|+1)-th slices after (for n1>0) or before (for n1<0) of existed one. It is possible to insert 2 dimensions simultaneously for 1d data by using parameter n2. Data to new slices is copy from existed one. For example, for n1>0 new array will be a_ij^new = a_i^old where j=0...n1. Correspondingly, for n1<0 new array will be a_ij^new = a_j^old where i=0...|n1|.
dat rx [ry=1 rz=1 sm=off]
¶Reduces the data size by excluding data elements which indexes are not divisible by rx, ry, rz correspondingly. Parameter smooth set to use smoothing (i.e. out[i]=\sum_{j=i,i+r} a[j]/r) or not (i.e. out[i]=a[j*r]).
dat n1 n2
'dir'
¶Cuts off edges of the data i<n1 and i>n2 if n2>0 or i>n[xyz]
-n2 if n2<=0 along direction dir.
dat 'how'
¶Cuts off far edge of the data to be more optimal for fast Fourier transform. The resulting size will be the closest value of 2^n*3^m*5^l to the original one. The string how may contain: `x`, `y`, `z` for directions, and `2`, `3`, `5` for using corresponding bases.
dat 'dir' [pos=off num=0]
¶Insert num slices along dir-direction at position pos and fill it by zeros.
dat 'dir' [pos=off num=0]
¶Delete num slices along dir-direction at position pos.
dat idx [idy=-1]
¶Sort data rows (or slices in 3D case) by values of specified column idx (or cell {idx,idy} for 3D case). Note, this function is not thread safe!
dat idx
¶Delete rows which values are equal to next row for given column idx.
dat vdat [v2dat ...]
¶Join data cells from vdat to dat. At this, function increase dat sizes according following: z-size for data arrays arrays with equal x-,y-sizes; or y-size for data arrays with equal x-sizes; or x-size otherwise.
DAT v1 ...
¶Creates new variable with name dat and fills it by numeric values of command arguments v1 ...
. Command can create one-dimensional and two-dimensional arrays with arbitrary values. For creating 2d array the user should use delimiter `|` which means that the following values lie in next row. Array sizes are [maximal of row sizes * number of rows]. For example, command list 1 | 2 3
creates the array [1 0; 2 3]. Note, that the maximal number of arguments is 1000.
DAT d1 ...
¶Creates new variable with name dat and fills it by data values of arrays of command arguments d1 .... Command can create two-dimensional or three-dimensional (if arrays in arguments are 2d arrays) arrays with arbitrary values. Minor dimensions of all arrays in arguments should be equal to dimensions of first array d1. In the opposite case the argument will be ignored. Note, that the maximal number of arguments is 1000.
DAT num v1 [v2=nan]
¶Creates new variable with name dat for one-dimensional array of size num. Array elements are equidistantly distributed in range [v1, v2]. If v2=nan
then v2=v1 is used.
dat v1 v2 ['dir'='x']
¶Equidistantly fills the data values to range [v1, v2] in direction dir={`x`,`y`,`z`}.
dat 'eq' [vdat wdat]
¶Fills the value of array according to the formula in string eq. Formula is an arbitrary expression depending on variables `x`, `y`, `z`, `u`, `v`, `w`. Coordinates `x`, `y`, `z` are supposed to be normalized in axis range of canvas gr (in difference from Modify
functions). Variables `i`, `j`, `k` denote corresponding index. At this, zero value is used for variables if corresponding dimension is absent in the data. Variable `u` is the original value of the array. Variables `v` and `w` are values of vdat, wdat which can be NULL
(i.e. can be omitted).
dat 'eq' [dim=0
]
¶dat 'eq' vdat [wdat]
¶The same as previous ones but coordinates `x`, `y`, `z` are supposed to be normalized in range [0,1]. Variables `i`, `j`, `k` denote corresponding index. At this, zero value is used for variables if corresponding dimension is absent in the data. If dim>0 is specified then modification will be fulfilled only for slices >=dim.
dat 'how'
¶Fills data by `x` or `k` samples for Hankel (`h`) or Fourier (`f`) transform.
dat xdat ydat zdat
¶Fills the value of array according to the linear interpolation of triangulated surface assuming x-,y-coordinates equidistantly distributed in axis range (or in range [x1,x2]*[y1,y2]). Triangulated surface is found for arbitrary placed points `x`, `y`, `z`. NAN value is used for grid points placed outside of triangulated surface. See Making regular data, for sample code and picture.
dat val [i=all j=all k=all]
¶Sets value(s) of array a[i, j, k] = val. Negative indexes i, j, k=-1 set the value val to whole range in corresponding direction(s). For example, Put(val,-1,0,-1);
sets a[i,0,j]=val for i=0...(nx-1), j=0...(nz-1).
dat vdat [i=all j=all k=all
]
¶Copies value(s) from array v to the range of original array. Negative indexes i, j, k=-1 set the range in corresponding direction(s). At this minor dimensions of array v should be large than corresponding dimensions of this array. For example, Put(v,-1,0,-1);
sets a[i,0,j]=v.ny>nz ? v[i,j] : v[i], where i=0...(nx-1), j=0...(nz-1) and condition v.nx>=nx is true.
dat xdat vdat [sl=-1]
¶dat xdat ydat vdat [sl=-1]
¶dat xdat ydat zdat vdat
¶Fills by interpolated values of array v at the point {x, y, z}={X[i], Y[j], Z[k]
} (or {x, y, z}={X[i,j,k], Y[i,j,k], Z[i,j,k]
} if x, y, z are not 1d arrays), where X,Y,Z
are equidistantly distributed in range [x1,x2]*[y1,y2]*[z1,z2] and have the same sizes as this array. If parameter sl is 0 or positive then changes will be applied only for slice sl.
dat xdat vdat [sl=-1]
¶Fills by global cubic spline values of array v at the point x=X[i]
, where X
are equidistantly distributed in range [x1,x2] and have the same sizes as this array. If parameter sl is 0 or positive then changes will be applied only for slice sl.
dat 'ids'
¶Sets the symbol ids for data columns. The string should contain one symbol `a`...`z` per column. These ids are used in column.
dat [p=0.5
]
¶Fills data by random numbers of Bernoulli distribution with probability p.
dat n [p=0.5]
¶Fills by random numbers according to binomial distribution in n coin flips with probability p.
dat y1 y2 sigma h
¶Fills by fractional brownian motion.
dat vdat
¶Fills by random numbers according to discrete distribution.
dat [p
]
¶Fills by random numbers according to exponential distribution with scale p.
dat [mu=0 sigma=1
]
¶Fills by random numbers according to Gaussian distribution with average mu and scale sigma.
dat ['dir'='a']
¶Shuffle data cells (for dir=`a`) or slices (for dir=`xyz`).
dat lo hi
¶Fills by random numbers uniformly chosen in (lo,hi).
dat lo hi
¶Fills by random integers uniformly chosen in [lo,hi).
DAT 'fname'
¶REDAT IMDAT 'fname'
¶Reads data from tab-separated text file with auto determining sizes of the data. Double newline means the beginning of new z-slice.
DAT 'fname' mx [my=1 mz=1]
¶REDAT IMDAT 'fname' mx [my=1 mz=1]
¶Reads data from text file with specified data sizes. This function does nothing if one of parameters mx, my or mz is zero or negative.
DAT 'fname' [dim=2
]
¶Read data from text file with size specified at beginning of the file by first dim numbers. At this, variable dim set data dimensions.
DAT 'templ' v1 v2 [dv=1 slice=off]
¶Join data arrays from several text files. The file names are determined by function call sprintf(fname,templ,val);
, where val changes from from to to with step step. The data load one-by-one in the same slice if as_slice=false
or as slice-by-slice if as_slice=true
.
DAT 'templ' [slice=off]
¶Join data arrays from several text files which filenames satisfied the template templ (for example, templ="t_*.dat"
). The data load one-by-one in the same slice if as_slice=false
or as slice-by-slice if as_slice=true
.
DAT 'fname' 'templ'
¶Read file fname line-by-line and scan each line for numbers according the template templ. The numbers denoted as `%g` in the template. See Scanning file, for sample code and picture.
dat 'fname'
¶Saves the whole data array (for ns=-1
) or only ns-th slice to the text file fname.
val
dat 'fname'
¶Saves the value val to the text file fname.
'str' 'fname' ['mode'='a']
¶Saves the string str to the text file fname. For parameter mode=`a` will append string to the file (default); for mode=`w` will overwrite the file. See Scanning file, for sample code and picture.
DAT 'fname' 'dname'
¶Reads data array named dname from HDF5 or HDF4 file. This function does nothing if HDF5|HDF4 was disabled during library compilation.
dat 'fname' 'dname' [rewrite
=off
]
¶Saves data array named dname to HDF5 file. This function does nothing if HDF5 was disabled during library compilation.
val
'fname' 'dname' [rewrite
=off
]
¶Saves value val
named dname to HDF5 file. This function does nothing if HDF5 was disabled during library compilation.
'fname'
¶Put data names from HDF5 file fname into buf as `\t` separated fields. In MGL version the list of data names will be printed as message. This function does nothing if HDF5 was disabled during library compilation.
'fname'
¶Reads all data array from HDF5 file fname and create MGL variables with names of data names in HDF file. Complex variables will be created if data name starts with `!`.
DAT 'fname' 'sch' [v1=0 v2=1
]
¶Reads data from bitmap file (now support only PNG format). The RGB values of bitmap pixels are transformed to mreal values in range [v1, v2] using color scheme scheme (see Color scheme).
dat 'fname' 'sch' [v1=0 v2=0
]
¶Saves data matrix (or ns
-th slice for 3d data) to bitmap file (now support only PNG format). The data values are transformed from range [v1, v2] to RGB pixels of bitmap using color scheme scheme (see Color scheme). If v1>=v2 then the values of v1, v2 are automatically determined as minimal and maximal value of the data array.
dat 'fname' type
¶Reads data from binary file. Parameter type determine the number format: 0 - double, 1 - float, 2 - long double, 3 - long int, 4 - int, 5 - short int, 6 - char. NOTE: this function may not correctly read binary files written in different CPU kind! It is better to use HDF files, see readhdf.
RES dat xx [yy=all zz=all]
¶Extracts sub-array data from the original data array keeping fixed positive index. For example SubData(-1,2)
extracts 3d row (indexes are zero based), SubData(4,-1)
extracts 5th column, SubData(-1,-1,3)
extracts 4th slice and so on. If argument(s) are non-integer then linear interpolation between slices is used. In MGL version this command usually is used as inline one dat(xx,yy,zz)
. Function return NULL or create empty data if data cannot be created for given arguments.
RES dat xdat [ydat zdat]
¶Extracts sub-array data from the original data array for indexes specified by arrays xx, yy, zz (indirect access). This function work like previous one for 1D arguments or numbers, and resulting array dimensions are equal dimensions of 1D arrays for corresponding direction. For 2D and 3D arrays in arguments, the resulting array have the same dimensions as input arrays. The dimensions of all argument must be the same (or to be scalar 1*1*1) if they are 2D or 3D arrays. In MGL version this command usually is used as inline one dat(xx,yy,zz)
. Function return NULL or create empty data if data cannot be created for given arguments. In C function some of xx, yy, zz can be NULL.
RES dat 'eq'
¶Get column (or slice) of the data filled by formula eq on column ids. For example, Column("n*w^2/exp(t)");
. The column ids must be defined first by idset function or read from files. In MGL version this command usually is used as inline one dat('eq')
. Function return NULL or create empty data if data cannot be created for given arguments.
RES dat mx [my=1 mz=1]
¶Resizes the data to new size mx, my, mz from box (part) [x1,x2] x [y1,y2] x [z1,z2] of original array. Initially x,y,z coordinates are supposed to be in [0,1]. If one of sizes mx, my or mz is 0 then initial size is used. Function return NULL or create empty data if data cannot be created for given arguments.
RES dat idat [norm=on
]
¶RES dat idat jdat [norm=on
]
¶RES dat idat jdat kdat [norm=on
]
¶Gets array which values is result of interpolation of original array for coordinates from other arrays. All dimensions must be the same for data idat, jdat, kdat. Coordinates from idat, jdat, kdat are supposed to be normalized in range [0,1] (if norm=true
) or in ranges [0,nx], [0,ny], [0,nz] correspondingly. Function return NULL or create empty data if data cannot be created for given arguments.
RES dat ids ['dir'='y' val=nan
]
¶RES dat id
['dir'='y' val=nan
]
¶Gets array which is id-th section (range of slices separated by value val) of original array dat. For id<0 the reverse order is used (i.e. -1 give last section). If several ids are provided then output array will be result of sequential joining of sections.
RES dat val
'dir' [norm=on
]
¶RES dat val
'dir' idat [norm=on
]
¶Gets array which values is indexes (roots) along given direction dir, where interpolated values of data dat are equal to val. Output data will have the sizes of dat in directions transverse to dir. If data idat is provided then its values are used as starting points. This allows one to find several branches by consequentive calls. Indexes are supposed to be normalized in range [0,1] (if norm=true
) or in ranges [0,nx], [0,ny], [0,nz] correspondingly. Function return NULL or create empty data if data cannot be created for given arguments. See Solve sample, for sample code and picture.
RES 'func' ini ['var'='x']
¶RES 'func' ini
['var'='x']
¶Find roots of equation `func`=0 for variable var with initial guess ini. Secant method is used for root finding. Function return NULL or create empty data if data cannot be created for given arguments.
RES 'funcs' 'vars' ini
¶Find roots of system of equations `funcs`=0 for variables vars with initial guesses ini. Secant method is used for root finding. Function return NULL or create empty data if data cannot be created for given arguments.
RES dat lvl dj [di=0 minlen=0]
¶Get curves {x,y}, separated by NAN values, for local maximal values of array dat as function of x-coordinate. Noises below lvl amplitude are ignored. Parameter dj (in range [0,ny]) set the "attraction" y-distance of points to the curve. Similarly, di continue curve in x-direction through gaps smaller than di points. Curves with minimal length smaller than minlen will be ignored.
RES dat num v1 v2 [nsub=0]
¶RES dat wdat num v1 v2 [nsub=0]
¶Creates n-th points distribution of the data values in range [v1, v2]. Array w specifies weights of the data elements (by default is 1). Parameter nsub define the number of additional interpolated points (for smoothness of histogram). If nsub<0 then linear interpolation is used instead of spline one. Function return NULL or create empty data if data cannot be created for given arguments. See also Data manipulation
RES dat 'how' ['dir'='z']
¶Gets momentum (1d-array) of the data along direction dir. String how contain kind of momentum. The momentum is defined like as res_k = \sum_ij how(x_i,y_j,z_k) a_ij/ \sum_ij a_ij if dir=`z` and so on. Coordinates `x`, `y`, `z` are data indexes normalized in range [0,1]. Function return NULL or create empty data if data cannot be created for given arguments.
RES dat 'dir'
¶Gets array which is the result of summation in given direction or direction(s). Function return NULL or create empty data if data cannot be created for given arguments.
RES dat 'dir'
¶Gets array which is the maximal data values in given direction or direction(s). Function return NULL or create empty data if data cannot be created for given arguments.
RES dat 'dir'
¶Gets array which is the maximal data values in given direction or direction(s). Function return NULL or create empty data if data cannot be created for given arguments.
RES dat
¶Gets positions of local maximums and minimums. Function return NULL or create empty data if there is no minimums and maximums.
RES val
dat
¶Gets coordinates of contour lines for dat[i,j]=val. NAN values separate the the curves. Function return NULL or create empty data if there is contour lines.
RES adat bdat
¶Returns direct multiplication of arrays (like, res[i,j] = this[i]*a[j] and so on). Function return NULL or create empty data if data cannot be created for given arguments.
RES dat
¶Gets array of diagonal elements a[i,i] (for 2D case) or a[i,i,i] (for 3D case) where i=0...nx-1. Function return copy of itself for 1D case. Data array must have dimensions ny,nz >= nx or ny,nz = 1. Function return NULL or create empty data if data cannot be created for given arguments.
RES adat bdat 'dir'
¶Find correlation between data a (or this in C++) and b along directions dir. Fourier transform is used to find the correlation. So, you may want to use functions swap or norm before plotting it. Function return NULL or create empty data if data cannot be created for given arguments.
RES dat 'dir'
¶Find pulse properties along direction dir: pulse maximum (in column 0) and its position (in column 1), pulse width near maximum (in column 3) and by half height (in column 2), energy in first pulse (in column 4). NAN values are used for widths if maximum is located near the edges. Note, that there is uncertainty for complex data. Usually one should use square of absolute value (i.e. |dat[i]|^2) for them. So, MathGL don`t provide this function for complex data arrays. However, C function will work even in this case but use absolute value (i.e. |dat[i]|). Function return NULL or create empty data if data cannot be created for given arguments. See also max, min, momentum, sum. See Pulse properties, for sample code and picture.
RES dat 'dir' val
¶Get array of positions of first value large val. For complex data the absolute value is used. See also last.
RES dat 'dir' val
¶Get array of positions of last value large val. For complex data the absolute value is used. See also first.
These functions change the data in some direction like differentiations, integrations and so on. The direction in which the change will applied is specified by the string parameter, which may contain `x`, `y` or `z` characters for 1-st, 2-nd and 3-d dimension correspondingly.
dat 'dir'
¶Cumulative summation of the data in given direction or directions.
dat 'dir'
¶Integrates (like cumulative summation) the data in given direction or directions.
dat 'dir'
¶Differentiates the data in given direction or directions.
dat xdat ydat [zdat]
¶Differentiates the data specified parametrically in direction x with y, z=constant. Parametrical differentiation uses the formula (for 2D case): da/dx = (a_j*y_i-a_i*y_j)/(x_j*y_i-x_i*y_j) where a_i=da/di, a_j=da/dj denotes usual differentiation along 1st and 2nd dimensions. The similar formula is used for 3D case. Note, that you may change the order of arguments - for example, if you have 2D data a(i,j) which depend on coordinates {x(i,j), y(i,j)} then usual derivative along `x` will be Diff(x,y);
and usual derivative along `y` will be Diff(y,x);
.
dat 'dir'
¶Double-differentiates (like Laplace operator) the data in given direction.
dat 'dir'
¶Do Sine transform of the data in given direction or directions. The Sine transform is \sum a_j \sin(k j) (see http://en.wikipedia.org/wiki/Discrete_sine_transform#DST-I).
dat 'dir'
¶Do Cosine transform of the data in given direction or directions. The Cosine transform is \sum a_j \cos(k j) (see http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-I).
dat 'dir'
¶Do Hankel transform of the data in given direction or directions. The Hankel transform is \sum a_j J_0(k j) (see http://en.wikipedia.org/wiki/Hankel_transform).
dat 'dir' k
¶Apply wavelet transform of the data in given direction or directions. Parameter dir set the kind of wavelet transform: `d` for daubechies, `D` for centered daubechies, `h` for haar, `H` for centered haar, `b` for bspline, `B` for centered bspline. If string dir contain symbol `i` then inverse wavelet transform is applied. Parameter k set the size of wavelet transform.
dat 'dir'
¶Swaps the left and right part of the data in given direction (useful for Fourier spectrum).
dat 'dir' num
¶Rolls the data along direction dir. Resulting array will be out[i] = ini[(i+num)%nx] if dir='x'
.
dat 'dir'
¶Mirror the left-to-right part of the data in given direction. Looks like change the value index i->n-i. Note, that the similar effect in graphics you can reach by using options (see Command options), for example, surf dat; xrange 1 -1
.
dat ['dir'='xyz' da=2*pi
]
¶Remove value steps (like phase jumps after inverse trigonometric functions) with period da in given direction.
data ['dir'='xyz']
¶Smooths the data on specified direction or directions. String dirs specifies the dimensions which will be smoothed. It may contain characters:
By default quadratic averaging over 5 points is used.
dat ['dir'='x']
¶Find envelop for data values along direction dir.
dat 'how' q
¶Calculates one step of diffraction by finite-difference method with parameter q=\delta t/\delta x^2 using method with 3-d order of accuracy. Parameter how may contain:
dat v1 v2 [sym=off dim=0]
¶Normalizes the data to range [v1,v2]. If flag sym=true
then symmetrical interval [-max(|v1|,|v2|), max(|v1|,|v2|)] is used. Modification will be applied only for slices >=dim.
dat v1 v2
['dir'='z' keep=on sym=off
]
¶Normalizes data slice-by-slice along direction dir the data in slices to range [v1,v2]. If flag sym=true
then symmetrical interval [-max(|v1|,|v2|), max(|v1|,|v2|)] is used. If keep is set then maximal value of k-th slice will be limited by
\sqrt{\sum a_ij(k)/\sum a_ij(0)}.
dat 'dir' i [j=0]
¶Conserves phase/sign or amplitude (if dir contain `a`) of data along directions dir by fixing one at point {i,j} of the initial slice. The function is useful for removing common phase change of a complex data. See Sample `keep`, for sample code and picture.
dat val
¶Limits the data values to be inside the range [-val,val], keeping the original sign of the value (phase for complex numbers). This is equivalent to operation a[i] *= abs(a[i])<val?1.:val/abs(a[i]);
.
dat v1 v2 [sep=on]
¶Project the periodical data to range [v1,v2] (like mod()
function). Separate branches by NAN
if sep=true
.
dat [val=1 step=1]
¶Return dilated by step cells array of 0 or 1 for data values larger val.
dat [val=1 step=1]
¶Return eroded by step cells array of 0 or 1 for data values larger val.
MGL scripts can use spline interpolation by evaluate or refill commands. Also you can use resize for obtaining a data array with new sizes.
There are a set of functions for obtaining data properties in MGL language. However most of them can be found using "suffixes". Suffix can get some numerical value of the data array (like its size, maximal or minimal value, the sum of elements and so on) as number. Later it can be used as usual number in command arguments. The suffixes start from point `.` right after (without spaces) variable name or its sub-array. For example, a.nx
give the x-size of data a, b(1).max
give maximal value of second row of variable b, (c(:,0)^2).sum
give the sum of squares of elements in the first column of c and so on.
dat
¶Gets or prints to file fp or as message (in MGL) information about the data (sizes, maximum/minimum, momentums and so on).
'txt'
¶Prints string txt as message.
val
¶Prints value of number val as message.
dat
¶'txt'
¶val
¶The same as info but immediately print to stdout.
dat
¶Prints all values of the data array dat as message.
val max
¶Display progress of something as filled horizontal bar with relative length val/max. Note, it work now only in console and in FLTK-based applications, including mgllab
and mglview
.
(dat)
.nx ¶(dat)
.ny ¶(dat)
.nz ¶Gets the x-, y-, z-size of the data.
(dat)
.max ¶Gets maximal value of the data.
(dat)
.min ¶Gets minimal value of the data.
(dat)
.mx ¶(dat)
.my ¶(dat)
.mz ¶Gets approximated (interpolated) position of maximum to variables x, y, z and returns the maximal value.
(dat)
.mxf ¶(dat)
.myf ¶(dat)
.mzf ¶(dat)
.mxl ¶(dat)
.myl ¶(dat)
.mzl ¶Get first starting from give position (or last one if from<0) maximum along direction dir, and save its orthogonal coordinates in p1, p2.
(dat)
.sum ¶(dat)
.ax ¶(dat)
.ay ¶(dat)
.az ¶(dat)
.aa ¶(dat)
.wx ¶(dat)
.wy ¶(dat)
.wz ¶(dat)
.wa ¶(dat)
.sx ¶(dat)
.sy ¶(dat)
.sz ¶(dat)
.sa ¶(dat)
.kx ¶(dat)
.ky ¶(dat)
.kz ¶(dat)
.ka ¶Gets zero-momentum (energy, I=\sum dat_i) and write first momentum (median, a = \sum \xi_i dat_i/I), second momentum (width, w^2 = \sum (\xi_i-a)^2 dat_i/I), third momentum (skewness, s = \sum (\xi_i-a)^3 dat_i/ I w^3) and fourth momentum (kurtosis, k = \sum (\xi_i-a)^4 dat_i / 3 I w^4) to variables. Here \xi is corresponding coordinate if dir is `'x'`, `'y'` or `'z'`. Otherwise median is a = \sum dat_i/N, width is w^2 = \sum (dat_i-a)^2/N and so on.
(dat)
.fst ¶Find position (after specified in i, j, k) of first nonzero value of formula cond. Function return the data value at found position.
(dat)
.lst ¶Find position (before specified in i, j, k) of last nonzero value of formula cond. Function return the data value at found position.
(dat)
.a ¶Give first (for .a
, i.e. dat->a[0]
).
DAT dat2 ['eq'='']
¶Copies data from other variable.
dat val
¶Set all data values equal to val.
dat dat2
¶dat val
¶Multiplies data element by the other one or by value.
dat dat2
¶dat val
¶Divides each data element by the other one or by value.
dat dat2
¶dat val
¶Adds to each data element the other one or the value.
dat dat2
¶dat val
¶Subtracts from each data element the other one or the value.
DAT 'type' real imag
¶Does integral transformation of complex data real, imag on specified direction. The order of transformations is specified in string type: first character for x-dimension, second one for y-dimension, third one for z-dimension. The possible character are: `f` is forward Fourier transformation, `i` is inverse Fourier transformation, `s` is Sine transform, `c` is Cosine transform, `h` is Hankel transform, `n` or ` ` is no transformation.
DAT 'type' ampl phase
¶The same as previous but with specified amplitude ampl and phase phase of complex numbers.
reDat imDat 'dir'
¶complexDat 'dir'
¶Does Fourier transform of complex data re+i*im in directions dir. Result is placed back into re and im data arrays. If dir contain `i` then inverse Fourier is used.
RES real imag dn
['dir'='x']
¶Short time Fourier transformation for real and imaginary parts. Output is amplitude of partial Fourier of length dn. For example if dir=`x`, result will have size {int(nx/dn), dn, ny} and it will contain res[i,j,k]=|\sum_d^dn exp(I*j*d)*(real[i*dn+d,k]+I*imag[i*dn+d,k])|/dn.
dat xdat ydat
¶Do Delone triangulation for 2d points and return result suitable for triplot and tricont. See Making regular data, for sample code and picture.
RES ADAT BDAT CDAT DDAT 'how'
¶Get array as solution of tridiagonal system of equations A[i]*x[i-1]+B[i]*x[i]+C[i]*x[i+1]=D[i]. String how may contain:
Data dimensions of arrays A, B, C should be equal. Also their dimensions need to be equal to all or to minor dimension(s) of array D. See PDE solving hints, for sample code and picture.
RES 'ham' ini_re ini_im [dz=0.1 k0=100
]
¶Solves equation du/dz = i*k0*ham(p,q,x,y,z,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters Min, Max set the bounding box for the solution. Note, that really this ranges are increased by factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz set the step along evolutionary coordinate z. At this moment, simplified form of function ham is supported - all “mixed” terms (like `x*p`->x*d/dx) are excluded. For example, in 2D case this function is effectively ham = f(p,z) + g(x,z,u). However commutable combinations (like `x*q`->x*d/dy) are allowed. Here variable `u` is used for field amplitude |u|. This allow one solve nonlinear problems - for example, for nonlinear Shrodinger equation you may set ham="p^2 + q^2 - u^2"
. You may specify imaginary part for wave absorption, like ham = "p^2 + i*x*(x>0)"
. See also apde, qo2d, qo3d. See PDE solving hints, for sample code and picture.
RES 'ham' ini_re ini_im [dz=0.1 k0=100
]
¶Solves equation du/dz = i*k0*ham(p,q,x,y,z,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters Min, Max set the bounding box for the solution. Note, that really this ranges are increased by factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz set the step along evolutionary coordinate z. The advanced and rather slow algorithm is used for taking into account both spatial dispersion and inhomogeneities of media [see A.A. Balakin, E.D. Gospodchikov, A.G. Shalashov, JETP letters v.104, p.690-695 (2016)]. Variable `u` is used for field amplitude |u|. This allow one solve nonlinear problems - for example, for nonlinear Shrodinger equation you may set ham="p^2 + q^2 - u^2"
. You may specify imaginary part for wave absorption, like ham = "p^2 + i*x*(x>0)"
. See also pde. See PDE solving hints, for sample code and picture.
RES 'ham' x0 y0 z0 p0 q0 v0 [dt=0.1 tmax=10]
¶Solves GO ray equation like dr/dt = d ham/dp, dp/dt = -d ham/dr. This is Hamiltonian equations for particle trajectory in 3D case. Here ham is Hamiltonian which may depend on coordinates `x`, `y`, `z`, momentums `p`=px, `q`=py, `v`=pz and time `t`: ham = H(x,y,z,p,q,v,t). The starting point (at t=0
) is defined by variables r0, p0. Parameters dt and tmax specify the integration step and maximal time for ray tracing. Result is array of {x,y,z,p,q,v,t} with dimensions {7 * int(tmax/dt+1) }.
RES 'df' 'var' ini [dt=0.1 tmax=10
]
¶Solves ODE equations dx/dt = df(x). The functions df can be specified as string of `;`-separated textual formulas (argument var set the character ids of variables x[i]) or as callback function, which fill dx
array for give x
`s. Parameters ini, dt, tmax set initial values, time step and maximal time of the calculation. Function stop execution if NAN
or INF
values appears. Result is data array with dimensions {n * Nt}, where Nt <= int(tmax/dt+1).
If dt*tmax<0 then regularization is switched on, which change equations to dx/ds = df(x)/max(|df(x)|) to allow accurately passes region of strong df variation or quickly bypass region of small df. Here s is the new "time". At this, real time is determined as dt/ds=max(|df(x)|). If you need real time, then add it into equations manually, like `ode res 'y;-sin(x);1' 'xyt' [3,0] 0.3 -100`. This also preserve accuracy at stationary points (i.e. at small df in periodic case).
RES 'df' 'var' 'brd' ini [dt=0.1 tmax=10
]
¶Solves difference approximation of PDE as a set of ODE dx/dt = df(x,j). Functions df can be specified as string of `;`-separated textual formulas, which can depend on index j and current time `t`. Argument var set the character ids of variables x[i]. Parameter brd sets the kind of boundary conditions on j: `0` or `z` - zero at border, `1` or `c` - constant at border, `2` or `l` - linear at border (laplacian is zero), `3` or `s` - square at border, `4` or `e` - exponential at border, `5` or `g` - gaussian at border. The cases `e` and `g` are applicable for the complex variant only. Parameters ini, dt, tmax set initial values, time step and maximal time of the calculation. Function stop execution if NAN
or INF
values appears. Result is data array with dimensions {n * Nt}, where Nt <= int(tmax/dt+1). For example, difference aprroximation of diffusion equation with zero boundary conditions can be solved by call: `ode res 'u(j+1)-2*u(j)+u(j-1)' 'u' '0' u0`, where `u0` is an initial data array.
If dt*tmax<0 then regularization is switched on, which change equations to dx/ds = df(x)/max(|df(x)|) to allow accurately passes region of strong df variation or quickly bypass region of small df. Here s is the new "time". At this, real time is determined as dt/ds=max(|df(x)|). If you need real time, then add it into equations manually, like `ode res 'y;-sin(x);1' 'xyt' [3,0] 0.3 -100`. This also preserve accuracy at stationary points (i.e. at small df in periodic case).
RES 'ham' ini_re ini_im ray [r=1 k0=100
xx yy]
¶Solves equation du/dt = i*k0*ham(p,q,x,y,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy are pseudo-differential operators (see mglPDE()
for details). Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters ray set the reference ray, i.e. the ray around which the accompanied coordinate system will be maked. You may use, for example, the array created by ray function. Note, that the reference ray must be smooth enough to make accompanied coodrinates unambiguity. Otherwise errors in the solution may appear. If xx and yy are non-zero then Cartesian coordinates for each point will be written into them. See also pde, qo3d. See PDE solving hints, for sample code and picture.
RES 'ham' ini_re ini_im ray [r=1 k0=100
xx yy zz]
¶Solves equation du/dt = i*k0*ham(p,q,v,x,y,z,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy, v=-i/k0*d/dz are pseudo-differential operators (see mglPDE()
for details). Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters ray set the reference ray, i.e. the ray around which the accompanied coordinate system will be maked. You may use, for example, the array created by ray function. Note, that the reference ray must be smooth enough to make accompanied coodrinates unambiguity. Otherwise errors in the solution may appear. If xx and yy and zz are non-zero then Cartesian coordinates for each point will be written into them. See also pde, qo2d. See PDE solving hints, for sample code and picture.
RES xdat ydat [zdat]
¶Computes the Jacobian for transformation {i,j,k} to {x,y,z} where initial coordinates {i,j,k} are data indexes normalized in range [0,1]. The Jacobian is determined by formula det||dr_\alpha/d\xi_\beta|| where r={x,y,z} and \xi={i,j,k}. All dimensions must be the same for all data arrays. Data must be 3D if all 3 arrays {x,y,z} are specified or 2D if only 2 arrays {x,y} are specified.
RES xdat ydat
¶Computes triangulation for arbitrary placed points with coordinates {x,y} (i.e. finds triangles which connect points). MathGL use s-hull code for triangulation. The sizes of 1st dimension must be equal for all arrays x.nx=y.nx
. Resulting array can be used in triplot or tricont functions for visualization of reconstructed surface. See Making regular data, for sample code and picture.
RES dat num
[skip=20
]
¶Computes num points {x[i]=res[0,i], y[i]=res[1,i]} for fractal using iterated function system. Matrix dat is used for generation according the formulas
x[i+1] = dat[0,i]*x[i] + dat[1,i]*y[i] + dat[4,i]; y[i+1] = dat[2,i]*x[i] + dat[3,i]*y[i] + dat[5,i];
Value dat[6,i]
is used as weight factor for i-th row of matrix dat. At this first skip iterations will be omitted. Data array dat must have x-size greater or equal to 7. See also ifs3d, flame2d. See Sample `ifs2d`, for sample code and picture.
RES dat num
[skip=20
]
¶Computes num points {x[i]=res[0,i], y[i]=res[1,i], z[i]=res[2,i]} for fractal using iterated function system. Matrix dat is used for generation according the formulas
x[i+1] = dat[0,i]*x[i] + dat[1,i]*y[i] + dat[2,i]*z[i] + dat[9,i]; y[i+1] = dat[3,i]*x[i] + dat[4,i]*y[i] + dat[5,i]*z[i] + dat[10,i]; z[i+1] = dat[6,i]*x[i] + dat[7,i]*y[i] + dat[8,i]*z[i] + dat[11,i];
Value dat[12,i]
is used as weight factor for i-th row of matrix dat. At this first skip iterations will be omitted. Data array dat must have x-size greater or equal to 13. See also ifs2d. See Sample `ifs3d`, for sample code and picture.
RES 'fname' 'name' num
[skip=20
]
¶Reads parameters of IFS fractal named name from file fname and computes num points for this fractal. At this first skip iterations will be omitted. See also ifs2d, ifs3d.
IFS file may contain several records. Each record contain the name of fractal (`binary` in the example below) and the body of fractal, which is enclosed in curly braces {}. Symbol `;` start the comment. If the name of fractal contain `(3D)` or `(3d)` then the 3d IFS fractal is specified. The sample below contain two fractals: `binary` - usual 2d fractal, and `3dfern (3D)` - 3d fractal. See also ifs2d, ifs3d.
binary { ; comment allowed here ; and here .5 .0 .0 .5 -2.563477 -0.000003 .333333 ; also comment allowed here .5 .0 .0 .5 2.436544 -0.000003 .333333 .0 -.5 .5 .0 4.873085 7.563492 .333333 } 3dfern (3D) { .00 .00 0 .0 .18 .0 0 0.0 0.00 0 0.0 0 .01 .85 .00 0 .0 .85 .1 0 -0.1 0.85 0 1.6 0 .85 .20 -.20 0 .2 .20 .0 0 0.0 0.30 0 0.8 0 .07 -.20 .20 0 .2 .20 .0 0 0.0 0.30 0 0.8 0 .07 }
RES dat func num
[skip=20
]
¶Computes num points {x[i]=res[0,i], y[i]=res[1,i]} for "flame" fractal using iterated function system. Array func define "flame" function identificator (func[0,i,j]), its weight (func[0,i,j]) and arguments (func[2 ... 5,i,j]). Matrix dat set linear transformation of coordinates before applying the function. The resulting coordinates are
xx = dat[0,i]*x[j] + dat[1,j]*y[i] + dat[4,j]; yy = dat[2,i]*x[j] + dat[3,j]*y[i] + dat[5,j]; x[j+1] = sum_i @var{func}[1,i,j]*@var{func}[0,i,j]_x(xx, yy; @var{func}[2,i,j],...,@var{func}[5,i,j]); y[j+1] = sum_i @var{func}[1,i,j]*@var{func}[0,i,j]_y(xx, yy; @var{func}[2,i,j],...,@var{func}[5,i,j]);
The possible function ids are: mglFlame2d_linear=0, mglFlame2d_sinusoidal, mglFlame2d_spherical, mglFlame2d_swirl, mglFlame2d_horseshoe,
mglFlame2d_polar, mglFlame2d_handkerchief,mglFlame2d_heart, mglFlame2d_disc, mglFlame2d_spiral,
mglFlame2d_hyperbolic, mglFlame2d_diamond, mglFlame2d_ex, mglFlame2d_julia, mglFlame2d_bent,
mglFlame2d_waves, mglFlame2d_fisheye, mglFlame2d_popcorn, mglFlame2d_exponential, mglFlame2d_power,
mglFlame2d_cosine, mglFlame2d_rings, mglFlame2d_fan, mglFlame2d_blob, mglFlame2d_pdj,
mglFlame2d_fan2, mglFlame2d_rings2, mglFlame2d_eyefish, mglFlame2d_bubble, mglFlame2d_cylinder,
mglFlame2d_perspective, mglFlame2d_noise, mglFlame2d_juliaN, mglFlame2d_juliaScope, mglFlame2d_blur,
mglFlame2d_gaussian, mglFlame2d_radialBlur, mglFlame2d_pie, mglFlame2d_ngon, mglFlame2d_curl,
mglFlame2d_rectangles, mglFlame2d_arch, mglFlame2d_tangent, mglFlame2d_square, mglFlame2d_blade,
mglFlame2d_secant, mglFlame2d_rays, mglFlame2d_twintrian, mglFlame2d_cross, mglFlame2d_disc2,
mglFlame2d_supershape, mglFlame2d_flower, mglFlame2d_conic, mglFlame2d_parabola, mglFlame2d_bent2,
mglFlame2d_bipolar, mglFlame2d_boarders, mglFlame2d_butterfly, mglFlame2d_cell, mglFlame2d_cpow,
mglFlame2d_curve, mglFlame2d_edisc, mglFlame2d_elliptic, mglFlame2d_escher, mglFlame2d_foci,
mglFlame2d_lazySusan, mglFlame2d_loonie, mglFlame2d_preBlur, mglFlame2d_modulus, mglFlame2d_oscope,
mglFlame2d_polar2, mglFlame2d_popcorn2, mglFlame2d_scry, mglFlame2d_separation, mglFlame2d_split,
mglFlame2d_splits, mglFlame2d_stripes, mglFlame2d_wedge, mglFlame2d_wedgeJulia, mglFlame2d_wedgeSph,
mglFlame2d_whorl, mglFlame2d_waves2, mglFlame2d_exp, mglFlame2d_log, mglFlame2d_sin,
mglFlame2d_cos, mglFlame2d_tan, mglFlame2d_sec, mglFlame2d_csc, mglFlame2d_cot,
mglFlame2d_sinh, mglFlame2d_cosh, mglFlame2d_tanh, mglFlame2d_sech, mglFlame2d_csch,
mglFlame2d_coth, mglFlame2d_auger, mglFlame2d_flux.
Value dat[6,i]
is used as weight factor for i-th row of matrix dat. At this first skip iterations will be omitted. Sizes of data arrays must be: dat.nx>=7, func.nx>=2 and func.nz=dat.ny. See also ifs2d, ifs3d. See Sample `flame2d`, for sample code and picture.
You can use arbitrary formulas of existed data arrays or constants as any argument of data processing or data plotting commands. There are only 2 limitations: formula shouldn`t contain spaces (to be recognized as single argument), and formula cannot be used as argument which will be (re)created by MGL command.
MGL use these special classes automatically.
This chapter contain information about basic and advanced MathGL, hints and samples for all types of graphics. I recommend you read first 2 sections one after another and at least look on Hints section. Also I recommend you to look at General concepts and FAQ.
MGL script can be used by several manners. Each has positive and negative sides:
Positive sides are possibilities to view the plot at once and to modify it, rotate, zoom or switch on transparency or lighting by hands or by mouse. Negative side is the needness of the X-terminal.
Positive aspects are: batch processing of similar data set, for example, a set of resulting data files for different calculation parameters), running from the console program, including the cluster calculation), fast and automated drawing, saving pictures for further analysis, or demonstration). Negative sides are: the usage of the external program for picture viewing. Also, the data plotting is non-visual. So, you have to imagine the picture, view angles, lighting and so on) before the plotting. I recommend to use graphical window for determining the optimal parameters of plotting on the base of some typical data set. And later use these parameters for batch processing in console program.
In this case you can use the program: mglconv
or mglview
for viewing.
You can easily execute MGL script within C/C++/Fortan code. This can be useful for fast data plotting, for example, in web applications, where textual string (MGL script) may contain all necessary information for plot. The basic C++ code may look as following
const char *mgl_script; // script itself, can be of type const wchar_t* mglGraph gr; mglParse pr; pr.Execute(&gr, mgl_script);
The simplest script is
box # draw bounding box axis # draw axis fplot 'x^3' # draw some function
Just type it in UDAV and press F5. Also you can save it in text file `test.mgl` and type in the console mglconv test.mgl
what produce file `test.mgl.png` with resulting picture.
Now I show several non-obvious features of MGL: several subplots in a single picture, curvilinear coordinates, text printing and so on. Generally you may miss this section at first reading, but I don`t recommend it.
Let me demonstrate possibilities of plot positioning and rotation. MathGL has a set of functions: subplot, inplot, title, aspect and rotate and so on (see Subplots and rotation). The order of their calling is strictly determined. First, one changes the position of plot in image area (functions subplot, inplot and multiplot). Secondly, you can add the title of plot by title function. After that one may rotate the plot (command rotate). Finally, one may change aspects of axes (command aspect). The following code illustrates the aforesaid it:
subplot 2 2 0 box:text -1 1.1 'Just box' ':L' inplot 0.2 0.5 0.7 1 off box:text 0 1.2 'InPlot example' subplot 2 2 1:title 'Rotate only' rotate 50 60:box subplot 2 2 2:title 'Rotate and Aspect' rotate 50 60:aspect 1 1 2:box subplot 2 2 3:title 'Shear' box 'c':shear 0.2 0.1:box
Here I used function Puts
for printing the text in arbitrary position of picture (see Text printing). Text coordinates and size are connected with axes. However, text coordinates may be everywhere, including the outside the bounding box. I`ll show its features later in Text features.
Note that several commands can be placed in a string if they are separated by `:` symbol.
More complicated sample show how to use most of positioning functions:
subplot 3 2 0:title 'StickPlot' stickplot 3 0 20 30:box 'r':text 0 0 0 '0' 'r' stickplot 3 1 20 30:box 'g':text 0 0 0 '1' 'g' stickplot 3 2 20 30:box 'b':text 0 0 0 '2' 'b' subplot 3 2 3 '':title 'ColumnPlot' columnplot 3 0:box 'r':text 0 0 '0' 'r' columnplot 3 1:box 'g':text 0 0 '1' 'g' columnplot 3 2:box 'b':text 0 0 '2' 'b' subplot 3 2 4 '':title 'GridPlot' gridplot 2 2 0:box 'r':text 0 0 '0' 'r' gridplot 2 2 1:box 'g':text 0 0 '1' 'g' gridplot 2 2 2:box 'b':text 0 0 '2' 'b' gridplot 2 2 3:box 'm':text 0 0 '3' 'm' subplot 3 2 5 '':title 'InPlot':box inplot 0.4 1 0.6 1 on:box 'r' multiplot 3 2 1 2 1 '':title 'MultiPlot and ShearPlot':box shearplot 3 0 0.2 0.1:box 'r':text 0 0 '0' 'r' shearplot 3 1 0.2 0.1:box 'g':text 0 0 '1' 'g' shearplot 3 2 0.2 0.1:box 'b':text 0 0 '2' 'b'
MathGL library can draw not only the bounding box but also the axes, grids, labels and so on. The ranges of axes and their origin (the point of intersection) are determined by functions SetRange()
, SetRanges()
, SetOrigin()
(see Ranges (bounding box)). Ticks on axis are specified by function SetTicks
, SetTicksVal
, SetTicksTime
(see Ticks). But usually
Command axis draws axes. Its textual string shows in which directions the axis or axes will be drawn (by default "xyz"
, function draws axes in all directions). Command grid draws grid perpendicularly to specified directions. Example of axes and grid drawing is:
subplot 2 2 0:title 'Axis origin, Grid' origin 0 0:axis:grid:fplot 'x^3' subplot 2 2 1:title '2 axis' ranges -1 1 -1 1:origin -1 -1:axis ylabel 'axis_1':fplot 'sin(pi*x)' 'r2' ranges 0 1 0 1:origin 1 1:axis ylabel 'axis_2':fplot 'cos(pi*x)' subplot 2 2 3:title 'More axis' origin nan nan:xrange -1 1:axis xlabel 'x' 0:ylabel 'y_1' 0:fplot 'x^2' 'k' yrange -1 1:origin -1.3 -1:axis 'y' 'r' ylabel '#r{y_2}' 0.2:fplot 'x^3' 'r' subplot 2 2 2:title '4 segments, inverted axis':origin 0 0: inplot 0.5 1 0.5 1 on:ranges 0 10 0 2:axis fplot 'sqrt(x/2)':xlabel 'W' 1:ylabel 'U' 1 inplot 0 0.5 0.5 1 on:ranges 1 0 0 2:axis 'x' fplot 'sqrt(x)+x^3':xlabel '\tau' 1 inplot 0.5 1 0 0.5 on:ranges 0 10 4 0:axis 'y' fplot 'x/4':ylabel 'L' -1 inplot 0 0.5 0 0.5 on:ranges 1 0 4 0:fplot '4*x^2'
Note, that MathGL can draw not only single axis (which is default). But also several axis on the plot (see right plots). The idea is that the change of settings does not influence on the already drawn graphics. So, for 2-axes I setup the first axis and draw everything concerning it. Then I setup the second axis and draw things for the second axis. Generally, the similar idea allows one to draw rather complicated plot of 4 axis with different ranges (see bottom left plot).
At this inverted axis can be created by 2 methods. First one is used in this sample - just specify minimal axis value to be large than maximal one. This method work well for 2D axis, but can wrongly place labels in 3D case. Second method is more general and work in 3D case too - just use aspect function with negative arguments. For example, following code will produce exactly the same result for 2D case, but 2nd variant will look better in 3D.
# variant 1 ranges 0 10 4 0:axis # variant 2 ranges 0 10 0 4:aspect 1 -1:axis
Another MathGL feature is fine ticks tunning. By default (if it is not changed by SetTicks
function), MathGL try to adjust ticks positioning, so that they looks most human readable. At this, MathGL try to extract common factor for too large or too small axis ranges, as well as for too narrow ranges. Last one is non-common notation and can be disabled by SetTuneTicks
function.
Also, one can specify its own ticks with arbitrary labels by help of SetTicksVal
function. Or one can set ticks in time format. In last case MathGL will try to select optimal format for labels with automatic switching between years, months/days, hours/minutes/seconds or microseconds. However, you can specify its own time representation using formats described in http://www.manpagez.com/man/3/strftime/. Most common variants are `%X` for national representation of time, `%x` for national representation of date, `%Y` for year with century.
The sample code, demonstrated ticks feature is
subplot 3 3 0:title 'Usual axis' axis subplot 3 3 1:title 'Too big/small range' ranges -1000 1000 0 0.001:axis subplot 3 3 2:title 'LaTeX-like labels' axis 'F!' subplot 3 3 3:title 'Too narrow range' ranges 100 100.1 10 10.01:axis subplot 3 3 4:title 'No tuning, manual "+"' axis '+!' # for version <2.3 you can use #tuneticks off:axis subplot 3 3 5:title 'Template for ticks' xtick 'xxx:%g':ytick 'y:%g' axis xtick '':ytick '' # switch it off for other plots subplot 3 3 6:title 'No tuning, higher precision' axis '!4' subplot 3 3 7:title 'Manual ticks' ranges -pi pi 0 2 xtick pi 3 '\pi' xtick 0.886 'x^*' on # note this will disable subticks drawing # or you can use #xtick -pi '\pi' -pi/2 '-\pi/2' 0 '0' 0.886 'x^*' pi/2 '\pi/2' pi 'pi' # or you can use #list v -pi -pi/2 0 0.886 pi/2 pi:xtick v '-\pi\n-\pi/2\n{}0\n{}x^*\n\pi/2\n\pi' axis:grid:fplot '2*cos(x^2)^2' 'r2' subplot 3 3 8:title 'Time ticks' xrange 0 3e5:ticktime 'x':axis
The last sample I want to show in this subsection is Log-axis. From MathGL`s point of view, the log-axis is particular case of general curvilinear coordinates. So, we need first define new coordinates (see also Curvilinear coordinates) by help of SetFunc
or SetCoor
functions. At this one should wary about proper axis range. So the code looks as following:
subplot 2 2 0 '<_':title 'Semi-log axis' ranges 0.01 100 -1 1:axis 'lg(x)' '' '' axis:grid 'xy' 'g':fplot 'sin(1/x)' xlabel 'x' 0:ylabel 'y = sin 1/x' 0 subplot 2 2 1 '<_':title 'Log-log axis' ranges 0.01 100 0.1 100:axis 'lg(x)' 'lg(y)' '' axis:grid '!' 'h=':grid:fplot 'sqrt(1+x^2)' xlabel 'x' 0:ylabel 'y = \sqrt{1+x^2}' 0 subplot 2 2 2 '<_':title 'Minus-log axis' ranges -100 -0.01 -100 -0.1:axis '-lg(-x)' '-lg(-y)' '' axis:fplot '-sqrt(1+x^2)' xlabel 'x' 0:ylabel 'y = -\sqrt{1+x^2}' 0 subplot 2 2 3 '<_':title 'Log-ticks' ranges 0.01 100 0 100:axis 'sqrt(x)' '' '' axis:fplot 'x' xlabel 'x' 1:ylabel 'y = x' 0
You can see that MathGL automatically switch to log-ticks as we define log-axis formula (in difference from v.1.*). Moreover, it switch to log-ticks for any formula if axis range will be large enough (see right bottom plot). Another interesting feature is that you not necessary define usual log-axis (i.e. when coordinates are positive), but you can define “minus-log” axis when coordinate is negative (see left bottom plot).
As I noted in previous subsection, MathGL support curvilinear coordinates. In difference from other plotting programs and libraries, MathGL uses textual formulas for connection of the old (data) and new (output) coordinates. This allows one to plot in arbitrary coordinates. The following code plots the line y=0, z=0 in Cartesian, polar, parabolic and spiral coordinates:
origin -1 1 -1 subplot 2 2 0:title 'Cartesian':rotate 50 60 fplot '2*t-1' '0.5' '0' '2r':axis:grid axis 'y*sin(pi*x)' 'y*cos(pi*x)' '': subplot 2 2 1:title 'Cylindrical':rotate 50 60 fplot '2*t-1' '0.5' '0' '2r':axis:grid axis '2*y*x' 'y*y - x*x' '' subplot 2 2 2:title 'Parabolic':rotate 50 60 fplot '2*t-1' '0.5' '0' '2r':axis:grid axis 'y*sin(pi*x)' 'y*cos(pi*x)' 'x+z' subplot 2 2 3:title 'Spiral':rotate 50 60 fplot '2*t-1' '0.5' '0' '2r':axis:grid
MathGL handle colorbar as special kind of axis. So, most of functions for axis and ticks setup will work for colorbar too. Colorbars can be in log-scale, and generally as arbitrary function scale; common factor of colorbar labels can be separated; and so on.
But of course, there are differences - colorbars usually located out of bounding box. At this, colorbars can be at subplot boundaries (by default), or at bounding box (if symbol `I` is specified). Colorbars can handle sharp colors. And they can be located at arbitrary position too. The sample code, which demonstrate colorbar features is:
call 'prepare2d' new v 9 'x' subplot 2 2 0:title 'Colorbar out of box':box colorbar '<':colorbar '>':colorbar '_':colorbar '^' subplot 2 2 1:title 'Colorbar near box':box colorbar '<I':colorbar '>I':colorbar '_I':colorbar '^I' subplot 2 2 2:title 'manual colors':box:contd v a colorbar v '<':colorbar v '>':colorbar v '_':colorbar v '^' subplot 2 2 3:title '':text -0.5 1.55 'Color positions' ':C' -2 colorbar 'bwr>' 0.25 0:text -0.9 1.2 'Default' colorbar 'b{w,0.3}r>' 0.5 0:text -0.1 1.2 'Manual' crange 0.01 1e3 colorbar '>' 0.75 0:text 0.65 1.2 'Normal scale' colorbar '>':text 1.35 1.2 'Log scale'
Box around the plot is rather useful thing because it allows one to: see the plot boundaries, and better estimate points position since box contain another set of ticks. MathGL provide special function for drawing such box - box function. By default, it draw black or white box with ticks (color depend on transparency type, see Types of transparency). However, you can change the color of box, or add drawing of rectangles at rear faces of box. Also you can disable ticks drawing, but I don`t know why anybody will want it. The sample code, which demonstrate box features is:
subplot 2 2 0:title 'Box (default)':rotate 50 60:box subplot 2 2 1:title 'colored':rotate 50 60:box 'r' subplot 2 2 2:title 'with faces':rotate 50 60:box '@' subplot 2 2 3:title 'both':rotate 50 60:box '@cm'
There are another unusual axis types which are supported by MathGL. These are ternary and quaternary axis. Ternary axis is special axis of 3 coordinates a, b, c which satisfy relation a+b+c=1. Correspondingly, quaternary axis is special axis of 4 coordinates a, b, c, d which satisfy relation a+b+c+d=1.
Generally speaking, only 2 of coordinates (3 for quaternary) are independent. So, MathGL just introduce some special transformation formulas which treat a as `x`, b as `y` (and c as `z` for quaternary). As result, all plotting functions (curves, surfaces, contours and so on) work as usual, but in new axis. You should use ternary function for switching to ternary/quaternary coordinates. The sample code is:
ranges 0 1 0 1 0 1 new x 50 '0.25*(1+cos(2*pi*x))' new y 50 '0.25*(1+sin(2*pi*x))' new z 50 'x' new a 20 30 '30*x*y*(1-x-y)^2*(x+y<1)' new rx 10 'rnd':copy ry (1-rx)*rnd light on subplot 2 2 0:title 'Ordinary axis 3D':rotate 50 60 box:axis:grid plot x y z 'r2':surf a '#' xlabel 'B':ylabel 'C':zlabel 'Z' subplot 2 2 1:title 'Ternary axis (x+y+t=1)':ternary 1 box:axis:grid 'xyz' 'B;' plot x y 'r2':plot rx ry 'q^ ':cont a:line 0.5 0 0 0.75 'g2' xlabel 'B':ylabel 'C':tlabel 'A' subplot 2 2 2:title 'Quaternary axis 3D':rotate 50 60:ternary 2 box:axis:grid 'xyz' 'B;' plot x y z 'r2':surf a '#' xlabel 'B':ylabel 'C':tlabel 'A':zlabel 'D' subplot 2 2 3:title 'Ternary axis 3D':rotate 50 60:ternary 1 box:axis:grid 'xyz' 'B;' plot x y z 'r2':surf a '#' xlabel 'B':ylabel 'C':tlabel 'A':zlabel 'Z'
MathGL prints text by vector font. There are functions for manual specifying of text position (like Puts
) and for its automatic selection (like Label
, Legend
and so on). MathGL prints text always in specified position even if it lies outside the bounding box. The default size of font is specified by functions SetFontSize* (see Font settings). However, the actual size of output string depends on subplot size (depends on functions SubPlot
, InPlot
). The switching of the font style (italic, bold, wire and so on) can be done for the whole string (by function parameter) or inside the string. By default MathGL parses TeX-like commands for symbols and indexes (see Font styles).
Text can be printed as usual one (from left to right), along some direction (rotated text), or along a curve. Text can be printed on several lines, divided by new line symbol `\n`.
Example of MathGL font drawing is:
call 'prepare1d' subplot 2 2 0 '' text 0 1 'Text can be in ASCII and in Unicode' text 0 0.6 'It can be \wire{wire}, \big{big} or #r{colored}' text 0 0.2 'One can change style in string: \b{bold}, \i{italic, \b{both}}' text 0 -0.2 'Easy to \a{overline} or \u{underline}' text 0 -0.6 'Easy to change indexes ^{up} _{down} @{center}' text 0 -1 'It parse TeX: \int \alpha \cdot \ \sqrt3{sin(\pi x)^2 + \gamma_{i_k}} dx' subplot 2 2 1 '' text 0 0.5 '\sqrt{\frac{\alpha^{\gamma^2}+\overset 1{\big\infty}}{\sqrt3{2+b}}}' '@' -2 text 0 -0.5 'Text can be printed\n{}on several lines' subplot 2 2 2 '':box:plot y(:,0) text y 'This is very very long string drawn along a curve' 'k' text y 'Another string drawn under a curve' 'Tr' subplot 2 2 3 '':line -1 -1 1 -1 'rA':text 0 -1 1 -1 'Horizontal' line -1 -1 1 1 'rA':text 0 0 1 1 'At angle' '@' line -1 -1 -1 1 'rA':text -1 0 -1 1 'Vertical'
You can change font faces by loading font files by function loadfont. Note, that this is long-run procedure. Font faces can be downloaded from MathGL website or from here. The sample code is:
define d 0.25 loadfont 'STIX':text 0 1.1 'default font (STIX)' loadfont 'adventor':text 0 1.1-d 'adventor font' loadfont 'bonum':text 0 1.1-2*d 'bonum font' loadfont 'chorus':text 0 1.1-3*d 'chorus font' loadfont 'cursor':text 0 1.1-4*d 'cursor font' loadfont 'heros':text 0 1.1-5*d 'heros font' loadfont 'heroscn':text 0 1.1-6*d 'heroscn font' loadfont 'pagella':text 0 1.1-7*d 'pagella font' loadfont 'schola':text 0 1.1-8*d 'schola font' loadfont 'termes':text 0 1.1-9*d 'termes font'
Legend is one of standard ways to show plot annotations. Basically you need to connect the plot style (line style, marker and color) with some text. In MathGL, you can do it by 2 methods: manually using addlegend function; or use `legend` option (see Command options), which will use last plot style. In both cases, legend entries will be added into internal accumulator, which later used for legend drawing itself. clearlegend function allow you to remove all saved legend entries.
There are 2 features. If plot style is empty then text will be printed without indent. If you want to plot the text with indent but without plot sample then you need to use space ` ` as plot style. Such style ` ` will draw a plot sample (line with marker(s)) which is invisible line (i.e. nothing) and print the text with indent as usual one.
Command legend draw legend on the plot. The position of the legend can be selected automatic or manually. You can change the size and style of text labels, as well as setup the plot sample. The sample code demonstrating legend features is:
addlegend 'sin(\pi {x^2})' 'b' addlegend 'sin(\pi x)' 'g*' addlegend 'sin(\pi \sqrt{x})' 'rd' addlegend 'jsut text' ' ' addlegend 'no indent for this' '' subplot 2 2 0 '':title 'Legend (default)':box legend text 0.75 0.65 'Absolute position' 'A' legend 3 'A#' subplot 2 2 2 '':title 'coloring':box legend 0 'r#':legend 1 'Wb#':legend 2 'ygr#' subplot 2 2 3 '':title 'manual position':box legend 0.5 1:text 0.5 0.55 'at x=0.5, y=1' 'a' legend 1 '#-':text 0.75 0.25 'Horizontal legend' 'a'
The last common thing which I want to show in this section is how one can cut off points from plot. There are 4 mechanism for that.
SetCut
function. As result all points out of bounding box will be omitted.
SetCutBox
function. All points inside this box will be omitted.
SetCutOff
function. All points for which the value of formula is nonzero will be omitted. Note, that this is the slowest variant.
Below I place the code which demonstrate last 3 possibilities:
call 'prepare2d' call 'prepare3d' subplot 2 2 0:title 'Cut on (default)':rotate 50 60 light on:box:surf a; zrange -1 0.5 subplot 2 2 1:title 'Cut off':rotate 50 60 box:surf a; zrange -1 0.5; cut off subplot 2 2 2:title 'Cut in box':rotate 50 60:box:alpha on cut 0 -1 -1 1 0 1.1:surf3 c cut 0 0 0 0 0 0 # restore back subplot 2 2 3:title 'Cut by formula':rotate 50 60:box cut '(z>(x+0.5*y-1)^2-1) & (z>(x-0.5*y-1)^2-1)':surf3 c
Class mglData
contains all functions for the data handling in MathGL (see Data processing). There are several matters why I use class mglData
but not a single array: it does not depend on type of data (mreal or double), sizes of data arrays are kept with data, memory working is simpler and safer.
One can put numbers into the data instance by several ways. Let us do it for square function:
list
command
list a 0 0.04 0.16 0.36 0.64 1
copy a [0,0.04,0.16,0.36,0.64,1]
modify
function
new a 6 modify a 'x^2'
new a 6 fill a 0 1 modify a 'u^2'
new a 6 fill a '(x+1)^2/4'
or use single line
new a 6 '(x+1)^2/4'
new s 6 '(x+1)^2/4' save s 'sqr.dat' # create file first read a 'sqr.dat' # load it
new s 6 '(x+1)^2/4' save s 'sqr.dat' # create file first read a 'sqr.dat' 5 # load it
Creation of 2d- and 3d-arrays is mostly the same. One can use direct data filling by list
command
list a 11 12 13 | 21 22 23 | 31 32 33
or by inline arrays
copy a [[11,12,13],[21,22,23],[31,32,33]]
Also data can be filled by formula
new z 30 40 'sin(pi*x)*cos(pi*y)'
or loaded from a file.
MathGL has functions for data processing: differentiating, integrating, smoothing and so on (for more detail, see Data processing). Let us consider some examples. The simplest ones are integration and differentiation. The direction in which operation will be performed is specified by textual string, which may contain symbols `x`, `y` or `z`. For example, the call of diff 'x'
will differentiate data along `x` direction; the call of integrate 'xy'
perform the double integration of data along `x` and `y` directions; the call of diff2 'xyz'
will apply 3d Laplace operator to data and so on. Example of this operations on 2d array a=x*y is presented in code:
ranges 0 1 0 1 0 1:new a 30 40 'x*y' subplot 2 2 0:title 'a(x,y)':rotate 60 40 surf a:box subplot 2 2 1:title 'da/dx':rotate 60 40 diff a 'x':surf a:box subplot 2 2 2:title '\int da/dx dxdy':rotate 60 40 integrate a 'xy':surf a:box subplot 2 2 3:title '\int {d^2}a/dxdy dx':rotate 60 40 diff2 a 'y':surf a:box
Data smoothing (command smooth) is more interesting and important. This function has single argument which define type of smoothing and its direction. Now 3 methods are supported: `3` - linear averaging by 3 points, `5` - linear averaging by 5 points, and default one - quadratic averaging by 5 points.
MathGL also have some amazing functions which is not so important for data processing as useful for data plotting. There are functions for finding envelope (useful for plotting rapidly oscillating data), for data sewing (useful to removing jumps on the phase), for data resizing (interpolation). Let me demonstrate it:
subplot 2 2 0 '':title 'Envelop sample' new d1 1000 'exp(-8*x^2)*sin(10*pi*x)' axis:plot d1 'b' envelop d1 'x' plot d1 'r' subplot 2 2 1 '':title 'Smooth sample':ranges 0 1 0 1 new y0 30 '0.4*sin(pi*x) + 0.3*cos(1.5*pi*x) - 0.4*sin(2*pi*x)+0.5*rnd' copy y1 y0:smooth y1 'x3':plot y1 'r';legend '"3" style' copy y2 y0:smooth y2 'x5':plot y2 'g';legend '"5" style' copy y3 y0:smooth y3 'x':plot y3 'b';legend 'default' plot y0 '{m7}:s';legend 'none':legend:box subplot 2 2 2:title 'Sew sample':rotate 50 60:light on:alpha on new d2 100 100 'mod((y^2-(1-x)^2)/2,0.1)' box:surf d2 'b' sew d2 'xy' 0.1 surf d2 'r' subplot 2 2 3:title 'Resize sample (interpolation)' new x0 10 'rnd':new v0 10 'rnd' resize x1 x0 100:resize v1 v0 100 plot x0 v0 'b+ ':plot x1 v1 'r-':label x0 v0 '%n'
Finally one can create new data arrays on base of the existing one: extract slice, row or column of data (subdata), summarize along a direction(s) (sum), find distribution of data elements (hist) and so on.
Another interesting feature of MathGL is interpolation and root-finding. There are several functions for linear and cubic spline interpolation (see Interpolation). Also there is a function evaluate which do interpolation of data array for values of each data element of index data. It look as indirect access to the data elements.
This function have inverse function solve which find array of indexes at which data array is equal to given value (i.e. work as root finding). But solve function have the issue - usually multidimensional data (2d and 3d ones) have an infinite number of indexes which give some value. This is contour lines for 2d data, or isosurface(s) for 3d data. So, solve function will return index only in given direction, assuming that other index(es) are the same as equidistant index(es) of original data. Let me demonstrate this on the following sample.
zrange 0 1 new x 20 30 '(x+2)/3*cos(pi*y)' new y 20 30 '(x+2)/3*sin(pi*y)' new z 20 30 'exp(-6*x^2-2*sin(pi*y)^2)' subplot 2 1 0:title 'Cartesian space':rotate 30 -40 axis 'xyzU':box xlabel 'x':ylabel 'y'origin 1 1:grid 'xy' mesh x y z # section along 'x' direction solve u x 0.5 'x' var v u.nx 0 1 evaluate yy y u v evaluate xx x u v evaluate zz z u v plot xx yy zz 'k2o' # 1st section along 'y' direction solve u1 x -0.5 'y' var v1 u1.nx 0 1 evaluate yy y v1 u1 evaluate xx x v1 u1 evaluate zz z v1 u1 plot xx yy zz 'b2^' # 2nd section along 'y' direction solve u2 x -0.5 'y' u1 evaluate yy y v1 u2 evaluate xx x v1 u2 evaluate zz z v1 u2 plot xx yy zz 'r2v' subplot 2 1 1:title 'Accompanied space' ranges 0 1 0 1:origin 0 0 axis:box:xlabel 'i':ylabel 'j':grid2 z 'h' plot u v 'k2o':line 0.4 0.5 0.8 0.5 'kA' plot v1 u1 'b2^':line 0.5 0.15 0.5 0.3 'bA' plot v1 u2 'r2v':line 0.5 0.7 0.5 0.85 'rA'
Let me now show how to plot the data. Next section will give much more examples for all plotting functions. Here I just show some basics. MathGL generally has 2 types of plotting functions. Simple variant requires a single data array for plotting, other data (coordinates) are considered uniformly distributed in axis range. Second variant requires data arrays for all coordinates. It allows one to plot rather complex multivalent curves and surfaces (in case of parametric dependencies). Usually each function have one textual argument for plot style and accept options (see Command options).
Note, that the call of drawing function adds something to picture but does not clear the previous plots (as it does in Matlab). Another difference from Matlab is that all setup (like transparency, lightning, axis borders and so on) must be specified before plotting functions.
Let start for plots for 1D data. Term “1D data” means that data depend on single index (parameter) like curve in parametric form {x(i),y(i),z(i)}, i=1...n. The textual argument allow you specify styles of line and marks (see Line styles). If this parameter is empty ''
then solid line with color from palette is used (see Palette and colors).
Below I shall show the features of 1D plotting on base of plot function. Let us start from sinus plot:
new y0 50 'sin(pi*x)' subplot 2 2 0 plot y0:box
Style of line is not specified in plot function. So MathGL uses the solid line with first color of palette (this is blue). Next subplot shows array y1 with 2 rows:
subplot 2 2 1 new y1 50 2 fill y1 'cos(pi*(x+y/4))*2/(y+3)' plot y1:box
As previously I did not specify the style of lines. As a result, MathGL again uses solid line with next colors in palette (there are green and red). Now let us plot a circle on the same subplot. The circle is parametric curve x=cos(\pi t), y=sin(\pi t). I will set the color of the circle (dark yellow, `Y`) and put marks `+` at point position:
new x 50 'cos(pi*x)' plot x y0 'Y+'
Note that solid line is used because I did not specify the type of line. The same picture can be achieved by plot and subdata functions. Let us draw ellipse by orange dash line:
plot y1(:,0) y1(:,1) 'q|'
Drawing in 3D space is mostly the same. Let us draw spiral with default line style. Now its color is 4-th color from palette (this is cyan):
subplot 2 2 2:rotate 60 40 new z 50 'x' plot x y0 z:box
Functions plot and subdata make 3D curve plot but for single array. Use it to put circle marks on the previous plot:
new y2 10 3 'cos(pi*(x+y/2))' modify y2 '2*x-1' 2 plot y2(:,0) y2(:,1) y2(:,2) 'bo '
Note that line style is empty ` ` here. Usage of other 1D plotting functions looks similar:
subplot 2 2 3:rotate 60 40 bars x y0 z 'r':box
Surfaces surf and other 2D plots (see 2D plotting) are drown the same simpler as 1D one. The difference is that the string parameter specifies not the line style but the color scheme of the plot (see Color scheme). Here I draw attention on 4 most interesting color schemes. There is gray scheme where color is changed from black to white (string `kw`) or from white to black (string `wk`). Another scheme is useful for accentuation of negative (by blue color) and positive (by red color) regions on plot (string `"BbwrR"`). Last one is the popular “jet” scheme (string `"BbcyrR"`).
Now I shall show the example of a surface drawing. At first let us switch lightning on
light on
and draw the surface, considering coordinates x,y to be uniformly distributed in axis range
new a0 50 40 '0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))' subplot 2 2 0:rotate 60 40 surf a0:box
Color scheme was not specified. So previous color scheme is used. In this case it is default color scheme (“jet”) for the first plot. Next example is a sphere. The sphere is parametrically specified surface:
new x 50 40 '0.8*sin(pi*x)*cos(pi*y/2)' new y 50 40 '0.8*cos(pi*x)*cos(pi*y/2)' new z 50 40 '0.8*sin(pi*y/2)' subplot 2 2 1:rotate 60 40 surf x y z 'BbwrR':box
I set color scheme to "BbwrR"
that corresponds to red top and blue bottom of the sphere.
Surfaces will be plotted for each of slice of the data if nz>1. Next example draws surfaces for data arrays with nz=3:
new a1 50 40 3 modify a1 '0.6*sin(2*pi*x)*sin(3*pi*y)+0.4*cos(3*pi*(x*y))' modify a1 '0.6*cos(2*pi*x)*cos(3*pi*y)+0.4*sin(3*pi*(x*y))' 1 modify a1 '0.6*cos(2*pi*x)*cos(3*pi*y)+0.4*cos(3*pi*(x*y))' 2 subplot 2 2 2:rotate 60 40 alpha on surf a1:box
Note, that it may entail a confusion. However, if one will use density plot then the picture will look better:
subplot 2 2 3:rotate 60 40 dens a1:box
Drawing of other 2D plots is analogous. The only peculiarity is the usage of flag `#`. By default this flag switches on the drawing of a grid on plot (grid or mesh for plots in plain or in volume). However, for isosurfaces (including surfaces of rotation axial) this flag switches the face drawing off and figure becomes wired.
In this section I`ve included some small hints and advices for the improving of the quality of plots and for the demonstration of some non-trivial features of MathGL library. In contrast to previous examples I showed mostly the idea but not the whole drawing function.
As I noted above, MathGL functions (except the special one, like Clf()) do not erase the previous plotting but just add the new one. It allows one to draw “compound” plots easily. For example, popular Matlab command surfc
can be emulated in MathGL by 2 calls:
Surf(a); Cont(a, "_"); // draw contours at bottom
Here a is 2-dimensional data for the plotting, -1
is the value of z-coordinate at which the contour should be plotted (at the bottom in this example). Analogously, one can draw density plot instead of contour lines and so on.
Another nice plot is contour lines plotted directly on the surface:
Light(true); // switch on light for the surface Surf(a, "BbcyrR"); // select 'jet' colormap for the surface Cont(a, "y"); // and yellow color for contours
The possible difficulties arise in black&white case, when the color of the surface can be close to the color of a contour line. In that case I may suggest the following code:
Light(true); // switch on light for the surface Surf(a, "kw"); // select 'gray' colormap for the surface CAxis(-1,0); // first draw for darker surface colors Cont(a, "w"); // white contours CAxis(0,1); // now draw for brighter surface colors Cont(a, "k"); // black contours CAxis(-1,1); // return color range to original state
The idea is to divide the color range on 2 parts (dark and bright) and to select the contrasting color for contour lines for each of part.
Similarly, one can plot flow thread over density plot of vector field amplitude (this is another amusing plot from Matlab) and so on. The list of compound graphics can be prolonged but I hope that the general idea is clear.
Just for illustration I put here following sample code:
call 'prepare2v' call 'prepare3d' new v 10:fill v -0.5 1:copy d sqrt(a^2+b^2) subplot 2 2 0:title 'Surf + Cont':rotate 50 60:light on:box surf a:cont a 'y' subplot 2 2 1 '':title 'Flow + Dens':light off:box flow a b 'br':dens d subplot 2 2 2:title 'Mesh + Cont':rotate 50 60:box mesh a:cont a '_' subplot 2 2 3:title 'Surf3 + ContF3':rotate 50 60:light on box:contf3 v c 'z' 0:contf3 v c 'x':contf3 v c cut 0 -1 -1 1 0 1.1 contf3 v c 'z' c.nz-1:surf3 c -0.5
Here I want to show how transparency and lighting both and separately change the look of a surface. So, there is code and picture for that:
call 'prepare2d' subplot 2 2 0:title 'default':rotate 50 60:box surf a subplot 2 2 1:title 'light on':rotate 50 60:box light on:surf a subplot 2 2 3:title 'light on; alpha on':rotate 50 60:box alpha on:surf a subplot 2 2 2:title 'alpha on':rotate 50 60:box light off:surf a
MathGL library has advanced features for setting and handling the surface transparency. The simplest way to add transparency is the using of command alpha. As a result, all further surfaces (and isosurfaces, density plots and so on) become transparent. However, their look can be additionally improved.
The value of transparency can be different from surface to surface. To do it just use SetAlphaDef
before the drawing of the surface, or use option alpha
(see Command options). If its value is close to 0 then the surface becomes more and more transparent. Contrary, if its value is close to 1 then the surface becomes practically non-transparent.
Also you can change the way how the light goes through overlapped surfaces. The function SetTranspType
defines it. By default the usual transparency is used (`0`) - surfaces below is less visible than the upper ones. A “glass-like” transparency (`1`) has a different look - each surface just decreases the background light (the surfaces are commutable in this case).
A “neon-like” transparency (`2`) has more interesting look. In this case a surface is the light source (like a lamp on the dark background) and just adds some intensity to the color. At this, the library sets automatically the black color for the background and changes the default line color to white.
As example I shall show several plots for different types of transparency. The code is the same except the values of SetTranspType
function:
call 'prepare2d' alpha on:light on transptype 0:clf subplot 2 2 0:rotate 50 60:surf a:box subplot 2 2 1:rotate 50 60:dens a:box subplot 2 2 2:rotate 50 60:cont a:box subplot 2 2 3:rotate 50 60:axial a:box
You can easily make 3D plot and draw its x-,y-,z-projections (like in CAD) by using ternary function with arguments: 4 for Cartesian, 5 for Ternary and 6 for Quaternary coordinates. The sample code is:
ranges 0 1 0 1 0 1 new x 50 '0.25*(1+cos(2*pi*x))' new y 50 '0.25*(1+sin(2*pi*x))' new z 50 'x' new a 20 30 '30*x*y*(1-x-y)^2*(x+y<1)' new rx 10 'rnd':new ry 10:fill ry '(1-v)*rnd' rx light on title 'Projection sample':ternary 4:rotate 50 60 box:axis:grid plot x y z 'r2':surf a '#' xlabel 'X':ylabel 'Y':zlabel 'Z'
MathGL can add a fog to the image. Its switching on is rather simple - just use fog function. There is the only feature - fog is applied for whole image. Not to particular subplot. The sample code is:
call 'prepare2d' title 'Fog sample':rotate 50 60:light on fog 1 box:surf a:cont a 'y'
In contrast to the most of other programs, MathGL supports several (up to 10) light sources. Moreover, the color each of them can be different: white (this is usual), yellow, red, cyan, green and so on. The use of several light sources may be interesting for the highlighting of some peculiarities of the plot or just to make an amusing picture. Note, each light source can be switched on/off individually. The sample code is:
call 'prepare2d' title 'Several light sources':rotate 50 60:light on light 1 0 1 0 'c':light 2 1 0 0 'y':light 3 0 -1 0 'm' box:surf a 'h'
Additionally, you can use local light sources and set to use diffuse reflection instead of specular one (by default) or both kinds. Note, I use attachlight command to keep light settings relative to subplot.
light on: attachlight on call 'prepare2d' subplot 2 2 0:title 'Default':rotate 50 60:box:surf a line -1 -0.7 1.7 -1 -0.7 0.7 'BA' subplot 2 2 1:title 'Local':rotate 50 60 light 0 1 0 1 -2 -1 -1 line 1 0 1 -1 -1 0 'BAO':box:surf a subplot 2 2 2:title 'no diffuse':rotate 50 60 diffuse 0 line 1 0 1 -1 -1 0 'BAO':box:surf a subplot 2 2 3:title 'diffusive only':rotate 50 60 diffuse 0.5:light 0 1 0 1 -2 -1 -1 'w' 0 line 1 0 1 -1 -1 0 'BAO':box:surf a
MathGL provide a set of functions for drawing primitives (see Primitives). Primitives are low level object, which used by most of plotting functions. Picture below demonstrate some of commonly used primitives.
subplot 2 2 0 '':title 'Line, Curve, Rhomb, Ellipse' '' -1.5 line -1 -1 -0.5 1 'qAI' curve -0.6 -1 1 1 0 1 1 1 'rA' ball 0 -0.5 '*':ball 1 -0.1 '*' rhomb 0 0.4 1 0.9 0.2 'b#' rhomb 0 0 1 0.4 0.2 'cg@' ellipse 0 -0.5 1 -0.1 0.2 'u#' ellipse 0 -1 1 -0.6 0.2 'm@' light on subplot 2 2 1:title 'Face[xyz]':rotate 50 60:box facex 1 0 -1 1 1 'r':facey -1 -1 -1 1 1 'g':facez 1 -1 -1 -1 1 'b' face -1 -1 1 -1 1 1 1 -1 0 1 1 1 'bmgr' subplot 2 2 3 '':title 'Cone' cone -0.7 -0.3 0 -0.7 0.7 0.5 0.2 0.1 'b':text -0.7 -0.7 'no edges\n(default)' cone 0 -0.3 0 0 0.7 0.5 0.2 0.1 'g@':text 0 -0.7 'with edges\n('\@' style)' cone 0.7 -0.3 0 0.7 0.7 0.5 0.2 0.1 'ry':text 0.7 -0.7 '"arrow" with\n{}gradient' subplot 2 2 2 '':title 'Sphere and Drop' line -0.9 0 1 0.9 0 1 text -0.9 -0.7 'sh=0':drop -0.9 0 0 1 0.5 'r' 0:ball -0.9 0 1 'k' text -0.3 -0.7 'sh=0.33':drop -0.3 0 0 1 0.5 'r' 0.33:ball -0.3 0 1 'k' text 0.3 -0.7 'sh=0.67':drop 0.3 0 0 1 0.5 'r' 0.67:ball 0.3 0 1 'k' text 0.9 -0.7 'sh=1':drop 0.9 0 0 1 0.5 'r' 1:ball 0.9 0 1 'k'
Generally, you can create arbitrary new kind of plot using primitives. For example, MathGL don`t provide any special functions for drawing molecules. However, you can do it using only one type of primitives drop. The sample code is:
alpha on:light on subplot 2 2 0 '':title 'Methane, CH_4':rotate 60 120 sphere 0 0 0 0.25 'k':drop 0 0 0 0 0 1 0.35 'h' 1 2:sphere 0 0 0.7 0.25 'g' drop 0 0 0 -0.94 0 -0.33 0.35 'h' 1 2:sphere -0.66 0 -0.23 0.25 'g' drop 0 0 0 0.47 0.82 -0.33 0.35 'h' 1 2:sphere 0.33 0.57 -0.23 0.25 'g' drop 0 0 0 0.47 -0.82 -0.33 0.35 'h' 1 2:sphere 0.33 -0.57 -0.23 0.25 'g' subplot 2 2 1 '':title 'Water, H{_2}O':rotate 60 100 sphere 0 0 0 0.25 'r':drop 0 0 0 0.3 0.5 0 0.3 'm' 1 2:sphere 0.3 0.5 0 0.25 'g' drop 0 0 0 0.3 -0.5 0 0.3 'm' 1 2:sphere 0.3 -0.5 0 0.25 'g' subplot 2 2 2 '':title 'Oxygen, O_2':rotate 60 120 drop 0 0.5 0 0 -0.3 0 0.3 'm' 1 2:sphere 0 0.5 0 0.25 'r' drop 0 -0.5 0 0 0.3 0 0.3 'm' 1 2:sphere 0 -0.5 0 0.25 'r' subplot 2 2 3 '':title 'Ammonia, NH_3':rotate 60 120 sphere 0 0 0 0.25 'b':drop 0 0 0 0.33 0.57 0 0.32 'n' 1 2 sphere 0.33 0.57 0 0.25 'g':drop 0 0 0 0.33 -0.57 0 0.32 'n' 1 2 sphere 0.33 -0.57 0 0.25 'g':drop 0 0 0 -0.65 0 0 0.32 'n' 1 2 sphere -0.65 0 0 0.25 'g'
Moreover, some of special plots can be more easily produced by primitives rather than by specialized function. For example, Venn diagram can be produced by Error
plot:
list x -0.3 0 0.3:list y 0.3 -0.3 0.3:list e 0.7 0.7 0.7 title 'Venn-like diagram':alpha on error x y e e '!rgb@#o'
You see that you have to specify and fill 3 data arrays. The same picture can be produced by just 3 calls of circle function:
title 'Venn-like diagram':alpha on circle -0.3 0.3 0.7 'rr@' circle 0 -0.3 0.7 'gg@' circle 0.3 0.3 0.7 'bb@'
Of course, the first variant is more suitable if you need to plot a lot of circles. But for few ones the usage of primitives looks easy.
Short-time Fourier Analysis (stfa) is one of informative method for analyzing long rapidly oscillating 1D data arrays. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time.
MathGL can find and draw STFA result. Just to show this feature I give following sample. Initial data arrays is 1D arrays with step-like frequency. Exactly this you can see at bottom on the STFA plot. The sample code is:
new a 2000:new b 2000 fill a 'cos(50*pi*x)*(x<-.5)+cos(100*pi*x)*(x<0)*(x>-.5)+\ cos(200*pi*x)*(x<.5)*(x>0)+cos(400*pi*x)*(x>.5)' subplot 1 2 0 '<_':title 'Initial signal' plot a:axis:xlabel '\i t' subplot 1 2 1 '<_':title 'STFA plot' stfa a b 64:axis:ylabel '\omega' 0:xlabel '\i t'
Sometime ago I worked with mapping and have a question about its visualization. Let me remember you that mapping is some transformation rule for one set of number to another one. The 1d mapping is just an ordinary function - it takes a number and transforms it to another one. The 2d mapping (which I used) is a pair of functions which take 2 numbers and transform them to another 2 ones. Except general plots (like surfc, surfa) there is a special plot - Arnold diagram. It shows the area which is the result of mapping of some initial area (usually square).
I tried to make such plot in map. It shows the set of points or set of faces, which final position is the result of mapping. At this, the color gives information about their initial position and the height describes Jacobian value of the transformation. Unfortunately, it looks good only for the simplest mapping but for the real multivalent quasi-chaotic mapping it produces a confusion. So, use it if you like :).
The sample code for mapping visualization is:
new a 50 40 'x':new b 50 40 'y':zrange -2 2:text 0 0 '\to' subplot 2 1 0:text 0 1.1 '\{x, y\}' '' -2:box map a b 'brgk' subplot 2 1 1:box text 0 1.1 '\{\frac{x^3+y^3}{2}, \frac{x-y}{2}\}' '' -2 fill a '(x^3+y^3)/2':fill b '(x-y)/2':map a b 'brgk'
There are many functions to get interpolated values of a data array. Basically all of them can be divided by 3 categories:
mglGSpline()
in Global functions);
The usage of first category is rather straightforward and don`t need any special comments.
There is difference in indirect access functions. Function subdata use use step-like interpolation to handle correctly single nan
values in the data array. Contrary, function evaluate use local spline interpolation, which give smoother output but spread nan
values. So, subdata should be used for specific data elements (for example, for given column), and evaluate should be used for distributed elements (i.e. consider data array as some field). Following sample illustrates this difference:
subplot 1 1 0 '':title 'SubData vs Evaluate' new in 9 'x^3/1.1':plot in 'ko ':box new arg 99 '4*x+4' evaluate e in arg off:plot e 'b.'; legend 'Evaluate' subdata s in arg:plot s 'r.';legend 'SubData' legend 2
Example of datagrid usage is done in Making regular data. Here I want to show the peculiarities of refill and gspline functions. Both functions require argument(s) which provide coordinates of the data values, and return rectangular data array which equidistantly distributed in axis range. So, in opposite to evaluate function, refill and gspline can interpolate non-equidistantly distributed data. At this both functions refill and gspline provide continuity of 2nd derivatives along coordinate(s). However, refill is slower but give better (from human point of view) result than global spline gspline due to more advanced algorithm. Following sample illustrates this difference:
new x 10 '0.5+rnd':cumsum x 'x':norm x -1 1 copy y sin(pi*x)/1.5 subplot 2 2 0 '<_':title 'Refill sample' box:axis:plot x y 'o ':fplot 'sin(pi*x)/1.5' 'B:' new r 100:refill r x y:plot r 'r' subplot 2 2 1 '<_':title 'Global spline' box:axis:plot x y 'o ':fplot 'sin(pi*x)/1.5' 'B:' new r 100:gspline r x y:plot r 'r' new y 10 '0.5+rnd':cumsum y 'x':norm y -1 1 copy xx x:extend xx 10 copy yy y:extend yy 10:transpose yy copy z sin(pi*xx*yy)/1.5 alpha on:light on subplot 2 2 2:title '2d regular':rotate 40 60 box:axis:mesh xx yy z 'k' new rr 100 100:refill rr x y z:surf rr new xx 10 10 '(x+1)/2*cos(y*pi/2-1)' new yy 10 10 '(x+1)/2*sin(y*pi/2-1)' copy z sin(pi*xx*yy)/1.5 subplot 2 2 3:title '2d non-regular':rotate 40 60 box:axis:plot xx yy z 'ko ' new rr 100 100:refill rr xx yy z:surf rr
Sometimes, one have only unregular data, like as data on triangular grids, or experimental results and so on. Such kind of data cannot be used as simple as regular data (like matrices). Only few functions, like dots, can handle unregular data as is.
However, one can use built in triangulation functions for interpolating unregular data points to a regular data grids. There are 2 ways. First way, one can use triangulation function to obtain list of vertexes for triangles. Later this list can be used in functions like triplot or tricont. Second way consist in usage of datagrid function, which fill regular data grid by interpolated values, assuming that coordinates of the data grid is equidistantly distributed in axis range. Note, you can use options (see Command options) to change default axis range as well as in other plotting functions.
new x 100 '2*rnd-1':new y 100 '2*rnd-1':copy z x^2-y^2 # first way - plot triangular surface for points triangulate d x y title 'Triangulation' rotate 50 60:box:light on triplot d x y z:triplot d x y z '#k' # second way - make regular data and plot it new g 30 30:datagrid g x y z:mesh g 'm'
Using the hist function(s) for making regular distributions is one of useful fast methods to process and plot irregular data. Hist
can be used to find some momentum of set of points by specifying weight function. It is possible to create not only 1D distributions but also 2D and 3D ones. Below I place the simplest sample code which demonstrate hist usage:
new x 10000 '2*rnd-1':new y 10000 '2*rnd-1':copy z exp(-6*(x^2+y^2)) hist xx x z:norm xx 0 1:hist yy y z:norm yy 0 1 multiplot 3 3 3 2 2 '':ranges -1 1 -1 1 0 1:box:dots x y z 'wyrRk' multiplot 3 3 0 2 1 '':ranges -1 1 0 1:box:bars xx multiplot 3 3 5 1 2 '':ranges 0 1 -1 1:box:barh yy subplot 3 3 2:text 0.5 0.5 'Hist and\n{}MultiPlot\n{}sample' 'a' -3
Nonlinear fitting is rather simple. All that you need is the data to fit, the approximation formula and the list of coefficients to fit (better with its initial guess values). Let me demonstrate it on the following simple example. First, let us use sin function with some random noise:
new dat 100 '0.4*rnd+0.1+sin(2*pi*x)' new in 100 '0.3+sin(2*pi*x)'
and plot it to see that data we will fit
title 'Fitting sample':yrange -2 2:box:axis:plot dat 'k. '
The next step is the fitting itself. For that let me specify an initial values ini for coefficients `abc` and do the fitting for approximation formula `a+b*sin(c*x)`
list ini 1 1 3:fit res dat 'a+b*sin(c*x)' 'abc' ini
Now display it
plot res 'r':plot in 'b' text -0.9 -1.3 'fitted:' 'r:L' putsfit 0 -1.8 'y = ' 'r' text 0 2.2 'initial: y = 0.3+sin(2\pi x)' 'b'
NOTE! the fitting results may have strong dependence on initial values for coefficients due to algorithm features. The problem is that in general case there are several local "optimums" for coefficients and the program returns only first found one! There are no guaranties that it will be the best. Try for example to set ini[3] = {0, 0, 0}
in the code above.
The full sample code for nonlinear fitting is:
new dat 100 '0.4*rnd+0.1+sin(2*pi*x)' new in 100 '0.3+sin(2*pi*x)' list ini 1 1 3:fit res dat 'a+b*sin(c*x)' 'abc' ini title 'Fitting sample':yrange -2 2:box:axis:plot dat 'k. ' plot res 'r':plot in 'b' text -0.9 -1.3 'fitted:' 'r:L' putsfit 0 -1.8 'y = ' 'r' text 0 2.2 'initial: y = 0.3+sin(2\pi x)' 'b'
Solving of Partial Differential Equations (PDE, including beam tracing) and ray tracing (or finding particle trajectory) are more or less common task. So, MathGL have several functions for that. There are ray for ray tracing, pde for PDE solving, qo2d for beam tracing in 2D case (see Global functions). Note, that these functions take “Hamiltonian” or equations as string values. And I don`t plan now to allow one to use user-defined functions. There are 2 reasons: the complexity of corresponding interface; and the basic nature of used methods which are good for samples but may not good for serious scientific calculations.
The ray tracing can be done by ray function. Really ray tracing equation is Hamiltonian equation for 3D space. So, the function can be also used for finding a particle trajectory (i.e. solve Hamiltonian ODE) for 1D, 2D or 3D cases. The function have a set of arguments. First of all, it is Hamiltonian which defined the media (or the equation) you are planning to use. The Hamiltonian is defined by string which may depend on coordinates `x`, `y`, `z`, time `t` (for particle dynamics) and momentums `p`=p_x, `q`=p_y, `v`=p_z. Next, you have to define the initial conditions for coordinates and momentums at `t`=0 and set the integrations step (default is 0.1) and its duration (default is 10). The Runge-Kutta method of 4-th order is used for integration.
const char *ham = "p^2+q^2-x-1+i*0.5*(y+x)*(y>-x)"; mglData r = mglRay(ham, mglPoint(-0.7, -1), mglPoint(0, 0.5), 0.02, 2);
This example calculate the reflection from linear layer (media with Hamiltonian `p^2+q^2-x-1`=p_x^2+p_y^2-x-1). This is parabolic curve. The resulting array have 7 columns which contain data for {x,y,z,p,q,v,t}.
The solution of PDE is a bit more complicated. As previous you have to specify the equation as pseudo-differential operator \hat H(x, \nabla) which is called sometime as “Hamiltonian” (for example, in beam tracing). As previously, it is defined by string which may depend on coordinates `x`, `y`, `z` (but not time!), momentums `p`=(d/dx)/i k_0, `q`=(d/dy)/i k_0 and field amplitude `u`=|u|. The evolutionary coordinate is `z` in all cases. So that, the equation look like du/dz = ik_0 H(x,y,\hat p, \hat q, |u|)[u]. Dependence on field amplitude `u`=|u| allows one to solve nonlinear problems too. For example, for nonlinear Shrodinger equation you may set ham="p^2 + q^2 - u^2"
. Also you may specify imaginary part for wave absorption, like ham = "p^2 + i*x*(x>0)"
or ham = "p^2 + i1*x*(x>0)"
.
Next step is specifying the initial conditions at `z` equal to minimal z-axis value. The function need 2 arrays for real and for imaginary part. Note, that coordinates x,y,z are supposed to be in specified axis range. So, the data arrays should have corresponding scales. Finally, you may set the integration step and parameter k0=k_0. Also keep in mind, that internally the 2 times large box is used (for suppressing numerical reflection from boundaries) and the equation should well defined even in this extended range.
Final comment is concerning the possible form of pseudo-differential operator H. At this moment, simplified form of operator H is supported - all “mixed” terms (like `x*p`->x*d/dx) are excluded. For example, in 2D case this operator is effectively H = f(p,z) + g(x,z,u). However commutable combinations (like `x*q`->x*d/dy) are allowed for 3D case.
So, for example let solve the equation for beam deflected from linear layer and absorbed later. The operator will have the form `"p^2+q^2-x-1+i*0.5*(z+x)*(z>-x)"` that correspond to equation 1/ik_0 * du/dz + d^2 u/dx^2 + d^2 u/dy^2 + x * u + i (x+z)/2 * u = 0. This is typical equation for Electron Cyclotron (EC) absorption in magnetized plasmas. For initial conditions let me select the beam with plane phase front exp(-48*(x+0.7)^2). The corresponding code looks like this:
new re 128 'exp(-48*(x+0.7)^2)':new im 128 pde a 'p^2+q^2-x-1+i*0.5*(z+x)*(z>-x)' re im 0.01 30 transpose a subplot 1 1 0 '<_':title 'PDE solver' axis:xlabel '\i x':ylabel '\i z' crange 0 1:dens a 'wyrRk' fplot '-x' 'k|' text 0 0.95 'Equation: ik_0\partial_zu + \Delta u + x\cdot u +\ i \frac{x+z}{2}\cdot u = 0\n{}absorption: (x+z)/2 for x+z>0'
The next example is example of beam tracing. Beam tracing equation is special kind of PDE equation written in coordinates accompanied to a ray. Generally this is the same parameters and limitation as for PDE solving but the coordinates are defined by the ray and by parameter of grid width w in direction transverse the ray. So, you don`t need to specify the range of coordinates. BUT there is limitation. The accompanied coordinates are well defined only for smooth enough rays, i.e. then the ray curvature K (which is defined as 1/K^2 = (|r''|^2 |r'|^2 - (r'', r'')^2)/|r'|^6) is much large then the grid width: K>>w. So, you may receive incorrect results if this condition will be broken.
You may use following code for obtaining the same solution as in previous example:
define $1 'p^2+q^2-x-1+i*0.5*(y+x)*(y>-x)' subplot 1 1 0 '<_':title 'Beam and ray tracing' ray r $1 -0.7 -1 0 0 0.5 0 0.02 2:plot r(0) r(1) 'k' axis:xlabel '\i x':ylabel '\i z' new re 128 'exp(-48*x^2)':new im 128 new xx 1:new yy 1 qo2d a $1 re im r 1 30 xx yy crange 0 1:dens xx yy a 'wyrRk':fplot '-x' 'k|' text 0 0.85 'absorption: (x+y)/2 for x+y>0' text 0.7 -0.05 'central ray'
Note, the pde is fast enough and suitable for many cases routine. However, there is situations then media have both together: strong spatial dispersion and spatial inhomogeneity. In this, case the pde will produce incorrect result and you need to use advanced PDE solver apde. For example, a wave beam, propagated in plasma, described by Hamiltonian exp(-x^2-p^2), will have different solution for using of simplification and advanced PDE solver:
ranges -1 1 0 2 0 2 new ar 256 'exp(-2*(x+0.0)^2)':new ai 256 apde res1 'exp(-x^2-p^2)' ar ai 0.01:transpose res1 subplot 1 2 0 '_':title 'Advanced PDE solver' ranges 0 2 -1 1:crange res1 dens res1:box axis:xlabel '\i z':ylabel '\i x' text -0.5 0.2 'i\partial_z\i u = exp(-\i x^2+\partial_x^2)[\i u]' 'y' pde res2 'exp(-x^2-p^2)' ar ai 0.01 subplot 1 2 1 '_':title 'Simplified PDE solver' dens res2:box axis:xlabel '\i z':ylabel '\i x' text -0.5 0.2 'i\partial_z\i u \approx\ exp(-\i x^2)\i u+exp(\partial_x^2)[\i u]' 'y'
Here I want say a few words of plotting phase plains. Phase plain is name for system of coordinates x, x', i.e. a variable and its time derivative. Plot in phase plain is very useful for qualitative analysis of an ODE, because such plot is rude (it topologically the same for a range of ODE parameters). Most often the phase plain {x, x'} is used (due to its simplicity), that allows one to analyze up to the 2nd order ODE (i.e. x''+f(x,x')=0).
The simplest way to draw phase plain in MathGL is using flow function(s), which automatically select several points and draw flow threads. If the ODE have an integral of motion (like Hamiltonian H(x,x')=const for dissipation-free case) then you can use cont function for plotting isolines (contours). In fact. isolines are the same as flow threads, but without arrows on it. Finally, you can directly solve ODE using ode function and plot its numerical solution.
Let demonstrate this for ODE equation x''-x+3*x^2=0. This is nonlinear oscillator with square nonlinearity. It has integral H=y^2+2*x^3-x^2=Const. Also it have 2 typical stationary points: saddle at {x=0, y=0} and center at {x=1/3, y=0}. Motion at vicinity of center is just simple oscillations, and is stable to small variation of parameters. In opposite, motion around saddle point is non-stable to small variation of parameters, and is very slow. So, calculation around saddle points are more difficult, but more important. Saddle points are responsible for solitons, stochasticity and so on.
So, let draw this phase plain by 3 different methods. First, draw isolines for H=y^2+2*x^3-x^2=Const - this is simplest for ODE without dissipation. Next, draw flow threads - this is straightforward way, but the automatic choice of starting points is not always optimal. Finally, use ode to check the above plots. At this we need to run ode in both direction of time (in future and in the past) to draw whole plain. Alternatively, one can put starting points far from (or at the bounding box as done in flow) the plot, but this is a more complicated. The sample code is:
subplot 2 2 0 '<_':title 'Cont':box axis:xlabel 'x':ylabel '\dot{x}' new f 100 100 'y^2+2*x^3-x^2-0.5':cont f subplot 2 2 1 '<_':title 'Flow':box axis:xlabel 'x':ylabel '\dot{x}' new fx 100 100 'x-3*x^2' new fy 100 100 'y' flow fy fx 'v';value 7 subplot 2 2 2 '<_':title 'ODE':box axis:xlabel 'x':ylabel '\dot{x}' for $x -1 1 0.1 ode r 'y;x-3*x^2' 'xy' [$x,0] plot r(0) r(1) ode r '-y;-x+3*x^2' 'xy' [$x,0] plot r(0) r(1) next
There is common task in optics to determine properties of wave pulses or wave beams. MathGL provide special function pulse which return the pulse properties (maximal value, center of mass, width and so on). Its usage is rather simple. Here I just illustrate it on the example of Gaussian pulse, where all parameters are obvious.
subplot 1 1 0 '<_':title 'Pulse sample' # first prepare pulse itself new a 100 'exp(-6*x^2)' # get pulse parameters pulse b a 'x' # positions and widths are normalized on the number of points. So, set proper axis scale. ranges 0 a.nx-1 0 1 axis:plot a # draw pulse and axis # now visualize found pulse properties define m a.max # maximal amplitude # approximate position of maximum line b(1) 0 b(1) m 'r=' # width at half-maximum (so called FWHM) line b(1)-b(3)/2 0 b(1)-b(3)/2 m 'm|' line b(1)+b(3)/2 0 b(1)+b(3)/2 m 'm|' line 0 0.5*m a.nx-1 0.5*m 'h' # parabolic approximation near maximum new x 100 'x' plot b(0)*(1-((x-b(1))/b(2))^2) 'g'
MGL scripts can contain loops, conditions and user-defined functions. Below I show very simple example of its usage:
title 'MGL parser sample' call 'sample' stop func 'sample' new dat 100 'sin(2*pi*(x+1))' plot dat; xrange 0 1 box:axis:xlabel 'x':ylabel 'y' for $0 -1 1 0.1 if $0<0 line 0 0 -1 $0 'r' else line 0 0 -1 $0 'r' endif next
Command options allow the easy setup of the selected plot by changing global settings only for this plot. Often, options are used for specifying the range of automatic variables (coordinates). However, options allows easily change plot transparency, numbers of line or faces to be drawn, or add legend entries. The sample function for options usage is:
new a 31 41 '-pi*x*exp(-(y+1)^2-4*x^2)' alpha on:light on subplot 2 2 0:title 'Options for coordinates':rotate 40 60:box surf a 'r';yrange 0 1 surf a 'b';yrange 0 -1 subplot 2 2 1:title 'Option "meshnum"':rotate 40 60:box mesh a 'r'; yrange 0 1 mesh a 'b';yrange 0 -1; meshnum 5 subplot 2 2 2:title 'Option "alpha"':rotate 40 60:box surf a 'r';yrange 0 1; alpha 0.7 surf a 'b';yrange 0 -1; alpha 0.3 subplot 2 2 3 '<_':title 'Option "legend"' fplot 'x^3' 'r'; legend 'y = x^3' fplot 'cos(pi*x)' 'b'; legend 'y = cos \pi x' box:axis:legend 2
As I have noted before, the change of settings will influence only for the further plotting commands. This allows one to create “template” function which will contain settings and primitive drawing for often used plots. Correspondingly one may call this template-function for drawing simplification.
For example, let one has a set of points (experimental or numerical) and wants to compare it with theoretical law (for example, with exponent law \exp(-x/2), x \in [0, 20]). The template-function for this task is:
void template(mglGraph *gr) { mglData law(100); // create the law law.Modify("exp(-10*x)"); gr->SetRanges(0,20, 0.0001,1); gr->SetFunc(0,"lg(y)",0); gr->Plot(law,"r2"); gr->Puts(mglPoint(10,0.2),"Theoretical law: e^x","r:L"); gr->Label('x',"x val."); gr->Label('y',"y val."); gr->Axis(); gr->Grid("xy","g;"); gr->Box(); }
At this, one will only write a few lines for data drawing:
template(gr); // apply settings and default drawing from template mglData dat("fname.dat"); // load the data // and draw it (suppose that data file have 2 columns) gr->Plot(dat.SubData(0),dat.SubData(1),"bx ");
A template-function can also contain settings for font, transparency, lightning, color scheme and so on.
I understand that this is obvious thing for any professional programmer, but I several times receive suggestion about “templates” ... So, I decide to point out it here.
One can easily create stereo image in MathGL. Stereo image can be produced by making two subplots with slightly different rotation angles. The corresponding code looks like this:
call 'prepare2d' light on subplot 2 1 0:rotate 50 60+1:box:surf a subplot 2 1 1:rotate 50 60-1:box:surf a
By default MathGL save all primitives in memory, rearrange it and only later draw them on bitmaps. Usually, this speed up drawing, but may require a lot of memory for plots which contain a lot of faces (like cloud, dew). You can use quality function for setting to use direct drawing on bitmap and bypassing keeping any primitives in memory. This function also allow you to decrease the quality of the resulting image but increase the speed of the drawing.
The code for lower memory usage looks like this:
quality 6 # firstly, set to draw directly on bitmap for $1 0 1000 sphere 2*rnd-1 2*rnd-1 0.05 next
MathGL have possibilities to write textual information into file with variable values by help of save command. This is rather useful for generating an ini-files or preparing human-readable textual files. For example, lets create some textual file
subplot 1 1 0 '<_':title 'Save and scanfile sample' list a 1 -1 0 save 'This is test: 0 -> ',a(0),' q' 'test.txt' 'w' save 'This is test: 1 -> ',a(1),' q' 'test.txt' save 'This is test: 2 -> ',a(2),' q' 'test.txt'
It contents look like
This is test: 0 -> 1 q This is test: 1 -> -1 q This is test: 2 -> 0 q
Note, that I use option `w` at first call of save
to overwrite the contents of the file.
Let assume now that you want to read this values (i.e. [[0,1],[1,-1],[2,0]]) from the file. You can use scanfile for that. The desired values was written using template `This is test: %g -> %g q`. So, just use
scanfile a 'test.txt' 'This is test: %g -> %g'
and plot it to for assurance
ranges a(0) a(1):axis:plot a(0) a(1) 'o'
Note, I keep only the leading part of template (i.e. `This is test: %g -> %g` instead of `This is test: %g -> %g q`), because there is no important for us information after the second number in the line.
Sometimes output plots contain surfaces with a lot of points, and some vector primitives (like axis, text, curves, etc.). Using vector output formats (like EPS or SVG) will produce huge files with possible loss of smoothed lighting. Contrary, the bitmap output may cause the roughness of text and curves. Hopefully, MathGL have a possibility to combine bitmap output for surfaces and vector one for other primitives in the same EPS file, by using rasterize command.
The idea is to prepare part of picture with surfaces or other "heavy" plots and produce the background image from them by help of rasterize command. Next, we draw everything to be saved in vector form (text, curves, axis and etc.). Note, that you need to clear primitives (use clf command) after rasterize if you want to disable duplication of surfaces in output files (like EPS). Note, that some of output formats (like 3D ones, and TeX) don`t support the background bitmap, and use clf for them will cause the loss of part of picture.
The sample code is:
# first draw everything to be in bitmap output fsurf 'x^2+y^2' '#';value 10 rasterize # set above plots as bitmap background clf # clear primitives, to exclude them from file # now draw everything to be in vector output axis:box # and save file write 'fname.eps'
Check that points of the plot are located inside the bounding box and resize the bounding box using ranges function. Check that the data have correct dimensions for selected type of plot. Sometimes the light reflection from flat surfaces (like, dens) can look as if the plot were absent.
Most “new” types of plots can be created by using the existing drawing functions. For example, the surface of curve rotation can be created by a special function torus, or as a parametrically specified surface by surf. See also, Hints. If you can not find a specific type of plot, please e-mail me and this plot will appear in the next version of MathGL library.
The standard way is to use Unicode encoding for the text output. But the MathGL library also has interface for 8-bit (char *) strings with internal conversion to Unicode. This conversion depends on the current locale OS.
There are 3 general ways. First, the point with nan
value as one of the coordinates (including color/alpha range) will never be plotted. Second, special functions define the condition when the points should be omitted (see Cutting). Last, you may change the transparency of a part of the plot by the help of functions surfa, surf3a (see Dual plotting). In last case the transparency is switched on smoothly.
Most of the library was written by one person. This is a result of nearly a year of work (mostly in the evening and on holidays): I spent half a year to write the kernel and half a year to a year on extending, improving the library and writing documentation. This process continues now :). The build system (cmake files) was written mostly by D.Kulagin, and the export to PRC/PDF was written mostly by M.Vidassov.
You can import data by command import and display it by dens function. For example, for black-and-white bitmap you can use the code: import bmp 'fname.png' 'wk':dens bmp 'wk'
.
Just use command write fname.pdf
, which create PDF file if enable-pdf=ON at MathGL configure.
Just use command write fname.tex
, which create LaTeX files with figure itself `fname.tex`, with MathGL colors `mglcolors.tex` and main file `mglmain.tex`. Last one can be used for viewing image by command like pdflatex mglmain.tex
.
First, you should download new font files from here or from here. Next, you should load the font files into by the following command: loadfont 'fontname'
. Here fontname is the base font name like `STIX`. Use loadfont ''
to start using the default font.
Just set a negative value in ticklen. For example, use ticklen -0.1
.
Just use rotatetext off
. Also you can use axis style `U` for disable only tick labels rotation.
Just use aspect nan nan
for each subplot, or at the beginning of the drawing.
Just use code like clf 'r{A5}'
or prepare PNG file and set it as background image by call background 'fname.png'
.
The simplest way is to use subplot style. However, you should be careful if you plan to add colorbar or rotate plot - part of plot can be invisible if you will use non-default subplot style.
Yes. Sometimes you may have huge surface and a small set of curves and/or text on the plot. You can use function rasterize just after making surface plot. This will put all plot to bitmap background. At this later plotting will be in vector format. For example, you can do something like following:
surf x y z rasterize # make surface as bitmap axis write 'fname.eps'
This chapter contain alphabetical list of MGL and C++ samples for most of MathGL graphics and features.
This section contain functions for input data for most of further samples.
MGL code:
func 'prepare1d' new y 50 3 modify y '0.7*sin(2*pi*x)+0.5*cos(3*pi*x)+0.2*sin(pi*x)' modify y 'sin(2*pi*x)' 1 modify y 'cos(2*pi*x)' 2 new x1 50 'x' new x2 50 '0.05-0.03*cos(pi*x)' new y1 50 '0.5-0.3*cos(pi*x)' new y2 50 '-0.3*sin(pi*x)' return func 'prepare2d' new a 50 40 '0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))' new b 50 40 '0.6*cos(pi*(x+1))*cos(1.5*pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))' return func 'prepare3d' new c 61 50 40 '-2*(x^2+y^2+z^4-z^2)+0.2' new d 61 50 40 '1-2*tanh((x+y)*(x+y))' return func 'prepare2v' new a 20 30 '0.6*sin(pi*(x+1))*sin(1.5*pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))' new b 20 30 '0.6*cos(pi*(x+1))*cos(1.5*pi*(y+1))+0.4*cos(0.75*pi*(x+1)*(y+1))' return func 'prepare3v' define $1 pow(x*x+y*y+(z-0.3)*(z-0.3)+0.03,1.5) define $2 pow(x*x+y*y+(z+0.3)*(z+0.3)+0.03,1.5) new ex 10 10 10 '0.2*x/$1-0.2*x/$2' new ey 10 10 10 '0.2*y/$1-0.2*y/$2' new ez 10 10 10 '0.2*(z-0.3)/$1-0.2*(z+0.3)/$2' return
Example of complex ode on basis of 3-wave decay.
MGL code:
define t 50 ode !r '-b*f;a*conj(f);a*conj(b)-0.1*f' 'abf' [1,1e-3,0] 0.1 t ranges 0 t 0 r.max plot r(0) 'b';legend 'a' plot r(1) 'g';legend 'b' plot r(2) 'r';legend 'f' axis:box:legend
Example of light and alpha (transparency).
MGL code:
call 'prepare2d' subplot 2 2 0:title 'default':rotate 50 60:box surf a subplot 2 2 1:title 'light on':rotate 50 60:box light on:surf a subplot 2 2 3:title 'light on; alpha on':rotate 50 60:box alpha on:surf a subplot 2 2 2:title 'alpha on':rotate 50 60:box light off:surf a
Comparison of advanced PDE solver (apde) and ordinary one (pde).
MGL code:
ranges -1 1 0 2 0 2 new ar 256 'exp(-2*(x+0.0)^2)' new ai 256 apde res1 'exp(-x^2-p^2)' ar ai 0.01:transpose res1 pde res2 'exp(-x^2-p^2)' ar ai 0.01 subplot 1 2 0 '_':title 'Advanced PDE solver' ranges 0 2 -1 1:crange res1 dens res1:box axis:xlabel '\i z':ylabel '\i x' text -0.5 0.2 'i\partial_z\i u = exp(-\i x^2+\partial_x^2)[\i u]' 'y' subplot 1 2 1 '_':title 'Simplified PDE solver' dens res2:box axis:xlabel '\i z':ylabel '\i x' text -0.5 0.2 'i\partial_z\i u \approx\ exp(-\i x^2)\i u+exp(\partial_x^2)[\i u]' 'y'
Function area fill the area between curve and axis plane. It support gradient filling if 2 colors per curve is specified.
MGL code:
call 'prepare1d' origin 0 0 0 subplot 2 2 0 '':title 'Area plot (default)':box:area y subplot 2 2 1 '':title '2 colors':box:area y 'cbgGyr' subplot 2 2 2 '':title '"!" style':box:area y '!' new yc 30 'sin(pi*x)':new xc 30 'cos(pi*x)':new z 30 'x' subplot 2 2 3:title '3d variant':rotate 50 60:box area xc yc z 'r' area xc -yc z 'b#'
Example of subplot, inplot, rotate, aspect, shear.
MGL code:
subplot 2 2 0:box:text -1 1.1 'Just box' ':L' inplot 0.2 0.5 0.7 1 off:box:text 0 1.2 'InPlot example' subplot 2 2 1:title 'Rotate only':rotate 50 60:box subplot 2 2 2:title 'Rotate and Aspect':rotate 50 60:aspect 1 1 2:box subplot 2 2 3:title 'Shear':box 'c':shear 0.2 0.1:box
Function axial draw surfaces of rotation for contour lines. You can draw wire surfaces (`#` style) or ones rotated in other directions (`x`, `z` styles).
MGL code:
call 'prepare2d' subplot 2 2 0:title 'Axial plot (default)':light on:alpha on:rotate 50 60:box:axial a subplot 2 2 1:title '"x" style;"." style':light on:rotate 50 60:box:axial a 'x.' subplot 2 2 2:title '"z" style':light on:rotate 50 60:box:axial a 'z' subplot 2 2 3:title '"\#" style':light on:rotate 50 60:box:axial a '#'
Different forms of axis position.
MGL code:
subplot 2 2 0:title 'Axis origin, Grid':origin 0 0:axis:grid:fplot 'x^3' subplot 2 2 1:title '2 axis':ranges -1 1 -1 1:origin -1 -1:axis:ylabel 'axis_1':fplot 'sin(pi*x)' 'r2' ranges 0 1 0 1:origin 1 1:axis:ylabel 'axis_2':fplot 'cos(pi*x)' subplot 2 2 3:title 'More axis':origin nan nan:xrange -1 1:axis:xlabel 'x' 0:ylabel 'y_1' 0:fplot 'x^2' 'k' yrange -1 1:origin -1.3 -1:axis 'y' 'r':ylabel '#r{y_2}' 0.2:fplot 'x^3' 'r' subplot 2 2 2:title '4 segments, inverted axis':origin 0 0: inplot 0.5 1 0.5 1 on:ranges 0 10 0 2:axis fplot 'sqrt(x/2)':xlabel 'W' 1:ylabel 'U' 1 inplot 0 0.5 0.5 1 on:ranges 1 0 0 2:axis 'x':fplot 'sqrt(x)+x^3':xlabel '\tau' 1 inplot 0.5 1 0 0.5 on:ranges 0 10 4 0:axis 'y':fplot 'x/4':ylabel 'L' -1 inplot 0 0.5 0 0.5 on:ranges 1 0 4 0:fplot '4*x^2'
Load background from an image file.
MGL code:
define $f udav_new.png #background '$f' 's' subplot 2 2 0 '':box background '$f' 'a' text 0.5 0.1 'Default' 'a' subplot 2 2 1 '':box background '$f' 'ca' text 0.5 0.1 'Centering' 'a' subplot 2 2 2 '':box background '$f' 'ma' text 0.5 0.1 'Mosaic' 'a' subplot 2 2 3 '':box background '$f' 'sa' text 0.5 0.1 'Scaling' 'a'
Function barh is the similar to bars but draw horizontal bars.
MGL code:
new ys 10 3 '0.8*sin(pi*(x+y/4+1.25))+0.2*rnd':origin 0 0 0 subplot 2 2 0 '':title 'Barh plot (default)':box:barh ys subplot 2 2 1 '':title '2 colors':box:barh ys 'cbgGyr' ranges -3 3 -1 1:subplot 2 2 2 '':title '"a" style':box:barh ys 'a' subplot 2 2 3 '': title '"f" style':box:barh ys 'f'
Function bars draw vertical bars. It have a lot of options: bar-above-bar (`a` style), fall like (`f` style), 2 colors for positive and negative values, wired bars (`#` style), 3D variant.
MGL code:
new ys 10 3 '0.8*sin(pi*(x+y/4+1.25))+0.2*rnd':origin 0 0 0 subplot 3 2 0 '':title 'Bars plot (default)':box:bars ys subplot 3 2 1 '':title '2 colors':box:bars ys 'cbgGyr' subplot 3 2 4 '':title '"\#" style':box:bars ys '#' new yc 30 'sin(pi*x)':new xc 30 'cos(pi*x)':new z 30 'x' subplot 3 2 5:title '3d variant':rotate 50 60:box:bars xc yc z 'r' ranges -1 1 -3 3:subplot 3 2 2 '':title '"a" style':box:bars ys 'a' subplot 3 2 3 '':title '"f" style':box:bars ys 'f'
Function belt draw surface by belts. You can use `x` style for drawing lines in other direction.
MGL code:
call 'prepare2d' title 'Belt plot':rotate 50 60:box:belt a
Function beltc draw surface by belts. You can use `x` style for drawing lines in other direction.
MGL code:
call 'prepare2d' title 'BeltC plot':rotate 50 60:box:beltc a b
Function bifurcation draw Bifurcation diagram for multiple stationary points of the map (like logistic map).
MGL code:
subplot 1 1 0 '<_':title 'Bifurcation sample' ranges 0 4 0 1:axis bifurcation 0.005 'x*y*(1-y)' 'r'
Different styles of bounding box.
MGL code:
subplot 2 2 0:title 'Box (default)':rotate 50 60:box subplot 2 2 1:title 'colored':rotate 50 60:box 'r' subplot 2 2 2:title 'with faces':rotate 50 60:box '@' subplot 2 2 3:title 'both':rotate 50 60:box '@cm'
Function boxplot draw box-and-whisker diagram.
MGL code:
new a 10 7 '(2*rnd-1)^3/2' subplot 1 1 0 '':title 'Boxplot plot':box:boxplot a
Function boxs draw surface by boxes. You can use `#` for drawing wire plot.
MGL code:
call 'prepare2d' origin 0 0 0 subplot 2 2 0:title 'Boxs plot (default)':rotate 40 60:light on:box:boxs a subplot 2 2 1:title '"\@" style':rotate 50 60:box:boxs a '@' subplot 2 2 2:title '"\#" style':rotate 50 60:box:boxs a '#' subplot 2 2 3:title 'compare with Tile':rotate 50 60:box:tile a
Function candle draw candlestick chart. This is a combination of a line-chart and a bar-chart, in that each bar represents the range of price movement over a given time interval.
MGL code:
new y 30 'sin(pi*x/2)^2' subplot 1 1 0 '':title 'Candle plot (default)' yrange 0 1:box candle y y/2 (y+1)/2
Function chart draw colored boxes with width proportional to data values. Use ` ` for empty box. It produce well known pie chart if drawn in polar coordinates.
MGL code:
new ch 7 2 'rnd+0.1':light on subplot 2 2 0:title 'Chart plot (default)':rotate 50 60:box:chart ch subplot 2 2 1:title '"\#" style':rotate 50 60:box:chart ch '#' subplot 2 2 2:title 'Pie chart; " " color':rotate 50 60: axis '(y+1)/2*cos(pi*x)' '(y+1)/2*sin(pi*x)' '':box:chart ch 'bgr cmy#' subplot 2 2 3:title 'Ring chart; " " color':rotate 50 60: axis '(y+2)/3*cos(pi*x)' '(y+2)/3*sin(pi*x)' '':box:chart ch 'bgr cmy#'
Function cloud draw cloud-like object which is less transparent for higher data values. Similar plot can be created using many (about 10...20 - surf3a a a;value 10
) isosurfaces surf3a.
MGL code:
call 'prepare3d' subplot 2 2 0:title 'Cloud plot':rotate 50 60:alpha on:box:cloud c 'wyrRk' subplot 2 2 1:title '"i" style':rotate 50 60:box:cloud c 'iwyrRk' subplot 2 2 2:title '"." style':rotate 50 60:box:cloud c '.wyrRk' subplot 2 2 3:title 'meshnum 10':rotate 50 60:box:cloud c 'wyrRk'; meshnum 10
Example of colorbar position and styles.
MGL code:
call 'prepare2d' new v 9 'x' subplot 2 2 0:title 'Colorbar out of box':box colorbar '<':colorbar '>':colorbar '_':colorbar '^' subplot 2 2 1:title 'Colorbar near box':box colorbar '<I':colorbar '>I':colorbar '_I':colorbar '^I' subplot 2 2 2:title 'manual colors':box:contd v a colorbar v '<':colorbar v '>':colorbar v '_':colorbar v '^' subplot 2 2 3:title '':text -0.5 1.55 'Color positions' ':C' -2 colorbar 'bwr>' 0.25 0:text -0.9 1.2 'Default' colorbar 'b{w,0.3}r>' 0.5 0:text -0.1 1.2 'Manual' crange 0.01 1e3 colorbar '>' 0.75 0:text 0.65 1.2 'Normal scale':colorbar '>':text 1.35 1.2 'Log scale'
Example of several plots in the same axis.
MGL code:
call 'prepare2v' call 'prepare3d' new v 10:fill v -0.5 1:copy d sqrt(a^2+b^2) subplot 2 2 0:title 'Surf + Cont':rotate 50 60:light on:box:surf a:cont a 'y' subplot 2 2 1 '':title 'Flow + Dens':light off:box:flow a b 'br':dens d subplot 2 2 2:title 'Mesh + Cont':rotate 50 60:box:mesh a:cont a '_' subplot 2 2 3:title 'Surf3 + ContF3':rotate 50 60:light on box:contf3 v c 'z' 0:contf3 v c 'x':contf3 v c cut 0 -1 -1 1 0 1.1 contf3 v c 'z' c.nz-1:surf3 c -0.5
Function cones is similar to bars but draw cones.
MGL code:
new ys 10 3 '0.8*sin(pi*(x+y/4+1.25))+0.2*rnd' light on:origin 0 0 0 subplot 3 2 0:title 'Cones plot':rotate 50 60:box:cones ys subplot 3 2 1:title '2 colors':rotate 50 60:box:cones ys 'cbgGyr' subplot 3 2 2:title '"\#" style':rotate 50 60:box:cones ys '#' subplot 3 2 3:title '"a" style':rotate 50 60:zrange -2 2:box:cones ys 'a' subplot 3 2 4:title '"t" style':rotate 50 60:box:cones ys 't' subplot 3 2 5:title '"4" style':rotate 50 60:box:cones ys '4'
Function cont draw contour lines for surface. You can select automatic (default) or manual levels for contours, print contour labels, draw it on the surface (default) or at plane (as Dens
).
MGL code:
call 'prepare2d' list v -0.5 -0.15 0 0.15 0.5 subplot 2 2 0:title 'Cont plot (default)':rotate 50 60:box:cont a subplot 2 2 1:title 'manual levels':rotate 50 60:box:cont v a subplot 2 2 2:title '"\_" and "." styles':rotate 50 60:box:cont a '_':cont a '_.2k' subplot 2 2 3 '':title '"t" style':box:cont a 't'
Function contf3 draw ordinary contour lines but at slices of 3D data.
MGL code:
call 'prepare3d' title 'Cont3 sample':rotate 50 60:box cont3 c 'x':cont3 c:cont3 c 'z'
Functions contz, conty, contx draw contour lines on plane perpendicular to corresponding axis. One of possible application is drawing projections of 3D field.
MGL code:
call 'prepare3d' title 'Cont[XYZ] sample':rotate 50 60:box contx {sum c 'x'} '' -1:conty {sum c 'y'} '' 1:contz {sum c 'z'} '' -1
Function contd is similar to contf but with manual contour colors.
MGL code:
call 'prepare2d' list v -0.5 -0.15 0 0.15 0.5 new a1 30 40 3 '0.6*sin(2*pi*x+pi*(z+1)/2)*sin(3*pi*y+pi*z) + 0.4*cos(3*pi*(x*y)+pi*(z+1)^2/2)' subplot 2 2 0:title 'ContD plot (default)':rotate 50 60:box:contd a subplot 2 2 1:title 'manual levels':rotate 50 60:box:contd v a subplot 2 2 2:title '"\_" style':rotate 50 60:box:contd a '_' subplot 2 2 3:title 'several slices':rotate 50 60:box:contd a1
Function contf draw filled contours. You can select automatic (default) or manual levels for contours.
MGL code:
call 'prepare2d' list v -0.5 -0.15 0 0.15 0.5 new a1 30 40 3 '0.6*sin(2*pi*x+pi*(z+1)/2)*sin(3*pi*y+pi*z) + 0.4*cos(3*pi*(x*y)+pi*(z+1)^2/2)' subplot 2 2 0:title 'ContF plot (default)':rotate 50 60:box:contf a subplot 2 2 1:title 'manual levels':rotate 50 60:box:contf v a subplot 2 2 2:title '"\_" style':rotate 50 60:box:contf a '_' subplot 2 2 3:title 'several slices':rotate 50 60:box:contf a1
Function contf3 draw ordinary filled contours but at slices of 3D data.
MGL code:
call 'prepare3d' title 'Cont3 sample':rotate 50 60:box:light on contf3 c 'x':contf3 c:contf3 c 'z' cont3 c 'xk':cont3 c 'k':cont3 c 'zk'
Functions contfz, contfy, contfx, draw filled contours on plane perpendicular to corresponding axis. One of possible application is drawing projections of 3D field.
MGL code:
call 'prepare3d' title 'ContF[XYZ] sample':rotate 50 60:box contfx {sum c 'x'} '' -1:contfy {sum c 'y'} '' 1:contfz {sum c 'z'} '' -1
Function conts get contour coordinate as data array.
MGL code:
new a 10 10 'sin(2*pi*x*y)' title 'Conts sample':rotate 40 60:box dens a '#' cont [0,0] a 'r' conts r 0 a plot 2*r(0)-1 2*r(1)-1 1+r(2) '2c'
Function contv draw vertical cylinders (belts) at contour lines.
MGL code:
call 'prepare2d' list v -0.5 -0.15 0 0.15 0.5 subplot 2 2 0:title 'ContV plot (default)':rotate 50 60:box:contv a subplot 2 2 1:title 'manual levels':rotate 50 60:box:contv v a subplot 2 2 2:title '"\_" style':rotate 50 60:box:contv a '_' subplot 2 2 3:title 'ContV and ContF':rotate 50 60:light on:box contv a:contf a:cont a 'k'
Test of correlation function (correl).
MGL code:
new a 100 'exp(-10*x^2)' new b 100 'exp(-10*(x+0.5)^2)' yrange 0 1 subplot 1 2 0 '_':title 'Input fields' plot a:plot b:box:axis correl r a b 'x' norm r 0 1:swap r 'x' # make it human readable subplot 1 2 1 '_':title 'Correlation of a and b' plot r 'r':axis:box line 0.5 0 0.5 1 'B|'
Some common curvilinear coordinates.
MGL code:
origin -1 1 -1 subplot 2 2 0:title 'Cartesian':rotate 50 60:fplot '2*t-1' '0.5' '0' '2r':axis:grid axis 'y*sin(pi*x)' 'y*cos(pi*x)' '':subplot 2 2 1:title 'Cylindrical':rotate 50 60:fplot '2*t-1' '0.5' '0' '2r':axis:grid axis '2*y*x' 'y*y - x*x' '':subplot 2 2 2:title 'Parabolic':rotate 50 60:fplot '2*t-1' '0.5' '0' '2r':axis:grid axis 'y*sin(pi*x)' 'y*cos(pi*x)' 'x+z':subplot 2 2 3:title 'Spiral':rotate 50 60:fplot '2*t-1' '0.5' '0' '2r':axis:grid
Example of point cutting (cut.
MGL code:
call 'prepare2d' call 'prepare3d' subplot 2 2 0:title 'Cut on (default)':rotate 50 60:light on:box:surf a; zrange -1 0.5 subplot 2 2 1:title 'Cut off':rotate 50 60:box:surf a; zrange -1 0.5; cut off subplot 2 2 2:title 'Cut in box':rotate 50 60:box:alpha on cut 0 -1 -1 1 0 1.1:surf3 c cut 0 0 0 0 0 0 # restore back subplot 2 2 3:title 'Cut by formula':rotate 50 60:box cut '(z>(x+0.5*y-1)^2-1) & (z>(x-0.5*y-1)^2-1)':surf3 c
Example of subfunctions and summation in textual formulas.
MGL code:
title 'Advanced formulas' new b 256 256 'dsum(fn1(_i*pi/5),10)\exp(-64*(x*cos(_1)-y*sin(_1))^2-16*(0.5+y*cos(_1)+x*sin(_1))^2)' crange b:dens b 'BbwrR'
Example of diff and integrate.
MGL code:
ranges 0 1 0 1 0 1:new a 30 40 'x*y' subplot 2 2 0:title 'a(x,y)':rotate 60 40:surf a:box subplot 2 2 1:title 'da/dx':rotate 60 40:diff a 'x':surf a:box subplot 2 2 2:title '\int da/dx dxdy':rotate 60 40:integrate a 'xy':surf a:box subplot 2 2 3:title '\int {d^2}a/dxdy dx':rotate 60 40:diff2 a 'y':surf a:box
Example of envelop, sew, smooth and resize.
MGL code:
subplot 2 2 0 '':title 'Envelop sample':new d1 1000 'exp(-8*x^2)*sin(10*pi*x)' axis:plot d1 'b':envelop d1 'x':plot d1 'r' subplot 2 2 1 '':title 'Smooth sample':ranges 0 1 0 1 new y0 30 '0.4*sin(pi*x) + 0.3*cos(1.5*pi*x) - 0.4*sin(2*pi*x)+0.5*rnd' copy y1 y0:smooth y1 'x3':plot y1 'r';legend '"3" style' copy y2 y0:smooth y2 'x5':plot y2 'g';legend '"5" style' copy y3 y0:smooth y3 'x':plot y3 'b';legend 'default' plot y0 '{m7}:s';legend 'none' legend:box subplot 2 2 2:title 'Sew sample':rotate 50 60:light on:alpha on new d2 100 100 'mod((y^2-(1-x)^2)/2,0.1)' box:surf d2 'b':sew d2 'xy' 0.1:surf d2 'r' subplot 2 2 3:title 'Resize sample (interpolation)' new x0 10 'rnd':new v0 10 'rnd' resize x1 x0 100:resize v1 v0 100 plot x0 v0 'b+ ':plot x1 v1 'r-':label x0 v0 '%n'
MGL code:
new a 40 50 60 'exp(-x^2-4*y^2-16*z^2)' light on:alpha on copy b a:diff b 'x':subplot 5 3 0:call 'splot' copy b a:diff2 b 'x':subplot 5 3 1:call 'splot' copy b a:cumsum b 'x':subplot 5 3 2:call 'splot' copy b a:integrate b 'x':subplot 5 3 3:call 'splot' mirror b 'x':subplot 5 3 4:call 'splot' copy b a:diff b 'y':subplot 5 3 5:call 'splot' copy b a:diff2 b 'y':subplot 5 3 6:call 'splot' copy b a:cumsum b 'y':subplot 5 3 7:call 'splot' copy b a:integrate b 'y':subplot 5 3 8:call 'splot' mirror b 'y':subplot 5 3 9:call 'splot' copy b a:diff b 'z':subplot 5 3 10:call 'splot' copy b a:diff2 b 'z':subplot 5 3 11:call 'splot' copy b a:cumsum b 'z':subplot 5 3 12:call 'splot' copy b a:integrate b 'z':subplot 5 3 13:call 'splot' mirror b 'z':subplot 5 3 14:call 'splot' stop func splot 0 title 'max=',b.max:norm b -1 1 on:rotate 70 60:box:surf3 b return
MGL code:
new a 40 50 60 'exp(-x^2-4*y^2-16*z^2)' light on:alpha on copy b a:sinfft b 'x':subplot 5 3 0:call 'splot' copy b a:cosfft b 'x':subplot 5 3 1:call 'splot' copy b a:hankel b 'x':subplot 5 3 2:call 'splot' copy b a:swap b 'x':subplot 5 3 3:call 'splot' copy b a:smooth b 'x':subplot 5 3 4:call 'splot' copy b a:sinfft b 'y':subplot 5 3 5:call 'splot' copy b a:cosfft b 'y':subplot 5 3 6:call 'splot' copy b a:hankel b 'y':subplot 5 3 7:call 'splot' copy b a:swap b 'y':subplot 5 3 8:call 'splot' copy b a:smooth b 'y':subplot 5 3 9:call 'splot' copy b a:sinfft b 'z':subplot 5 3 10:call 'splot' copy b a:cosfft b 'z':subplot 5 3 11:call 'splot' copy b a:hankel b 'z':subplot 5 3 12:call 'splot' copy b a:swap b 'z':subplot 5 3 13:call 'splot' copy b a:smooth b 'z':subplot 5 3 14:call 'splot' stop func splot 0 title 'max=',b.max:norm b -1 1 on:rotate 70 60:box surf3 b 0.5:surf3 b -0.5 return
Function dcont draw lines of intersections of two isosurfaces.
MGL code:
call 'prepare3d' title 'DCont plot':rotate 50 60:light on:alpha on:box:surf3 c 0 'r':surf3 d 0 'b' dcont 0 c d '2k'
Function dens draw density plot (also known as color-map) for surface.
MGL code:
call 'prepare2d' new a1 30 40 3 '0.6*sin(2*pi*x+pi*(z+1)/2)*sin(3*pi*y+pi*z) + 0.4*cos(3*pi*(x*y)+pi*(z+1)^2/2)' subplot 2 2 0 '':title 'Dens plot (default)':box:dens a subplot 2 2 1:title '3d variant':rotate 50 60:box:dens a subplot 2 2 2 '':title '"\#" style; meshnum 10':box:dens a '#'; meshnum 10 subplot 2 2 3:title 'several slices':rotate 50 60:box:dens a1
Function dens3 draw ordinary density plots but at slices of 3D data.
MGL code:
call 'prepare3d' title 'Dens3 sample':rotate 50 60:alpha on:alphadef 0.7 origin 0 0 0:box:axis '_xyz' dens3 c 'x':dens3 c ':y':dens3 c 'z'
Functions densz, densy, densx draw density plot on plane perpendicular to corresponding axis. One of possible application is drawing projections of 3D field.
MGL code:
call 'prepare3d' title 'Dens[XYZ] sample':rotate 50 60:box densx {sum c 'x'} '' -1:densy {sum c 'y'} '' 1:densz {sum c 'z'} '' -1
Example of curve detect.
MGL code:
subplot 1 1 0 '':title 'Detect sample' new a 200 100 'exp(-30*(y-0.5*sin(pi*x))^2-rnd/10)+exp(-30*(y+0.5*sin(pi*x))^2-rnd/10)+exp(-30*(x+y)^2-rnd/10)' ranges 0 a.nx 0 a.ny:box alpha on:crange a:dens a detect r a 0.1 5 plot r(0) r(1) '.'
Function dew is similar to vect but use drops instead of arrows.
MGL code:
call 'prepare2v' subplot 1 1 0 '':title 'Dew plot':light on:box:dew a b
MGL code:
define n 32 #number of points define m 20 # number of iterations define dt 0.01 # time step new res n m+1 ranges -1 1 0 m*dt 0 1 #tridmat periodic variant new !a n 'i',dt*(n/2)^2/2 copy !b !(1-2*a) new !u n 'exp(-6*x^2)' put res u all 0 for $i 0 m tridmat u a b a u 'xdc' put res u all $i+1 next subplot 2 2 0 '<_':title 'Tridmat, periodic b.c.' axis:box:dens res #fourier variant new k n:fillsample k 'xk' copy !e !exp(-i1*dt*k^2) new !u n 'exp(-6*x^2)' put res u all 0 for $i 0 m fourier u 'x' multo u e fourier u 'ix' put res u all $i+1 next subplot 2 2 1 '<_':title 'Fourier method' axis:box:dens res #tridmat zero variant new !u n 'exp(-6*x^2)' put res u all 0 for $i 0 m tridmat u a b a u 'xd' put res u all $i+1 next subplot 2 2 2 '<_':title 'Tridmat, zero b.c.' axis:box:dens res #diffract exp variant new !u n 'exp(-6*x^2)' define q dt*(n/2)^2/8 # need q<0.4 !!! put res u all 0 for $i 0 m for $j 1 8 # due to smaller dt diffract u 'xe' q next put res u all $i+1 next subplot 2 2 3 '<_':title 'Diffract, exp b.c.' axis:box:dens res
MGL code:
subplot 2 2 0:title 'Dilate&Erode 1D sample' new y 11:put y 1 5 ranges 0 10 0 1:axis:box plot y 'b*' dilate y 0.5 2 plot y 'rs' erode y 0.5 1 plot y 'g#o' subplot 2 2 1:title 'Dilate&Erode 2D sample':rotate 40 60 ranges 0 10 0 10 0 3 axis:box new z 11 11:put z 3 5 5 boxs z 'b':boxs z 'k#' dilate z 1 2 boxs z 'r':boxs z 'k#' erode z 1 1 boxs 2*z 'g':boxs 2*z 'k#' subplot 2 2 2 text 0.5 0.7 'initial' 'ba';size -2 text 0.5 0.5 'dilate=2' 'ra';size -2 text 0.5 0.3 'erode=1' 'ga';size -2 subplot 2 2 3:title 'Dilate&Erode 3D sample' rotate 60 50:light on:alpha on ranges 0 10 0 10 0 10:crange 0 3 axis:box new a 11 11 11:put a 3 5 5 5 surf3a a a 1.5 'b' dilate a 1 2 surf3a a a 0.5 'r' erode a 1 1 surf3a 2*a 2*a 1 'g'
Function dots is another way to draw irregular points. Dots
use color scheme for coloring (see Color scheme).
MGL code:
new t 2000 'pi*(rnd-0.5)':new f 2000 '2*pi*rnd' copy x 0.9*cos(t)*cos(f):copy y 0.9*cos(t)*sin(f):copy z 0.6*sin(t):copy c cos(2*t) subplot 2 2 0:title 'Dots sample':rotate 50 60 box:dots x y z alpha on subplot 2 2 1:title 'add transparency':rotate 50 60 box:dots x y z c subplot 2 2 2:title 'add colorings':rotate 50 60 box:dots x y z x c subplot 2 2 3:title 'Only coloring':rotate 50 60 box:tens x y z x ' .'
Example of Earth map by using import.
MGL code:
import dat 'Equirectangular-projection.jpg' 'BbGYw' -1 1 subplot 1 1 0 '<>':title 'Earth in 3D':rotate 40 60 copy phi dat 'pi*x':copy tet dat 'pi*y/2' copy x cos(tet)*cos(phi) copy y cos(tet)*sin(phi) copy z sin(tet) light on surfc x y z dat 'BbGYw' contp [-0.51,-0.51] x y z dat 'y'
Function error draw error boxes around the points. You can draw default boxes or semi-transparent symbol (like marker, see Line styles). Also you can set individual color for each box. See also Sample `error2`.
MGL code:
call 'prepare1d' new y 50 '0.7*sin(pi*x-pi) + 0.5*cos(3*pi*(x+1)/2) + 0.2*sin(pi*(x+1)/2)' new x0 10 'x + 0.1*rnd-0.05':new ex 10 '0.1':new ey 10 '0.2' new y0 10 '0.7*sin(pi*x-pi) + 0.5*cos(3*pi*(x+1)/2) + 0.2*sin(pi*(x+1)/2) + 0.2*rnd-0.1' subplot 2 2 0 '':title 'Error plot (default)':box:plot y:error x0 y0 ex ey 'k' subplot 2 2 1 '':title '"!" style; no e_x':box:plot y:error x0 y0 ey 'o!rgb' subplot 2 2 2 '':title '"\@" style':alpha on:box:plot y:error x0 y0 ex ey '@'; alpha 0.5 subplot 2 2 3:title '3d variant':rotate 50 60:axis for $1 0 9 errbox 2*rnd-1 2*rnd-1 2*rnd-1 0.2 0.2 0.2 'bo' next
Example of error kinds.
MGL code:
new x0 10 'rnd':new ex 10 '0.1' new y0 10 'rnd':new ey 10 '0.1' ranges 0 1 0 1 subplot 4 3 0 '':box:error x0 y0 ex ey '#+@' subplot 4 3 1 '':box:error x0 y0 ex ey '#x@' subplot 4 3 2 '':box:error x0 y0 ex ey '#s@'; alpha 0.5 subplot 4 3 3 '':box:error x0 y0 ex ey 's@' subplot 4 3 4 '':box:error x0 y0 ex ey 'd@' subplot 4 3 5 '':box:error x0 y0 ex ey '#d@'; alpha 0.5 subplot 4 3 6 '':box:error x0 y0 ex ey '+@' subplot 4 3 7 '':box:error x0 y0 ex ey 'x@' subplot 4 3 8 '':box:error x0 y0 ex ey 'o@' subplot 4 3 9 '':box:error x0 y0 ex ey '#o@'; alpha 0.5 subplot 4 3 10 '':box:error x0 y0 ex ey '#.@' subplot 4 3 11 '':box:error x0 y0 ex ey; alpha 0.5
Example of data export and import.
MGL code:
new a 100 100 'x^2*y':new b 100 100 export a 'test_data.png' 'BbcyrR' -1 1 import b 'test_data.png' 'BbcyrR' -1 1 subplot 2 1 0 '':title 'initial':box:dens a subplot 2 1 1 '':title 'imported':box:dens b
Function fall draw waterfall surface. You can use meshnum for changing number of lines to be drawn. Also you can use `x` style for drawing lines in other direction.
MGL code:
call 'prepare2d' title 'Fall plot':rotate 50 60:box:fall a
Example of write to different file formats.
MGL code:
subplot 3 2 0:define y 0.95 define d 0.3:define x0 0.2:define x1 0.5:define x2 0.6 line x0 1-0*d x1 1-0*d 'k-':text x2 y-0*d 'Solid `-`' ':rL' line x0 1-1*d x1 1-1*d 'k|':text x2 y-1*d 'Long Dash `|`' ':rL' line x0 1-2*d x1 1-2*d 'k;':text x2 y-2*d 'Dash 1;`' ':rL' line x0 1-3*d x1 1-3*d 'k=':text x2 y-3*d 'Small dash `=`' ':rL' line x0 1-4*d x1 1-4*d 'kj':text x2 y-4*d 'Dash-dot `j`' ':rL' line x0 1-5*d x1 1-5*d 'ki':text x2 y-5*d 'Small dash-dot `i`' ':rL' line x0 1-6*d x1 1-6*d 'k:':text x2 y-6*d 'Dots `:`' ':rL' line x0 1-7*d x1 1-7*d 'k ':text x2 y-7*d 'None ``' ':rL' define d 0.25:define x0 -0.8:define x1 -1:define x2 -0.05 ball x1 5*d 'k.':text x0 5*d '.' ':rL' ball x1 4*d 'k+':text x0 4*d '+' ':rL' ball x1 3*d 'kx':text x0 3*d 'x' ':rL' ball x1 2*d 'k*':text x0 2*d '*' ':rL' ball x1 d 'ks':text x0 d 's' ':rL' ball x1 0 'kd':text x0 0 'd' ':rL' ball x1 -d 0 'ko':text x0 y-d 'o' ':rL' ball x1 -2*d 0 'k^':text x0 -2*d '\^' ':rL' ball x1 -3*d 0 'kv':text x0 -3*d 'v' ':rL' ball x1 -4*d 0 'k<':text x0 -4*d '<' ':rL' ball x1 -5*d 0 'k>':text x0 -5*d '>' ':rL' define x0 -0.3:define x1 -0.5 ball x1 5*d 'k#.':text x0 5*d '\#.' ':rL' ball x1 4*d 'k#+':text x0 4*d '\#+' ':rL' ball x1 3*d 'k#x':text x0 3*d '\#x' ':rL' ball x1 2*d 'k#*':text x0 2*d '\#*' ':rL' ball x1 d 'k#s':text x0 d '\#s' ':rL' ball x1 0 'k#d':text x0 0 '\#d' ':rL' ball x1 -d 0 'k#o':text x0 -d '\#o' ':rL' ball x1 -2*d 0 'k#^':text x0 -2*d '\#\^' ':rL' ball x1 -3*d 0 'k#v':text x0 -3*d '\#v' ':rL' ball x1 -4*d 0 'k#<':text x0 -4*d '\#<' ':rL' ball x1 -5*d 0 'k#>':text x0 -5*d '\#>' ':rL' subplot 3 2 1 define a 0.1:define b 0.4:define c 0.5 line a 1 b 1 'k-A':text c 1 'Style `A` or `A\_`' ':rL' line a 0.8 b 0.8 'k-V':text c 0.8 'Style `V` or `V\_`' ':rL' line a 0.6 b 0.6 'k-K':text c 0.6 'Style `K` or `K\_`' ':rL' line a 0.4 b 0.4 'k-I':text c 0.4 'Style `I` or `I\_`' ':rL' line a 0.2 b 0.2 'k-D':text c 0.2 'Style `D` or `D\_`' ':rL' line a 0 b 0 'k-S':text c 0 'Style `S` or `S\_`' ':rL' line a -0.2 b -0.2 'k-O':text c -0.2 'Style `O` or `O\_`' ':rL' line a -0.4 b -0.4 'k-T':text c -0.4 'Style `T` or `T\_`' ':rL' line a -0.6 b -0.6 'k-_':text c -0.6 'Style `\_` or none' ':rL' line a -0.8 b -0.8 'k-AS':text c -0.8 'Style `AS`' ':rL' line a -1 b -1 'k-_A':text c -1 'Style `\_A`' ':rL' define a -1:define b -0.7:define c -0.6 line a 1 b 1 'kAA':text c 1 'Style `AA`' ':rL' line a 0.8 b 0.8 'kVV':text c 0.8 'Style `VV`' ':rL' line a 0.6 b 0.6 'kKK':text c 0.6 'Style `KK`' ':rL' line a 0.4 b 0.4 'kII':text c 0.4 'Style `II`' ':rL' line a 0.2 b 0.2 'kDD':text c 0.2 'Style `DD`' ':rL' line a 0 b 0 'kSS':text c 0 'Style `SS`' ':rL' line a -0.2 b -0.2 'kOO':text c -0.2 'Style `OO`' ':rL' line a -0.4 b -0.4 'kTT':text c -0.4 'Style `TT`' ':rL' line a -0.6 b -0.6 'k-__':text c -0.6 'Style `\_\_`' ':rL' line a -0.8 b -0.8 'k-VA':text c -0.8 'Style `VA`' ':rL' line a -1 b -1 'k-AV':text c -1 'Style `AV`' ':rL' subplot 3 2 2 #LENUQ facez -1 -1 0 0.4 0.3 'L#':text -0.8 -0.9 'L' 'w:C' -1.4 facez -0.6 -1 0 0.4 0.3 'E#':text -0.4 -0.9 'E' 'w:C' -1.4 facez -0.2 -1 0 0.4 0.3 'N#':text 0 -0.9 'N' 'w:C' -1.4 facez 0.2 -1 0 0.4 0.3 'U#':text 0.4 -0.9 'U' 'w:C' -1.4 facez 0.6 -1 0 0.4 0.3 'Q#':text 0.8 -0.9 'Q' 'w:C' -1.4 #lenuq facez -1 -0.7 0 0.4 0.3 'l#':text -0.8 -0.6 'l' 'k:C' -1.4 facez -0.6 -0.7 0 0.4 0.3 'e#':text -0.4 -0.6 'e' 'k:C' -1.4 facez -0.2 -0.7 0 0.4 0.3 'n#':text 0 -0.6 'n' 'k:C' -1.4 facez 0.2 -0.7 0 0.4 0.3 'u#':text 0.4 -0.6 'u' 'k:C' -1.4 facez 0.6 -0.7 0 0.4 0.3 'q#':text 0.8 -0.6 'q' 'k:C' -1.4 #CMYkP facez -1 -0.4 0 0.4 0.3 'C#':text -0.8 -0.3 'C' 'w:C' -1.4 facez -0.6 -0.4 0 0.4 0.3 'M#':text -0.4 -0.3 'M' 'w:C' -1.4 facez -0.2 -0.4 0 0.4 0.3 'Y#':text 0 -0.3 'Y' 'w:C' -1.4 facez 0.2 -0.4 0 0.4 0.3 'k#':text 0.4 -0.3 'k' 'w:C' -1.4 facez 0.6 -0.4 0 0.4 0.3 'P#':text 0.8 -0.3 'P' 'w:C' -1.4 #cmywp facez -1 -0.1 0 0.4 0.3 'c#':text -0.8 0 'c' 'k:C' -1.4 facez -0.6 -0.1 0 0.4 0.3 'm#':text -0.4 0 'm' 'k:C' -1.4 facez -0.2 -0.1 0 0.4 0.3 'y#':text 0 0 'y' 'k:C' -1.4 facez 0.2 -0.1 0 0.4 0.3 'w#':text 0.4 0 'w' 'k:C' -1.4 facez 0.6 -0.1 0 0.4 0.3 'p#':text 0.8 0 'p' 'k:C' -1.4 #BGRHW facez -1 0.2 0 0.4 0.3 'B#':text -0.8 0.3 'B' 'w:C' -1.4 facez -0.6 0.2 0 0.4 0.3 'G#':text -0.4 0.3 'G' 'w:C' -1.4 facez -0.2 0.2 0 0.4 0.3 'R#':text 0 0.3 'R' 'w:C' -1.4 facez 0.2 0.2 0 0.4 0.3 'H#':text 0.4 0.3 'H' 'w:C' -1.4 facez 0.6 0.2 0 0.4 0.3 'W#':text 0.8 0.3 'W' 'w:C' -1.4 #bgrhw facez -1 0.5 0 0.4 0.3 'b#':text -0.8 0.6 'b' 'k:C' -1.4 facez -0.6 0.5 0 0.4 0.3 'g#':text -0.4 0.6 'g' 'k:C' -1.4 facez -0.2 0.5 0 0.4 0.3 'r#':text 0 0.6 'r' 'k:C' -1.4 facez 0.2 0.5 0 0.4 0.3 'h#':text 0.4 0.6 'h' 'k:C' -1.4 facez 0.6 0.5 0 0.4 0.3 'w#':text 0.8 0.6 'w' 'k:C' -1.4 #brighted facez -1 0.8 0 0.4 0.3 '{r1}#':text -0.8 0.9 '\{r1\}' 'w:C' -1.4 facez -0.6 0.8 0 0.4 0.3 '{r3}#':text -0.4 0.9 '\{r3\}' 'w:C' -1.4 facez -0.2 0.8 0 0.4 0.3 '{r5}#':text 0 0.9 '\{r5\}' 'k:C' -1.4 facez 0.2 0.8 0 0.4 0.3 '{r7}#':text 0.4 0.9 '\{r7\}' 'k:C' -1.4 facez 0.6 0.8 0 0.4 0.3 '{r9}#':text 0.8 0.9 '\{r9\}' 'k:C' -1.4 # HEX facez -1 -1.3 0 1 0.3 '{xff9966}#':text -0.5 -1.2 '\{xff9966\}' 'k:C' -1.4 facez 0 -1.3 0 1 0.3 '{x83CAFF}#':text 0.5 -1.2 '\{x83caff\}' 'k:C' -1.4 subplot 3 2 3 for $i 0 9 line -1 0.2*$i-1 1 0.2*$i-1 'r','0'+$i text 1.05 0.2*$i-1 '0'+$i ':L' next subplot 3 2 4:title 'TriPlot sample':rotate 50 60 list tt 0 1 2 | 0 1 3 | 0 2 3 | 1 2 3 list xt -1 1 0 0:list yt -1 -1 1 0:list zt -1 -1 -1 1:light on triplot tt xt yt zt 'b':triplot tt xt yt zt 'k#' subplot 3 2 5:new r 4 'i+1':ranges 1 4 1 4 axis:mark r r 's':plot r 'b' write 'fexport.jpg':#write 'fexport.png' write 'fexport.bmp':write 'fexport.tga' write 'fexport.eps':write 'fexport.svg' write 'fexport.gif':write 'fexport.xyz' write 'fexport.stl':write 'fexport.off' write 'fexport.tex':write 'fexport.obj' write 'fexport.prc':write 'fexport.json' write 'fexport.mgld'
Example of nonlinear fit.
MGL code:
new dat 100 '0.4*rnd+0.1+sin(2*pi*x)' new in 100 '0.3+sin(2*pi*x)' list ini 1 1 3:fit res dat 'a+b*sin(c*x)' 'abc' ini title 'Fitting sample':yrange -2 2:box:axis:plot dat 'k. ' plot res 'r':plot in 'b' text -0.9 -1.3 'fitted:' 'r:L' putsfit 0 -1.8 'y = ' 'r':text 0 2.2 'initial: y = 0.3+sin(2\pi x)' 'b'
Function flame2d generate points for flame fractals in 2d case.
MGL code:
list A [0.33,0,0,0.33,0,0,0.2] [0.33,0,0,0.33,0.67,0,0.2] [0.33,0,0,0.33,0.33,0.33,0.2]\ [0.33,0,0,0.33,0,0.67,0.2] [0.33,0,0,0.33,0.67,0.67,0.2] new B 2 3 A.ny '0.3' put B 3 0 0 -1 put B 3 0 1 -1 put B 3 0 2 -1 flame2d fx fy A B 1000000 subplot 1 1 0 '<_':title 'Flame2d sample' ranges fx fy:box:axis plot fx fy 'r#o ';size 0.05
Function flow is another standard way to visualize vector fields - it draw lines (threads) which is tangent to local vector field direction. MathGL draw threads from edges of bounding box and from central slices. Sometimes it is not most appropriate variant - you may want to use flowp
to specify manual position of threads. The color scheme is used for coloring (see Color scheme). At this warm color corresponds to normal flow (like attractor), cold one corresponds to inverse flow (like source).
MGL code:
call 'prepare2v' call 'prepare3v' subplot 2 2 0 '':title 'Flow plot (default)':box:flow a b subplot 2 2 1 '':title '"v" style':box:flow a b 'v' subplot 2 2 2 '':title '"#" and "." styles':box:flow a b '#':flow a b '.2k' subplot 2 2 3:title '3d variant':rotate 50 60:box:flow ex ey ez
Function flow3 draw flow threads, which start from given plane.
MGL code:
call 'prepare3v' subplot 2 2 0:title 'Flow3 plot (default)':rotate 50 60:box flow3 ex ey ez subplot 2 2 1:title '"v" style, from boundary':rotate 50 60:box flow3 ex ey ez 'v' 0 subplot 2 2 2:title '"t" style':rotate 50 60:box flow3 ex ey ez 't' 0 subplot 2 2 3:title 'from \i z planes':rotate 50 60:box flow3 ex ey ez 'z' 0 flow3 ex ey ez 'z' 9
Example of fog.
MGL code:
call 'prepare2d' title 'Fog sample':rotate 50 60:light on:fog 1 box:surf a:cont a 'y'
Example of font typefaces.
MGL code:
define d 0.25 loadfont 'STIX':text 0 1.1 'default font (STIX)' loadfont 'adventor':text 0 1.1-d 'adventor font' loadfont 'bonum':text 0 1.1-2*d 'bonum font' loadfont 'chorus':text 0 1.1-3*d 'chorus font' loadfont 'cursor':text 0 1.1-4*d 'cursor font' loadfont 'heros':text 0 1.1-5*d 'heros font' loadfont 'heroscn':text 0 1.1-6*d 'heroscn font' loadfont 'pagella':text 0 1.1-7*d 'pagella font' loadfont 'schola':text 0 1.1-8*d 'schola font' loadfont 'termes':text 0 1.1-9*d 'termes font' loadfont ''
Function grad draw gradient lines for matrix.
MGL code:
call 'prepare2d' subplot 1 1 0 '':title 'Grad plot':box:grad a:dens a '{u8}w{q8}'
Example of hist (histogram).
MGL code:
new x 10000 '2*rnd-1':new y 10000 '2*rnd-1':copy z exp(-6*(x^2+y^2)) hist xx x z:norm xx 0 1:hist yy y z:norm yy 0 1 multiplot 3 3 3 2 2 '':ranges -1 1 -1 1 0 1:box:dots x y z 'wyrRk' multiplot 3 3 0 2 1 '':ranges -1 1 0 1:box:bars xx multiplot 3 3 5 1 2 '':ranges 0 1 -1 1:box:barh yy subplot 3 3 2:text 0.5 0.5 'Hist and\n{}MultiPlot\n{}sample' 'a' -3
Default UDAV and mgllab icon.
MGL code:
setsize 200 200 zrange 0 2 define $s 0.8 new x 200 '$s*(x+1)/2*sin(2*pi*x)' new y 200 '$s*(x+1)/2*cos(2*pi*x)' new z 200 '$s*(2-(x+1))+0.1' new r 200 '0.02+0.07*(x+1)' subplot 1 1 0 '#' fsurf 'v*cos(2*pi*u)' 'v*sin(2*pi*u)-0.05' 'v/2' 'Yyyww' light on rotate 65 80 tube x y z+0.15 r define $r 0.13 fsurf '0+$r*cos(2*pi*u)*cos(2*pi*v)' '0.03+$r*cos(2*pi*u)*sin(2*pi*v)' '2*$s+0.25+$r*sin(2*pi*u)' 'r' define $r 0.155 fsurf '$r*cos(2*pi*u)*cos(2*pi*v)' '$s+$r*cos(2*pi*u)*sin(2*pi*v)' '0.25+$r*sin(2*pi*u)' 'b'
Function ifs2d generate points for fractals using iterated function system in 2d case.
MGL code:
list A [0.33,0,0,0.33,0,0,0.2] [0.33,0,0,0.33,0.67,0,0.2] [0.33,0,0,0.33,0.33,0.33,0.2]\ [0.33,0,0,0.33,0,0.67,0.2] [0.33,0,0,0.33,0.67,0.67,0.2] ifs2d fx fy A 100000 subplot 1 1 0 '<_':title 'IFS 2d sample' ranges fx fy:axis plot fx fy 'r#o ';size 0.05
Function ifs3d generate points for fractals using iterated function system in 3d case.
MGL code:
list A [0,0,0,0,.18,0,0,0,0,0,0,0,.01] [.85,0,0,0,.85,.1,0,-0.1,0.85,0,1.6,0,.85]\ [.2,-.2,0,.2,.2,0,0,0,0.3,0,0.8,0,.07] [-.2,.2,0,.2,.2,0,0,0,0.3,0,0.8,0,.07] ifs3d f A 100000 title 'IFS 3d sample':rotate 50 60 ranges f(0) f(1) f(2):axis:box dots f(0) f(1) f(2) 'G#o';size 0.05
Comparison of subdata vs evaluate/
MGL code:
subplot 1 1 0 '':title 'SubData vs Evaluate' new in 9 'x^3/1.1':plot in 'ko ':box new arg 99 '4*x+4' evaluate e in arg off:plot e 'b.'; legend 'Evaluate' subdata s in arg:plot s 'r.';legend 'SubData' legend 2
Example of inplot, multiplot, columnplot, gridplot, shearplot, stickplot.
MGL code:
subplot 3 2 0:title 'StickPlot' stickplot 3 0 20 30:box 'r':text 0 0 0 '0' 'r' stickplot 3 1 20 30:box 'g':text 0 0 0 '1' 'g' stickplot 3 2 20 30:box 'b':text 0 9 0 '2' 'b' subplot 3 2 3 '':title 'ColumnPlot' columnplot 3 0:box 'r':text 0 0 '0' 'r' columnplot 3 1:box 'g':text 0 0 '1' 'g' columnplot 3 2:box 'b':text 0 0 '2' 'b' subplot 3 2 4 '':title 'GridPlot' gridplot 2 2 0:box 'r':text 0 0 '0' 'r' gridplot 2 2 1:box 'g':text 0 0 '1' 'g' gridplot 2 2 2:box 'b':text 0 0 '2' 'b' gridplot 2 2 3:box 'm':text 0 0 '3' 'm' subplot 3 2 5 '':title 'InPlot':box inplot 0.4 1 0.6 1 on:box 'r' multiplot 3 2 1 2 1 '':title 'MultiPlot and ShearPlot':box shearplot 3 0 0.2 0.1:box 'r':text 0 0 '0' 'r' shearplot 3 1 0.2 0.1:box 'g':text 0 0 '1' 'g' shearplot 3 2 0.2 0.1:box 'b':text 0 0 '2' 'b'
Function iris draw Iris plot for columns of data array.
MGL code:
read a 'iris.dat' crop a 0 4 'x':rearrange a a.nx 50 subplot 1 1 0 '':title 'Iris plot' iris a 'sepal\n length;sepal\n width;petal\n length;petal\n width' '. ';value -1.5;size -2
Function keep conserve initial phase along specified direction(s).
MGL code:
yrange 0 pi new !a 100 300 'exp(-6*x^2+10i*(x+y^2))'subplot 2 1 0 '':box dens real(a) 'BbwrR' text 1.1 0.5 ' o' 'a'keep a 'y' 50 subplot 2 1 1 '':box dens real(a) 'BbwrR'
Function label print text at data points. The string may contain `%x`, `%y`, `%z` for x-, y-, z-coordinates of points, `%n` for point index.
MGL code:
new ys 10 '0.2*rnd-0.8*sin(pi*x)' subplot 1 1 0 '':title 'Label plot':box:plot ys ' *':label ys 'y=%y'
Function lamerey draw Lamerey diagram.
MGL code:
subplot 1 1 0 '<_':title 'Lamerey sample' axis:xlabel '\i x':ylabel '\bar{\i x} = 2 \i{x}' fplot 'x' 'k=' fplot '2*x' 'b' lamerey 0.00097 '2*x' 'rv~';size 2 lamerey -0.00097 '2*x' 'rv~';size 2
Example of legend styles.
MGL code:
addlegend 'sin(\pi {x^2})' 'b':addlegend 'sin(\pi x)' 'g*' addlegend 'sin(\pi \sqrt{x})' 'rd':addlegend 'jsut text' ' ':addlegend 'no indent for this' '' subplot 2 2 0 '':title 'Legend (default)':box:legend legend 1 0.5 '^':text 0.49 0.88 'Style "\^"' 'A:L' legend 3 'A#':text 0.75 0.65 'Absolute position' 'A' subplot 2 2 2 '':title 'coloring':box:legend 0 'r#':legend 1 'Wb#':legend 2 'ygr#' subplot 2 2 3 '':title 'manual position':box legend 0.5 1:text 0.5 0.5 'at x=0.5, y=1' 'a' legend 1 '#-':text 0.75 0.25 'Horizontal legend' 'a'
Example of light with different types.
MGL code:
light on:attachlight on call 'prepare2d' subplot 2 2 0:title 'Default':rotate 50 60:box:surf a line -1 -0.7 1.7 -1 -0.7 0.7 'BA' subplot 2 2 1:title 'Local':rotate 50 60 light 0 1 0 1 -2 -1 -1 line 1 0 1 -1 -1 0 'BAO':box:surf a subplot 2 2 2:title 'no diffuse':rotate 50 60 diffuse 0 line 1 0 1 -1 -1 0 'BAO':box:surf a subplot 2 2 3:title 'diffusive only':rotate 50 60 diffuse 0.5:light 0 1 0 1 -2 -1 -1 'w' 0 line 1 0 1 -1 -1 0 'BAO':box:surf a
Function lines draw a set of lines.
MGL code:
subplot 1 1 0 '':title 'Lines plot' new x1 11 '0.3*cos(pi*i/5)' new y1 11 '0.3*sin(pi*i/5)' new x2 11 '0.7*cos(pi*i/5)' new y2 11 '0.7*sin(pi*i/5)' plot x1 y1 lines x1 y1 x2 y2 '_A'
Example of log- and log-log- axis labels.
MGL code:
subplot 2 2 0 '<_':title 'Semi-log axis':ranges 0.01 100 -1 1:axis 'lg(x)' '' '' axis:grid 'xy' 'g':fplot 'sin(1/x)':xlabel 'x' 0:ylabel 'y = sin 1/x' 0 subplot 2 2 1 '<_':title 'Log-log axis':ranges 0.01 100 0.1 100:axis 'lg(x)' 'lg(y)' '' axis:grid '!' 'h=':grid:fplot 'sqrt(1+x^2)' xlabel 'x' 0:ylabel 'y = \sqrt{1+x^2}' 0 subplot 2 2 2 '<_':title 'Minus-log axis':ranges -100 -0.01 -100 -0.1:axis '-lg(-x)' '-lg(-y)' '' axis:fplot '-sqrt(1+x^2)':xlabel 'x' 0:ylabel 'y = -\sqrt{1+x^2}' 0 subplot 2 2 3 '<_':title 'Log-ticks':ranges 0.01 100 0 100:axis 'sqrt(x)' '' '' axis:fplot 'x':xlabel 'x' 1:ylabel 'y = x' 0
Example of map.
MGL code:
new a 50 40 'x':new b 50 40 'y':zrange -2 2:text 0 0 '\to' subplot 2 1 0:text 0 1.1 '\{x, y\}' '' -2:box:map a b 'brgk' subplot 2 1 1:text 0 1.1 '\{\frac{x^3+y^3}{2}, \frac{x-y}{2}\}' '' -2 box:fill a '(x^3+y^3)/2':fill b '(x-y)/2':map a b 'brgk'
Example of mark.
MGL code:
call 'prepare1d' subplot 1 1 0 '':title 'Mark plot (default)':box:mark y y1 's'
Example of mask kinds.
MGL code:
new a 10 10 'x' subplot 5 4 0 '':title '"-" mask':dens a '3-' subplot 5 4 1 '':title '"+" mask':dens a '3+' subplot 5 4 2 '':title '"=" mask':dens a '3=' subplot 5 4 3 '':title '";" mask':dens a '3;' subplot 5 4 4 '':title '";I" mask':dens a '3;I' subplot 5 4 5 '':title '"o" mask':dens a '3o' subplot 5 4 6 '':title '"O" mask':dens a '3O' subplot 5 4 7 '':title '"s" mask':dens a '3s' subplot 5 4 8 '':title '"S" mask':dens a '3S' subplot 5 4 9 '':title '";/" mask':dens a '3;/' subplot 5 4 10 '':title '"~" mask':dens a '3~' subplot 5 4 11 '':title '"<" mask':dens a '3<' subplot 5 4 12 '':title '">" mask':dens a '3>' subplot 5 4 13 '':title '"j" mask':dens a '3j' subplot 5 4 14 '':title '"-;\" mask':dens a '3\;' subplot 5 4 15 '':title '"d" mask':dens a '3d' subplot 5 4 16 '':title '"D" mask':dens a '3D' subplot 5 4 17 '':title '"*" mask':dens a '3*' subplot 5 4 18 '':title '"\^" mask':dens a '3^' subplot 5 4 19 '':title 'manual mask' mask '+' '24242424FF0101FF':dens a '3+'
Function mesh draw wired surface. You can use meshnum for changing number of lines to be drawn.
MGL code:
call 'prepare2d' title 'Mesh plot':rotate 50 60:box:mesh a
Function minmax get position of local minimums and maximums.
MGL code:
define $p 30 new h 300 300 '-sqrt(1-x^2-y^2)*(3*x*y^2*$p-x^3*$p+6*y)/(3*sqrt(2))+x*y+(y^2+x^2)*$p/3 -7*(y^2+x^2)^2*$p/24+y^2+3*x^2' minmax e h subplot 1 1 0 '':title 'MinMax sample' crange h:dens h:box fplot 'sin(2*pi*t)' 'cos(2*pi*t)' '0' 'k' plot e(0)*2-1 e(1)*2-1 '. c'
Example of using options.
MGL code:
new a 31 41 '-pi*x*exp(-(y+1)^2-4*x^2)' subplot 2 2 0:title 'Options for coordinates':alpha on:light on:rotate 40 60:box surf a 'r';yrange 0 1:surf a 'b';yrange 0 -1 subplot 2 2 1:title 'Option "meshnum"':rotate 40 60:box mesh a 'r'; yrange 0 1:mesh a 'b';yrange 0 -1; meshnum 5 subplot 2 2 2:title 'Option "alpha"':rotate 40 60:box surf a 'r';yrange 0 1; alpha 0.7:surf a 'b';yrange 0 -1; alpha 0.3 subplot 2 2 3 '<_':title 'Option "legend"' fplot 'x^3' 'r'; legend 'y = x^3':fplot 'cos(pi*x)' 'b'; legend 'y = cos \pi x' box:axis:legend 2
Example of drawing molecules.
MGL code:
alpha on:light on subplot 2 2 0 '':title 'Methane, CH_4':rotate 60 120 sphere 0 0 0 0.25 'k':drop 0 0 0 0 0 1 0.35 'h' 1 2:sphere 0 0 0.7 0.25 'g' drop 0 0 0 -0.94 0 -0.33 0.35 'h' 1 2:sphere -0.66 0 -0.23 0.25 'g' drop 0 0 0 0.47 0.82 -0.33 0.35 'h' 1 2:sphere 0.33 0.57 -0.23 0.25 'g' drop 0 0 0 0.47 -0.82 -0.33 0.35 'h' 1 2:sphere 0.33 -0.57 -0.23 0.25 'g' subplot 2 2 1 '':title 'Water, H{_2}O':rotate 60 100 sphere 0 0 0 0.25 'r':drop 0 0 0 0.3 0.5 0 0.3 'm' 1 2:sphere 0.3 0.5 0 0.25 'g' drop 0 0 0 0.3 -0.5 0 0.3 'm' 1 2:sphere 0.3 -0.5 0 0.25 'g' subplot 2 2 2 '':title 'Oxygen, O_2':rotate 60 120 drop 0 0.5 0 0 -0.3 0 0.3 'm' 1 2:sphere 0 0.5 0 0.25 'r' drop 0 -0.5 0 0 0.3 0 0.3 'm' 1 2:sphere 0 -0.5 0 0.25 'r' subplot 2 2 3 '':title 'Ammonia, NH_3':rotate 60 120 sphere 0 0 0 0.25 'b':drop 0 0 0 0.33 0.57 0 0.32 'n' 1 2 sphere 0.33 0.57 0 0.25 'g':drop 0 0 0 0.33 -0.57 0 0.32 'n' 1 2 sphere 0.33 -0.57 0 0.25 'g':drop 0 0 0 -0.65 0 0 0.32 'n' 1 2 sphere -0.65 0 0 0.25 'g'
Example of phase plain created by ode solving, contour lines (cont) and flow threads.
MGL code:
subplot 2 2 0 '<_':title 'Cont':box axis:xlabel 'x':ylabel '\dot{x}' new f 100 100 'y^2+2*x^3-x^2-0.5':cont f subplot 2 2 1 '<_':title 'Flow':box axis:xlabel 'x':ylabel '\dot{x}' new fx 100 100 'x-3*x^2' new fy 100 100 'y' flow fy fx 'v';value 7 subplot 2 2 2 '<_':title 'ODE':box axis:xlabel 'x':ylabel '\dot{x}' for $x -1 1 0.1 ode r 'y;x-3*x^2' 'xy' [$x,0] plot r(0) r(1) ode r '-y;-x+3*x^2' 'xy' [$x,0] plot r(0) r(1) next
Function ohlc draw Open-High-Low-Close diagram. This diagram show vertical line for between maximal(high) and minimal(low) values, as well as horizontal lines before/after vertical line for initial(open)/final(close) values of some process.
MGL code:
new o 10 '0.5*sin(pi*x)' new c 10 '0.5*sin(pi*(x+2/9))' new l 10 '0.3*rnd-0.8' new h 10 '0.3*rnd+0.5' subplot 1 1 0 '':title 'OHLC plot':box:ohlc o h l c
Example of parametric plots for 1D data.
MGL code:
new x 100 'sin(pi*x)' new y 100 'cos(pi*x)' new z 100 'sin(2*pi*x)' new c 100 'cos(2*pi*x)' subplot 4 3 0:rotate 40 60:box:plot x y z subplot 4 3 1:rotate 40 60:box:area x y z subplot 4 3 2:rotate 40 60:box:tens x y z c subplot 4 3 3:rotate 40 60:box:bars x y z subplot 4 3 4:rotate 40 60:box:stem x y z subplot 4 3 5:rotate 40 60:box:textmark x y z c*2 '\alpha' subplot 4 3 6:rotate 40 60:box:tube x y z c/10 subplot 4 3 7:rotate 40 60:box:mark x y z c 's' subplot 4 3 8:box:error x y z/10 c/10 subplot 4 3 9:rotate 40 60:box:step x y z subplot 4 3 10:rotate 40 60:box:torus x z 'z';light on subplot 4 3 11:rotate 40 60:box:label x y z '%z'
Example of parametric plots for 2D data.
MGL code:
new x 100 100 'sin(pi*(x+y)/2)*cos(pi*y/2)' new y 100 100 'cos(pi*(x+y)/2)*cos(pi*y/2)' new z 100 100 'sin(pi*y/2)' new c 100 100 'cos(pi*x)' subplot 4 4 0:rotate 40 60:box:surf x y z subplot 4 4 1:rotate 40 60:box:surfc x y z c subplot 4 4 2:rotate 40 60:box:surfa x y z c;alpha 1 subplot 4 4 3:rotate 40 60:box:mesh x y z;meshnum 10 subplot 4 4 4:rotate 40 60:box:tile x y z;meshnum 10 subplot 4 4 5:rotate 40 60:box:tiles x y z c;meshnum 10 subplot 4 4 6:rotate 40 60:box:axial x y z;alpha 0.5;light on subplot 4 4 7:rotate 40 60:box:cont x y z subplot 4 4 8:rotate 40 60:box:contf x y z;light on:contv x y z;light on subplot 4 4 9:rotate 40 60:box:belt x y z 'x';meshnum 10;light on subplot 4 4 10:rotate 40 60:box:dens x y z;alpha 0.5 subplot 4 4 11:rotate 40 60:box fall x y z 'g';meshnum 10:fall x y z 'rx';meshnum 10 subplot 4 4 12:rotate 40 60:box:belt x y z '';meshnum 10;light on subplot 4 4 13:rotate 40 60:box:boxs x y z '';meshnum 10;light on subplot 4 4 14:rotate 40 60:box:boxs x y z '#';meshnum 10;light on subplot 4 4 15:rotate 40 60:box:boxs x y z '@';meshnum 10;light on
Example of parametric plots for 3D data.
MGL code:
new x 50 50 50 '(x+2)/3*sin(pi*y/2)' new y 50 50 50 '(x+2)/3*cos(pi*y/2)' new z 50 50 50 'z' new c 50 50 50 '-2*(x^2+y^2+z^4-z^2)+0.2' new d 50 50 50 '1-2*tanh(2*(x+y)^2)' alpha on:light on subplot 4 3 0:rotate 40 60:box:surf3 x y z c subplot 4 3 1:rotate 40 60:box:surf3c x y z c d subplot 4 3 2:rotate 40 60:box:surf3a x y z c d subplot 4 3 3:rotate 40 60:box:cloud x y z c subplot 4 3 4:rotate 40 60:box:cont3 x y z c:cont3 x y z c 'x':cont3 x y z c 'z' subplot 4 3 5:rotate 40 60:box:contf3 x y z c:contf3 x y z c 'x':contf3 x y z c 'z' subplot 4 3 6:rotate 40 60:box:dens3 x y z c:dens3 x y z c 'x':dens3 x y z c 'z' subplot 4 3 7:rotate 40 60:box:dots x y z c;meshnum 15 subplot 4 3 8:rotate 40 60:box:densx c '' 0:densy c '' 0:densz c '' 0 subplot 4 3 9:rotate 40 60:box:contx c '' 0:conty c '' 0:contz c '' 0 subplot 4 3 10:rotate 40 60:box:contfx c '' 0:contfy c '' 0:contfz c '' 0
Example of parametric plots for vector fields.
MGL code:
new x 20 20 20 '(x+2)/3*sin(pi*y/2)' new y 20 20 20 '(x+2)/3*cos(pi*y/2)' new z 20 20 20 'z+x' new ex 20 20 20 'x' new ey 20 20 20 'x^2+y' new ez 20 20 20 'y^2+z' new x1 50 50 '(x+2)/3*sin(pi*y/2)' new y1 50 50 '(x+2)/3*cos(pi*y/2)' new e1 50 50 'x' new e2 50 50 'x^2+y' subplot 3 3 0:rotate 40 60:box:vect x1 y1 e1 e2 subplot 3 3 1:rotate 40 60:box:flow x1 y1 e1 e2 subplot 3 3 2:rotate 40 60:box:pipe x1 y1 e1 e2 subplot 3 3 3:rotate 40 60:box:dew x1 y1 e1 e2 subplot 3 3 4:rotate 40 60:box:vect x y z ex ey ez subplot 3 3 5:rotate 40 60:box vect3 x y z ex ey ez:vect3 x y z ex ey ez 'x':vect3 x y z ex ey ez 'z' grid3 x y z z '{r9}':grid3 x y z z '{g9}x':grid3 x y z z '{b9}z' subplot 3 3 6:rotate 40 60:box:flow x y z ex ey ez subplot 3 3 7:rotate 40 60:box:pipe x y z ex ey ez
Basic MGL script.
MGL code:
title 'MGL parser sample' # call function call 'sample' # ordinary for-loop for $0 -1 1 0.1 if $0<0:line 0 0 1 $0 'r':else:line 0 0 1 $0 'g':endif next # if-elseif-else for $i -1 1 0.5 if $i<0 text 1.1 $i '$i' 'b' elseif $i>0 text 1.1 $i '$i' 'r' else text 1.1 $i '$i' endif next # ordinary do-while do defnum $i $i-0.2 line 0 0 $i 1 'b' while $i>0 # do-next-break do defnum $i $i-0.2 if $i<-1 then break line 0 0 $i 1 'm' next # for-while-continue for $i -5 10 text $i/5 1.1 'a'+($i+5) if $i<0 text $i/5-0.06 1.1 '--' 'b' elseif mod($i,2)=0 text $i/5-0.06 1.1 '~' 'r' else # NOTE: 'continue' bypass the 'while'! continue endif # NOTE: 'while' limit the actual number of iterations while $i<5 # nested loops for $i 0 1 0.1 for $j 0 1 0.1 ball $i $j if $j>0.5 then continue ball $i $j 'b+' next next func 'sample' new dat 100 'sin(2*pi*(i/99+1))' plot dat;xrange -1 0 box:axis xlabel 'x':ylabel 'y' return
Example of pde solver.
MGL code:
new re 128 'exp(-48*(x+0.7)^2)':new im 128 pde a 'p^2+q^2-x-1+i*0.5*(z+x)*(z>-x)' re im 0.01 30 transpose a subplot 1 1 0 '<_':title 'PDE solver' axis:xlabel '\i x':ylabel '\i z' crange 0 1:dens a 'wyrRk' fplot '-x' 'k|' text 0 0.95 'Equation: ik_0\partial_zu + \Delta u + x\cdot u + i \frac{x+z}{2}\cdot u = 0\n{}absorption: (x+z)/2 for x+z>0'
Example of pendelta for lines and glyphs smoothing.
MGL code:
quality 6 list a 0.25 0.5 1 2 4 for $0 0 4 pendelta a($0) define $1 0.5*$0-1 line -1 $1 1 $1 'r' text 0 $1 'delta=',a($0) next
Function pipe is similar to flow but draw pipes (tubes) which radius is proportional to the amplitude of vector field. The color scheme is used for coloring (see Color scheme). At this warm color corresponds to normal flow (like attractor), cold one corresponds to inverse flow (like source).
MGL code:
call 'prepare2v' call 'prepare3v' subplot 2 2 0 '':title 'Pipe plot (default)':light on:box:pipe a b subplot 2 2 1 '':title '"i" style':box:pipe a b 'i' subplot 2 2 2 '':title 'from edges only':box:pipe a b '#' subplot 2 2 3:title '3d variant':rotate 50 60:box:pipe ex ey ez '' 0.1
Function plot is most standard way to visualize 1D data array. By default, Plot
use colors from palette. However, you can specify manual color/palette, and even set to use new color for each points by using `!` style. Another feature is ` ` style which draw only markers without line between points.
MGL code:
call 'prepare1d' subplot 2 2 0 '':title 'Plot plot (default)':box:plot y subplot 2 2 2 '':title ''!' style; 'rgb' palette':box:plot y 'o!rgb' subplot 2 2 3 '':title 'just markers':box:plot y ' +' new yc 30 'sin(pi*x)':new xc 30 'cos(pi*x)':new z 30 'x' subplot 2 2 1:title '3d variant':rotate 50 60:box:plot xc yc z 'rs'
Function pmap draw Poincare map - show intersections of the curve and the surface.
MGL code:
subplot 1 1 0 '<_^':title 'Poincare map sample' ode r 'cos(y)+sin(z);cos(z)+sin(x);cos(x)+sin(y)' 'xyz' [0.1,0,0] 0.1 100 rotate 40 60:copy x r(0):copy y r(1):copy z r(2) ranges x y z axis:plot x y z 'b' xlabel '\i x' 0:ylabel '\i y' 0:zlabel '\i z' pmap x y z z 'b#o' fsurf '0'
Example of primitives: line, curve, rhomb, ellipse, face, sphere, drop, cone.
MGL code:
subplot 2 2 0 '':title 'Line, Curve, Rhomb, Ellipse' '' -1.5 line -1 -1 -0.5 1 'qAI' curve -0.6 -1 1 1 0 1 1 1 'rA' ball 0 -0.5 '*':ball 1 -0.1 '*' rhomb 0 0.4 1 0.9 0.2 'b#' rhomb 0 0 1 0.4 0.2 'cg@' ellipse 0 -0.5 1 -0.1 0.2 'u#' ellipse 0 -1 1 -0.6 0.2 'm@' subplot 2 3 1 '':title 'Arc, Polygon, Symbol';size -1.2 arc -0.6 0 -0.6 0.3 180 '2kA':ball -0.6 0 polygon 0 0 0 0.4 6 'r' new x 50 'cos(3*pi*x)':new y 50 'sin(pi*x)' addsymbol 'a' x y symbol 0.7 0 'a' light on subplot 2 3 3 '<^>' 0 -0.2:title 'Face[xyz]';size -1.5:rotate 50 60:box facex 1 0 -1 1 1 'r':facey -1 -1 -1 1 1 'g':facez 1 -1 -1 -1 1 'b' face -1 -1 1 -1 1 1 1 -1 0 1 1 1 'bmgr' subplot 2 3 5 '':title 'Cone';size -1.5 cone -0.7 -0.3 0 -0.7 0.7 0.5 0.2 0.1 'b':text -0.7 -0.7 'no edges\n(default)';size -1.5 cone 0 -0.3 0 0 0.7 0.5 0.2 0.1 'g@':text 0 -0.7 'with edges\n("\@" style)';size -1.5 cone 0.7 -0.3 0 0.7 0.7 0.5 0.2 0 'Ggb':text 0.7 -0.7 '"arrow" with\n{}gradient';size -1.5 subplot 2 2 2 '':title 'Sphere and Drop' line -0.9 0 1 0.9 0 1 text -0.9 0.4 'sh=0':drop -0.9 0 0 1 0.5 'r' 0:ball -0.9 0 1 'k' text -0.3 0.6 'sh=0.33':drop -0.3 0 0 1 0.5 'r' 0.33:ball -0.3 0 1 'k' text 0.3 0.8 'sh=0.67':drop 0.3 0 0 1 0.5 'r' 0.67:ball 0.3 0 1 'k' text 0.9 1. 'sh=1':drop 0.9 0 0 1 0.5 'r' 1:ball 0.9 0 1 'k' text -0.9 -1.1 'asp=0.33':drop -0.9 -0.7 0 1 0.5 'b' 0 0.33 text -0.3 -1.1 'asp=0.67':drop -0.3 -0.7 0 1 0.5 'b' 0 0.67 text 0.3 -1.1 'asp=1':drop 0.3 -0.7 0 1 0.5 'b' 0 1 text 0.9 -1.1 'asp=1.5':drop 0.9 -0.7 0 1 0.5 'b' 0 1.5
Example of plot projection (ternary=4).
MGL code:
ranges 0 1 0 1 0 1 new x 50 '0.25*(1+cos(2*pi*x))' new y 50 '0.25*(1+sin(2*pi*x))' new z 50 'x' new a 20 30 '30*x*y*(1-x-y)^2*(x+y<1)' new rx 10 'rnd':new ry 10:fill ry '(1-v)*rnd' rx light on title 'Projection sample':ternary 4:rotate 50 60 box:axis:grid plot x y z 'r2':surf a '#' xlabel 'X':ylabel 'Y':zlabel 'Z'
Example of plot projection in ternary coordinates (ternary=5).
MGL code:
ranges 0 1 0 1 0 1 new x 50 '0.25*(1+cos(2*pi*x))' new y 50 '0.25*(1+sin(2*pi*x))' new z 50 'x' new a 20 30 '30*x*y*(1-x-y)^2*(x+y<1)' new rx 10 'rnd':new ry 10:fill ry '(1-v)*rnd' rx light on title 'Projection sample (ternary)':ternary 5:rotate 50 60 box:axis:grid plot x y z 'r2':surf a '#' xlabel 'X':ylabel 'Y':zlabel 'Z'
Example of pulse parameter determining.
MGL code:
subplot 1 1 0 '<_':title 'Pulse sample' new a 100 'exp(-6*x^2)':ranges 0 a.nx-1 0 1 axis:plot a pulse b a 'x' define m a.max line b(1) 0 b(1) m 'r=' line b(1)-b(3)/2 0 b(1)-b(3)/2 m 'm|' line b(1)+b(3)/2 0 b(1)+b(3)/2 m 'm|' line 0 0.5*m a.nx-1 0.5*m 'h' new x 100 'x' plot b(0)*(1-((x-b(1))/b(2))^2) 'g'
Example of PDE solving by quasioptical approach qo2d.
MGL code:
define $1 'p^2+q^2-x-1+i*0.5*(y+x)*(y>-x)' subplot 1 1 0 '<_':title 'Beam and ray tracing' ray r $1 -0.7 -1 0 0 0.5 0 0.02 2:plot r(0) r(1) 'k' axis:xlabel '\i x':ylabel '\i z' new re 128 'exp(-48*x^2)':new im 128 new xx 1:new yy 1 qo2d a $1 re im r 1 30 xx yy crange 0 1:dens xx yy a 'wyrRk':fplot '-x' 'k|' text 0 0.85 'absorption: (x+y)/2 for x+y>0' text 0.7 -0.05 'central ray'
Show all kind of primitives in quality=0.
MGL code:
quality 0 subplot 3 2 0:define y 0.95 define d 0.3:define x0 0.2:define x1 0.5:define x2 0.6 line x0 1-0*d x1 1-0*d 'k-':text x2 y-0*d 'Solid `-`' ':rL' line x0 1-1*d x1 1-1*d 'k|':text x2 y-1*d 'Long Dash `|`' ':rL' line x0 1-2*d x1 1-2*d 'k;':text x2 y-2*d 'Dash 1;`' ':rL' line x0 1-3*d x1 1-3*d 'k=':text x2 y-3*d 'Small dash `=`' ':rL' line x0 1-4*d x1 1-4*d 'kj':text x2 y-4*d 'Dash-dot `j`' ':rL' line x0 1-5*d x1 1-5*d 'ki':text x2 y-5*d 'Small dash-dot `i`' ':rL' line x0 1-6*d x1 1-6*d 'k:':text x2 y-6*d 'Dots `:`' ':rL' line x0 1-7*d x1 1-7*d 'k ':text x2 y-7*d 'None ``' ':rL' define d 0.25:define x0 -0.8:define x1 -1:define x2 -0.05 ball x1 5*d 'k.':text x0 5*d '.' ':rL' ball x1 4*d 'k+':text x0 4*d '+' ':rL' ball x1 3*d 'kx':text x0 3*d 'x' ':rL' ball x1 2*d 'k*':text x0 2*d '*' ':rL' ball x1 d 'ks':text x0 d 's' ':rL' ball x1 0 'kd':text x0 0 'd' ':rL' ball x1 -d 0 'ko':text x0 y-d 'o' ':rL' ball x1 -2*d 0 'k^':text x0 -2*d '\^' ':rL' ball x1 -3*d 0 'kv':text x0 -3*d 'v' ':rL' ball x1 -4*d 0 'k<':text x0 -4*d '<' ':rL' ball x1 -5*d 0 'k>':text x0 -5*d '>' ':rL' define x0 -0.3:define x1 -0.5 ball x1 5*d 'k#.':text x0 5*d '\#.' ':rL' ball x1 4*d 'k#+':text x0 4*d '\#+' ':rL' ball x1 3*d 'k#x':text x0 3*d '\#x' ':rL' ball x1 2*d 'k#*':text x0 2*d '\#*' ':rL' ball x1 d 'k#s':text x0 d '\#s' ':rL' ball x1 0 'k#d':text x0 0 '\#d' ':rL' ball x1 -d 0 'k#o':text x0 -d '\#o' ':rL' ball x1 -2*d 0 'k#^':text x0 -2*d '\#\^' ':rL' ball x1 -3*d 0 'k#v':text x0 -3*d '\#v' ':rL' ball x1 -4*d 0 'k#<':text x0 -4*d '\#<' ':rL' ball x1 -5*d 0 'k#>':text x0 -5*d '\#>' ':rL' subplot 3 2 1 define a 0.1:define b 0.4:define c 0.5 line a 1 b 1 'k-A':text c 1 'Style `A` or `A\_`' ':rL' line a 0.8 b 0.8 'k-V':text c 0.8 'Style `V` or `V\_`' ':rL' line a 0.6 b 0.6 'k-K':text c 0.6 'Style `K` or `K\_`' ':rL' line a 0.4 b 0.4 'k-I':text c 0.4 'Style `I` or `I\_`' ':rL' line a 0.2 b 0.2 'k-D':text c 0.2 'Style `D` or `D\_`' ':rL' line a 0 b 0 'k-S':text c 0 'Style `S` or `S\_`' ':rL' line a -0.2 b -0.2 'k-O':text c -0.2 'Style `O` or `O\_`' ':rL' line a -0.4 b -0.4 'k-T':text c -0.4 'Style `T` or `T\_`' ':rL' line a -0.6 b -0.6 'k-_':text c -0.6 'Style `\_` or none' ':rL' line a -0.8 b -0.8 'k-AS':text c -0.8 'Style `AS`' ':rL' line a -1 b -1 'k-_A':text c -1 'Style `\_A`' ':rL' define a -1:define b -0.7:define c -0.6 line a 1 b 1 'kAA':text c 1 'Style `AA`' ':rL' line a 0.8 b 0.8 'kVV':text c 0.8 'Style `VV`' ':rL' line a 0.6 b 0.6 'kKK':text c 0.6 'Style `KK`' ':rL' line a 0.4 b 0.4 'kII':text c 0.4 'Style `II`' ':rL' line a 0.2 b 0.2 'kDD':text c 0.2 'Style `DD`' ':rL' line a 0 b 0 'kSS':text c 0 'Style `SS`' ':rL' line a -0.2 b -0.2 'kOO':text c -0.2 'Style `OO`' ':rL' line a -0.4 b -0.4 'kTT':text c -0.4 'Style `TT`' ':rL' line a -0.6 b -0.6 'k-__':text c -0.6 'Style `\_\_`' ':rL' line a -0.8 b -0.8 'k-VA':text c -0.8 'Style `VA`' ':rL' line a -1 b -1 'k-AV':text c -1 'Style `AV`' ':rL' subplot 3 2 2 #LENUQ facez -1 -1 0 0.4 0.3 'L#':text -0.8 -0.9 'L' 'w:C' -1.4 facez -0.6 -1 0 0.4 0.3 'E#':text -0.4 -0.9 'E' 'w:C' -1.4 facez -0.2 -1 0 0.4 0.3 'N#':text 0 -0.9 'N' 'w:C' -1.4 facez 0.2 -1 0 0.4 0.3 'U#':text 0.4 -0.9 'U' 'w:C' -1.4 facez 0.6 -1 0 0.4 0.3 'Q#':text 0.8 -0.9 'Q' 'w:C' -1.4 #lenuq facez -1 -0.7 0 0.4 0.3 'l#':text -0.8 -0.6 'l' 'k:C' -1.4 facez -0.6 -0.7 0 0.4 0.3 'e#':text -0.4 -0.6 'e' 'k:C' -1.4 facez -0.2 -0.7 0 0.4 0.3 'n#':text 0 -0.6 'n' 'k:C' -1.4 facez 0.2 -0.7 0 0.4 0.3 'u#':text 0.4 -0.6 'u' 'k:C' -1.4 facez 0.6 -0.7 0 0.4 0.3 'q#':text 0.8 -0.6 'q' 'k:C' -1.4 #CMYkP facez -1 -0.4 0 0.4 0.3 'C#':text -0.8 -0.3 'C' 'w:C' -1.4 facez -0.6 -0.4 0 0.4 0.3 'M#':text -0.4 -0.3 'M' 'w:C' -1.4 facez -0.2 -0.4 0 0.4 0.3 'Y#':text 0 -0.3 'Y' 'w:C' -1.4 facez 0.2 -0.4 0 0.4 0.3 'k#':text 0.4 -0.3 'k' 'w:C' -1.4 facez 0.6 -0.4 0 0.4 0.3 'P#':text 0.8 -0.3 'P' 'w:C' -1.4 #cmywp facez -1 -0.1 0 0.4 0.3 'c#':text -0.8 0 'c' 'k:C' -1.4 facez -0.6 -0.1 0 0.4 0.3 'm#':text -0.4 0 'm' 'k:C' -1.4 facez -0.2 -0.1 0 0.4 0.3 'y#':text 0 0 'y' 'k:C' -1.4 facez 0.2 -0.1 0 0.4 0.3 'w#':text 0.4 0 'w' 'k:C' -1.4 facez 0.6 -0.1 0 0.4 0.3 'p#':text 0.8 0 'p' 'k:C' -1.4 #BGRHW facez -1 0.2 0 0.4 0.3 'B#':text -0.8 0.3 'B' 'w:C' -1.4 facez -0.6 0.2 0 0.4 0.3 'G#':text -0.4 0.3 'G' 'w:C' -1.4 facez -0.2 0.2 0 0.4 0.3 'R#':text 0 0.3 'R' 'w:C' -1.4 facez 0.2 0.2 0 0.4 0.3 'H#':text 0.4 0.3 'H' 'w:C' -1.4 facez 0.6 0.2 0 0.4 0.3 'W#':text 0.8 0.3 'W' 'w:C' -1.4 #bgrhw facez -1 0.5 0 0.4 0.3 'b#':text -0.8 0.6 'b' 'k:C' -1.4 facez -0.6 0.5 0 0.4 0.3 'g#':text -0.4 0.6 'g' 'k:C' -1.4 facez -0.2 0.5 0 0.4 0.3 'r#':text 0 0.6 'r' 'k:C' -1.4 facez 0.2 0.5 0 0.4 0.3 'h#':text 0.4 0.6 'h' 'k:C' -1.4 facez 0.6 0.5 0 0.4 0.3 'w#':text 0.8 0.6 'w' 'k:C' -1.4 #brighted facez -1 0.8 0 0.4 0.3 '{r1}#':text -0.8 0.9 '\{r1\}' 'w:C' -1.4 facez -0.6 0.8 0 0.4 0.3 '{r3}#':text -0.4 0.9 '\{r3\}' 'w:C' -1.4 facez -0.2 0.8 0 0.4 0.3 '{r5}#':text 0 0.9 '\{r5\}' 'k:C' -1.4 facez 0.2 0.8 0 0.4 0.3 '{r7}#':text 0.4 0.9 '\{r7\}' 'k:C' -1.4 facez 0.6 0.8 0 0.4 0.3 '{r9}#':text 0.8 0.9 '\{r9\}' 'k:C' -1.4 # HEX facez -1 -1.3 0 1 0.3 '{xff9966}#':text -0.5 -1.2 '\{xff9966\}' 'k:C' -1.4 facez 0 -1.3 0 1 0.3 '{x83CAFF}#':text 0.5 -1.2 '\{x83caff\}' 'k:C' -1.4 subplot 3 2 3 for $i 0 9 line -1 0.2*$i-1 1 0.2*$i-1 'r','0'+$i text 1.05 0.2*$i-1 '0'+$i ':L' next subplot 3 2 4:title 'TriPlot sample':rotate 50 60 list tt 0 1 2 | 0 1 3 | 0 2 3 | 1 2 3 list xt -1 1 0 0:list yt -1 -1 1 0:list zt -1 -1 -1 1:light on triplot tt xt yt zt 'b':triplot tt xt yt zt 'k#' subplot 3 2 5:new r 4 'i+1':ranges 1 4 1 4 axis:mark r r 's':plot r 'b'
Show all kind of primitives in quality=1.
MGL code:
quality 1 subplot 3 2 0:define y 0.95 define d 0.3:define x0 0.2:define x1 0.5:define x2 0.6 line x0 1-0*d x1 1-0*d 'k-':text x2 y-0*d 'Solid `-`' ':rL' line x0 1-1*d x1 1-1*d 'k|':text x2 y-1*d 'Long Dash `|`' ':rL' line x0 1-2*d x1 1-2*d 'k;':text x2 y-2*d 'Dash 1;`' ':rL' line x0 1-3*d x1 1-3*d 'k=':text x2 y-3*d 'Small dash `=`' ':rL' line x0 1-4*d x1 1-4*d 'kj':text x2 y-4*d 'Dash-dot `j`' ':rL' line x0 1-5*d x1 1-5*d 'ki':text x2 y-5*d 'Small dash-dot `i`' ':rL' line x0 1-6*d x1 1-6*d 'k:':text x2 y-6*d 'Dots `:`' ':rL' line x0 1-7*d x1 1-7*d 'k ':text x2 y-7*d 'None ``' ':rL' define d 0.25:define x0 -0.8:define x1 -1:define x2 -0.05 ball x1 5*d 'k.':text x0 5*d '.' ':rL' ball x1 4*d 'k+':text x0 4*d '+' ':rL' ball x1 3*d 'kx':text x0 3*d 'x' ':rL' ball x1 2*d 'k*':text x0 2*d '*' ':rL' ball x1 d 'ks':text x0 d 's' ':rL' ball x1 0 'kd':text x0 0 'd' ':rL' ball x1 -d 0 'ko':text x0 y-d 'o' ':rL' ball x1 -2*d 0 'k^':text x0 -2*d '\^' ':rL' ball x1 -3*d 0 'kv':text x0 -3*d 'v' ':rL' ball x1 -4*d 0 'k<':text x0 -4*d '<' ':rL' ball x1 -5*d 0 'k>':text x0 -5*d '>' ':rL' define x0 -0.3:define x1 -0.5 ball x1 5*d 'k#.':text x0 5*d '\#.' ':rL' ball x1 4*d 'k#+':text x0 4*d '\#+' ':rL' ball x1 3*d 'k#x':text x0 3*d '\#x' ':rL' ball x1 2*d 'k#*':text x0 2*d '\#*' ':rL' ball x1 d 'k#s':text x0 d '\#s' ':rL' ball x1 0 'k#d':text x0 0 '\#d' ':rL' ball x1 -d 0 'k#o':text x0 -d '\#o' ':rL' ball x1 -2*d 0 'k#^':text x0 -2*d '\#\^' ':rL' ball x1 -3*d 0 'k#v':text x0 -3*d '\#v' ':rL' ball x1 -4*d 0 'k#<':text x0 -4*d '\#<' ':rL' ball x1 -5*d 0 'k#>':text x0 -5*d '\#>' ':rL' subplot 3 2 1 define a 0.1:define b 0.4:define c 0.5 line a 1 b 1 'k-A':text c 1 'Style `A` or `A\_`' ':rL' line a 0.8 b 0.8 'k-V':text c 0.8 'Style `V` or `V\_`' ':rL' line a 0.6 b 0.6 'k-K':text c 0.6 'Style `K` or `K\_`' ':rL' line a 0.4 b 0.4 'k-I':text c 0.4 'Style `I` or `I\_`' ':rL' line a 0.2 b 0.2 'k-D':text c 0.2 'Style `D` or `D\_`' ':rL' line a 0 b 0 'k-S':text c 0 'Style `S` or `S\_`' ':rL' line a -0.2 b -0.2 'k-O':text c -0.2 'Style `O` or `O\_`' ':rL' line a -0.4 b -0.4 'k-T':text c -0.4 'Style `T` or `T\_`' ':rL' line a -0.6 b -0.6 'k-_':text c -0.6 'Style `\_` or none' ':rL' line a -0.8 b -0.8 'k-AS':text c -0.8 'Style `AS`' ':rL' line a -1 b -1 'k-_A':text c -1 'Style `\_A`' ':rL' define a -1:define b -0.7:define c -0.6 line a 1 b 1 'kAA':text c 1 'Style `AA`' ':rL' line a 0.8 b 0.8 'kVV':text c 0.8 'Style `VV`' ':rL' line a 0.6 b 0.6 'kKK':text c 0.6 'Style `KK`' ':rL' line a 0.4 b 0.4 'kII':text c 0.4 'Style `II`' ':rL' line a 0.2 b 0.2 'kDD':text c 0.2 'Style `DD`' ':rL' line a 0 b 0 'kSS':text c 0 'Style `SS`' ':rL' line a -0.2 b -0.2 'kOO':text c -0.2 'Style `OO`' ':rL' line a -0.4 b -0.4 'kTT':text c -0.4 'Style `TT`' ':rL' line a -0.6 b -0.6 'k-__':text c -0.6 'Style `\_\_`' ':rL' line a -0.8 b -0.8 'k-VA':text c -0.8 'Style `VA`' ':rL' line a -1 b -1 'k-AV':text c -1 'Style `AV`' ':rL' subplot 3 2 2 #LENUQ facez -1 -1 0 0.4 0.3 'L#':text -0.8 -0.9 'L' 'w:C' -1.4 facez -0.6 -1 0 0.4 0.3 'E#':text -0.4 -0.9 'E' 'w:C' -1.4 facez -0.2 -1 0 0.4 0.3 'N#':text 0 -0.9 'N' 'w:C' -1.4 facez 0.2 -1 0 0.4 0.3 'U#':text 0.4 -0.9 'U' 'w:C' -1.4 facez 0.6 -1 0 0.4 0.3 'Q#':text 0.8 -0.9 'Q' 'w:C' -1.4 #lenuq facez -1 -0.7 0 0.4 0.3 'l#':text -0.8 -0.6 'l' 'k:C' -1.4 facez -0.6 -0.7 0 0.4 0.3 'e#':text -0.4 -0.6 'e' 'k:C' -1.4 facez -0.2 -0.7 0 0.4 0.3 'n#':text 0 -0.6 'n' 'k:C' -1.4 facez 0.2 -0.7 0 0.4 0.3 'u#':text 0.4 -0.6 'u' 'k:C' -1.4 facez 0.6 -0.7 0 0.4 0.3 'q#':text 0.8 -0.6 'q' 'k:C' -1.4 #CMYkP facez -1 -0.4 0 0.4 0.3 'C#':text -0.8 -0.3 'C' 'w:C' -1.4 facez -0.6 -0.4 0 0.4 0.3 'M#':text -0.4 -0.3 'M' 'w:C' -1.4 facez -0.2 -0.4 0 0.4 0.3 'Y#':text 0 -0.3 'Y' 'w:C' -1.4 facez 0.2 -0.4 0 0.4 0.3 'k#':text 0.4 -0.3 'k' 'w:C' -1.4 facez 0.6 -0.4 0 0.4 0.3 'P#':text 0.8 -0.3 'P' 'w:C' -1.4 #cmywp facez -1 -0.1 0 0.4 0.3 'c#':text -0.8 0 'c' 'k:C' -1.4 facez -0.6 -0.1 0 0.4 0.3 'm#':text -0.4 0 'm' 'k:C' -1.4 facez -0.2 -0.1 0 0.4 0.3 'y#':text 0 0 'y' 'k:C' -1.4 facez 0.2 -0.1 0 0.4 0.3 'w#':text 0.4 0 'w' 'k:C' -1.4 facez 0.6 -0.1 0 0.4 0.3 'p#':text 0.8 0 'p' 'k:C' -1.4 #BGRHW facez -1 0.2 0 0.4 0.3 'B#':text -0.8 0.3 'B' 'w:C' -1.4 facez -0.6 0.2 0 0.4 0.3 'G#':text -0.4 0.3 'G' 'w:C' -1.4 facez -0.2 0.2 0 0.4 0.3 'R#':text 0 0.3 'R' 'w:C' -1.4 facez 0.2 0.2 0 0.4 0.3 'H#':text 0.4 0.3 'H' 'w:C' -1.4 facez 0.6 0.2 0 0.4 0.3 'W#':text 0.8 0.3 'W' 'w:C' -1.4 #bgrhw facez -1 0.5 0 0.4 0.3 'b#':text -0.8 0.6 'b' 'k:C' -1.4 facez -0.6 0.5 0 0.4 0.3 'g#':text -0.4 0.6 'g' 'k:C' -1.4 facez -0.2 0.5 0 0.4 0.3 'r#':text 0 0.6 'r' 'k:C' -1.4 facez 0.2 0.5 0 0.4 0.3 'h#':text 0.4 0.6 'h' 'k:C' -1.4 facez 0.6 0.5 0 0.4 0.3 'w#':text 0.8 0.6 'w' 'k:C' -1.4 #brighted facez -1 0.8 0 0.4 0.3 '{r1}#':text -0.8 0.9 '\{r1\}' 'w:C' -1.4 facez -0.6 0.8 0 0.4 0.3 '{r3}#':text -0.4 0.9 '\{r3\}' 'w:C' -1.4 facez -0.2 0.8 0 0.4 0.3 '{r5}#':text 0 0.9 '\{r5\}' 'k:C' -1.4 facez 0.2 0.8 0 0.4 0.3 '{r7}#':text 0.4 0.9 '\{r7\}' 'k:C' -1.4 facez 0.6 0.8 0 0.4 0.3 '{r9}#':text 0.8 0.9 '\{r9\}' 'k:C' -1.4 # HEX facez -1 -1.3 0 1 0.3 '{xff9966}#':text -0.5 -1.2 '\{xff9966\}' 'k:C' -1.4 facez 0 -1.3 0 1 0.3 '{x83CAFF}#':text 0.5 -1.2 '\{x83caff\}' 'k:C' -1.4 subplot 3 2 3 for $i 0 9 line -1 0.2*$i-1 1 0.2*$i-1 'r','0'+$i text 1.05 0.2*$i-1 '0'+$i ':L' next subplot 3 2 4:title 'TriPlot sample':rotate 50 60 list tt 0 1 2 | 0 1 3 | 0 2 3 | 1 2 3 list xt -1 1 0 0:list yt -1 -1 1 0:list zt -1 -1 -1 1:light on triplot tt xt yt zt 'b':triplot tt xt yt zt 'k#' subplot 3 2 5:new r 4 'i+1':ranges 1 4 1 4 axis:mark r r 's':plot r 'b'
Show all kind of primitives in quality=2.
MGL code:
quality 2 subplot 3 2 0:define y 0.95 define d 0.3:define x0 0.2:define x1 0.5:define x2 0.6 line x0 1-0*d x1 1-0*d 'k-':text x2 y-0*d 'Solid `-`' ':rL' line x0 1-1*d x1 1-1*d 'k|':text x2 y-1*d 'Long Dash `|`' ':rL' line x0 1-2*d x1 1-2*d 'k;':text x2 y-2*d 'Dash 1;`' ':rL' line x0 1-3*d x1 1-3*d 'k=':text x2 y-3*d 'Small dash `=`' ':rL' line x0 1-4*d x1 1-4*d 'kj':text x2 y-4*d 'Dash-dot `j`' ':rL' line x0 1-5*d x1 1-5*d 'ki':text x2 y-5*d 'Small dash-dot `i`' ':rL' line x0 1-6*d x1 1-6*d 'k:':text x2 y-6*d 'Dots `:`' ':rL' line x0 1-7*d x1 1-7*d 'k ':text x2 y-7*d 'None ``' ':rL' define d 0.25:define x0 -0.8:define x1 -1:define x2 -0.05 ball x1 5*d 'k.':text x0 5*d '.' ':rL' ball x1 4*d 'k+':text x0 4*d '+' ':rL' ball x1 3*d 'kx':text x0 3*d 'x' ':rL' ball x1 2*d 'k*':text x0 2*d '*' ':rL' ball x1 d 'ks':text x0 d 's' ':rL' ball x1 0 'kd':text x0 0 'd' ':rL' ball x1 -d 0 'ko':text x0 y-d 'o' ':rL' ball x1 -2*d 0 'k^':text x0 -2*d '\^' ':rL' ball x1 -3*d 0 'kv':text x0 -3*d 'v' ':rL' ball x1 -4*d 0 'k<':text x0 -4*d '<' ':rL' ball x1 -5*d 0 'k>':text x0 -5*d '>' ':rL' define x0 -0.3:define x1 -0.5 ball x1 5*d 'k#.':text x0 5*d '\#.' ':rL' ball x1 4*d 'k#+':text x0 4*d '\#+' ':rL' ball x1 3*d 'k#x':text x0 3*d '\#x' ':rL' ball x1 2*d 'k#*':text x0 2*d '\#*' ':rL' ball x1 d 'k#s':text x0 d '\#s' ':rL' ball x1 0 'k#d':text x0 0 '\#d' ':rL' ball x1 -d 0 'k#o':text x0 -d '\#o' ':rL' ball x1 -2*d 0 'k#^':text x0 -2*d '\#\^' ':rL' ball x1 -3*d 0 'k#v':text x0 -3*d '\#v' ':rL' ball x1 -4*d 0 'k#<':text x0 -4*d '\#<' ':rL' ball x1 -5*d 0 'k#>':text x0 -5*d '\#>' ':rL' subplot 3 2 1 define a 0.1:define b 0.4:define c 0.5 line a 1 b 1 'k-A':text c 1 'Style `A` or `A\_`' ':rL' line a 0.8 b 0.8 'k-V':text c 0.8 'Style `V` or `V\_`' ':rL' line a 0.6 b 0.6 'k-K':text c 0.6 'Style `K` or `K\_`' ':rL' line a 0.4 b 0.4 'k-I':text c 0.4 'Style `I` or `I\_`' ':rL' line a 0.2 b 0.2 'k-D':text c 0.2 'Style `D` or `D\_`' ':rL' line a 0 b 0 'k-S':text c 0 'Style `S` or `S\_`' ':rL' line a -0.2 b -0.2 'k-O':text c -0.2 'Style `O` or `O\_`' ':rL' line a -0.4 b -0.4 'k-T':text c -0.4 'Style `T` or `T\_`' ':rL' line a -0.6 b -0.6 'k-_':text c -0.6 'Style `\_` or none' ':rL' line a -0.8 b -0.8 'k-AS':text c -0.8 'Style `AS`' ':rL' line a -1 b -1 'k-_A':text c -1 'Style `\_A`' ':rL' define a -1:define b -0.7:define c -0.6 line a 1 b 1 'kAA':text c 1 'Style `AA`' ':rL' line a 0.8 b 0.8 'kVV':text c 0.8 'Style `VV`' ':rL' line a 0.6 b 0.6 'kKK':text c 0.6 'Style `KK`' ':rL' line a 0.4 b 0.4 'kII':text c 0.4 'Style `II`' ':rL' line a 0.2 b 0.2 'kDD':text c 0.2 'Style `DD`' ':rL' line a 0 b 0 'kSS':text c 0 'Style `SS`' ':rL' line a -0.2 b -0.2 'kOO':text c -0.2 'Style `OO`' ':rL' line a -0.4 b -0.4 'kTT':text c -0.4 'Style `TT`' ':rL' line a -0.6 b -0.6 'k-__':text c -0.6 'Style `\_\_`' ':rL' line a -0.8 b -0.8 'k-VA':text c -0.8 'Style `VA`' ':rL' line a -1 b -1 'k-AV':text c -1 'Style `AV`' ':rL' subplot 3 2 2 #LENUQ facez -1 -1 0 0.4 0.3 'L#':text -0.8 -0.9 'L' 'w:C' -1.4 facez -0.6 -1 0 0.4 0.3 'E#':text -0.4 -0.9 'E' 'w:C' -1.4 facez -0.2 -1 0 0.4 0.3 'N#':text 0 -0.9 'N' 'w:C' -1.4 facez 0.2 -1 0 0.4 0.3 'U#':text 0.4 -0.9 'U' 'w:C' -1.4 facez 0.6 -1 0 0.4 0.3 'Q#':text 0.8 -0.9 'Q' 'w:C' -1.4 #lenuq facez -1 -0.7 0 0.4 0.3 'l#':text -0.8 -0.6 'l' 'k:C' -1.4 facez -0.6 -0.7 0 0.4 0.3 'e#':text -0.4 -0.6 'e' 'k:C' -1.4 facez -0.2 -0.7 0 0.4 0.3 'n#':text 0 -0.6 'n' 'k:C' -1.4 facez 0.2 -0.7 0 0.4 0.3 'u#':text 0.4 -0.6 'u' 'k:C' -1.4 facez 0.6 -0.7 0 0.4 0.3 'q#':text 0.8 -0.6 'q' 'k:C' -1.4 #CMYkP facez -1 -0.4 0 0.4 0.3 'C#':text -0.8 -0.3 'C' 'w:C' -1.4 facez -0.6 -0.4 0 0.4 0.3 'M#':text -0.4 -0.3 'M' 'w:C' -1.4 facez -0.2 -0.4 0 0.4 0.3 'Y#':text 0 -0.3 'Y' 'w:C' -1.4 facez 0.2 -0.4 0 0.4 0.3 'k#':text 0.4 -0.3 'k' 'w:C' -1.4 facez 0.6 -0.4 0 0.4 0.3 'P#':text 0.8 -0.3 'P' 'w:C' -1.4 #cmywp facez -1 -0.1 0 0.4 0.3 'c#':text -0.8 0 'c' 'k:C' -1.4 facez -0.6 -0.1 0 0.4 0.3 'm#':text -0.4 0 'm' 'k:C' -1.4 facez -0.2 -0.1 0 0.4 0.3 'y#':text 0 0 'y' 'k:C' -1.4 facez 0.2 -0.1 0 0.4 0.3 'w#':text 0.4 0 'w' 'k:C' -1.4 facez 0.6 -0.1 0 0.4 0.3 'p#':text 0.8 0 'p' 'k:C' -1.4 #BGRHW facez -1 0.2 0 0.4 0.3 'B#':text -0.8 0.3 'B' 'w:C' -1.4 facez -0.6 0.2 0 0.4 0.3 'G#':text -0.4 0.3 'G' 'w:C' -1.4 facez -0.2 0.2 0 0.4 0.3 'R#':text 0 0.3 'R' 'w:C' -1.4 facez 0.2 0.2 0 0.4 0.3 'H#':text 0.4 0.3 'H' 'w:C' -1.4 facez 0.6 0.2 0 0.4 0.3 'W#':text 0.8 0.3 'W' 'w:C' -1.4 #bgrhw facez -1 0.5 0 0.4 0.3 'b#':text -0.8 0.6 'b' 'k:C' -1.4 facez -0.6 0.5 0 0.4 0.3 'g#':text -0.4 0.6 'g' 'k:C' -1.4 facez -0.2 0.5 0 0.4 0.3 'r#':text 0 0.6 'r' 'k:C' -1.4 facez 0.2 0.5 0 0.4 0.3 'h#':text 0.4 0.6 'h' 'k:C' -1.4 facez 0.6 0.5 0 0.4 0.3 'w#':text 0.8 0.6 'w' 'k:C' -1.4 #brighted facez -1 0.8 0 0.4 0.3 '{r1}#':text -0.8 0.9 '\{r1\}' 'w:C' -1.4 facez -0.6 0.8 0 0.4 0.3 '{r3}#':text -0.4 0.9 '\{r3\}' 'w:C' -1.4 facez -0.2 0.8 0 0.4 0.3 '{r5}#':text 0 0.9 '\{r5\}' 'k:C' -1.4 facez 0.2 0.8 0 0.4 0.3 '{r7}#':text 0.4 0.9 '\{r7\}' 'k:C' -1.4 facez 0.6 0.8 0 0.4 0.3 '{r9}#':text 0.8 0.9 '\{r9\}' 'k:C' -1.4 # HEX facez -1 -1.3 0 1 0.3 '{xff9966}#':text -0.5 -1.2 '\{xff9966\}' 'k:C' -1.4 facez 0 -1.3 0 1 0.3 '{x83CAFF}#':text 0.5 -1.2 '\{x83caff\}' 'k:C' -1.4 subplot 3 2 3 for $i 0 9 line -1 0.2*$i-1 1 0.2*$i-1 'r','0'+$i text 1.05 0.2*$i-1 '0'+$i ':L' next subplot 3 2 4:title 'TriPlot sample':rotate 50 60 list tt 0 1 2 | 0 1 3 | 0 2 3 | 1 2 3 list xt -1 1 0 0:list yt -1 -1 1 0:list zt -1 -1 -1 1:light on triplot tt xt yt zt 'b':triplot tt xt yt zt 'k#' subplot 3 2 5:new r 4 'i+1':ranges 1 4 1 4 axis:mark r r 's':plot r 'b'
Show all kind of primitives in quality=4.
MGL code:
quality 4 subplot 3 2 0:define y 0.95 define d 0.3:define x0 0.2:define x1 0.5:define x2 0.6 line x0 1-0*d x1 1-0*d 'k-':text x2 y-0*d 'Solid `-`' ':rL' line x0 1-1*d x1 1-1*d 'k|':text x2 y-1*d 'Long Dash `|`' ':rL' line x0 1-2*d x1 1-2*d 'k;':text x2 y-2*d 'Dash 1;`' ':rL' line x0 1-3*d x1 1-3*d 'k=':text x2 y-3*d 'Small dash `=`' ':rL' line x0 1-4*d x1 1-4*d 'kj':text x2 y-4*d 'Dash-dot `j`' ':rL' line x0 1-5*d x1 1-5*d 'ki':text x2 y-5*d 'Small dash-dot `i`' ':rL' line x0 1-6*d x1 1-6*d 'k:':text x2 y-6*d 'Dots `:`' ':rL' line x0 1-7*d x1 1-7*d 'k ':text x2 y-7*d 'None ``' ':rL' define d 0.25:define x0 -0.8:define x1 -1:define x2 -0.05 ball x1 5*d 'k.':text x0 5*d '.' ':rL' ball x1 4*d 'k+':text x0 4*d '+' ':rL' ball x1 3*d 'kx':text x0 3*d 'x' ':rL' ball x1 2*d 'k*':text x0 2*d '*' ':rL' ball x1 d 'ks':text x0 d 's' ':rL' ball x1 0 'kd':text x0 0 'd' ':rL' ball x1 -d 0 'ko':text x0 y-d 'o' ':rL' ball x1 -2*d 0 'k^':text x0 -2*d '\^' ':rL' ball x1 -3*d 0 'kv':text x0 -3*d 'v' ':rL' ball x1 -4*d 0 'k<':text x0 -4*d '<' ':rL' ball x1 -5*d 0 'k>':text x0 -5*d '>' ':rL' define x0 -0.3:define x1 -0.5 ball x1 5*d 'k#.':text x0 5*d '\#.' ':rL' ball x1 4*d 'k#+':text x0 4*d '\#+' ':rL' ball x1 3*d 'k#x':text x0 3*d '\#x' ':rL' ball x1 2*d 'k#*':text x0 2*d '\#*' ':rL' ball x1 d 'k#s':text x0 d '\#s' ':rL' ball x1 0 'k#d':text x0 0 '\#d' ':rL' ball x1 -d 0 'k#o':text x0 -d '\#o' ':rL' ball x1 -2*d 0 'k#^':text x0 -2*d '\#\^' ':rL' ball x1 -3*d 0 'k#v':text x0 -3*d '\#v' ':rL' ball x1 -4*d 0 'k#<':text x0 -4*d '\#<' ':rL' ball x1 -5*d 0 'k#>':text x0 -5*d '\#>' ':rL' subplot 3 2 1 define a 0.1:define b 0.4:define c 0.5 line a 1 b 1 'k-A':text c 1 'Style `A` or `A\_`' ':rL' line a 0.8 b 0.8 'k-V':text c 0.8 'Style `V` or `V\_`' ':rL' line a 0.6 b 0.6 'k-K':text c 0.6 'Style `K` or `K\_`' ':rL' line a 0.4 b 0.4 'k-I':text c 0.4 'Style `I` or `I\_`' ':rL' line a 0.2 b 0.2 'k-D':text c 0.2 'Style `D` or `D\_`' ':rL' line a 0 b 0 'k-S':text c 0 'Style `S` or `S\_`' ':rL' line a -0.2 b -0.2 'k-O':text c -0.2 'Style `O` or `O\_`' ':rL' line a -0.4 b -0.4 'k-T':text c -0.4 'Style `T` or `T\_`' ':rL' line a -0.6 b -0.6 'k-_':text c -0.6 'Style `\_` or none' ':rL' line a -0.8 b -0.8 'k-AS':text c -0.8 'Style `AS`' ':rL' line a -1 b -1 'k-_A':text c -1 'Style `\_A`' ':rL' define a -1:define b -0.7:define c -0.6 line a 1 b 1 'kAA':text c 1 'Style `AA`' ':rL' line a 0.8 b 0.8 'kVV':text c 0.8 'Style `VV`' ':rL' line a 0.6 b 0.6 'kKK':text c 0.6 'Style `KK`' ':rL' line a 0.4 b 0.4 'kII':text c 0.4 'Style `II`' ':rL' line a 0.2 b 0.2 'kDD':text c 0.2 'Style `DD`' ':rL' line a 0 b 0 'kSS':text c 0 'Style `SS`' ':rL' line a -0.2 b -0.2 'kOO':text c -0.2 'Style `OO`' ':rL' line a -0.4 b -0.4 'kTT':text c -0.4 'Style `TT`' ':rL' line a -0.6 b -0.6 'k-__':text c -0.6 'Style `\_\_`' ':rL' line a -0.8 b -0.8 'k-VA':text c -0.8 'Style `VA`' ':rL' line a -1 b -1 'k-AV':text c -1 'Style `AV`' ':rL' subplot 3 2 2 #LENUQ facez -1 -1 0 0.4 0.3 'L#':text -0.8 -0.9 'L' 'w:C' -1.4 facez -0.6 -1 0 0.4 0.3 'E#':text -0.4 -0.9 'E' 'w:C' -1.4 facez -0.2 -1 0 0.4 0.3 'N#':text 0 -0.9 'N' 'w:C' -1.4 facez 0.2 -1 0 0.4 0.3 'U#':text 0.4 -0.9 'U' 'w:C' -1.4 facez 0.6 -1 0 0.4 0.3 'Q#':text 0.8 -0.9 'Q' 'w:C' -1.4 #lenuq facez -1 -0.7 0 0.4 0.3 'l#':text -0.8 -0.6 'l' 'k:C' -1.4 facez -0.6 -0.7 0 0.4 0.3 'e#':text -0.4 -0.6 'e' 'k:C' -1.4 facez -0.2 -0.7 0 0.4 0.3 'n#':text 0 -0.6 'n' 'k:C' -1.4 facez 0.2 -0.7 0 0.4 0.3 'u#':text 0.4 -0.6 'u' 'k:C' -1.4 facez 0.6 -0.7 0 0.4 0.3 'q#':text 0.8 -0.6 'q' 'k:C' -1.4 #CMYkP facez -1 -0.4 0 0.4 0.3 'C#':text -0.8 -0.3 'C' 'w:C' -1.4 facez -0.6 -0.4 0 0.4 0.3 'M#':text -0.4 -0.3 'M' 'w:C' -1.4 facez -0.2 -0.4 0 0.4 0.3 'Y#':text 0 -0.3 'Y' 'w:C' -1.4 facez 0.2 -0.4 0 0.4 0.3 'k#':text 0.4 -0.3 'k' 'w:C' -1.4 facez 0.6 -0.4 0 0.4 0.3 'P#':text 0.8 -0.3 'P' 'w:C' -1.4 #cmywp facez -1 -0.1 0 0.4 0.3 'c#':text -0.8 0 'c' 'k:C' -1.4 facez -0.6 -0.1 0 0.4 0.3 'm#':text -0.4 0 'm' 'k:C' -1.4 facez -0.2 -0.1 0 0.4 0.3 'y#':text 0 0 'y' 'k:C' -1.4 facez 0.2 -0.1 0 0.4 0.3 'w#':text 0.4 0 'w' 'k:C' -1.4 facez 0.6 -0.1 0 0.4 0.3 'p#':text 0.8 0 'p' 'k:C' -1.4 #BGRHW facez -1 0.2 0 0.4 0.3 'B#':text -0.8 0.3 'B' 'w:C' -1.4 facez -0.6 0.2 0 0.4 0.3 'G#':text -0.4 0.3 'G' 'w:C' -1.4 facez -0.2 0.2 0 0.4 0.3 'R#':text 0 0.3 'R' 'w:C' -1.4 facez 0.2 0.2 0 0.4 0.3 'H#':text 0.4 0.3 'H' 'w:C' -1.4 facez 0.6 0.2 0 0.4 0.3 'W#':text 0.8 0.3 'W' 'w:C' -1.4 #bgrhw facez -1 0.5 0 0.4 0.3 'b#':text -0.8 0.6 'b' 'k:C' -1.4 facez -0.6 0.5 0 0.4 0.3 'g#':text -0.4 0.6 'g' 'k:C' -1.4 facez -0.2 0.5 0 0.4 0.3 'r#':text 0 0.6 'r' 'k:C' -1.4 facez 0.2 0.5 0 0.4 0.3 'h#':text 0.4 0.6 'h' 'k:C' -1.4 facez 0.6 0.5 0 0.4 0.3 'w#':text 0.8 0.6 'w' 'k:C' -1.4 #brighted facez -1 0.8 0 0.4 0.3 '{r1}#':text -0.8 0.9 '\{r1\}' 'w:C' -1.4 facez -0.6 0.8 0 0.4 0.3 '{r3}#':text -0.4 0.9 '\{r3\}' 'w:C' -1.4 facez -0.2 0.8 0 0.4 0.3 '{r5}#':text 0 0.9 '\{r5\}' 'k:C' -1.4 facez 0.2 0.8 0 0.4 0.3 '{r7}#':text 0.4 0.9 '\{r7\}' 'k:C' -1.4 facez 0.6 0.8 0 0.4 0.3 '{r9}#':text 0.8 0.9 '\{r9\}' 'k:C' -1.4 # HEX facez -1 -1.3 0 1 0.3 '{xff9966}#':text -0.5 -1.2 '\{xff9966\}' 'k:C' -1.4 facez 0 -1.3 0 1 0.3 '{x83CAFF}#':text 0.5 -1.2 '\{x83caff\}' 'k:C' -1.4 subplot 3 2 3 for $i 0 9 line -1 0.2*$i-1 1 0.2*$i-1 'r','0'+$i text 1.05 0.2*$i-1 '0'+$i ':L' next subplot 3 2 4:title 'TriPlot sample':rotate 50 60 list tt 0 1 2 | 0 1 3 | 0 2 3 | 1 2 3 list xt -1 1 0 0:list yt -1 -1 1 0:list zt -1 -1 -1 1:light on triplot tt xt yt zt 'b':triplot tt xt yt zt 'k#' subplot 3 2 5:new r 4 'i+1':ranges 1 4 1 4 axis:mark r r 's':plot r 'b'
Show all kind of primitives in quality=5.
MGL code:
quality 5 subplot 3 2 0:define y 0.95 define d 0.3:define x0 0.2:define x1 0.5:define x2 0.6 line x0 1-0*d x1 1-0*d 'k-':text x2 y-0*d 'Solid `-`' ':rL' line x0 1-1*d x1 1-1*d 'k|':text x2 y-1*d 'Long Dash `|`' ':rL' line x0 1-2*d x1 1-2*d 'k;':text x2 y-2*d 'Dash 1;`' ':rL' line x0 1-3*d x1 1-3*d 'k=':text x2 y-3*d 'Small dash `=`' ':rL' line x0 1-4*d x1 1-4*d 'kj':text x2 y-4*d 'Dash-dot `j`' ':rL' line x0 1-5*d x1 1-5*d 'ki':text x2 y-5*d 'Small dash-dot `i`' ':rL' line x0 1-6*d x1 1-6*d 'k:':text x2 y-6*d 'Dots `:`' ':rL' line x0 1-7*d x1 1-7*d 'k ':text x2 y-7*d 'None ``' ':rL' define d 0.25:define x0 -0.8:define x1 -1:define x2 -0.05 ball x1 5*d 'k.':text x0 5*d '.' ':rL' ball x1 4*d 'k+':text x0 4*d '+' ':rL' ball x1 3*d 'kx':text x0 3*d 'x' ':rL' ball x1 2*d 'k*':text x0 2*d '*' ':rL' ball x1 d 'ks':text x0 d 's' ':rL' ball x1 0 'kd':text x0 0 'd' ':rL' ball x1 -d 0 'ko':text x0 y-d 'o' ':rL' ball x1 -2*d 0 'k^':text x0 -2*d '\^' ':rL' ball x1 -3*d 0 'kv':text x0 -3*d 'v' ':rL' ball x1 -4*d 0 'k<':text x0 -4*d '<' ':rL' ball x1 -5*d 0 'k>':text x0 -5*d '>' ':rL' define x0 -0.3:define x1 -0.5 ball x1 5*d 'k#.':text x0 5*d '\#.' ':rL' ball x1 4*d 'k#+':text x0 4*d '\#+' ':rL' ball x1 3*d 'k#x':text x0 3*d '\#x' ':rL' ball x1 2*d 'k#*':text x0 2*d '\#*' ':rL' ball x1 d 'k#s':text x0 d '\#s' ':rL' ball x1 0 'k#d':text x0 0 '\#d' ':rL' ball x1 -d 0 'k#o':text x0 -d '\#o' ':rL' ball x1 -2*d 0 'k#^':text x0 -2*d '\#\^' ':rL' ball x1 -3*d 0 'k#v':text x0 -3*d '\#v' ':rL' ball x1 -4*d 0 'k#<':text x0 -4*d '\#<' ':rL' ball x1 -5*d 0 'k#>':text x0 -5*d '\#>' ':rL' subplot 3 2 1 define a 0.1:define b 0.4:define c 0.5 line a 1 b 1 'k-A':text c 1 'Style `A` or `A\_`' ':rL' line a 0.8 b 0.8 'k-V':text c 0.8 'Style `V` or `V\_`' ':rL' line a 0.6 b 0.6 'k-K':text c 0.6 'Style `K` or `K\_`' ':rL' line a 0.4 b 0.4 'k-I':text c 0.4 'Style `I` or `I\_`' ':rL' line a 0.2 b 0.2 'k-D':text c 0.2 'Style `D` or `D\_`' ':rL' line a 0 b 0 'k-S':text c 0 'Style `S` or `S\_`' ':rL' line a -0.2 b -0.2 'k-O':text c -0.2 'Style `O` or `O\_`' ':rL' line a -0.4 b -0.4 'k-T':text c -0.4 'Style `T` or `T\_`' ':rL' line a -0.6 b -0.6 'k-_':text c -0.6 'Style `\_` or none' ':rL' line a -0.8 b -0.8 'k-AS':text c -0.8 'Style `AS`' ':rL' line a -1 b -1 'k-_A':text c -1 'Style `\_A`' ':rL' define a -1:define b -0.7:define c -0.6 line a 1 b 1 'kAA':text c 1 'Style `AA`' ':rL' line a 0.8 b 0.8 'kVV':text c 0.8 'Style `VV`' ':rL' line a 0.6 b 0.6 'kKK':text c 0.6 'Style `KK`' ':rL' line a 0.4 b 0.4 'kII':text c 0.4 'Style `II`' ':rL' line a 0.2 b 0.2 'kDD':text c 0.2 'Style `DD`' ':rL' line a 0 b 0 'kSS':text c 0 'Style `SS`' ':rL' line a -0.2 b -0.2 'kOO':text c -0.2 'Style `OO`' ':rL' line a -0.4 b -0.4 'kTT':text c -0.4 'Style `TT`' ':rL' line a -0.6 b -0.6 'k-__':text c -0.6 'Style `\_\_`' ':rL' line a -0.8 b -0.8 'k-VA':text c -0.8 'Style `VA`' ':rL' line a -1 b -1 'k-AV':text c -1 'Style `AV`' ':rL' subplot 3 2 2 #LENUQ facez -1 -1 0 0.4 0.3 'L#':text -0.8 -0.9 'L' 'w:C' -1.4 facez -0.6 -1 0 0.4 0.3 'E#':text -0.4 -0.9 'E' 'w:C' -1.4 facez -0.2 -1 0 0.4 0.3 'N#':text 0 -0.9 'N' 'w:C' -1.4 facez 0.2 -1 0 0.4 0.3 'U#':text 0.4 -0.9 'U' 'w:C' -1.4 facez 0.6 -1 0 0.4 0.3 'Q#':text 0.8 -0.9 'Q' 'w:C' -1.4 #lenuq facez -1 -0.7 0 0.4 0.3 'l#':text -0.8 -0.6 'l' 'k:C' -1.4 facez -0.6 -0.7 0 0.4 0.3 'e#':text -0.4 -0.6 'e' 'k:C' -1.4 facez -0.2 -0.7 0 0.4 0.3 'n#':text 0 -0.6 'n' 'k:C' -1.4 facez 0.2 -0.7 0 0.4 0.3 'u#':text 0.4 -0.6 'u' 'k:C' -1.4 facez 0.6 -0.7 0 0.4 0.3 'q#':text 0.8 -0.6 'q' 'k:C' -1.4 #CMYkP facez -1 -0.4 0 0.4 0.3 'C#':text -0.8 -0.3 'C' 'w:C' -1.4 facez -0.6 -0.4 0 0.4 0.3 'M#':text -0.4 -0.3 'M' 'w:C' -1.4 facez -0.2 -0.4 0 0.4 0.3 'Y#':text 0 -0.3 'Y' 'w:C' -1.4 facez 0.2 -0.4 0 0.4 0.3 'k#':text 0.4 -0.3 'k' 'w:C' -1.4 facez 0.6 -0.4 0 0.4 0.3 'P#':text 0.8 -0.3 'P' 'w:C' -1.4 #cmywp facez -1 -0.1 0 0.4 0.3 'c#':text -0.8 0 'c' 'k:C' -1.4 facez -0.6 -0.1 0 0.4 0.3 'm#':text -0.4 0 'm' 'k:C' -1.4 facez -0.2 -0.1 0 0.4 0.3 'y#':text 0 0 'y' 'k:C' -1.4 facez 0.2 -0.1 0 0.4 0.3 'w#':text 0.4 0 'w' 'k:C' -1.4 facez 0.6 -0.1 0 0.4 0.3 'p#':text 0.8 0 'p' 'k:C' -1.4 #BGRHW facez -1 0.2 0 0.4 0.3 'B#':text -0.8 0.3 'B' 'w:C' -1.4 facez -0.6 0.2 0 0.4 0.3 'G#':text -0.4 0.3 'G' 'w:C' -1.4 facez -0.2 0.2 0 0.4 0.3 'R#':text 0 0.3 'R' 'w:C' -1.4 facez 0.2 0.2 0 0.4 0.3 'H#':text 0.4 0.3 'H' 'w:C' -1.4 facez 0.6 0.2 0 0.4 0.3 'W#':text 0.8 0.3 'W' 'w:C' -1.4 #bgrhw facez -1 0.5 0 0.4 0.3 'b#':text -0.8 0.6 'b' 'k:C' -1.4 facez -0.6 0.5 0 0.4 0.3 'g#':text -0.4 0.6 'g' 'k:C' -1.4 facez -0.2 0.5 0 0.4 0.3 'r#':text 0 0.6 'r' 'k:C' -1.4 facez 0.2 0.5 0 0.4 0.3 'h#':text 0.4 0.6 'h' 'k:C' -1.4 facez 0.6 0.5 0 0.4 0.3 'w#':text 0.8 0.6 'w' 'k:C' -1.4 #brighted facez -1 0.8 0 0.4 0.3 '{r1}#':text -0.8 0.9 '\{r1\}' 'w:C' -1.4 facez -0.6 0.8 0 0.4 0.3 '{r3}#':text -0.4 0.9 '\{r3\}' 'w:C' -1.4 facez -0.2 0.8 0 0.4 0.3 '{r5}#':text 0 0.9 '\{r5\}' 'k:C' -1.4 facez 0.2 0.8 0 0.4 0.3 '{r7}#':text 0.4 0.9 '\{r7\}' 'k:C' -1.4 facez 0.6 0.8 0 0.4 0.3 '{r9}#':text 0.8 0.9 '\{r9\}' 'k:C' -1.4 # HEX facez -1 -1.3 0 1 0.3 '{xff9966}#':text -0.5 -1.2 '\{xff9966\}' 'k:C' -1.4 facez 0 -1.3 0 1 0.3 '{x83CAFF}#':text 0.5 -1.2 '\{x83caff\}' 'k:C' -1.4 subplot 3 2 3 for $i 0 9 line -1 0.2*$i-1 1 0.2*$i-1 'r','0'+$i text 1.05 0.2*$i-1 '0'+$i ':L' next subplot 3 2 4:title 'TriPlot sample':rotate 50 60 list tt 0 1 2 | 0 1 3 | 0 2 3 | 1 2 3 list xt -1 1 0 0:list yt -1 -1 1 0:list zt -1 -1 -1 1:light on triplot tt xt yt zt 'b':triplot tt xt yt zt 'k#' subplot 3 2 5:new r 4 'i+1':ranges 1 4 1 4 axis:mark r r 's':plot r 'b'
Show all kind of primitives in quality=6.
MGL code:
quality 6 subplot 3 2 0:define y 0.95 define d 0.3:define x0 0.2:define x1 0.5:define x2 0.6 line x0 1-0*d x1 1-0*d 'k-':text x2 y-0*d 'Solid `-`' ':rL' line x0 1-1*d x1 1-1*d 'k|':text x2 y-1*d 'Long Dash `|`' ':rL' line x0 1-2*d x1 1-2*d 'k;':text x2 y-2*d 'Dash 1;`' ':rL' line x0 1-3*d x1 1-3*d 'k=':text x2 y-3*d 'Small dash `=`' ':rL' line x0 1-4*d x1 1-4*d 'kj':text x2 y-4*d 'Dash-dot `j`' ':rL' line x0 1-5*d x1 1-5*d 'ki':text x2 y-5*d 'Small dash-dot `i`' ':rL' line x0 1-6*d x1 1-6*d 'k:':text x2 y-6*d 'Dots `:`' ':rL' line x0 1-7*d x1 1-7*d 'k ':text x2 y-7*d 'None ``' ':rL' define d 0.25:define x0 -0.8:define x1 -1:define x2 -0.05 ball x1 5*d 'k.':text x0 5*d '.' ':rL' ball x1 4*d 'k+':text x0 4*d '+' ':rL' ball x1 3*d 'kx':text x0 3*d 'x' ':rL' ball x1 2*d 'k*':text x0 2*d '*' ':rL' ball x1 d 'ks':text x0 d 's' ':rL' ball x1 0 'kd':text x0 0 'd' ':rL' ball x1 -d 0 'ko':text x0 y-d 'o' ':rL' ball x1 -2*d 0 'k^':text x0 -2*d '\^' ':rL' ball x1 -3*d 0 'kv':text x0 -3*d 'v' ':rL' ball x1 -4*d 0 'k<':text x0 -4*d '<' ':rL' ball x1 -5*d 0 'k>':text x0 -5*d '>' ':rL' define x0 -0.3:define x1 -0.5 ball x1 5*d 'k#.':text x0 5*d '\#.' ':rL' ball x1 4*d 'k#+':text x0 4*d '\#+' ':rL' ball x1 3*d 'k#x':text x0 3*d '\#x' ':rL' ball x1 2*d 'k#*':text x0 2*d '\#*' ':rL' ball x1 d 'k#s':text x0 d '\#s' ':rL' ball x1 0 'k#d':text x0 0 '\#d' ':rL' ball x1 -d 0 'k#o':text x0 -d '\#o' ':rL' ball x1 -2*d 0 'k#^':text x0 -2*d '\#\^' ':rL' ball x1 -3*d 0 'k#v':text x0 -3*d '\#v' ':rL' ball x1 -4*d 0 'k#<':text x0 -4*d '\#<' ':rL' ball x1 -5*d 0 'k#>':text x0 -5*d '\#>' ':rL' subplot 3 2 1 define a 0.1:define b 0.4:define c 0.5 line a 1 b 1 'k-A':text c 1 'Style `A` or `A\_`' ':rL' line a 0.8 b 0.8 'k-V':text c 0.8 'Style `V` or `V\_`' ':rL' line a 0.6 b 0.6 'k-K':text c 0.6 'Style `K` or `K\_`' ':rL' line a 0.4 b 0.4 'k-I':text c 0.4 'Style `I` or `I\_`' ':rL' line a 0.2 b 0.2 'k-D':text c 0.2 'Style `D` or `D\_`' ':rL' line a 0 b 0 'k-S':text c 0 'Style `S` or `S\_`' ':rL' line a -0.2 b -0.2 'k-O':text c -0.2 'Style `O` or `O\_`' ':rL' line a -0.4 b -0.4 'k-T':text c -0.4 'Style `T` or `T\_`' ':rL' line a -0.6 b -0.6 'k-_':text c -0.6 'Style `\_` or none' ':rL' line a -0.8 b -0.8 'k-AS':text c -0.8 'Style `AS`' ':rL' line a -1 b -1 'k-_A':text c -1 'Style `\_A`' ':rL' define a -1:define b -0.7:define c -0.6 line a 1 b 1 'kAA':text c 1 'Style `AA`' ':rL' line a 0.8 b 0.8 'kVV':text c 0.8 'Style `VV`' ':rL' line a 0.6 b 0.6 'kKK':text c 0.6 'Style `KK`' ':rL' line a 0.4 b 0.4 'kII':text c 0.4 'Style `II`' ':rL' line a 0.2 b 0.2 'kDD':text c 0.2 'Style `DD`' ':rL' line a 0 b 0 'kSS':text c 0 'Style `SS`' ':rL' line a -0.2 b -0.2 'kOO':text c -0.2 'Style `OO`' ':rL' line a -0.4 b -0.4 'kTT':text c -0.4 'Style `TT`' ':rL' line a -0.6 b -0.6 'k-__':text c -0.6 'Style `\_\_`' ':rL' line a -0.8 b -0.8 'k-VA':text c -0.8 'Style `VA`' ':rL' line a -1 b -1 'k-AV':text c -1 'Style `AV`' ':rL' subplot 3 2 2 #LENUQ facez -1 -1 0 0.4 0.3 'L#':text -0.8 -0.9 'L' 'w:C' -1.4 facez -0.6 -1 0 0.4 0.3 'E#':text -0.4 -0.9 'E' 'w:C' -1.4 facez -0.2 -1 0 0.4 0.3 'N#':text 0 -0.9 'N' 'w:C' -1.4 facez 0.2 -1 0 0.4 0.3 'U#':text 0.4 -0.9 'U' 'w:C' -1.4 facez 0.6 -1 0 0.4 0.3 'Q#':text 0.8 -0.9 'Q' 'w:C' -1.4 #lenuq facez -1 -0.7 0 0.4 0.3 'l#':text -0.8 -0.6 'l' 'k:C' -1.4 facez -0.6 -0.7 0 0.4 0.3 'e#':text -0.4 -0.6 'e' 'k:C' -1.4 facez -0.2 -0.7 0 0.4 0.3 'n#':text 0 -0.6 'n' 'k:C' -1.4 facez 0.2 -0.7 0 0.4 0.3 'u#':text 0.4 -0.6 'u' 'k:C' -1.4 facez 0.6 -0.7 0 0.4 0.3 'q#':text 0.8 -0.6 'q' 'k:C' -1.4 #CMYkP facez -1 -0.4 0 0.4 0.3 'C#':text -0.8 -0.3 'C' 'w:C' -1.4 facez -0.6 -0.4 0 0.4 0.3 'M#':text -0.4 -0.3 'M' 'w:C' -1.4 facez -0.2 -0.4 0 0.4 0.3 'Y#':text 0 -0.3 'Y' 'w:C' -1.4 facez 0.2 -0.4 0 0.4 0.3 'k#':text 0.4 -0.3 'k' 'w:C' -1.4 facez 0.6 -0.4 0 0.4 0.3 'P#':text 0.8 -0.3 'P' 'w:C' -1.4 #cmywp facez -1 -0.1 0 0.4 0.3 'c#':text -0.8 0 'c' 'k:C' -1.4 facez -0.6 -0.1 0 0.4 0.3 'm#':text -0.4 0 'm' 'k:C' -1.4 facez -0.2 -0.1 0 0.4 0.3 'y#':text 0 0 'y' 'k:C' -1.4 facez 0.2 -0.1 0 0.4 0.3 'w#':text 0.4 0 'w' 'k:C' -1.4 facez 0.6 -0.1 0 0.4 0.3 'p#':text 0.8 0 'p' 'k:C' -1.4 #BGRHW facez -1 0.2 0 0.4 0.3 'B#':text -0.8 0.3 'B' 'w:C' -1.4 facez -0.6 0.2 0 0.4 0.3 'G#':text -0.4 0.3 'G' 'w:C' -1.4 facez -0.2 0.2 0 0.4 0.3 'R#':text 0 0.3 'R' 'w:C' -1.4 facez 0.2 0.2 0 0.4 0.3 'H#':text 0.4 0.3 'H' 'w:C' -1.4 facez 0.6 0.2 0 0.4 0.3 'W#':text 0.8 0.3 'W' 'w:C' -1.4 #bgrhw facez -1 0.5 0 0.4 0.3 'b#':text -0.8 0.6 'b' 'k:C' -1.4 facez -0.6 0.5 0 0.4 0.3 'g#':text -0.4 0.6 'g' 'k:C' -1.4 facez -0.2 0.5 0 0.4 0.3 'r#':text 0 0.6 'r' 'k:C' -1.4 facez 0.2 0.5 0 0.4 0.3 'h#':text 0.4 0.6 'h' 'k:C' -1.4 facez 0.6 0.5 0 0.4 0.3 'w#':text 0.8 0.6 'w' 'k:C' -1.4 #brighted facez -1 0.8 0 0.4 0.3 '{r1}#':text -0.8 0.9 '\{r1\}' 'w:C' -1.4 facez -0.6 0.8 0 0.4 0.3 '{r3}#':text -0.4 0.9 '\{r3\}' 'w:C' -1.4 facez -0.2 0.8 0 0.4 0.3 '{r5}#':text 0 0.9 '\{r5\}' 'k:C' -1.4 facez 0.2 0.8 0 0.4 0.3 '{r7}#':text 0.4 0.9 '\{r7\}' 'k:C' -1.4 facez 0.6 0.8 0 0.4 0.3 '{r9}#':text 0.8 0.9 '\{r9\}' 'k:C' -1.4 # HEX facez -1 -1.3 0 1 0.3 '{xff9966}#':text -0.5 -1.2 '\{xff9966\}' 'k:C' -1.4 facez 0 -1.3 0 1 0.3 '{x83CAFF}#':text 0.5 -1.2 '\{x83caff\}' 'k:C' -1.4 subplot 3 2 3 for $i 0 9 line -1 0.2*$i-1 1 0.2*$i-1 'r','0'+$i text 1.05 0.2*$i-1 '0'+$i ':L' next subplot 3 2 4:title 'TriPlot sample':rotate 50 60 list tt 0 1 2 | 0 1 3 | 0 2 3 | 1 2 3 list xt -1 1 0 0:list yt -1 -1 1 0:list zt -1 -1 -1 1:light on triplot tt xt yt zt 'b':triplot tt xt yt zt 'k#' subplot 3 2 5:new r 4 'i+1':ranges 1 4 1 4 axis:mark r r 's':plot r 'b'
Show all kind of primitives in quality=8.
MGL code:
quality 8 subplot 3 2 0:define y 0.95 define d 0.3:define x0 0.2:define x1 0.5:define x2 0.6 line x0 1-0*d x1 1-0*d 'k-':text x2 y-0*d 'Solid `-`' ':rL' line x0 1-1*d x1 1-1*d 'k|':text x2 y-1*d 'Long Dash `|`' ':rL' line x0 1-2*d x1 1-2*d 'k;':text x2 y-2*d 'Dash 1;`' ':rL' line x0 1-3*d x1 1-3*d 'k=':text x2 y-3*d 'Small dash `=`' ':rL' line x0 1-4*d x1 1-4*d 'kj':text x2 y-4*d 'Dash-dot `j`' ':rL' line x0 1-5*d x1 1-5*d 'ki':text x2 y-5*d 'Small dash-dot `i`' ':rL' line x0 1-6*d x1 1-6*d 'k:':text x2 y-6*d 'Dots `:`' ':rL' line x0 1-7*d x1 1-7*d 'k ':text x2 y-7*d 'None ``' ':rL' define d 0.25:define x0 -0.8:define x1 -1:define x2 -0.05 ball x1 5*d 'k.':text x0 5*d '.' ':rL' ball x1 4*d 'k+':text x0 4*d '+' ':rL' ball x1 3*d 'kx':text x0 3*d 'x' ':rL' ball x1 2*d 'k*':text x0 2*d '*' ':rL' ball x1 d 'ks':text x0 d 's' ':rL' ball x1 0 'kd':text x0 0 'd' ':rL' ball x1 -d 0 'ko':text x0 y-d 'o' ':rL' ball x1 -2*d 0 'k^':text x0 -2*d '\^' ':rL' ball x1 -3*d 0 'kv':text x0 -3*d 'v' ':rL' ball x1 -4*d 0 'k<':text x0 -4*d '<' ':rL' ball x1 -5*d 0 'k>':text x0 -5*d '>' ':rL' define x0 -0.3:define x1 -0.5 ball x1 5*d 'k#.':text x0 5*d '\#.' ':rL' ball x1 4*d 'k#+':text x0 4*d '\#+' ':rL' ball x1 3*d 'k#x':text x0 3*d '\#x' ':rL' ball x1 2*d 'k#*':text x0 2*d '\#*' ':rL' ball x1 d 'k#s':text x0 d '\#s' ':rL' ball x1 0 'k#d':text x0 0 '\#d' ':rL' ball x1 -d 0 'k#o':text x0 -d '\#o' ':rL' ball x1 -2*d 0 'k#^':text x0 -2*d '\#\^' ':rL' ball x1 -3*d 0 'k#v':text x0 -3*d '\#v' ':rL' ball x1 -4*d 0 'k#<':text x0 -4*d '\#<' ':rL' ball x1 -5*d 0 'k#>':text x0 -5*d '\#>' ':rL' subplot 3 2 1 define a 0.1:define b 0.4:define c 0.5 line a 1 b 1 'k-A':text c 1 'Style `A` or `A\_`' ':rL' line a 0.8 b 0.8 'k-V':text c 0.8 'Style `V` or `V\_`' ':rL' line a 0.6 b 0.6 'k-K':text c 0.6 'Style `K` or `K\_`' ':rL' line a 0.4 b 0.4 'k-I':text c 0.4 'Style `I` or `I\_`' ':rL' line a 0.2 b 0.2 'k-D':text c 0.2 'Style `D` or `D\_`' ':rL' line a 0 b 0 'k-S':text c 0 'Style `S` or `S\_`' ':rL' line a -0.2 b -0.2 'k-O':text c -0.2 'Style `O` or `O\_`' ':rL' line a -0.4 b -0.4 'k-T':text c -0.4 'Style `T` or `T\_`' ':rL' line a -0.6 b -0.6 'k-_':text c -0.6 'Style `\_` or none' ':rL' line a -0.8 b -0.8 'k-AS':text c -0.8 'Style `AS`' ':rL' line a -1 b -1 'k-_A':text c -1 'Style `\_A`' ':rL' define a -1:define b -0.7:define c -0.6 line a 1 b 1 'kAA':text c 1 'Style `AA`' ':rL' line a 0.8 b 0.8 'kVV':text c 0.8 'Style `VV`' ':rL' line a 0.6 b 0.6 'kKK':text c 0.6 'Style `KK`' ':rL' line a 0.4 b 0.4 'kII':text c 0.4 'Style `II`' ':rL' line a 0.2 b 0.2 'kDD':text c 0.2 'Style `DD`' ':rL' line a 0 b 0 'kSS':text c 0 'Style `SS`' ':rL' line a -0.2 b -0.2 'kOO':text c -0.2 'Style `OO`' ':rL' line a -0.4 b -0.4 'kTT':text c -0.4 'Style `TT`' ':rL' line a -0.6 b -0.6 'k-__':text c -0.6 'Style `\_\_`' ':rL' line a -0.8 b -0.8 'k-VA':text c -0.8 'Style `VA`' ':rL' line a -1 b -1 'k-AV':text c -1 'Style `AV`' ':rL' subplot 3 2 2 #LENUQ facez -1 -1 0 0.4 0.3 'L#':text -0.8 -0.9 'L' 'w:C' -1.4 facez -0.6 -1 0 0.4 0.3 'E#':text -0.4 -0.9 'E' 'w:C' -1.4 facez -0.2 -1 0 0.4 0.3 'N#':text 0 -0.9 'N' 'w:C' -1.4 facez 0.2 -1 0 0.4 0.3 'U#':text 0.4 -0.9 'U' 'w:C' -1.4 facez 0.6 -1 0 0.4 0.3 'Q#':text 0.8 -0.9 'Q' 'w:C' -1.4 #lenuq facez -1 -0.7 0 0.4 0.3 'l#':text -0.8 -0.6 'l' 'k:C' -1.4 facez -0.6 -0.7 0 0.4 0.3 'e#':text -0.4 -0.6 'e' 'k:C' -1.4 facez -0.2 -0.7 0 0.4 0.3 'n#':text 0 -0.6 'n' 'k:C' -1.4 facez 0.2 -0.7 0 0.4 0.3 'u#':text 0.4 -0.6 'u' 'k:C' -1.4 facez 0.6 -0.7 0 0.4 0.3 'q#':text 0.8 -0.6 'q' 'k:C' -1.4 #CMYkP facez -1 -0.4 0 0.4 0.3 'C#':text -0.8 -0.3 'C' 'w:C' -1.4 facez -0.6 -0.4 0 0.4 0.3 'M#':text -0.4 -0.3 'M' 'w:C' -1.4 facez -0.2 -0.4 0 0.4 0.3 'Y#':text 0 -0.3 'Y' 'w:C' -1.4 facez 0.2 -0.4 0 0.4 0.3 'k#':text 0.4 -0.3 'k' 'w:C' -1.4 facez 0.6 -0.4 0 0.4 0.3 'P#':text 0.8 -0.3 'P' 'w:C' -1.4 #cmywp facez -1 -0.1 0 0.4 0.3 'c#':text -0.8 0 'c' 'k:C' -1.4 facez -0.6 -0.1 0 0.4 0.3 'm#':text -0.4 0 'm' 'k:C' -1.4 facez -0.2 -0.1 0 0.4 0.3 'y#':text 0 0 'y' 'k:C' -1.4 facez 0.2 -0.1 0 0.4 0.3 'w#':text 0.4 0 'w' 'k:C' -1.4 facez 0.6 -0.1 0 0.4 0.3 'p#':text 0.8 0 'p' 'k:C' -1.4 #BGRHW facez -1 0.2 0 0.4 0.3 'B#':text -0.8 0.3 'B' 'w:C' -1.4 facez -0.6 0.2 0 0.4 0.3 'G#':text -0.4 0.3 'G' 'w:C' -1.4 facez -0.2 0.2 0 0.4 0.3 'R#':text 0 0.3 'R' 'w:C' -1.4 facez 0.2 0.2 0 0.4 0.3 'H#':text 0.4 0.3 'H' 'w:C' -1.4 facez 0.6 0.2 0 0.4 0.3 'W#':text 0.8 0.3 'W' 'w:C' -1.4 #bgrhw facez -1 0.5 0 0.4 0.3 'b#':text -0.8 0.6 'b' 'k:C' -1.4 facez -0.6 0.5 0 0.4 0.3 'g#':text -0.4 0.6 'g' 'k:C' -1.4 facez -0.2 0.5 0 0.4 0.3 'r#':text 0 0.6 'r' 'k:C' -1.4 facez 0.2 0.5 0 0.4 0.3 'h#':text 0.4 0.6 'h' 'k:C' -1.4 facez 0.6 0.5 0 0.4 0.3 'w#':text 0.8 0.6 'w' 'k:C' -1.4 #brighted facez -1 0.8 0 0.4 0.3 '{r1}#':text -0.8 0.9 '\{r1\}' 'w:C' -1.4 facez -0.6 0.8 0 0.4 0.3 '{r3}#':text -0.4 0.9 '\{r3\}' 'w:C' -1.4 facez -0.2 0.8 0 0.4 0.3 '{r5}#':text 0 0.9 '\{r5\}' 'k:C' -1.4 facez 0.2 0.8 0 0.4 0.3 '{r7}#':text 0.4 0.9 '\{r7\}' 'k:C' -1.4 facez 0.6 0.8 0 0.4 0.3 '{r9}#':text 0.8 0.9 '\{r9\}' 'k:C' -1.4 # HEX facez -1 -1.3 0 1 0.3 '{xff9966}#':text -0.5 -1.2 '\{xff9966\}' 'k:C' -1.4 facez 0 -1.3 0 1 0.3 '{x83CAFF}#':text 0.5 -1.2 '\{x83caff\}' 'k:C' -1.4 subplot 3 2 3 for $i 0 9 line -1 0.2*$i-1 1 0.2*$i-1 'r','0'+$i text 1.05 0.2*$i-1 '0'+$i ':L' next subplot 3 2 4:title 'TriPlot sample':rotate 50 60 list tt 0 1 2 | 0 1 3 | 0 2 3 | 1 2 3 list xt -1 1 0 0:list yt -1 -1 1 0:list zt -1 -1 -1 1:light on triplot tt xt yt zt 'b':triplot tt xt yt zt 'k#' subplot 3 2 5:new r 4 'i+1':ranges 1 4 1 4 axis:mark r r 's':plot r 'b'
The radar plot is variant of plot, which make plot in polar coordinates and draw radial rays in point directions. If you just need a plot in polar coordinates then I recommend to use Curvilinear coordinates or plot in parametric form with x=r*cos(fi); y=r*sin(fi);
.
MGL code:
new yr 10 3 '0.4*sin(pi*(x+1.5+y/2)+0.1*rnd)' subplot 1 1 0 '':title 'Radar plot (with grid, "\#")':radar yr '#'
Example of refill and gspline.
MGL code:
new x 10 '0.5+rnd':cumsum x 'x':norm x -1 1 copy y sin(pi*x)/1.5 subplot 2 2 0 '<_':title 'Refill sample' box:axis:plot x y 'o ':fplot 'sin(pi*x)/1.5' 'B:' new r 100:refill r x y:plot r 'r' subplot 2 2 1 '<_':title 'Global spline' box:axis:plot x y 'o ':fplot 'sin(pi*x)/1.5' 'B:' new r 100:gspline r x y:plot r 'r' new y 10 '0.5+rnd':cumsum y 'x':norm y -1 1 copy xx x:extend xx 10 copy yy y:extend yy 10:transpose yy copy z sin(pi*xx*yy)/1.5 alpha on:light on subplot 2 2 2:title '2d regular':rotate 40 60 box:axis:mesh xx yy z 'k' new rr 100 100:refill rr x y z:surf rr new xx 10 10 '(x+1)/2*cos(y*pi/2-1)':new yy 10 10 '(x+1)/2*sin(y*pi/2-1)' copy z sin(pi*xx*yy)/1.5 subplot 2 2 3:title '2d non-regular':rotate 40 60 box:axis:plot xx yy z 'ko ' new rr 100 100:refill rr xx yy z:surf rr
Function region fill the area between 2 curves. It support gradient filling if 2 colors per curve is specified. Also it can fill only the region y1<y<y2 if style `i` is used.
MGL code:
call 'prepare1d' copy y1 y(:,1):copy y2 y(:,2) subplot 2 2 0 '':title 'Region plot (default)':box:region y1 y2:plot y1 'k2':plot y2 'k2' subplot 2 2 1 '':title '2 colors':box:region y1 y2 'yr':plot y1 'k2':plot y2 'k2' subplot 2 2 2 '':title '"i" style':box:region y1 y2 'ir':plot y1 'k2':plot y2 'k2' subplot 2 2 3 '^_':title '3d variant':rotate 40 60:box new x1 100 'sin(pi*x)':new y1 100 'cos(pi*x)':new z 100 'x' new x2 100 'sin(pi*x+pi/3)':new y2 100 'cos(pi*x+pi/3)' plot x1 y1 z 'r2':plot x2 y2 z 'b2' region x1 y1 z x2 y2 z 'cmy!'
Example of scanfile for reading `named` data.
MGL code:
subplot 1 1 0 '<_':title 'Save and scanfile sample' list a 1 -1 0 save 'This is test: 0 -> ',a(0),' q' 'test.txt' 'w' save 'This is test: 1 -> ',a(1),' q' 'test.txt' save 'This is test: 2 -> ',a(2),' q' 'test.txt' scanfile a 'test.txt' 'This is test: %g -> %g' ranges a(0) a(1):axis:plot a(0) a(1) 'o'
Example of popular color schemes.
MGL code:
new x 100 100 'x':new y 100 100 'y' call 'sch' 0 'kw' call 'sch' 1 '%gbrw' call 'sch' 2 'kHCcw' call 'sch' 3 'kBbcw' call 'sch' 4 'kRryw' call 'sch' 5 'kGgew' call 'sch' 6 'BbwrR' call 'sch' 7 'BbwgG' call 'sch' 8 'GgwmM' call 'sch' 9 'UuwqR' call 'sch' 10 'QqwcC' call 'sch' 11 'CcwyY' call 'sch' 12 'bcwyr' call 'sch' 13 'bwr' call 'sch' 14 'wUrqy' call 'sch' 15 'UbcyqR' call 'sch' 16 'BbcyrR' call 'sch' 17 'bgr' call 'sch' 18 'BbcyrR|' call 'sch' 19 'b{g,0.3}r' stop func 'sch' 2 subplot 2 10 $1 '<>_^' 0.2 0:surfa x y $2 text 0.07+0.5*mod($1,2) 0.92-0.1*int($1/2) $2 'A' return
Example of section to separate data and join it back.
MGL code:
subplot 1 1 0 '<_':title 'Section&Join sample' axis:box:line -1 0 1 0 'h:' # first lets demonstrate 'join' new aa 11 'x^2':new a1 3 '-x':new a2 15 'x^3' join aa a1:join aa a2 # add x-coordinate new xx aa.nx 'x':join aa xx plot aa(:,1) aa(:,0) '2y' # now select 1-st (id=0) section between zeros section b1 aa 0 'x' 0 plot b1(:,1) b1(:,0) 'bo' # next, select 3-d (id=2) section between zeros section b3 aa 2 'x' 0 plot b3(:,1) b3(:,0) 'gs' # finally, select 2-nd (id=-2) section from the end section b4 aa -2 'x' 0 plot b4(:,1) b4(:,0) 'r#o'
Example of using several light sources.
MGL code:
call 'prepare2d' title 'Several light sources':rotate 50 60:light on light 1 0 1 0 'c':light 2 1 0 0 'y':light 3 0 -1 0 'm' box:surf a 'h'
Example of solve for root finding.
MGL code:
zrange 0 1 new x 20 30 '(x+2)/3*cos(pi*y)' new y 20 30 '(x+2)/3*sin(pi*y)' new z 20 30 'exp(-6*x^2-2*sin(pi*y)^2)' subplot 2 1 0:title 'Cartesian space':rotate 30 -40 axis 'xyzU':box xlabel 'x':ylabel 'y' origin 1 1:grid 'xy' mesh x y z # section along 'x' direction solve u x 0.5 'x' var v u.nx 0 1 evaluate yy y u v evaluate xx x u v evaluate zz z u v plot xx yy zz 'k2o' # 1st section along 'y' direction solve u1 x -0.5 'y' var v1 u1.nx 0 1 evaluate yy y v1 u1 evaluate xx x v1 u1 evaluate zz z v1 u1 plot xx yy zz 'b2^' # 2nd section along 'y' direction solve u2 x -0.5 'y' u1 evaluate yy y v1 u2 evaluate xx x v1 u2 evaluate zz z v1 u2 plot xx yy zz 'r2v' subplot 2 1 1:title 'Accompanied space' ranges 0 1 0 1:origin 0 0 axis:box:xlabel 'i':ylabel 'j':grid2 z 'h' plot u v 'k2o':line 0.4 0.5 0.8 0.5 'kA' plot v1 u1 'b2^':line 0.5 0.15 0.5 0.3 'bA' plot v1 u2 'r2v':line 0.5 0.7 0.5 0.85 'rA'
Function stem draw vertical bars. It is most attractive if markers are drawn too.
MGL code:
call 'prepare1d' origin 0 0 0:subplot 2 2 0 '':title 'Stem plot (default)':box:stem y new yc 30 'sin(pi*x)':new xc 30 'cos(pi*x)':new z 30 'x' subplot 2 2 1:title '3d variant':rotate 50 60:box:stem xc yc z 'rx' subplot 2 2 2 '':title '"!" style':box:stem y 'o!rgb'
Function step plot data as stairs. At this stairs can be centered if sizes are differ by 1.
MGL code:
call 'prepare1d' origin 0 0 0:subplot 2 2 0 '':title 'Step plot (default)':box:step y new yc 30 'sin(pi*x)':new xc 30 'cos(pi*x)':new z 30 'x' subplot 2 2 1:title '3d variant':rotate 50 60:box:step xc yc z 'r' subplot 2 2 2 '':title '"!" style':box:step y 's!rgb'
Example of stereo image of surf.
MGL code:
call 'prepare2d' light on subplot 2 1 0:rotate 50 60+1:box:surf a subplot 2 1 1:rotate 50 60-1:box:surf a
Example of stfa.
MGL code:
new a 2000:new b 2000 fill a 'cos(50*pi*x)*(x<-.5)+cos(100*pi*x)*(x<0)*(x>-.5)+\ cos(200*pi*x)*(x<.5)*(x>0)+cos(400*pi*x)*(x>.5)' subplot 1 2 0 '<_':title 'Initial signal':plot a:axis:xlabel '\i t' subplot 1 2 1 '<_':title 'STFA plot':stfa a b 64:axis:ylabel '\omega' 0:xlabel '\i t'
Example of colors and styles for plots.
MGL code:
Function surf is most standard way to visualize 2D data array. Surf
use color scheme for coloring (see Color scheme). You can use `#` style for drawing black meshes on the surface.
MGL code:
call 'prepare2d' subplot 2 2 0:title 'Surf plot (default)':rotate 50 60:light on:box:surf a subplot 2 2 1:title '"\#" style; meshnum 10':rotate 50 60:box:surf a '#'; meshnum 10 subplot 2 2 2:title '"." style':rotate 50 60:box:surf a '.' new x 50 40 '0.8*sin(pi*x)*sin(pi*(y+1)/2)' new y 50 40 '0.8*cos(pi*x)*sin(pi*(y+1)/2)' new z 50 40 '0.8*cos(pi*(y+1)/2)' subplot 2 2 3:title 'parametric form':rotate 50 60:box:surf x y z 'BbwrR'
Function surf3 is one of most suitable (for my opinion) functions to visualize 3D data. It draw the isosurface(s) - surface(s) of constant amplitude (3D analogue of contour lines). You can draw wired isosurfaces if specify `#` style.
MGL code:
call 'prepare3d' light on:alpha on subplot 2 2 0:title 'Surf3 plot (default)' rotate 50 60:box:surf3 c subplot 2 2 1:title '"\#" style' rotate 50 60:box:surf3 c '#' subplot 2 2 2:title '"." style' rotate 50 60:box:surf3 c '.'
Function surf3c is similar to surf3 but its transparency is determined by another data.
MGL code:
call 'prepare3d' title 'Surf3A plot':rotate 50 60:light on:alpha on:box:surf3a c d
Function surf3c is similar to surf3 but its coloring is determined by another data.
MGL code:
call 'prepare3d' title 'Surf3C plot':rotate 50 60:light on:alpha on:box:surf3c c d
Function surf3c is similar to surf3 but its coloring and transparency is determined by another data arrays.
MGL code:
call 'prepare3d' title 'Surf3CA plot':rotate 50 60:light on:alpha on:box:surf3ca c d c
Function surfa is similar to surf but its transparency is determined by another data.
MGL code:
call 'prepare2d' title 'SurfA plot':rotate 50 60:light on:alpha on:box:surfa a b
Function surfc is similar to surf but its coloring is determined by another data.
MGL code:
call 'prepare2d' title 'SurfC plot':rotate 50 60:light on:box:surfc a b
Function surfca is similar to surf but its coloring and transparency is determined by another data arrays.
MGL code:
call 'prepare2d' title 'SurfCA plot':rotate 50 60:light on:alpha on:box:surfca a b a
Function table draw table with data values.
MGL code:
new ys 10 3 '0.8*sin(pi*(x+y/4+1.25))+0.2*rnd' subplot 2 2 0:title 'Table sample':box table ys 'y_1\n{}y_2\n{}y_3' subplot 2 2 1:title 'no borders, colored' table ys 'y_1\n{}y_2\n{}y_3' 'r|' subplot 2 2 2:title 'no font decrease' table ys 'y_1\n{}y_2\n{}y_3' '#' subplot 2 2 3:title 'manual width and position':box table 0.5 0.95 ys 'y_1\n{}y_2\n{}y_3' '#';value 0.7
Function tape draw tapes which rotate around the curve as transverse orts of accompanied coordinates.
MGL code:
call 'prepare1d' new yc 50 'sin(pi*x)':new xc 50 'cos(pi*x)':new z 50 'x' subplot 2 2 0 '':title 'Tape plot (default)':box:tape y:plot y 'k' subplot 2 2 1:title '3d variant, 2 colors':rotate 50 60:light on box:plot xc yc z 'k':tape xc yc z 'rg' subplot 2 2 2:title '3d variant, x only':rotate 50 60 box:plot xc yc z 'k':tape xc yc z 'xr':tape xc yc z 'xr#' subplot 2 2 3:title '3d variant, z only':rotate 50 60 box:plot xc yc z 'k':tape xc yc z 'zg':tape xc yc z 'zg#'
Function tens is variant of plot with smooth coloring along the curves. At this, color is determined as for surfaces (see Color scheme).
MGL code:
call 'prepare1d' subplot 2 2 0 '':title 'Tens plot (default)':box:tens y(:,0) y(:,1) subplot 2 2 2 '':title '" " style':box:tens y(:,0) y(:,1) 'o ' new yc 30 'sin(pi*x)':new xc 30 'cos(pi*x)':new z 30 'x' subplot 2 2 1:title '3d variant':rotate 50 60:box:tens xc yc z z 's'
Example of ternary coordinates.
MGL code:
ranges 0 1 0 1 0 1 new x 50 '0.25*(1+cos(2*pi*x))' new y 50 '0.25*(1+sin(2*pi*x))' new z 50 'x' new a 20 30 '30*x*y*(1-x-y)^2*(x+y<1)' new rx 10 'rnd':new ry 10:fill ry '(1-v)*rnd' rx light on subplot 2 2 0:title 'Ordinary axis 3D':rotate 50 60 box:axis:grid plot x y z 'r2':surf a '#' xlabel 'B':ylabel 'C':zlabel 'Z' subplot 2 2 1:title 'Ternary axis (x+y+t=1)':ternary 1 box:axis:grid 'xyz' 'B;' plot x y 'r2':plot rx ry 'q^ ':cont a:line 0.5 0 0 0.75 'g2' xlabel 'B':ylabel 'C':tlabel 'A' subplot 2 2 2:title 'Quaternary axis 3D':rotate 50 60:ternary 2 box:axis:grid 'xyz' 'B;' plot x y z 'r2':surf a '#' xlabel 'B':ylabel 'C':tlabel 'A':zlabel 'D' subplot 2 2 3:title 'Ternary axis 3D':rotate 50 60:ternary 1 box:axis:grid 'xyz' 'B;' plot x y z 'r2':surf a '#' xlabel 'B':ylabel 'C':tlabel 'A':zlabel 'Z'
Example of text possibilities.
MGL code:
call 'prepare1d' subplot 2 2 0 '' text 0 1 'Text can be in ASCII and in Unicode' text 0 0.6 'It can be \wire{wire}, \big{big} or #r{colored}' text 0 0.2 'One can change style in string: \b{bold}, \i{italic, \b{both}}' text 0 -0.2 'Easy to \a{overline} or \u{underline}' text 0 -0.6 'Easy to change indexes ^{up} _{down} @{center}' text 0 -1 'It parse TeX: \int \alpha \cdot \ \sqrt3{sin(\pi x)^2 + \gamma_{i_k}} dx' subplot 2 2 1 '' text 0 0.5 '\sqrt{\frac{\alpha^{\gamma^2}+\overset 1{\big\infty}}{\sqrt3{2+b}}}' '@' -2 text 0 -0.1 'More text position: \frac{a}{b}, \dfrac{a}{b}, [\stack{a}{bbb}], [\stackl{a}{bbb}], [\stackr{a}{bbb}], \sup{a}{sup}, \sub{a}{sub}'text 0 -0.5 'Text can be printed\n{}on several lines' text 0 -0.9 'or with color gradient' 'BbcyrR' subplot 2 2 2 '':box:plot y(:,0) text y 'This is very very long string drawn along a curve' 'k' text y 'Another string drawn above a curve' 'Tr' subplot 2 2 3 '':line -1 -1 1 -1 'rA':text 0 -1 1 -1 'Horizontal' line -1 -1 1 1 'rA':text 0 0 1 1 'At angle' '@' line -1 -1 -1 1 'rA':text -1 0 -1 1 'Vertical'
Example of text along curve.
MGL code:
call 'prepare1d' subplot 1 3 0 '':box:plot y(:,0) text y 'This is very very long string drawn along a curve' 'k' text y 'Another string drawn under a curve' 'Tr' subplot 1 3 1 '':box:plot y(:,0) text y 'This is very very long string drawn along a curve' 'k:C' text y 'Another string drawn under a curve' 'Tr:C' subplot 1 3 2 '':box:plot y(:,0) text y 'This is very very long string drawn along a curve' 'k:R' text y 'Another string drawn under a curve' 'Tr:R'
Function textmark is similar to mark but draw text instead of markers.
MGL code:
call 'prepare1d' subplot 1 1 0 '':title 'TextMark plot (default)':box:textmark y y1 '\gamma' 'r'
Example of axis ticks.
MGL code:
subplot 3 3 0:title 'Usual axis with ":" style' axis ':' subplot 3 3 1:title 'Too big/small range' ranges -1000 1000 0 0.001:axis subplot 3 3 2:title 'LaTeX-like labels' axis 'F!' subplot 3 3 3:title 'Too narrow range' ranges 100 100.1 10 10.01:axis subplot 3 3 4:title 'No tuning, manual "+"' axis '+!' # for version <2.3 you can use #tuneticks off:axis subplot 3 3 5:title 'Template for ticks' xtick 'xxx:%g':ytick 'y:%g' axis xtick '':ytick '' # switch it off for other plots subplot 3 3 6:title 'No tuning, higher precision' axis '!4' subplot 3 3 7:title 'Manual ticks' ranges -pi pi 0 2 xtick pi 3 '\pi' xtick 0.886 'x^*' on # note this will disable subticks drawing # or you can use #xtick -pi '\pi' -pi/2 '-\pi/2' 0 '0' 0.886 'x^*' pi/2 '\pi/2' pi 'pi' list v 0 0.5 1 2:ytick v '0 0.5 1 2' axis:grid:fplot '2*cos(x^2)^2' 'r2' subplot 3 3 8:title 'Time ticks' xrange 0 3e5:ticktime 'x':axis
Function tile draw surface by tiles.
MGL code:
call 'prepare2d' title 'Tile plot':rotate 50 60:box:tile a
Function tiles is similar to tile but tile sizes is determined by another data. This allows one to simulate transparency of the plot.
MGL code:
call 'prepare2d' subplot 1 1 0 '':title 'Tiles plot':box:tiles a b
Function torus draw surface of the curve rotation.
MGL code:
call 'prepare1d' subplot 2 2 0:title 'Torus plot (default)':light on:rotate 50 60:box:torus y1 y2 subplot 2 2 1:title '"x" style':light on:rotate 50 60:box:torus y1 y2 'x' subplot 2 2 2:title '"z" style':light on:rotate 50 60:box:torus y1 y2 'z' subplot 2 2 3:title '"\#" style':light on:rotate 50 60:box:torus y1 y2 '#'
Function traj is 1D analogue of vect. It draw vectors from specified points.
MGL code:
call 'prepare1d' subplot 1 1 0 '':title 'Traj plot':box:plot x1 y:traj x1 y y1 y2
Example of use triangulate for arbitrary placed points.
MGL code:
new x 100 '2*rnd-1':new y 100 '2*rnd-1':copy z x^2-y^2 new g 30 30:triangulate d x y title 'Triangulation' rotate 50 60:box:light on triplot d x y z:triplot d x y z '#k' datagrid g x y z:mesh g 'm'
Functions triplot and quadplot draw set of triangles (or quadrangles, correspondingly) for irregular data arrays. Note, that you have to provide not only vertexes, but also the indexes of triangles or quadrangles. I.e. perform triangulation by some other library. See also triangulate.
MGL code:
list q 0 1 2 3 | 4 5 6 7 | 0 2 4 6 | 1 3 5 7 | 0 4 1 5 | 2 6 3 7 list xq -1 1 -1 1 -1 1 -1 1 list yq -1 -1 1 1 -1 -1 1 1 list zq -1 -1 -1 -1 1 1 1 1 light on subplot 2 2 0:title 'QuadPlot sample':rotate 50 60 quadplot q xq yq zq 'yr' quadplot q xq yq zq '#k' subplot 2 2 2:title 'QuadPlot coloring':rotate 50 60 quadplot q xq yq zq yq 'yr' quadplot q xq yq zq '#k' list t 0 1 2 | 0 1 3 | 0 2 3 | 1 2 3 list xt -1 1 0 0 list yt -1 -1 1 0 list zt -1 -1 -1 1 subplot 2 2 1:title 'TriPlot sample':rotate 50 60 triplot t xt yt zt 'b' triplot t xt yt zt '#k' subplot 2 2 3:title 'TriPlot coloring':rotate 50 60 triplot t xt yt zt yt 'cb' triplot t xt yt zt '#k' tricont t xt yt zt 'B'
Function tube draw tube with variable radius.
MGL code:
call 'prepare1d' light on new yc 50 'sin(pi*x)':new xc 50 'cos(pi*x)':new z 50 'x':divto y1 20 subplot 2 2 0 '':title 'Tube plot (default)':box:tube y 0.05 subplot 2 2 1 '':title 'variable radius':box:tube y y1 subplot 2 2 2 '':title '"\#" style':box:tube y 0.05 '#' subplot 2 2 3:title '3d variant':rotate 50 60:box:tube xc yc z y2 'r'
Example of ordinary transparency (transptype=0).
MGL code:
call 'prepare2d' alpha on:light on:transptype 0:clf subplot 2 2 0:rotate 50 60:surf a:box subplot 2 2 1:rotate 50 60:dens a:box subplot 2 2 2:rotate 50 60:cont a:box subplot 2 2 3:rotate 50 60:axial a:box
Example of glass-like transparency (transptype=1).
MGL code:
call 'prepare2d' alpha on:light on:transptype 1:clf subplot 2 2 0:rotate 50 60:surf a:box subplot 2 2 1:rotate 50 60:dens a:box subplot 2 2 2:rotate 50 60:cont a:box subplot 2 2 3:rotate 50 60:axial a:box
Example of lamp-like transparency (transptype=2).
MGL code:
call 'prepare2d' alpha on:light on:transptype 2:clf subplot 2 2 0:rotate 50 60:surf a:box subplot 2 2 1:rotate 50 60:dens a:box subplot 2 2 2:rotate 50 60:cont a:box subplot 2 2 3:rotate 50 60:axial a:box
Function vect is most standard way to visualize vector fields - it draw a lot of arrows or hachures for each data cell. It have a lot of options which can be seen on the figure (and in the sample code), and use color scheme for coloring (see Color scheme).
MGL code:
call 'prepare2v' call 'prepare3v' subplot 3 2 0 '':title 'Vect plot (default)':box:vect a b subplot 3 2 1 '':title '"." style; "=" style':box:vect a b '.=' subplot 3 2 2 '':title '"f" style':box:vect a b 'f' subplot 3 2 3 '':title '">" style':box:vect a b '>' subplot 3 2 4 '':title '"<" style':box:vect a b '<' subplot 3 2 5:title '3d variant':rotate 50 60:box:vect ex ey ez
Function vect3 draw ordinary vector field plot but at slices of 3D data.
MGL code:
call 'prepare3v' subplot 2 1 0:title 'Vect3 sample':rotate 50 60 origin 0 0 0:box:axis '_xyz' vect3 ex ey ez 'x':vect3 ex ey ez:vect3 ex ey ez 'z' subplot 2 1 1:title '"f" style':rotate 50 60 origin 0 0 0:box:axis '_xyz' vect3 ex ey ez 'fx':vect3 ex ey ez 'f':vect3 ex ey ez 'fz' grid3 ex 'Wx':grid3 ex 'W':grid3 ex 'Wz'
Example of venn-like diagram.
MGL code:
list x -0.3 0 0.3:list y 0.3 -0.3 0.3:list e 0.7 0.7 0.7 subplot 1 1 0:title 'Venn-like diagram' transptype 1:alpha on:error x y e e '!rgb@#o';alpha 0.1
This appendix contain the full list of symbols (characters) used by MathGL for setting up plot. Also it contain sections for full list of hot-keys supported by mglview tool and by UDAV program.
Below is full list of all characters (symbols) which MathGL use for setting up the plot.
empty line style (see Line styles);
empty color in chart.
set to use new color from palette for each point (not for each curve, as default) in 1D plotting;
set to disable ticks tuning in axis and colorbar;
set to draw grid lines at subticks coordinates too;
define complex variable/expression in MGL script if placed at beginning.
set to use solid marks (see Line styles) or solid error boxes;
set to draw wired plot for axial, surf3, surf3a, surf3c, triplot, quadplot, area, region, bars, barh, tube, tape, cone, boxs and draw boundary only for circle, ellipse, rhomb;
set to draw also mesh lines for surf, surfc, surfa, dens, densx, densy, densz, dens3, or boundary for chart, facex, facey, facez, rect;
set to draw boundary and box for legend, title, or grid lines for table;
set to draw grid for radar;
set to start flow threads and pipes from edges only for flow, pipe;
set to use whole are for axis range in subplot, inplot;
change text color inside a string (see Font styles);
start comment in MGL scripts or in Command options.
denote parameter of MGL scripts.
set color scheme along 2 coordinates Color scheme;
operation in Textual formulas.
set to pass long integer number in tick template xtick, ytick, ztick, ctick;
specifier of drawing user-defined symbols as mark (see Line styles);
operation in Textual formulas.
denote string in MGL scripts or in Command options.
one of marks (see Line styles);
one of mask for face filling (see Color scheme);
set to start flow threads from 2d array inside data (see flow);
operation in Textual formulas.
one of marks (see Line styles) or kind of error boxes;
one of mask for face filling (see Color scheme);
set to print `+` for positive numbers in axis, label, table;
operation of increasing last character value in MGL strings;
operation in Textual formulas.
separator for color positions (see Color styles) or items in a list
concatenation of MGL string with another string or numerical value.
solid line style (see Line styles);
one of mask for face filling (see Color scheme);
place entries horizontally in legend;
set to use usual `-` for negative numbers in axis, label, table;
operation in Textual formulas.
one of marks (see Line styles) or kind of error boxes;
set to draw hachures instead of arrows for vect, vect3;
set to use dots instead of faces for cloud, torus, axial, surf3, surf3a, surf3c, surf, surfa, surfc, dens, map;
delimiter of fractional parts for numbers.
operation in Textual formulas.
line dashing style (see Line styles);
stop color scheme parsing (see Color scheme);
range operation in MGL scripts;
style for axis;
separator of commands in MGL scripts.
line dashing style (see Line styles);
one of mask for face filling (see Color scheme);
start of an option in MGL scripts or in Command options;
separator of equations in ode;
separator of labels in iris.
one of marks (see Line styles);
one of mask for face filling (see Color scheme);
set position of colorbar;
align left in bars, barh, boxplot, cones, candle, ohlc;
operation in Textual formulas.
one of marks (see Line styles);
one of mask for face filling (see Color scheme);
set position of colorbar;
align right in bars, barh, boxplot, cones, candle, ohlc;
operation in Textual formulas.
line dashing style (see Line styles);
one of mask for face filling (see Color scheme);
set to use equidistant columns for table;
set to use color gradient for vect, vect3;
operation in Textual formulas.
set to draw box around text for text and similar functions;
set to draw boundary and fill it for circle, ellipse, rhomb;
set to fill faces for box;
set to draw large semitransparent mark instead of error box for error;
set to draw edges for cone;
set to draw filled boxes for boxs;
reduce text size inside a string (see Font styles);
operation in Textual formulas.
one of marks (see Line styles);
one of mask for face filling (see Color scheme);
set position of colorbar;
set outer position for legend;
inverse default position for axis;
switch to upper index inside a string (see Font styles);
align center in bars, barh, boxplot, cones, candle, ohlc;
operation in Textual formulas.
empty arrow style (see Line styles);
disable drawing of tick labels for axis;
set position of colorbar;
set to draw contours at bottom for cont, contf, contd, contv, tricont;
switch to lower index inside a string (see Font styles).
contain symbols excluded from color scheme parsing (see Color scheme);
operation of getting n-th character from MGL string.
contain extended specification of color (see Color styles), dashing (see Line styles) or mask (see Color scheme);
denote special operation in MGL scripts;
denote `meta-symbol` for LaTeX like string parsing (see Font styles).
line dashing style (see Line styles);
set to use sharp color scheme (see Color scheme);
set to limit width by subplot width for table;
delimiter in list command;
operation in Textual formulas.
string continuation symbol on next line for MGL scripts.
disable drawing of tick labels for axis and colorbar;
disable first segment in lamerey;
reduce number of segments in plot and tens;
one of mask for face filling (see Color scheme).
line width (see Line styles);
brightness of a color (see Color styles);
precision of numbers in axis, label, table;
kind of smoothing (for digits 1,3,5) in smooth;
digits for a value.
set to draw square, hex- or octo-pyramids instead of cones in cone, cones.
can be hex-digit for color specification if placed inside {} (see Color styles).
arrow style (see Line styles);
set to use absolute position in whole picture for text, colorbar, legend.
set to use absolute position in subplot for text;
style of plot, radar, tens, area, region to draw segments between points outside of axis range;
dark blue color (see Color styles).
blue color (see Color styles);
bold font face if placed after `:` (see Font styles).
dark cyan color (see Color styles);
align text to center if placed after `:` (see Font styles).
cyan color (see Color styles);
name of color axis;
cosine transform for transform.
arrow style (see Line styles);
one of mask for face filling (see Color scheme).
one of marks (see Line styles) or kind of error boxes;
one of mask for face filling (see Color scheme);
start hex-dash description if placed inside {} (see Line styles).
dark green-yellow color (see Color styles).
green-yellow color (see Color styles).
set fixed format for numbers in axis, label, table;
Fourier transform for transform.
dark green color (see Color styles).
green color (see Color styles).
dark gray color (see Color styles).
gray color (see Color styles);
Hankel transform for transform.
arrow style (see Line styles);
set colorbar position near boundary.
line dashing style (see Line styles);
italic font face if placed after `:` (see Font styles).
set to use inverse values for cloud, pipe, dew;
set to fill only area with y1<y<y2 for region;
inverse Fourier transform for transform, transforma, fourier.
line dashing style (see Line styles);
one of mask for face filling (see Color scheme).
arrow style (see Line styles).
black color (see Color styles).
dark green-blue color (see Color styles);
align text to left if placed after `:` (see Font styles).
green-blue color (see Color styles).
dark magenta color (see Color styles).
magenta color (see Color styles).
dark sky-blue color (see Color styles).
sky-blue color (see Color styles).
arrow style (see Line styles);
one of mask for face filling (see Color scheme).
one of marks (see Line styles) or kind of error boxes;
one of mask for face filling (see Color scheme);
over-line text if placed after `:` (see Font styles).
dark purple color (see Color styles).
purple color (see Color styles).
dark orange or brown color (see Color styles).
orange color (see Color styles).
dark red color (see Color styles);
align text to right if placed after `:` (see Font styles).
red color (see Color styles).
arrow style (see Line styles);
one of mask for face filling (see Color scheme).
one of marks (see Line styles) or kind of error boxes;
one of mask for face filling (see Color scheme);
start hex-mask description if placed inside {} (see Color scheme);
sine transform for transform.
arrow style (see Line styles);
set to draw text labels for cont, cont3;
name of t-axis (one of ternary axis);
variable in Textual formulas, which usually is varied in range [0,1].
dark blue-violet color (see Color styles);
disable rotation of tick labels for axis.
blue-violet color (see Color styles);
under-line text if placed after `:` (see Font styles);
name of u-axis (one of ternary axis);
variable in Textual formulas, which usually denote array itself.
arrow style (see Line styles);
place text centering on vertical direction for text.
one of marks (see Line styles);
set to draw vectors on flow threads for flow and on segments for lamerey.
bright gray color (see Color styles).
white color (see Color styles);
wired text if placed after `:` (see Font styles);
name of w-axis (one of ternary axis);
arrow style (see Line styles).
name of x-axis or x-direction or 1st dimension of a data array;
start hex-color description if placed inside {} (see Color styles);
one of marks (see Line styles) or kind of error boxes;
tiles orientation perpendicular to x-axis in tile, tiles;
style of tape.
dark yellow or gold color (see Color styles).
yellow color (see Color styles);
name of y-axis or y-direction or 2nd dimension of a data array;
name of z-axis or z-direction or 3d dimension of a data array;
style of tape.
Key | Description |
---|---|
Ctrl-P | Open printer dialog and print graphics. |
Ctrl-W | Close window. |
Ctrl-T | Switch on/off transparency for the graphics. |
Ctrl-L | Switch on/off additional lightning for the graphics. |
Ctrl-Space | Restore default graphics rotation, zoom and perspective. |
F5 | Execute script and redraw graphics. |
F6 | Change canvas size to fill whole region. |
F7 | Stop drawing and script execution. |
Ctrl-F5 | Run slideshow. If no parameter specified then the dialog with slideshow options will appear. |
Ctrl-Comma, Ctrl-Period | Show next/previous slide. If no parameter specified then the dialog with slideshow options will appear. |
Ctrl-Shift-G | Copy graphics to clipboard. |
Alt-P | Export as semitransparent PNG. |
Alt-F | Export as solid PNG. |
Alt-J | Export as JPEG. |
Alt-E | Export as vector EPS. |
Alt-S | Export as vector SVG. |
Alt-L | Export as LaTeX/Tikz image. |
Alt-M | Export as MGLD. |
Alt-D | Export as PRC/PDF. |
Alt-O | Export as OBJ. |
Key | Description |
---|---|
Ctrl-N | Create new window with empty script. Note, all scripts share variables. So, second window can be used to see some additional information of existed variables. |
Ctrl-O | Open and execute/show script or data from file. You may switch off automatic execution in UDAV properties |
Ctrl-S | Save script to a file. |
Ctrl-P | Open printer dialog and print graphics. |
Ctrl-Z | Undo changes in script editor. |
Ctrl-Shift-Z | Redo changes in script editor. |
Ctrl-X | Cut selected text into clipboard. |
Ctrl-C | Copy selected text into clipboard. |
Ctrl-V | Paste selected text from clipboard. |
Ctrl-A | Select all text in editor. |
Ctrl-F | Show dialog for text finding. |
F3 | Find next occurrence of the text. |
Win-C or Meta-C | Show dialog for new command and put it into the script. |
Win-F or Meta-F | Insert last fitted formula with found coefficients. |
Win-S or Meta-S | Show dialog for styles and put it into the script. Styles define the plot view (color scheme, marks, dashing and so on). |
Win-O or Meta-O | Show dialog for options and put it into the script. Options are used for additional setup the plot. |
Win-N or Meta-N | Replace selected expression by its numerical value. |
Win-P or Meta-P | Select file and insert its file name into the script. |
Win-G or Meta-G | Show dialog for plot setup and put resulting code into the script. This dialog setup axis, labels, lighting and other general things. |
Ctrl-Shift-O | Load data from file. Data will be deleted only at exit but UDAV will not ask to save it. |
Ctrl-Shift-S | Save data to a file. |
Ctrl-Shift-C | Copy range of numbers to clipboard. |
Ctrl-Shift-V | Paste range of numbers from clipboard. |
Ctrl-Shift-N | Recreate the data with new sizes and fill it by zeros. |
Ctrl-Shift-R | Resize (interpolate) the data to specified sizes. |
Ctrl-Shift-T | Transform data along dimension(s). |
Ctrl-Shift-M | Make another data. |
Ctrl-Shift-H | Find histogram of data. |
Ctrl-T | Switch on/off transparency for the graphics. |
Ctrl-L | Switch on/off additional lightning for the graphics. |
Ctrl-G | Switch on/off grid of absolute coordinates. |
Ctrl-Space | Restore default graphics rotation, zoom and perspective. |
F5 | Execute script and redraw graphics. |
F6 | Change canvas size to fill whole region. |
F7 | Stop script execution and drawing. |
F8 | Show/hide tool window with list of hidden plots. |
F9 | Restore status for `once` command and reload data. |
Ctrl-F5 | Run slideshow. If no parameter specified then the dialog with slideshow options will appear. |
Ctrl-Comma, Ctrl-Period | Show next/previous slide. If no parameter specified then the dialog with slideshow options will appear. |
Ctrl-W | Open dialog with slideshow options. |
Ctrl-Shift-G | Copy graphics to clipboard. |
F1 | Show help on MGL commands |
F2 | Show/hide tool window with messages and information. |
F4 | Show/hide calculator which evaluate and help to type textual formulas. Textual formulas may contain data variables too. |
Meta-Shift-Up, Meta-Shift-Down | Change view angle \theta. |
Meta-Shift-Left, Meta-Shift-Right | Change view angle \phi. |
Alt-Minus, Alt-Equal | Zoom in/out whole image. |
Alt-Up, Alt-Down, Alt-Right, Alt-Left | Shift whole image. |
Alt-P | Export as semitransparent PNG. |
Alt-F | Export as solid PNG. |
Alt-J | Export as JPEG. |
Alt-E | Export as vector EPS. |
Alt-S | Export as vector SVG. |
Alt-L | Export as LaTeX/Tikz image. |
Alt-M | Export as MGLD. |
Alt-D | Export as PRC/PDF. |
Alt-O | Export as OBJ. |
Copyright © 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
The purpose of this License is to make a manual, textbook, or other functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document`s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work`s title, preceding the beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document`s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version`s license notice. These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.”
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation`s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document`s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.
To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:
Copyright (C) year your name. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with…Texts.” line with this:
with the Invariant Sections being list their titles, with the Front-Cover Texts being list, and with the Back-Cover Texts being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
Jump to: | A B C D E F G H I J L M N O P Q R S T V W X Y Z |
---|
Jump to: | A B C D E F G H I J L M N O P Q R S T V W X Y Z |
---|