module Diff::LCS::Internals
Public Class Methods
Source
# File lib/diff/lcs/internals.rb, line 102 def analyze_patchset(patchset, depth = 0) fail 'Patchset too complex' if depth > 1 has_changes = false new_patchset = [] # Format: # [ # patchset # # hunk (change) # [ # hunk # # change # ] # ] patchset.each do |hunk| case hunk when Diff::LCS::Change has_changes ||= !hunk.unchanged? new_patchset << hunk when Array # Detect if the 'hunk' is actually an array-format change object. if Diff::LCS::Change.valid_action? hunk[0] hunk = Diff::LCS::Change.from_a(hunk) has_changes ||= !hunk.unchanged? new_patchset << hunk else with_changes, hunk = analyze_patchset(hunk, depth + 1) has_changes ||= with_changes new_patchset.concat(hunk) end else fail ArgumentError, "Cannot normalise a hunk of class #{hunk.class}." end end [has_changes, new_patchset] end
This method will analyze the provided patchset to provide a single-pass normalization (conversion of the array form of Diff::LCS::Change objects to the object form of same) and detection of whether the patchset represents changes to be made.
Source
# File lib/diff/lcs/internals.rb, line 147 def intuit_diff_direction(src, patchset, limit = nil) string = src.kind_of?(String) count = left_match = left_miss = right_match = right_miss = 0 patchset.each do |change| count += 1 case change when Diff::LCS::ContextChange le = string ? src[change.old_position, 1] : src[change.old_position] re = string ? src[change.new_position, 1] : src[change.new_position] case change.action when '-' # Remove details from the old string if le == change.old_element left_match += 1 else left_miss += 1 end when '+' if re == change.new_element right_match += 1 else right_miss += 1 end when '=' left_miss += 1 if le != change.old_element right_miss += 1 if re != change.new_element when '!' if le == change.old_element left_match += 1 elsif re == change.new_element right_match += 1 else left_miss += 1 right_miss += 1 end end when Diff::LCS::Change # With a simplistic change, we can't tell the difference between # the left and right on '!' actions, so we ignore those. On '=' # actions, if there's a miss, we miss both left and right. element = string ? src[change.position, 1] : src[change.position] case change.action when '-' if element == change.element left_match += 1 else left_miss += 1 end when '+' if element == change.element right_match += 1 else right_miss += 1 end when '=' if element != change.element left_miss += 1 right_miss += 1 end end end break if !limit.nil? && (count > limit) end no_left = left_match.zero? && left_miss.positive? no_right = right_match.zero? && right_miss.positive? case [no_left, no_right] when [false, true] :patch when [true, false] :unpatch else case left_match <=> right_match when 1 if left_miss.zero? :patch else :unpatch end when -1 if right_miss.zero? :unpatch else :patch end else fail "The provided patchset does not appear to apply to the provided \ enumerable as either source or destination value." end end end
Examine the patchset and the source to see in which direction the patch should be applied.
WARNING: By default, this examines the whole patch, so this could take some time. This also works better with Diff::LCS::ContextChange or Diff::LCS::Change as its source, as an array will cause the creation of one of the above.
Source
# File lib/diff/lcs/internals.rb, line 41 def lcs(a, b) a_start = b_start = 0 a_finish = a.size - 1 b_finish = b.size - 1 vector = [] # Collect any common elements at the beginning... while (a_start <= a_finish) and (b_start <= b_finish) and (a[a_start] == b[b_start]) vector[a_start] = b_start a_start += 1 b_start += 1 end # Now the end... while (a_start <= a_finish) and (b_start <= b_finish) and (a[a_finish] == b[b_finish]) vector[a_finish] = b_finish a_finish -= 1 b_finish -= 1 end # Now, compute the equivalence classes of positions of elements. # An explanation for how this works: https://codeforces.com/topic/92191 b_matches = position_hash(b, b_start..b_finish) thresh = [] links = [] string = a.kind_of?(String) (a_start..a_finish).each do |i| ai = string ? a[i, 1] : a[i] bm = b_matches[ai] k = nil bm.reverse_each do |j| # Although the threshold check is not mandatory for this to work, # it may have an optimization purpose # An attempt to remove it: https://github.com/halostatue/diff-lcs/pull/72 # Why it is reintroduced: https://github.com/halostatue/diff-lcs/issues/78 if k and (thresh[k] > j) and (thresh[k - 1] < j) thresh[k] = j else k = replace_next_larger(thresh, j, k) end links[k] = [k.positive? ? links[k - 1] : nil, i, j] unless k.nil? end end unless thresh.empty? link = links[thresh.size - 1] until link.nil? vector[link[1]] = link[2] link = link[0] end end vector end
Compute the longest common subsequence between the sequenced Enumerables a
and b
. The result is an array whose contents is such that
result = Diff::LCS::Internals.lcs(a, b) result.each_with_index do |e, i| assert_equal(a[i], b[e]) unless e.nil? end
Private Class Methods
Source
# File lib/diff/lcs/internals.rb, line 286 def inverse_vector(a, vector) inverse = a.dup (0...vector.size).each do |i| inverse[vector[i]] = i unless vector[i].nil? end inverse end
If vector
maps the matching elements of another collection onto this Enumerable, compute the inverse of vector
that maps this Enumerable onto the collection. (Currently unused.)
Source
# File lib/diff/lcs/internals.rb, line 298 def position_hash(enum, interval) string = enum.kind_of?(String) hash = Hash.new { |h, k| h[k] = [] } interval.each do |i| k = string ? enum[i, 1] : enum[i] hash[k] << i end hash end
Returns a hash mapping each element of an Enumerable to the set of positions it occupies in the Enumerable, optionally restricted to the elements specified in the range of indexes specified by interval
.
Source
# File lib/diff/lcs/internals.rb, line 252 def replace_next_larger(enum, value, last_index = nil) # Off the end? if enum.empty? or (value > enum[-1]) enum << value return enum.size - 1 end # Binary search for the insertion point last_index ||= enum.size - 1 first_index = 0 while first_index <= last_index i = (first_index + last_index) >> 1 found = enum[i] return nil if value == found if value > found first_index = i + 1 else last_index = i - 1 end end # The insertion point is in first_index; overwrite the next larger # value. enum[first_index] = value first_index end
Find the place at which value
would normally be inserted into the Enumerable. If that place is already occupied by value
, do nothing and return nil
. If the place does not exist (i.e., it is off the end of the Enumerable), add it to the end. Otherwise, replace the element at that point with value
. It is assumed that the Enumerable’s values are numeric.
This operation preserves the sort order.