
x1 MMIXAL DEFINITION OF MMIXAL 1

1. De�nition of MMIXAL. This program takes input written in MMIXAL, the MMIX assembly language,
and translates it into binary �les that can be loaded and executed on MMIX simulators. MMIXAL is much simpler
than the \industrial strength" assembly languages that computer manufacturers usually provide, because it
is primarily intended for the simple demonstration programs in The Art of Computer Programming. Yet it
tries to have enough features to serve also as the back end of compilers for C and other high-level languages.
Instructions for using the program appear at the end of this document. First we will discuss the input and

output languages in detail; then we'll consider the translation process, step by step; then we'll put everything
together.

2. A program in MMIXAL consists of a series of lines, each of which usually contains a single instruction.
However, lines with no instructions are possible, and so are lines with two or more instructions.
Each instruction has three parts called its label �eld, opcode �eld, and operand �eld; these �elds are

separated from each other by one or more spaces. The label �eld, which is often empty, consists of all
characters up to the �rst blank space. The opcode �eld, which is never empty, runs from the �rst nonblank
after the label to the next blank space. The operand �eld, which again might be empty, runs from the next
nonblank character (if any) to the �rst blank or semicolon that isn't part of a string or character constant.
If the operand �eld is followed by a semicolon, possibly with intervening blanks, a new instruction begins
immediately after the semicolon; otherwise the rest of the line is ignored. The end of a line is treated as a
blank space for the purposes of these rules, with the additional proviso that string or character constants
are not allowed to extend from one line to another.
The label �eld must begin with a letter or a digit; otherwise the entire line is treated as a comment.

Popular ways to introduce comments, either at the beginning of a line or after the operand �eld, are to
precede them by the character % as in TEX, or by // as in C++; MMIXAL is not very particular. However,
Lisp-style comments introduced by single semicolons will fail if they follow an instruction, because they will
be assumed to introduce another instruction.

3. MMIXAL has no built-in macro capability, nor does it know how to include header �les and such things.
But users can run their �les through a standard C preprocessor to obtain MMIXAL programs in which macros
and such things have been expanded. (Caution: The preprocessor also removes C-style comments, unless it
is told not to do so.) Literate programming tools could also be used for preprocessing.
If a line begins with the special form `# h integer i h string i', this program interprets it as a line directive

emitted by a preprocessor. For example,

13 "foo.mms"

means that the following line was line 13 in the user's source �le foo.mms. Line directives allow us to correlate
errors with the user's original �le; we also pass them to the output, for use by simulators and debuggers.

4. MMIXAL deals primarily with symbols and constants, which it interprets and combines to form machine
language instructions and data. Constants are simplest, so we will discuss them �rst.
A decimal constant is a sequence of digits, representing a number in radix 10. A hexadecimal constant is

a sequence of hexadecimal digits, preceded by #, representing a number in radix 16:

hdigit i �! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9
hhex digit i �! hdigit i j A j B j C j D j E j F j a j b j c j d j e j f
h decimal constant i �! hdigit i j hdecimal constant ihdigit i
h hex constant i �! #hhex digit i j hhex constant ihhex digit i

Constants whose value is 264 or more are reduced modulo 264.

2 DEFINITION OF MMIXAL MMIXAL x5

5. A character constant is a single character enclosed in single quote marks; it denotes the ASCII or Unicode
number corresponding to that character. For example, 'a' represents the constant #61, also known as 97.
The quoted character can be anything except the character that the C library calls \n or newline; that
character should be represented as #a.

h character constant i �! 'h single byte character except newline i'
h constant i �! hdecimal constant i j hhex constant i j h character constant i

Notice that ''' represents a single quote, the code #27; and '\' represents a backslash, the code #5c.
MMIXAL characters are never \quoted" by backslashes as in the C language.
In the present implementation a character constant will always be at most 255, since wyde character

input is not supported. The present program does not support Unicode directly because basic software for
inputting and outputting 16-bit characters was still in a primitive state at the time of writing. But the data
structures below are designed so that a change to Unicode will not be di�cult when the time is ripe.

6. A string constant like "Hello" is an abbreviation for a sequence of one or more character constants
separated by commas: 'H','e','l','l','o'. Any character except newline or the double quote mark "

can appear between the double quotes of a string constant.

7. A symbol in MMIXAL is any sequence of letters and digits, beginning with a letter. A colon `:' or
underscore symbol `_' is regarded as a letter, for purposes of this de�nition. All extended-ASCII characters
like `�e', whose 8-bit code exceeds 126, are also treated as letters.

h letter i �! A j B j � � � j Z j a j b j � � � j z j : j _ j h character with code value > 126 i
h symbol i �! h letter i j h symbol ih letter i j h symbol ihdigit i

In future implementations, when MMIXAL is used with Unicode, all wyde characters whose 16-bit code
exceeds 126 will be regarded as letters; thus MMIXAL symbols will be able to involve Greek letters or Chinese
characters or thousands of other glyphs.

8. A symbol is said to be fully quali�ed if it begins with a colon. Every symbol that is not fully quali�ed
is an abbreviation for the fully quali�ed symbol obtained by placing the current pre�x in front of it; the
current pre�x is always fully quali�ed. At the beginning of an MMIXAL program the current pre�x is simply
the single character `:', but the user can change it with the PREFIX command. For example,

ADD x,y,z % means ADD :x,:y,:z

PREFIX Foo: % current prefix is :Foo:

ADD x,y,z % means ADD :Foo:x,:Foo:y,:Foo:z

PREFIX Bar: % current prefix is :Foo:Bar:

ADD :x,y,:z % means ADD :x,:Foo:Bar:y,:z

PREFIX : % current prefix reverts to :

ADD x,Foo:Bar:y,Foo:z % means ADD :x,:Foo:Bar:y,:Foo:z

This mechanism allows large programs to avoid con
icts between symbol names, when parts of the program
are independent and/or written by di�erent users. The current pre�x conventionally ends with a colon, but
this convention need not be obeyed.

x9 MMIXAL DEFINITION OF MMIXAL 3

9. A local symbol is a decimal digit followed by one of the letters B, F, or H, meaning \backward," \forward,"
or \here":

h local operand i �! hdigit i B j hdigit i F
h local label i �! hdigit i H

The B and F forms are permitted only in the operand �eld of MMIXAL instructions; the H form is permitted
only in the label �eld. A local operand such as 2B stands for the last local label 2H in instructions before
the current one, or 0 if 2H has not yet appeared as a label. A local operand such as 2F stands for the �rst
2H in instructions after the current one. Thus, in a sequence such as

2H JMP 2F

2H JMP 2B

the �rst instruction jumps to the second and the second jumps to the �rst.
Local symbols are useful for references to nearby points of a program, in cases where no meaningful name is

appropriate. They can also be useful in special situations where a rede�nable symbol is needed; for example,
an instruction like

9H IS 9B+1

will maintain a running counter.

10. Each symbol receives a value called its equivalent when it appears in the label �eld of an instruction;
it is said to be de�ned after its equivalent has been established. A few symbols, like rA and ROUND_OFF

and Fopen, are prede�ned because they refer to �xed constants associated with the MMIX hardware or its
rudimentary operating system; otherwise every symbol should be de�ned exactly once. The two appearances
of `2H' in the example above do not violate this rule, because the second `2H' is not the same symbol as the
�rst.
A prede�ned symbol can be rede�ned (given a new equivalent). After it has been rede�ned it acts like an

ordinary symbol and cannot be rede�ned again. A complete list of the prede�ned symbols appears in the
program listing below.
Equivalents are either pure or register numbers. A pure equivalent is an unsigned octabyte, but a register

number equivalent is a one-byte value, between 0 and 255. A dollar sign is used to change a pure number
into a register number; for example, `$20' means register number 20.

4 DEFINITION OF MMIXAL MMIXAL x11

11. Constants and symbols are combined into expressions in a simple way:

h primary expression i �! h constant i j h symbol i j h local operand i j @ j
(h expression i) j hunary operator ihprimary expression i

h term i �! hprimary expression i j h term ih strong operator ihprimary expression i
h expression i �! h term i j h expression ihweak operator ih term i
h unary operator i �! + j - j ~ j $ j &
h strong operator i �! * j / j // j % j << j >> j &
hweak operator i �! + j - j | j ^

Each expression has a value that is either pure or a register number. The character @ stands for the current
location, which is always pure. The unary operators +, -, ~, $, and & mean, respectively, \do nothing,"
\subtract from zero," \complement the bits," \change from pure value to register number," and \take the
serial number." Only the �rst of these, +, can be applied to a register number. The last unary operator, &,
applies only to symbols, and it is of interest primarily to system programmers; it converts a symbol to the
unique positive integer that is used to identify it in the binary �le output by MMIXAL.
Binary operators come in two
avors, strong and weak. The strong ones are essentially concerned with

multiplication or division: x*y, x/y, x//y, x%y, x<<y, x>>y, and x&y stand respectively for (x� y) mod 264

(multiplication), bx=yc (division), b264x=yc (fractional division), x mod y (remainder), (x � 2y) mod 264

(left shift), bx=2yc (right shift), and x & y (bitwise and) on unsigned octabytes. Division is legal only if
y > 0; fractional division is legal only if x < y. None of the strong binary operations can be applied to
register numbers.
The weak binary operations x+y, x-y, x|y, and x^y stand respectively for (x + y) mod 264 (addition),

(x�y) mod 264 (subtraction), x jy (bitwise or), and x�y (bitwise exclusive-or) on unsigned octabytes. These
operations can be applied to register numbers only in four contexts: h register i+h pure i, hpure i+h register i,
h register i � hpure i and h register i � h register i. For example, if x denotes $1 and y denotes $10, then x+3

and 3+x denote $4, and y-x denotes the pure value 9.
Register numbers within expressions are allowed to be arbitrary octabytes, but a register number assigned

as the equivalent of a symbol should not exceed 255.
(Incidentally, one might ask why the designer of MMIXAL did not simply adopt the existing rules of

C for expressions. The primary reason is that the designers of C chose to give <<, >>, and & a lower
precedence than +; but in MMIXAL we want to be able to write things like o<<24+x<<16+y<<8+z or @+yz<<2
or @+(#100-@)&#ff. Since the conventions of C were inappropriate, it was better to make a clean break, not
pretending to have a close relationship with that language. The new rules are quite easily memorized, because
MMIXAL has just two levels of precedence, and the strong binary operations are all essentially multiplicative
by nature while the weak binary operations are essentially additive.)

12. A symbol is called a future reference until it has been de�ned. MMIXAL restricts the use of future
references, so that programs can be assembled quickly in one pass over the input; therefore all expressions
can be evaluated when the MMIXAL processor �rst sees them.
The restrictions are easily stated: Future references cannot be used in expressions together with unary

or binary operators (except the unary +, which does nothing); moreover, future references can appear as
operands only in instructions that have relative addresses (namely branches, probable branches, JMP, PUSHJ,
GETA) or in octabyte constants (the pseudo-operation OCTA). Thus, for example, one can say JMP 1F or
JMP 1B-4, but not JMP 1F-4.

x13 MMIXAL DEFINITION OF MMIXAL 5

13. We noted earlier that each MMIXAL instruction contains a label �eld, an opcode �eld, and an operand
�eld. The label �eld is either empty or a symbol or local label; when it is nonempty, the symbol or local
label receives an equivalent. The operand �eld is either empty or a sequence of expressions separated by
commas; when it is empty, it is equivalent to the simple operand �eld `0'.

h instruction i �! h label ih opcode ih operand list i
h label i �! h empty i j h symbol i j h local label i
h operand list i �! h empty i j h expression list i
h expression list i �! h expression i j h expression list i,h expression i

The opcode �eld contains either a symbolic MMIX operation name (like ADD), or an alias operation, or
a pseudo-operation. Alias operations are alternate names for MMIX operations whose standard names are
inappropriate in certain contexts. Pseudo-operations do not correspond directly to MMIX commands, but
they govern the assembly process in important ways.
There are two alias operations:

� SET $X,$Y is equivalent to OR $X,$Y,0; it sets register X to register Y. Similarly, SET $X,Y (when Y is
not a register) is equivalent to SETL $X,Y.

� LDA $X,$Y,$Z is equivalent to ADDU $X,$Y,$Z; it loads the address of memory location $Y + $Z into
register X. Similarly, LDA $X,$Y,Z is equivalent to ADDU $X,$Y,Z.

The symbolic operation names for genuine MMIX operations should not include the su�x I for an immediate
operation or the su�x B for a backward jump; MMIXAL determines such things automatically. Thus, one never
writes ADDI or JMPB in the source input to MMIXAL, although such opcodes might appear when a simulator
or debugger or disassembler is presenting a numeric instruction in symbolic form.

h opcode i �! h symbolic MMIX operation i j h alias operation i
j hpseudo-operation i

h symbolic MMIX operation i �! TRAP j FCMP j � � � j TRIP
h alias operation i �! SET j LDA
h pseudo-operation i �! IS j LOC j PREFIX j GREG j LOCAL j BSPEC j ESPEC

j BYTE j WYDE j TETRA j OCTA

6 DEFINITION OF MMIXAL MMIXAL x14

14. MMIX operations like ADD require exactly three expressions as operands. The �rst two must be register
numbers. The third must be either a register number or a pure number between 0 and 255; in the latter
case, ADD becomes ADDI in the assembled output. Thus, for example, the command \set register 1 to the
sum of register 2 and register 3" could be expressed as

ADD $1,$2,$3

or as, say,
ADD x,y,y+1

if the equivalent of x is $1 and the equivalent of y is $2. The command \subtract 5 from register 1" could
be expressed as

SUB $1,$1,5

or as
SUB x,x,5

but not as `SUBI $1,$1,5' or `SUBI x,x,5'.
MMIX operations like FLOT require either three operands (register, pure, register/pure) or only two (register,

register/pure). In the �rst case the middle operand is the rounding mode, which is best expressed in
terms of the prede�ned symbolic values ROUND_CURRENT, ROUND_OFF, ROUND_UP, ROUND_DOWN, ROUND_NEAR,
for (0; 1; 2; 3; 4) respectively. In the second case the middle operand is understood to be zero (namely,
ROUND_CURRENT).
MMIX operations like SETL or INCH, which involve a wyde intermediate constant, require exactly two

operands, (register, pure). The value of the second operand should �t in two bytes.
MMIX operations like BNZ, which mention a register and a relative address, also require two operands.

The �rst operand should be a register number. The second operand should yield a result r in the range
�216 � r < 216 when the current location is subtracted from it and the result is divided by 4. The second
operand might also be unde�ned; in that case, the eventual value must satisfy the restriction stated for
de�ned values. The opcodes GETA and PUSHJ are similar, except that the �rst operand to PUSHJ might also
be pure (see below). The JMP operation is also similar, but it has only one operand, and it allows the larger
address range �224 � r < 224.
MMIX operations that refer to memory, like LDO and STHT and GO, are treated like ADD if they have three

operands, except that the �rst operand should be pure (not a register number) in the case of PRELD, PREGO,
PREST, STCO, SYNCD, and SYNCID. These opcodes also accept a special two-operand form, in which the
second operand stands for a base address and an immediate o�set (see below).
The �rst operand of PUSHJ and PUSHGO can be either a pure number or a register number. In the �rst

case (`PUSHJ 2,Sub' or `PUSHGO 2,Sub') the programmer might be thinking \let's push down two registers";
in the second case (`PUSHJ $2,Sub' or `PUSHGO $2,Sub') the programmer might be thinking \let's make
register 2 the hole position for this subroutine call." Both cases result in the same assembled output.
The remaining MMIX opcodes are idiosyncratic:

NEG r,p,z;

PUT s,z;

GET r,s;

POP p,yz;

RESUME xyz;

SAVE r,0;

UNSAVE r;

SYNC xyz;

TRAP x,y,z or TRAP x,yz or TRAP xyz;

SWYM and TRIP are like TRAP. Here s is an integer between 0 and 31, preferably given by one of the prede�ned
symbols rA, rB, : : : for special register codes; r is a register number; p is a pure byte; x, y, and z are either
register numbers or pure bytes; yz and xyz are pure values that �t respectively in two and three bytes.

x14 MMIXAL DEFINITION OF MMIXAL 7

All of these rules can be summarized by saying that MMIXAL treats each MMIX opcode in the most natural
way. When there are three operands, they a�ect �elds X, Y, and Z of the assembled MMIX instruction; when
there are two operands, they a�ect �elds X and YZ; when there is just one operand, it a�ects �eld XYZ.

15. In all cases when the opcode corresponds to an MMIX operation, the MMIXAL instruction tells the
assembler to carry out four steps: (1) Align the current location so that it is a multiple of 4, by adding
1, 2, or 3 if necessary; (2) De�ne the equivalent of the label �eld to be the current location, if the label is
nonempty; (3) Evaluate the operands and assemble the speci�ed MMIX instruction into the current location;
(4) Increase the current location by 4.

16. Now let's consider the pseudo-operations, starting with the simplest cases.

� h label i IS h expression i de�nes the value of the label to be the value of the expression, which must not
be a future reference. The expression may be either pure or a register number.

� h label i LOC h expression i �rst de�nes the label to be the value of the current location, if the label is
nonempty. Then the current location is changed to the value of the expression, which must be pure.

For example, `LOC #1000' will start assembling subsequent instructions or data in location whose hexa-
decimal value is #1000. `X LOC @+500' de�nes X to be the address of the �rst of 500 bytes in memory;
assembly will continue at location X + 500. The operation of aligning the current location to a multiple
of 256, if it is not already aligned in that way, can be expressed as `LOC @+(256-@)&255'.
A less trivial example arises if we want to emit instructions and data into two separate areas of memory,

but we want to intermix them in the MMIXAL source �le. We could start by de�ning 8H and 9H to be the
starting addresses of the instruction and data segments, respectively. Then, a sequence of instructions could
be enclosed in `LOC 8B; : : : ; 8H IS @'; a sequence of data could be enclosed in `LOC 9B; : : : ; 9H IS @'. Any
number of such sequences could then be combined. Instead of the two pseudo-instructions `8H IS @; LOC 9B'
one could in fact write simply `8H LOC 9B' when switching from instructions to data.

� PREFIX h symbol i rede�nes the current pre�x to be the given symbol (fully quali�ed). The label �eld
should be blank.

17. The next pseudo-operations assemble bytes, wydes, tetrabytes, or octabytes of data.

� h label i BYTE h expression list i de�nes the label to be the current location, if the label �eld is nonempty;
then it assembles one byte for each expression in the expression list, and advances the current location by
the number of bytes. The expressions should all be pure numbers that �t in one byte.
String constants are often used in such expression lists. For example, if the current location is #1000, the

instruction BYTE "Hello",0 assembles six bytes containing the constants 'H', 'e', 'l', 'l', 'o', and 0

into locations #1000, : : : , #1005, and advances the current location to #1006.

� h label i WYDE h expression list i is similar, but it �rst makes the current location even, by adding 1 to it
if necessary. Then it de�nes the label (if a nonempty label is present), and assembles each expression as
a two-byte value. The current location is advanced by twice the number of expressions in the list. The
expressions should all be pure numbers that �t in two bytes.

� h label i TETRA h expression list i is similar, but it aligns the current location to a multiple of 4 before
de�ning the label; then it assembles each expression as a four-byte value. The current location is advanced
by 4n if there are n expressions in the list. Each expression should be a pure number that �ts in four bytes.

� h label i OCTA h expression list i is similar, but it �rst aligns the current location to a multiple of 8; it
assembles each expression as an eight-byte value. The current location is advanced by 8n if there are
n expressions in the list. Any or all of the expressions may be future references, but they should all be
de�ned as pure numbers eventually.

8 DEFINITION OF MMIXAL MMIXAL x18

18. Global registers are important for accessing memory in MMIX programs. They could be allocated
by hand, and de�ned with IS instructions, but MMIXAL provides a mechanism that is usually much more
convenient:

� h label i GREG h expression i allocates a new global register, and assigns its number as the equivalent of the
label. At the beginning of assembly, the current global threshold G is $255. Each distinct GREG instruction
decreases G by 1; the �nal value of G will be the initial value of rG when the assembled program is loaded.
The value of the expression will be loaded into the global register at the beginning of the program. If

this value is nonzero, it should remain constant throughout the program execution; such global registers are
considered to be base addresses. Two or more base addresses with the same constant value are assigned to
the same global register number.
Base addresses can simplify memory accesses in an important way. Suppose, for example, �ve octabyte

values appear in a data segment, and their addresses are called AA, BB, CC, DD, and EE:

AA LOC @+8;BB LOC @+8;CC LOC @+8;DD LOC @+8;EE LOC @+8

Then if you say Base GREG AA, you will be able to write simply `LDO $1,AA' to bring AA into register $1,
and `LDO $2,CC' to bring CC into register $2.
Here's how it works: Whenever a memory operation such as LDO or STB or GO has only two operands, the

second operand should be a pure number whose value can be expressed as b + �, where 0 � � < 256 and b
is the value of a base address in one of the preceding GREG commands. The MMIXAL processor will �nd the
closest base address and manufacture an appropriate command. For example, the instruction `LDO $2,CC'
in the example of the preceding paragraph would be converted automatically to `LDO $2,Base,16'.
If no base address is close enough, an error message will be generated, unless this program is run with

the -x option on the command line. The -x option inserts additional instructions if necessary, using global
register 255, so that any address is accessible. For example, if there is no base address that allows LDO $2,FF

to be implemented in a single instruction, but if FF equals Base+1000, then the -x option would assemble
two instructions,

SETL $255,1000; LDO $2,Base,$255

in place of LDO $2,FF. Caution: The -x feature makes the number of actual MMIX instructions hard to predict,
so extreme care must be used if your style of coding includes relative branch instructions in dangerous forms
like `BNZ x,@+8'.
This base address convention can be used also with the alias operation LDA. For example, `LDA $3,CC'

loads the address of CC into register 3, by assembling the instruction `ADDU $3,Base,16'.
MMIXAL also allows a two-operand form for memory operations such as

LDO $1,$2

to be an abbreviation for `LDO $1,$2,0'.
When MMIXAL programs use subroutines with a memory stack in addition to the built-in register stack,

they usually begin with the instructions `sp GREG 0;fp GREG 0'; these instructions allocate a stack pointer

sp=$254 and a frame pointer fp=$253. However, subroutine libraries are free to implement any conventions
for global registers and stacks that they like.

19. Short programs rarely run out of global registers, but long programs need a mechanism to check that
GREG hasn't been used too often. The following pseudo-instruction provides the necessary safety valve:

� LOCAL h expression i ensures that the expression will be a local register in the program being assembled.
The expression should be a register number, and the label �eld should be blank. At the close of assembly,
MMIXAL will report an error if the �nal value of G does not exceed all register numbers that are declared
local in this way.
A LOCAL instruction need not be given unless the register number is 32 or more. (MMIX always considers

$0 through $31 to be local, so MMIXAL implicitly acts as if the instruction `LOCAL $31' were present.)

x20 MMIXAL DEFINITION OF MMIXAL 9

20. Finally, there are two pseudo-instructions to pass information and hints to the loading routine and/or
to debuggers that will be using the assembled program.

� BSPEC h expression i begins \special mode"; the h expression i should have a value that �ts in two bytes,
and the label �eld should be blank.

� ESPEC ends \special mode"; the operand �eld is ignored, and the label �eld should be blank.

All material assembled between BSPEC and ESPEC is passed directly to the output, but not loaded as part
of the assembled program. Ordinary MMIX instructions cannot appear in special mode; only the pseudo-
operations IS, PREFIX, BYTE, WYDE, TETRA, OCTA, GREG, and LOCAL are allowed. The operand of BSPEC
should have a value that �ts in two bytes; this value identi�es the kind of data that follows. (For example,
BSPEC 0 might introduce information about subroutine calling conventions at the current location, and
BSPEC 1 might introduce line numbers from a high-level-language program that was compiled into the code
at the current place. System routines often need to pass such information through an assembler to the
operating system, hence MMIXAL provides a general-purpose conduit.)

21. A program should begin at the special symbolic location Main (more precisely, at the address corre-
sponding to the fully quali�ed symbol :Main). This symbol always has serial number 1, and it must always
be de�ned.
Locations should not receive assembled data more than once. (More precisely, the loader will load the

bitwise xor of all the data assembled for each byte position; but the general rule \do not load two things into
the same byte" is safest.) All locations that do not receive assembled data are initially zero, except that the
loading routine will put register stack data into segment 3, and the operating system may put command line
data and debugger data into segment 2. (The rudimentary MMIX operating system starts a program with the
number of command line arguments in $0, and a pointer to the beginning of an array of argument pointers
in $1.) Segments 2 and 3 should not get assembled data, unless the user is a true hacker who is willing to
take the risk that such data might crash the system.

10 BINARY MMO OUTPUT MMIXAL x22

22. Binary MMO output. When the MMIXAL processor assembles a �le called foo.mms, it produces a
binary output �le called foo.mmo. (The su�x mms stands for \MMIX symbolic," and mmo stands for \MMIX
object.") Such mmo �les have a simple structure consisting of a sequence of tetrabytes. Some of the tetrabytes
are instructions to a loading routine; others are data to be loaded.
Loader instructions are distinguished from tetrabytes of data by their �rst (most signi�cant) byte, which

has the special escape-code value #98, called mm in the program below. This code value corresponds to
MMIX's opcode LDVTS, which is unlikely to occur in tetras of data. The second byte X of a loader instruction
is the loader opcode, called the lopcode. The third and fourth bytes, Y and Z, are operands. Sometimes they
are combined into a single 16-bit operand called YZ.

#de�ne mm #98

23. A small, contrived example will help explain the basic ideas of mmo format. Consider the following
input �le, called test.mms:

% A peculiar example of MMIXAL

LOC Data Segment % location #2000000000000000

OCTA 1F % a future reference

a GREG @ % $254 is base address for ABCD

ABCD BYTE "ab" % two bytes of data

LOC #123456789 % switch to the instruction segment

Main JMP 1F % another future reference

LOC @+#4000 % skip past 16384 bytes

2H LDB $3,ABCD+1 % use the base address

BZ $3,1F; TRAP % and refer to the future again

3 "foo.mms" % this comment is a line directive

LOC 2B-4*10 % move 10 tetras before previous location

1H JMP 2B % resolve previous references to 1F

BSPEC 5 % begin special data of type 5

TETRA &a<<8 % four bytes of special data

WYDE a-$0 % two more bytes of special data

ESPEC % end a special data packet

LOC ABCD+2 % resume the data segment

BYTE "cd",#98 % assemble three more bytes of data

It de�nes a silly program that essentially puts 'b' into register 3; the program halts when it gets to an all-
zero TRAP instruction following the BZ. But the assembled output of this �le illustrates most of the features
of MMIX objects, and in fact test.mms was the �rst test �le tried by the author when the MMIXAL processor
was originally written.
The binary output �le test.mmo assembled from test.mms consists of the following tetrabytes, shown in

hexadecimal notation with brief comments. Fuller explanations appear with the descriptions of individual
lopcodes below.

98090101 lop pre 1; 1 (preamble, version 1, 1 tetra)
36f4a363 (the �le creation time)
98012001 lop loc #20; 1 (data segment, 1 tetra)
00000000 (low tetrabyte of address in data segment)
00000000 (high tetrabyte of OCTA 1F)
00000000 (low tetrabyte, will be �xed up later)
61620000 ("ab", padded with trailing zeros)

x23 MMIXAL BINARY MMO OUTPUT 11

98010002 lop loc 0; 2 (instruction segment, 2 tetras)
00000001 (high tetrabyte of address in instruction segment)
2345678c (low tetrabyte of address, after alignment)
98060002 lop �le 0; 2 (�le name 0, 2 tetras)
74657374 ("test")
2e6d6d73 (".mms")
98070007 lop line 7 (line 7 of the current �le)
f0000000 (JMP 1F, will be �xed up later)
98024000 lop skip #4000 (advance 16384 bytes)
98070009 lop line 9 (line 9 of the current �le)
8103fe01 (LDB $3,a,1, uses base address a)
42030000 (BZ $3,1F, will be �xed later)
9807000a lop line 10 (stay on line 10)
00000000 (TRAP)
98010002 lop loc 0; 2 (instruction segment, 2 tetras)
00000001 (high tetrabyte of address in instruction segment)
2345a768 (low tetrabyte of address 1H)
98050010 lop �xrx 16 (�x 16-bit relative address)
0100fff5 (�xup for location @-4*-11)
98040ff7 lop �xr #ff7 (�x @-4*#ff7)
98032001 lop �xo #20; 1 (data segment, 1 tetra)
00000000 (low tetrabyte of data segment address to �x)
98060102 lop �le 1; 2 (�le name 1, 2 tetras)
666f6f2e ("foo.")
6d6d7300 ("mms",0)
98070004 lop line 4 (line 4 of the current �le)
f000000a (JMP 2B)
98080005 lop spec 5 (begin special data of type 5)
00000200 (TETRA &a<<8)
00fe0000 (WYDE a-$0)
98012001 lop loc #20; 1 (data segment, 1 tetra)
0000000a (low tetrabyte of address in data segment)
00006364 ("cd" with leading zeros, because of alignment)
98000001 lop quote (don't treat next tetrabyte as a lopcode)
98000000 (BYTE #98, padded with trailing zeros)
980a00fe lop post $254 (begin postamble, G is 254)
20000000 (high tetrabyte of the initial contents of $254)
00000008 (low tetrabyte of base address $254)
00000001 (high tetrabyte of the initial contents of $255)
2345678c (low tetrabyte of $255, is address of Main)
980b0000 lop stab (begin symbol table)
203a5040 (compressed form for symbol table as a ternary trie)
50404020

41204220

43094408

83404020 (ABCD = #2000000000000008, serial 3)
4d206120

69056e01

2345678c

81400f61 (Main = #000000012345678c, serial 1)
fe820000 (a = $254, serial 2)
980c000a lop end (end symbol table, 10 tetras)

12 BINARY MMO OUTPUT MMIXAL x24

24. When a tetrabyte of the mmo �le does not begin with the escape code, it is loaded into the current
location �, and � is increased to the next higher multiple of 4. (If � is not a multiple of 4, the tetrabyte
actually goes into location � ^ (�4) = 4b�=4c, according to MMIX's usual conventions.) The current line
number is also increased by 1, if it is nonzero.
When a tetrabyte does begin with the escape code, its next byte is the lopcode de�ning a loader instruction.

There are thirteen lopcodes:

� lop quote : X = #00, YZ = 1. Treat the next tetra as an ordinary tetrabyte, even if it begins with the
escape code.

� lop loc : X = #01, Y = high byte, Z = tetra count (Z = 1 or 2). Set the current location to the 64-bit
address de�ned by the next Z tetras, plus 256Y. Usually Y = 0 (for the instruction segment) or Y = #20

(for the data segment). If Z = 2, the high tetra appears �rst.

� lop skip : X = #02, YZ = delta. Increase the current location by YZ.

� lop �xo : X = #03, Y = high byte, Z = tetra count (Z = 1 or 2). Load the value of the current location �
into octabyte P, where P is the 64-bit address de�ned by the next Z tetras plus 256Y as in lop loc . (The
octabyte at P was previously assembled as zero because of a future reference.)

� lop �xr : X = #04, YZ = delta. Load YZ into the YZ �eld of the tetrabyte in location P, where P is
� � 4YZ, namely the address that precedes the current location by YZ tetrabytes. (This tetrabyte was
previously loaded with an MMIX instruction that takes a relative address: a branch, probable branch, JMP,
PUSHJ, or GETA. Its YZ �eld was previously assembled as zero because of a future reference.)

� lop �xrx : X = #05, Y = 0, Z = 16 or 24. Proceed as in lop �xr , but load � into tetrabyte P = � � 4�
instead of loading YZ into P = ��4YZ. Here � is the value of the tetrabyte following the lop �xrx instruction;
its leading byte will be either 0 or 1. If the leading byte is 1, � should be treated as the negative number
(� ^ #ffffff)� 2Z when calculating the address P. (The latter case arises only rarely, but it is needed when
�xing up a relative \future" reference that ultimately leads to a \backward" instruction. The value of � that
is xored into location P in such cases will change BZ to BZB, or JMP to JMPB, etc.; we have Z = 24 when
�xing a JMP, Z = 16 otherwise.)

� lop �le : X = #06, Y = �le number, Z = tetra count. Set the current �le number to Y and the current
line number to zero. If this �le number has occurred previously, Z should be zero; otherwise Z should be
positive, and the next Z tetrabytes are the characters of the �le name in big-endian order. Trailing zeros
follow the �le name if its length is not a multiple of 4.

� lop line : X = #07, YZ = line number. Set the current line number to YZ. If the line number is nonzero,
the current �le and current line should correspond to the source location that generated the next data to
be loaded, for use in diagnostic messages. (The MMIXAL processor gives precise line numbers to the sources
of tetrabytes in segment 0, which tend to be instructions, but not to the sources of tetrabytes assembled in
other segments.)

� lop spec : X = #08, YZ = type. Begin special data of type YZ. The subsequent tetrabytes, continuing
until the next loader operation other than lop quote , comprise the special data. A lop quote instruction
allows tetrabytes of special data to begin with the escape code.

� lop pre : X = #09, Y = 1, Z = tetra count. A lop pre instruction, which de�nes the \preamble," must
be the �rst tetrabyte of every mmo �le. The Y �eld speci�es the version number of mmo format, currently 1;
other version numbers may be de�ned later, but version 1 should always be supported as described in the
present document. The Z tetrabytes following a lop pre command provide additional information that might
be of interest to system routines. If Z > 0, the �rst tetra of additional information records the time that
this mmo �le was created, measured in seconds since 00:00:00 Greenwich Mean Time on 1 Jan 1970.

� lop post : X = #0a, Y = 0, Z = G (must be 32 or more). This instruction begins the postamble, which
follows all instructions and data to be loaded. It causes the loaded program to begin with rG equal to the
stated value of G, and with $G, G+1, : : : , $255 initially set to the values of the next (256�G)�2 tetrabytes.
These tetrabytes specify 256�G octabytes in big-endian fashion (high half �rst).

x24 MMIXAL BINARY MMO OUTPUT 13

� lop stab : X = #0b, YZ = 0. This instruction must appear immediately after the (256�G) � 2 tetrabytes
following lop post . It is followed by the symbol table, which lists the equivalents of all user-de�ned symbols
in a compact form that will be described later.

� lop end : X = #0c, YZ = tetra count. This instruction must be the very last tetrabyte of each mmo

�le. Furthermore, exactly YZ tetrabytes must appear between it and the lop stab command. (Therefore a
program can easily �nd the symbol table without reading forward through the entire mmo �le.)

A separate routine called MMOtype is available to translate binary mmo �les into human-readable form.

#de�ne lop quote #0 =� the quotation lopcode �=
#de�ne lop loc #1 =� the location lopcode �=
#de�ne lop skip #2 =� the skip lopcode �=
#de�ne lop �xo #3 =� the octabyte-�x lopcode �=
#de�ne lop �xr #4 =� the relative-�x lopcode �=
#de�ne lop �xrx #5 =� extended relative-�x lopcode �=
#de�ne lop �le #6 =� the �le name lopcode �=
#de�ne lop line #7 =� the �le position lopcode �=
#de�ne lop spec #8 =� the special hook lopcode �=
#de�ne lop pre #9 =� the preamble lopcode �=
#de�ne lop post #a =� the postamble lopcode �=
#de�ne lop stab #b =� the symbol table lopcode �=
#de�ne lop end #c =� the end-it-all lopcode �=

25. Many readers will have noticed that MMIXAL has no facilities for relocatable output, nor does mmo

format support such features. The author's �rst drafts of MMIXAL and mmo did allow relocatable objects,
with external linkages, but the rules were substantially more complicated and therefore inconsistent with
the goals of The Art of Computer Programming. The present design might actually prove to be superior
to the current practice, now that computer memory is signi�cantly cheaper than it used to be, because
one-pass assembly and loading are extremely fast when relocatability and external linkages are disallowed.
Di�erent program modules can be assembled together about as fast as they could be linked together under a
relocatable scheme, and they can communicate with each other in much more
exible ways. Debugging tools
are enhanced when open-source libraries are combined with user programs, and such libraries will certainly
improve in quality when their source form is accessible to a larger community of users.

14 BASIC DATA TYPES MMIXAL x26

26. Basic data types. This program for the 64-bit MMIX architecture is based on 32-bit integer arith-
metic, because nearly every computer available to the author at the time of writing was limited in that way.
Details of the basic arithmetic appear in a separate program module called MMIX-ARITH, because the same
routines are needed also for the simulators. The de�nition of type tetra should be changed, if necessary, to
conform with the de�nitions found in MMIX-ARITH.

hType de�nitions 26 i �
typedef unsigned int tetra; =� assumes that an int is exactly 32 bits wide �=
typedef struct f
tetra h; l;

g octa; =� two tetrabytes make one octabyte �=
typedef enum f

false ; true
g bool;

See also sections 30, 57, 61*, 65, 71, and 85.

This code is used in section 139*.

27. hGlobal variables 27 i �
extern octa zero octa ; =� zero octa :h = zero octa :l = 0 �=
extern octa neg one ; =� neg one :h = neg one :l = �1 �=
extern octa aux ; =� auxiliary output of a subroutine �=
extern bool over
ow ; =� set by certain subroutines for signed arithmetic �=

See also sections 33, 36, 37, 43, 46, 51, 55*, 59, 63, 66, 70, 72, 80, 86, 93, 108, 123, 136, 142*, and 146.

This code is used in section 139*.

28. Most of the subroutines inMMIX-ARITH return an octabyte as a function of two octabytes; for example,
oplus (y; z) returns the sum of octabytes y and z. Division inputs the high half of a dividend in the global
variable aux and returns the remainder in aux .

h Subroutines 28 i �
extern octa oplus ARGS((octa y;octa z)); =� unsigned y + z �=
extern octa ominus ARGS((octa y;octa z)); =� unsigned y � z �=
extern octa incr ARGS((octa y; int delta)); =� unsigned y + � (� is signed) �=
extern octa oand ARGS((octa y;octa z)); =� y ^ z �=
extern octa shift left ARGS((octa y; int s)); =� y � s, 0 � s � 64 �=
extern octa shift right ARGS((octa y; int s; int u)); =� y � s, signed if :u �=
extern octa omult ARGS((octa y;octa z)); =� unsigned (aux ; x) = y � z �=
extern octa odiv ARGS((octa x;octa y;octa z)); =� unsigned (x; y)=z; aux = (x; y) mod z �=

See also sections 41, 42, 44, 45, 47, 48, 49, 50, 52, 56*, 58, 60, 62, 76, and 77.

This code is used in section 139*.

29. Here's a rudimentary check to see if arithmetic is in trouble.

h Initialize everything 29 i �
acc = shift left (neg one ; 1);
if (acc :h 6= #ffffffff) panic("Type tetra is not implemented correctly");

See also sections 32, 64, 74, 87, 94, and 143.

This code is used in section 139*.

x30 MMIXAL BASIC DATA TYPES 15

30. Future versions of this program will work with symbols formed from Unicode characters, but the
present code limits itself to an 8-bit subset. The type Char is de�ned here in order to ease the later
transition: At present, Char is the same as char, but Char can be changed to a 16-bit type in the Unicode
version.
Other changes will also be necessary when the transition to Unicode is made; for example, some calls of

fprintf will become calls of fwprintf , and some occurrences of %s will become %ls in print formats. The
switchable type name Char provides at least a �rst step towards a brighter future with Unicode.

hType de�nitions 26 i +�
typedef char Char; =� bytes that will become wydes some day �=

31. While we're talking about classic systems versus future systems, we might as well de�ne the ARGS

macro, which makes function prototypes available on ANSI C systems without making them uncompilable
on older systems. Each subroutine below is declared �rst with a prototype, then with an old-style de�nition.

hPreprocessor de�nitions 31 i �
#ifdef __STDC__

#de�ne ARGS(list) list

#else
#de�ne ARGS(list) ()
#endif

See also section 39.

This code is used in section 139*.

16 BASIC INPUT AND OUTPUT MMIXAL x32

32. Basic input and output. Input goes into a bu�er that is normally limited to 72 characters. This
limit can be raised, by using the -b option when invoking the assembler; but short bu�ers will keep listings
from becoming unwieldy, because a symbolic listing adds 19 characters per line.

h Initialize everything 29 i +�
if (buf size < 72) buf size = 72;
bu�er = (Char �) calloc(buf size + 1; sizeof (Char));
lab �eld = (Char �) calloc(buf size + 1; sizeof (Char));
op �eld = (Char �) calloc(buf size ; sizeof (Char));
operand list = (Char �) calloc(buf size ; sizeof (Char));
err buf = (Char �) calloc(buf size + 60; sizeof (Char));
if (:bu�er _ :lab �eld _ :op �eld _ :operand list _ :err buf) panic("No room for the buffers");

33. hGlobal variables 27 i +�
Char �bu�er ; =� raw input of the current line �=
Char �buf ptr ; =� current position within bu�er �=
Char �lab �eld ; =� copy of the label �eld of the current instruction �=
Char �op �eld ; =� copy of the opcode �eld of the current instruction �=
Char �operand list ; =� copy of the operand �eld of the current instruction �=
Char �err buf ; =� place where dynamic error messages are sprinted �=

34. hGet the next line of input text, or break if the input has ended 34 i �
if (:fgets (bu�er ; buf size + 1; src �le)) break;
line no++;
line listed = false ;
j = (int) strlen (bu�er);
if (bu�er [j � 1] � '\n') bu�er [j � 1] = '\0'; =� remove the newline �=
else if ((j = fgetc(src �le)) 6= EOF) hFlush the excess part of an overlong line 35 i;
if (bu�er [0] � '#') hCheck for a line directive 38 i;
buf ptr = bu�er ;

This code is used in section 139*.

35. hFlush the excess part of an overlong line 35 i �
f
while (j 6= '\n' ^ j 6= EOF) j = fgetc(src �le);
if (:long warning given) f

long warning given = true ;
err ("*trailing characters of long input line have been dropped");
fprintf (stderr ; "(say `-b <number>' to increase the length of my input buffer)\n");

g else err ("*trailing characters dropped");
g

This code is used in section 34.

36. hGlobal variables 27 i +�
int cur �le ; =� index of the current �le in �lename �=
int line no ; =� current position in the �le �=
bool line listed ; =� have we listed the bu�er contents? �=
bool long warning given ; =� have we given the hint about -b? �=

x37 MMIXAL BASIC INPUT AND OUTPUT 17

37. We keep track of source �le name and line number at all times, for error reporting and for synchro-
nization data in the object �le. Up to 256 di�erent source �le names can be remembered.

hGlobal variables 27 i +�
Char ��lename [257]; =� source �le names, including those in line directives �=
int �lename count ; =� how many �lename entries have we �lled? �=

38. If the current line is a line directive, it will also be treated as a comment by the assembler.

hCheck for a line directive 38 i �
f
for (p = bu�er + 1; isspace (�p); p++) ;
for (j = 0; isdigit (�p); p++) j = 10 � j + �p� '0';
for (; isspace (�p); p++) ;
if (�p � '\"') f
if (:�lename [�lename count]) f

�lename [�lename count] = (Char �) calloc(FILENAME_MAX + 1; sizeof (Char));
if (:�lename [�lename count]) panic("Capacity exceeded: Out of filename memory");

g
for (p++; k = 0; �p ^ �p 6= '\"' ^ k < FILENAME_MAX; p++; k++) �lename [�lename count][k] = �p;
if (k � FILENAME_MAX) panic("Capacity exceeded: File name too long");
if (�p � '\"' ^ �(p� 1) 6= '\"') f =� yes, it's a line directive �=

�lename [�lename count][k] = '\0';
for (k = 0; strcmp(�lename [k];�lename [�lename count]) 6= 0; k++) ;
if (k � �lename count) f
if (�lename count � 256) panic("Capacity exceeded: More than 256 file names");
�lename count ++;

g
cur �le = k;
line no = j � 1;

g
g

g

This code is used in section 34.

39. Archaic versions of the C library do not de�ne FILENAME_MAX.

hPreprocessor de�nitions 31 i +�
#ifndef FILENAME_MAX

#de�ne FILENAME_MAX 256
#endif

40. hLocal variables 40 i �
register Char �p; �q; =� the place where we're currently scanning �=

See also section 68.

This code is used in section 139*.

18 BASIC INPUT AND OUTPUT MMIXAL x41

41. The next several subroutines are useful for preparing a listing of the assembled results. In such a
listing, which the user can request with a command line option, we �ll the leftmost 19 columns with a
representation of the output that has been assembled from the input in the bu�er. Sometimes the assembled
output requires more than one line, because we have room to output only a tetrabyte per line.
The
ush listing line subroutine is called when we have �nished generating one line's worth of assembled

material. Its parameter is a string to be printed between the assembled material and the bu�er contents, if
the input line hasn't yet been echoed. The length of this string should be 19 minus the number of characters
already printed on the current line of the listing.

h Subroutines 28 i +�
void
ush listing line ARGS((char �));
void
ush listing line (s)

char �s;
f
if (line listed) fprintf (listing �le ; "\n");
else f

fprintf (listing �le ; "%s%s\n"; s; bu�er);
line listed = true ;

g
g

42. Only the three least signi�cant hex digits of a location are shown on the listing, unless the other digits
have changed. The following subroutine prints an extra line when a change needs to be shown.

h Subroutines 28 i +�
void update listing loc ARGS((int));
void update listing loc(k)

int k; =� the location to display, mod 4 �=
f
if (cur loc :h 6= listing loc :h _ ((cur loc :l � listing loc :l) & #fffff000)) f

fprintf (listing �le ; "%08x%08x:"; cur loc :h; (cur loc :l &�4) j k);

ush listing line (" ");

g
listing loc :h = cur loc :h; listing loc :l = (cur loc :l &�4) j k;

g

43. hGlobal variables 27 i +�
octa cur loc ; =� current location of assembled output �=
octa listing loc ; =� current location on the listing �=
unsigned char hold buf [4]; =� assembled bytes �=
unsigned char held bits ; =� which bytes of hold buf are active? �=
unsigned char listing bits ; =� which of them haven't been listed yet? �=
bool spec mode ; =� are we between BSPEC and ESPEC? �=
tetra spec mode loc ; =� number of bytes in the current special output �=

x44 MMIXAL BASIC INPUT AND OUTPUT 19

44. When bytes are assembled, they are placed into the hold buf . More precisely, a byte assembled for
a location that is j plus a multiple of 4 is placed into hold buf [j]; two auxiliary variables, held bits and
listing bits , are then increased by 1� j. Furthermore, listing bits is increased by #10� j if that byte is a
future reference to be resolved later.
The bytes are held until we need to output them. The listing clear routine lists any that have been held

but not yet shown. It should be called only when listing bits 6= 0.

h Subroutines 28 i +�
void listing clear ARGS((void));
void listing clear ()
f
register int j; k;

for (k = 0; k < 4; k++)
if (listing bits & (1� k)) break;

if (spec mode) fprintf (listing �le ; " ");
else f

update listing loc(k);
fprintf (listing �le ; " ...%03x: "; (listing loc :l & #ffc) j k);

g
for (j = 0; j < 4; j++)
if (listing bits & (#10� j)) fprintf (listing �le ; "xx");
else if (listing bits & (1� j)) fprintf (listing �le ; "%02x"; hold buf [j]);
else fprintf (listing �le ; " ");

ush listing line (" ");
listing bits = 0;

g

20 BASIC INPUT AND OUTPUT MMIXAL x45

45. Error messages are written to stderr . If the message begins with `*' it is merely a warning; if it begins
with `!' it is fatal; otherwise the error is probably serious enough to make manual correction necessary, yet
it is not tragic. Errors and warnings appear also on the optional listing �le.

#de�ne err (m)
f report error (m); if (m[0] 6= '*') goto bypass ; g

#de�ne derr (m; p)
f sprintf (err buf ;m; p);

report error (err buf); if (err buf [0] 6= '*') goto bypass ; g
#de�ne dderr (m; p; q)

f sprintf (err buf ;m; p; q);
report error (err buf); if (err buf [0] 6= '*') goto bypass ; g

#de�ne panic(m)
f sprintf (err buf ; "!%s";m); report error (err buf); g

#de�ne dpanic(m; p)
f err buf [0] = '!'; sprintf (err buf + 1;m; p); report error (err buf); g

h Subroutines 28 i +�
void report error ARGS((char �));
void report error (message)

char �message ;
f
if (:�lename [cur �le]) �lename [cur �le] = "(nofile)";
if (message [0] � '*')

fprintf (stderr ; "\"%s\", line %d warning: %s\n";�lename [cur �le]; line no ;message + 1);
else if (message [0] � '!')

fprintf (stderr ; "\"%s\", line %d fatal error: %s\n";�lename [cur �le]; line no ;message + 1);
else f

fprintf (stderr ; "\"%s\", line %d: %s!\n";�lename [cur �le]; line no ;message);
err count ++;

g
if (listing �le) f
if (:line listed)
ush listing line ("****************** ");
if (message [0] � '*') fprintf (listing �le ; "************ warning: %s\n";message + 1);
else if (message [0] � '!') fprintf (listing �le ; "******** fatal error: %s!\n";message + 1);
else fprintf (listing �le ; "********** error: %s!\n";message);

g
if (message [0] � '!') exit (�2);

g

46. hGlobal variables 27 i +�
int err count ; =� this many errors were found �=

x47 MMIXAL BASIC INPUT AND OUTPUT 21

47. Output to the binary obj �le occurs four bytes at a time. The bytes are assembled in small bu�ers,
not output as single tetrabytes, because we want the output to be big-endian even when the assembler is
running on a little-endian machine.

#de�ne mmo write (buf) if (fwrite (buf ; 1; 4; obj �le) 6= 4) dpanic("Can't write on %s"; obj �le name)

h Subroutines 28 i +�
void mmo clear ARGS((void));
void mmo out ARGS((void));
unsigned char lop quote command [4] = fmm ; lop quote ; 0; 1g;

void mmo clear () =� clears hold buf , when held bits 6= 0 �=
f
if (hold buf [0] � mm) mmo write (lop quote command);
mmo write (hold buf);
if (listing �le ^ listing bits) listing clear ();
held bits = 0;
hold buf [0] = hold buf [1] = hold buf [2] = hold buf [3] = 0;
mmo cur loc = incr (mmo cur loc ; 4); mmo cur loc :l &= �4;
if (mmo line no) mmo line no++;

g

unsigned char mmo buf [4];
int mmo ptr ;

void mmo out () =� output the contents of mmo buf �=
f
if (held bits) mmo clear ();
mmo write (mmo buf);

g

22 BASIC INPUT AND OUTPUT MMIXAL x48

48. h Subroutines 28 i +�
void mmo tetra ARGS((tetra));
void mmo byte ARGS((unsigned int));
void mmo lop ARGS((int;unsigned int;unsigned int));
void mmo lopp ARGS((int;unsigned int));

void mmo tetra (t) =� output a tetrabyte �=
tetra t;

f
mmo buf [0] = t� 24; mmo buf [1] = (t� 16) & #ff;
mmo buf [2] = (t� 8) & #ff; mmo buf [3] = t& #ff;
mmo out ();

g

void mmo byte (b)
unsigned int b;

f
mmo buf [(mmo ptr ++) & 3] = b;
if (:(mmo ptr & 3)) mmo out ();

g

void mmo lop(x; y; z) =� output a loader operation �=
int x;
unsigned int y; z;

f
mmo buf [0] = mm ; mmo buf [1] = x; mmo buf [2] = y; mmo buf [3] = z;
mmo out ();

g

void mmo lopp(x; yz) =� output a loader operation with two-byte operand �=
int x;
unsigned int yz ;

f
mmo buf [0] = mm ; mmo buf [1] = x; mmo buf [2] = yz � 8; mmo buf [3] = yz & #ff;
mmo out ();

g

x49 MMIXAL BASIC INPUT AND OUTPUT 23

49. The mmo loc subroutine makes the current location in the object �le equal to cur loc .

h Subroutines 28 i +�
void mmo loc ARGS((void));
void mmo loc()
f
octa o;

if (held bits) mmo clear ();
o = ominus (cur loc ;mmo cur loc);
if (o:h � 0 ^ o:l < #10000) f
if (o:l) mmo lopp(lop skip ; o:l);

g else f
if (cur loc :h& #ffffff) f

mmo lop(lop loc ; 0; 2);
mmo tetra (cur loc :h);

g else mmo lop(lop loc ; cur loc :h� 24; 1);
mmo tetra (cur loc :l);

g
mmo cur loc = cur loc ;

g

50. Similarly, the mmo sync subroutine makes sure that the current �le and line number in the output �le
agree with cur �le and line no .

h Subroutines 28 i +�
void mmo sync ARGS((void));
void mmo sync()
f
register int j;
register Char �p;

if (cur �le 6= mmo cur �le) f
if (�lename passed [cur �le]) mmo lop(lop �le ; cur �le ; 0);
else f

mmo lop(lop �le ; cur �le ; (strlen (�lename [cur �le]) + 3)� 2);
for (j = 0; p = �lename [cur �le]; �p; p++; j = (j + 1) & 3) f

mmo buf [j] = �p;
if (j � 3) mmo out ();

g
if (j) f
for (; j < 4; j++) mmo buf [j] = 0;
mmo out ();

g
�lename passed [cur �le] = 1;

g
mmo cur �le = cur �le ;
mmo line no = 0;

g
if (line no 6= mmo line no) f
if (line no � #10000) panic("I can't deal with line numbers exceeding 65535");
mmo lopp(lop line ; line no);
mmo line no = line no ;

g
g

24 BASIC INPUT AND OUTPUT MMIXAL x51

51. hGlobal variables 27 i +�
octa mmo cur loc ; =� current location in the object �le �=
int mmo line no ; =� current line number in the mmo output so far �=
int mmo cur �le ; =� index of the current �le in the mmo output so far �=
char �lename passed [256]; =� has a �lename been recorded in the output? �=

52. Here is a basic subroutine that assembles k bytes starting at cur loc . The value of k should be 1, 2,
or 4, and cur loc should be a multiple of k. The x bits parameter tells which bytes, if any, are part of a
future reference.

h Subroutines 28 i +�
void assemble ARGS((int; tetra;unsigned int));
void assemble (k; dat ; x bits)

int k;
tetra dat ;
unsigned int x bits ;

f
register int j; jj ; l;

if (spec mode) l = spec mode loc ;
else f

l = cur loc :l;
hMake sure cur loc and mmo cur loc refer to the same tetrabyte 53* i;
if (:held bits ^ :(cur loc :h& #e0000000)) mmo sync();

g
for (j = 0; j < k; j++) f

jj = (l + j) & 3;
hold buf [jj] = (dat � (8 � (k � 1� j))) & #ff;
held bits j= 1� jj ;
listing bits j= 1� jj ;

g
listing bits j= x bits ;
if (((l + k) & 3) � 0) f
if (listing �le) listing clear ();
mmo clear ();

g
if (spec mode) spec mode loc += k;
else cur loc = incr (cur loc ; k);

g

53*. hMake sure cur loc and mmo cur loc refer to the same tetrabyte 53* i �
if (cur loc :h 6= mmo cur loc :h _ ((cur loc :l �mmo cur loc :l) & #fffffffc)) mmo loc();

This code is used in section 52.

x54 MMIXAL BASIC INPUT AND OUTPUT 25

54*. In order to prepare a TEX-output, we de�ne starting and end tags for all types of output.

#de�ne tex nl "\\\\ " =� newline �=
#de�ne tex tab " & " =� "> " // tab �=
#de�ne tex startlinenr ""

#de�ne tex endlinenr " & "

#de�ne tex nolabel " & "

#de�ne tex labelstart " "

#de�ne tex labelend " & "

#de�ne tex opcodestart ""

#de�ne tex opcodeend " & "

#de�ne tex startop ""

#de�ne tex endop ""

#de�ne tex startlcomment " & \\relax " =� start of a comment following an instruction �=
#de�ne tex startcomment " \\comment{\\relax "

#de�ne tex endcomment "}\\\\ "

#de�ne tex line wo comment "\\hidewidth & "

#de�ne tex startstring "{\\tt \\symbol{34}"

#de�ne tex endstring "\\symbol{34}}"

#de�ne tex blank "\\texttt{\\symbol{32}}"

#de�ne tex braceopen "{\\tt\\symbol{123}}"

#de�ne tex braceclose "{\\tt\\symbol{125}}"

#de�ne tex pipe "\\(|\\)"

#de�ne tex hat "\\^{ }"

#de�ne tex ll "\\(\\ll\\)"

#de�ne tex gg "\\(\\gg\\)"

#de�ne TEX_MAXSYM_LEN 511

55*. Furthermore, we need a conversion function to eliminate underscores etc. in symbols for putting out
TEXformat. (complete?) Also we trace here, whether we are in string-mode.

hGlobal variables 27 i +�
Char tex res [TEX_MAXSYM_LEN];
Char �start comment = �;
int string mode = 0;

26 BASIC INPUT AND OUTPUT MMIXAL x56

56*. h Subroutines 28 i +�
Char �toTex (Char �symbol)
f
int i; j;

i = j = 0;
while (j < TEX_MAXSYM_LEN � 1 ^ symbol [i]) f

tex res [j] = '\0';
switch (symbol [i]) f
case '&': case '#': case '%': =� can occur for comments to ops w/o operands �=

tex res [j++] = '\\';
break;

case '{':
if (strlen (tex res) < TEX_MAXSYM_LEN � strlen (tex braceopen)) strcat (tex res ; tex braceopen);
i++; j += strlen (tex braceopen);
continue;

case '}':
if (strlen (tex res) < TEX_MAXSYM_LEN � strlen (tex braceclose)) strcat (tex res ; tex braceclose);
i++; j += strlen (tex braceclose);
continue;

case '|':
if (strlen (tex res) < TEX_MAXSYM_LEN � strlen (tex pipe)) strcat (tex res ; tex pipe);
i++; j += strlen (tex pipe);
continue;

case '^':
if (strlen (tex res) < TEX_MAXSYM_LEN � strlen (tex hat)) strcat (tex res ; tex hat);
i++; j += strlen (tex hat);
continue;

case '>':
if (symbol [i+ 1] � '>' ^ strlen (tex res) < TEX_MAXSYM_LEN � strlen (tex gg))

strcat (tex res ; tex gg);
i += 2; j += strlen (tex gg);
continue;

case '<':
if (symbol [i+1] � '<' ^ strlen (tex res) < TEX_MAXSYM_LEN� strlen (tex ll)) strcat (tex res ; tex ll);
i += 2; j += strlen (tex ll);
continue;

case ' ':
if (string mode ^ j + strlen (tex blank) < TEX_MAXSYM_LEN) f

tex res [j] = '\0';
strcat (tex res ; tex blank);
j += strlen (tex blank);

g =� copy blanks to output in case that toTex is used for preprocessor directives { DIRTY �=
else break;
i++;
continue;

case '\"': tex res [j] = '\0';
if (string mode) f
if (j + strlen (tex endstring) < TEX_MAXSYM_LEN)

strcat (tex res ; tex endstring); j += strlen (tex endstring);
g
else f

x56 MMIXAL BASIC INPUT AND OUTPUT 27

if (j + strlen (tex startstring) < TEX_MAXSYM_LEN)
strcat (tex res ; tex startstring); j += strlen (tex startstring);

g
string mode �= 1;
i++;
continue;

g
tex res [j++] = symbol [i++];

g
tex res [j] = '\0';
return tex res ;

g

28 THE SYMBOL TABLE MMIXAL x57

57. The symbol table. Symbols are stored and retrieved by means of a ternary search trie, following
ideas of Bentley and Sedgewick. (See ACM{SIAM Symp. on Discrete Algorithms 8 (1997), 360{369;
R. Sedgewick, Algorithms in C (Reading, Mass.: Addison{Wesley, 1998), x15.4.) Each trie node stores
a character, and there are branches to subtries for the cases where a given character is less than, equal to,
or greater than the character in the trie. There also is a pointer to a symbol table entry if a symbol ends at
the current node.

hType de�nitions 26 i +�
typedef struct ternary trie struct f
unsigned short ch ; =� the (possibly wyde) character stored here �=
struct ternary trie struct �left ; �mid ; �right ; =� downward in the ternary trie �=
struct sym tab struct �sym ; =� equivalents of symbols �=

g trie node;

58. We allocate trie nodes in chunks of 1000 at a time.

h Subroutines 28 i +�
trie node �new trie node ARGS((void));
trie node �new trie node ()
f
register trie node �t = next trie node ;

if (t � last trie node) f
t = (trie node �) calloc(1000; sizeof (trie node));
if (:t) panic("Capacity exceeded: Out of trie memory");
last trie node = t+ 1000;

g
next trie node = t+ 1;
return t;

g

59. hGlobal variables 27 i +�
trie node �trie root ; =� root of the trie �=
trie node �op root ; =� root of subtrie for opcodes �=
trie node �next trie node ; �last trie node ; =� allocation control �=
trie node �cur pre�x ; =� root of subtrie for unquali�ed symbols �=

x60 MMIXAL THE SYMBOL TABLE 29

60. The trie search subroutine starts at a given node of the trie and �nds a given string in its middle
subtrie, inserting new nodes if necessary. The string ends with the �rst nonletter or nondigit; the location
of the terminating character is stored in global variable terminator .

#de�ne isletter (c) (isalpha (c) _ c � '_' _ c � ':' _ (unsigned int)(c) > 126)

h Subroutines 28 i +�
trie node �trie search ARGS((trie node �;Char �));
Char �terminator ; =� where the search ended �=

trie node �trie search (t; s)
trie node �t;
Char �s;

f
register trie node �tt = t;
register unsigned char �p = (unsigned char �) s;

while (1) f
if (:isletter (�p) ^ :isdigit (�p)) f

terminator = (Char �) p; return tt ;
g
if (tt~mid) f

tt = tt~mid ;
while (�p 6= tt~ch) f
if (�p < tt~ch) f
if (tt~ left) tt = tt~ left ;
else f

tt~ left = new trie node (); tt = tt~ left ; goto store new char ;
g

g else f
if (tt~right) tt = tt~right ;
else f

tt~right = new trie node (); tt = tt~right ; goto store new char ;
g

g
g
p++;

g else f
tt~mid = new trie node (); tt = tt~mid ;

store new char : tt~ch = �p++;
g

g
g

30 THE SYMBOL TABLE MMIXAL x61

61*. Symbol table nodes hold the serial numbers and equivalents of de�ned symbols. They also hold \�xup
information" for unde�ned symbols; this will allow the loader to correct any previously assembled instructions
that refer to such symbols when they are eventually de�ned.
In the symbol table node for a de�ned symbol, the link �eld has one of the special codes DEFINED or

REGISTER or PREDEFINED, and the equiv �eld holds the de�ned value. The serial number is a unique
identi�er for all user-de�ned symbols.
In the symbol table node for an unde�ned symbol, the equiv �eld is ignored. The link �eld points to the

�rst node of �xup information; that node is, in turn, a symbol table node that might link to other �xups.
The serial number in a �xup node is either 0 or 1 or 2, meaning respectively \�xup the octabyte pointed to
by equiv " or \�xup the relative address in the YZ �eld of the instruction pointed to by equiv " or \�xup the
relative address in the XYZ �eld of the instruction pointed to by equiv ."

#de�ne DEFINED (sym node �) 1 =� code value for octabyte equivalents �=
#de�ne REGISTER (sym node �) 2 =� code value for register-number equivalents �=
#de�ne PREDEFINED (sym node �) 3 =� code value for not-yet-used equivalents �=
#de�ne �x o 0 =� serial code for octabyte �xup �=
#de�ne �x yz 1 =� serial code for relative �xup �=
#de�ne �x xyz 2 =� serial code for JMP �xup �=

hType de�nitions 26 i +�
typedef struct sym tab struct f
int serial ; =� serial number of symbol; type number for �xups �=
struct sym tab struct �link ; =� DEFINED status or link to �xup �=
octa equiv ; =� the equivalent value �=
int linenr ; =� line number for TEXoutput �=

g sym node;

62. The allocation of new symbol table nodes proceeds in chunks, like the allocation of trie nodes. But in
this case we also have the possibility of reusing old �xup nodes that are no longer needed.

#de�ne recycle �xup(pp) pp~ link = sym avail ; sym avail = pp

h Subroutines 28 i +�
sym node �new sym node ARGS((bool));
sym node �new sym node (serialize)

bool serialize ; =� should the new node receive a unique serial number? �=
f
register sym node �p = sym avail ;

if (p) f
sym avail = p~ link ; p~ link = �; p~serial = 0; p~equiv = zero octa ;

g else f
p = next sym node ;
if (p � last sym node) f

p = (sym node �) calloc(1000; sizeof (sym node));
if (:p) panic("Capacity exceeded: Out of symbol memory");
last sym node = p+ 1000;

g
next sym node = p+ 1;

g
if (serialize) p~serial = ++serial number ;
return p;

g

x63 MMIXAL THE SYMBOL TABLE 31

63. hGlobal variables 27 i +�
int serial number ;
sym node �sym root ; =� root of the sym �=
sym node �next sym node ; �last sym node ; =� allocation control �=
sym node �sym avail ; =� stack of recycled symbol table nodes �=

64. We initialize the trie by inserting all the prede�ned symbols. Opcodes are given the pre�x ^, to
distinguish them from ordinary symbols; this character nicely divides uppercase letters from lowercase letters.

h Initialize everything 29 i +�
trie root = new trie node ();
cur pre�x = trie root ;
op root = new trie node ();
trie root~mid = op root ;
trie root~ch = ':';
op root~ch = '^';
hPut the MMIX opcodes and MMIXAL pseudo-ops into the trie 67 i;
hPut the special register names into the trie 69 i;
hPut other prede�ned symbols into the trie 73 i;

65. Most of the assembly work can be table driven, based on bits that are stored as the \equivalents" of
opcode symbols like ^ADD.

#de�ne rel addr bit #1 =� is YZ or XYZ relative? �=
#de�ne immed bit #2 =� should opcode be immediate if Z or YZ not register? �=
#de�ne zar bit #4 =� should register status of Z be ignored? �=
#de�ne zr bit #8 =� must Z be a register? �=
#de�ne yar bit #10 =� should register status of Y be ignored? �=
#de�ne yr bit #20 =� must Y be a register? �=
#de�ne xar bit #40 =� should register status of X be ignored? �=
#de�ne xr bit #80 =� must X be a register? �=
#de�ne yzar bit #100 =� should register status of YZ be ignored? �=
#de�ne yzr bit #200 =� must YZ be a register? �=
#de�ne xyzar bit #400 =� should register status of XYZ be ignored? �=
#de�ne xyzr bit #800 =� must XYZ be a register? �=
#de�ne one arg bit #1000 =� is it OK to have zero or one operand? �=
#de�ne two arg bit #2000 =� is it OK to have exactly two operands? �=
#de�ne three arg bit #4000 =� is it OK to have exactly three operands? �=
#de�ne many arg bit #8000 =� is it OK to have more than three operands? �=
#de�ne align bits #30000 =� how much alignment: byte, wyde, tetra, or octa? �=
#de�ne no label bit #40000 =� should the label be blank? �=
#de�ne mem bit #80000 =� must YZ be a memory reference? �=
#de�ne spec bit #100000 =� is this opcode allowed in SPEC mode? �=

hType de�nitions 26 i +�
typedef struct f
Char �name ; =� symbolic opcode �=
short code ; =� numeric opcode �=
int bits ; =� treatment of operands �=

g op spec;

typedef enum f
SET = #100; IS; LOC; PREFIX; BSPEC; ESPEC; GREG; LOCAL;
BYTE; WYDE; TETRA; OCTA

g pseudo op;

32 THE SYMBOL TABLE MMIXAL x66

66. hGlobal variables 27 i +�
op spec op init table [] = f
f"TRAP"; #00; #27554g; f"FCMP"; #01; #240a8g; f"FUN"; #02; #240a8g; f"FEQL"; #03; #240a8g;
f"FADD"; #04; #240a8g; f"FIX"; #05; #26288g; f"FSUB"; #06; #240a8g; f"FIXU"; #07; #26288g;
f"FLOT"; #08; #26282g; f"FLOTU"; #0a; #26282g; f"SFLOT"; #0c; #26282g; f"SFLOTU"; #0e; #26282g;
f"FMUL"; #10; #240a8g; f"FCMPE"; #11; #240a8g; f"FUNE"; #12; #240a8g; f"FEQLE"; #13; #240a8g;
f"FDIV"; #14; #240a8g; f"FSQRT"; #15; #26288g; f"FREM"; #16; #240a8g; f"FINT"; #17; #26288g;
f"MUL"; #18; #240a2g; f"MULU"; #1a; #240a2g; f"DIV"; #1c; #240a2g; f"DIVU"; #1e; #240a2g;
f"ADD"; #20; #240a2g; f"ADDU"; #22; #240a2g; f"SUB"; #24; #240a2g; f"SUBU"; #26; #240a2g;
f"2ADDU"; #28; #240a2g; f"4ADDU"; #2a; #240a2g; f"8ADDU"; #2c; #240a2g; f"16ADDU"; #2e; #240a2g;
f"CMP"; #30; #240a2g; f"CMPU"; #32; #240a2g; f"NEG"; #34; #26082g; f"NEGU"; #36; #26082g;
f"SL"; #38; #240a2g; f"SLU"; #3a; #240a2g; f"SR"; #3c; #240a2g; f"SRU"; #3e; #240a2g;
f"BN"; #40; #22081g; f"BZ"; #42; #22081g; f"BP"; #44; #22081g; f"BOD"; #46; #22081g;
f"BNN"; #48; #22081g; f"BNZ"; #4a; #22081g; f"BNP"; #4c; #22081g; f"BEV"; #4e; #22081g;
f"PBN"; #50; #22081g; f"PBZ"; #52; #22081g; f"PBP"; #54; #22081g; f"PBOD"; #56; #22081g;
f"PBNN"; #58; #22081g; f"PBNZ"; #5a; #22081g; f"PBNP"; #5c; #22081g; f"PBEV"; #5e; #22081g;
f"CSN"; #60; #240a2g; f"CSZ"; #62; #240a2g; f"CSP"; #64; #240a2g; f"CSOD"; #66; #240a2g;
f"CSNN"; #68; #240a2g; f"CSNZ"; #6a; #240a2g; f"CSNP"; #6c; #240a2g; f"CSEV"; #6e; #240a2g;
f"ZSN"; #70; #240a2g; f"ZSZ"; #72; #240a2g; f"ZSP"; #74; #240a2g; f"ZSOD"; #76; #240a2g;
f"ZSNN"; #78; #240a2g; f"ZSNZ"; #7a; #240a2g; f"ZSNP"; #7c; #240a2g; f"ZSEV"; #7e; #240a2g;
f"LDB"; #80; #a60a2g; f"LDBU"; #82; #a60a2g; f"LDW"; #84; #a60a2g; f"LDWU"; #86; #a60a2g;
f"LDT"; #88; #a60a2g; f"LDTU"; #8a; #a60a2g; f"LDO"; #8c; #a60a2g; f"LDOU"; #8e; #a60a2g;
f"LDSF"; #90; #a60a2g; f"LDHT"; #92; #a60a2g; f"CSWAP"; #94; #a60a2g; f"LDUNC"; #96; #a60a2g;
f"LDVTS"; #98; #a60a2g; f"PRELD"; #9a; #a6022g; f"PREGO"; #9c; #a6022g; f"GO"; #9e; #a60a2g;
f"STB"; #a0; #a60a2g; f"STBU"; #a2; #a60a2g; f"STW"; #a4; #a60a2g; f"STWU"; #a6; #a60a2g;
f"STT"; #a8; #a60a2g; f"STTU"; #aa; #a60a2g; f"STO"; #ac; #a60a2g; f"STOU"; #ae; #a60a2g;
f"STSF"; #b0; #a60a2g; f"STHT"; #b2; #a60a2g; f"STCO"; #b4; #a6022g; f"STUNC"; #b6; #a60a2g;
f"SYNCD"; #b8; #a6022g; f"PREST"; #ba; #a6022g; f"SYNCID"; #bc; #a6022g; f"PUSHGO"; #be; #a6062g;
f"OR"; #c0; #240a2g; f"ORN"; #c2; #240a2g; f"NOR"; #c4; #240a2g; f"XOR"; #c6; #240a2g;
f"AND"; #c8; #240a2g; f"ANDN"; #ca; #240a2g; f"NAND"; #cc; #240a2g; f"NXOR"; #ce; #240a2g;
f"BDIF"; #d0; #240a2g; f"WDIF"; #d2; #240a2g; f"TDIF"; #d4; #240a2g; f"ODIF"; #d6; #240a2g;
f"MUX"; #d8; #240a2g; f"SADD"; #da; #240a2g; f"MOR"; #dc; #240a2g; f"MXOR"; #de; #240a2g;
f"SETH"; #e0; #22080g; f"SETMH"; #e1; #22080g; f"SETML"; #e2; #22080g; f"SETL"; #e3; #22080g;
f"INCH"; #e4; #22080g; f"INCMH"; #e5; #22080g; f"INCML"; #e6; #22080g; f"INCL"; #e7; #22080g;
f"ORH"; #e8; #22080g; f"ORMH"; #e9; #22080g; f"ORML"; #ea; #22080g; f"ORL"; #eb; #22080g;
f"ANDNH"; #ec; #22080g; f"ANDNMH"; #ed; #22080g; f"ANDNML"; #ee; #22080g; f"ANDNL"; #ef; #22080g;
f"JMP"; #f0; #21001g; f"PUSHJ"; #f2; #22041g; f"GETA"; #f4; #22081g; f"PUT"; #f6; #22002g;
f"POP"; #f8; #23000g; f"RESUME"; #f9; #21000g; f"SAVE"; #fa; #22080g; f"UNSAVE"; #fb; #23a00g;
f"SYNC"; #fc; #21000g; f"SWYM"; #fd; #27554g; f"GET"; #fe; #22080g; f"TRIP"; #ff; #27554g;
f"SET"; SET; #22180g; f"LDA"; #22; #a60a2g;
f"IS"; IS; #101400g; f"LOC"; LOC; #1400g; f"PREFIX"; PREFIX; #141000g;
f"BYTE"; BYTE; #10f000g; f"WYDE"; WYDE; #11f000g; f"TETRA"; TETRA; #12f000g; f"OCTA"; OCTA; #13f000g;
f"BSPEC"; BSPEC; #41400g; f"ESPEC"; ESPEC; #141000g;
f"GREG"; GREG; #101000g; f"LOCAL"; LOCAL; #141800gg;
int op init size ; =� the number of items in op init table �=

x67 MMIXAL THE SYMBOL TABLE 33

67. hPut the MMIX opcodes and MMIXAL pseudo-ops into the trie 67 i �
op init size = (sizeof op init table)=sizeof (op spec);
for (j = 0; j < op init size ; j++) f

tt = trie search (op root ; op init table [j]:name);
pp = tt~sym = new sym node (false);
pp~ link = PREDEFINED;
pp~equiv :h = op init table [j]:code ; pp~equiv :l = op init table [j]:bits ;

g

This code is used in section 64.

68. hLocal variables 40 i +�
register trie node �tt ;
register sym node �pp ; �qq ;

69. hPut the special register names into the trie 69 i �
for (j = 0; j < 32; j++) f

tt = trie search (trie root ; special name [j]);
pp = tt~sym = new sym node (false);
pp~ link = PREDEFINED;
pp~equiv :l = j;

g

This code is used in section 64.

70. hGlobal variables 27 i +�
Char �special name [32] = f"rB"; "rD"; "rE"; "rH"; "rJ"; "rM"; "rR"; "rBB"; "rC"; "rN"; "rO"; "rS";

"rI"; "rT"; "rTT"; "rK"; "rQ"; "rU"; "rV"; "rG"; "rL"; "rA"; "rF"; "rP"; "rW"; "rX"; "rY"; "rZ";
"rWW"; "rXX"; "rYY"; "rZZ"g;

71. hType de�nitions 26 i +�
typedef struct f
Char �name ;
tetra h; l;

g predef spec;

72. hGlobal variables 27 i +�
predef spec predefs [] = ff"ROUND_CURRENT"; 0; 0g; f"ROUND_OFF"; 0; 1g; f"ROUND_UP"; 0; 2g;

f"ROUND_DOWN"; 0; 3g; f"ROUND_NEAR"; 0; 4g;
f"Inf"; #7ff00000; 0g;
f"Data_Segment"; #20000000; 0g; f"Pool_Segment"; #40000000; 0g; f"Stack_Segment"; #60000000; 0g;
f"D_BIT"; 0; #80g; f"V_BIT"; 0; #40g; f"W_BIT"; 0; #20g; f"I_BIT"; 0; #10g; f"O_BIT"; 0; #08g; f"U_BIT";

0; #04g; f"Z_BIT"; 0; #02g; f"X_BIT"; 0; #01g;
f"D_Handler"; 0; #10g; f"V_Handler"; 0; #20g; f"W_Handler"; 0; #30g; f"I_Handler"; 0; #40g;

f"O_Handler"; 0; #50g; f"U_Handler"; 0; #60g; f"Z_Handler"; 0; #70g; f"X_Handler"; 0; #80g;
f"StdIn"; 0; 0g; f"StdOut"; 0; 1g; f"StdErr"; 0; 2g;
f"TextRead"; 0; 0g; f"TextWrite"; 0; 1g; f"BinaryRead"; 0; 2g; f"BinaryWrite"; 0; 3g;

f"BinaryReadWrite"; 0; 4g;
f"Halt"; 0; 0g; f"Fopen"; 0; 1g; f"Fclose"; 0; 2g; f"Fread"; 0; 3g; f"Fgets"; 0; 4g; f"Fgetws"; 0; 5g;

f"Fwrite"; 0; 6g; f"Fputs"; 0; 7g; f"Fputws"; 0; 8g; f"Fseek"; 0; 9g; f"Ftell"; 0; 10gg;
int predef size ;

34 THE SYMBOL TABLE MMIXAL x73

73. hPut other prede�ned symbols into the trie 73 i �
predef size = (sizeof predefs)=sizeof (predef spec);
for (j = 0; j < predef size ; j++) f

tt = trie search (trie root ; predefs [j]:name);
pp = tt~sym = new sym node (false);
pp~ link = PREDEFINED;
pp~equiv :h = predefs [j]:h; pp~equiv :l = predefs [j]:l;

g

This code is used in section 64.

74. We place Main into the trie at the beginning of assembly, so that it will show up as an unde�ned
symbol if the user speci�es no starting point.

h Initialize everything 29 i +�
trie search (trie root ; "Main")~sym = new sym node (true);

75. At the end of assembly we traverse the entire symbol table, visiting each symbol in lexicographic order
and transmitting the trie structure to the output �le. We detect any unde�ned future references at this time.
The order of traversal has a simple recursive pattern: To traverse the subtrie rooted at t, we

traverse t~ left , if the left subtrie is nonempty;
visit t~sym , if this symbol table entry is present;
traverse t~mid , if the middle subtrie is nonempty;
traverse t~right , if the right subtrie is nonempty.

This pattern leads to a compact representation in the mmo �le, usually requiring fewer than two bytes per trie
node plus the bytes needed to encode the equivalents and serial numbers. Each node of the trie is encoded
as a \master byte" followed by the encodings of the left subtrie, character, equivalent, middle subtrie, and
right subtrie. The master byte is the sum of

#80, if the character occupies two bytes instead of one;
#40, if the left subtrie is nonempty;
#20, if the middle subtrie is nonempty;
#10, if the right subtrie is nonempty;
#01 to #08, if the symbol's equivalent is one to eight bytes long;
#09 to #0e, if the symbol's equivalent is 261 plus one to six bytes;
#0f, if the symbol's equivalent is $0 plus one byte;

the character is omitted if the middle subtrie and the equivalent are both empty. The \equivalent" of an
unde�ned symbol is zero, but stated as two bytes long. Symbol equivalents are followed by the serial number,
represented as a sequence of one or more bytes in radix 128; the �nal byte of the serial number is tagged by
adding 128. (Thus, serial number 214 � 1 is encoded as #7fff; serial number 214 is #010080.)

x76 MMIXAL THE SYMBOL TABLE 35

76. First we prune the trie by removing all prede�ned symbols that the user did not rede�ne.

h Subroutines 28 i +�
trie node �prune ARGS((trie node �));
trie node �prune (t)

trie node �t;
f
register int useful = 0;

if (t~sym) f
if (t~sym~serial) useful = 1;
else t~sym = �;

g
if (t~ left) f

t~ left = prune (t~ left);
if (t~ left) useful = 1;

g
if (t~mid) f

t~mid = prune (t~mid);
if (t~mid) useful = 1;

g
if (t~right) f

t~right = prune (t~right);
if (t~right) useful = 1;

g
if (useful) return t;
else return �;

g

77. Then we output the trie by following the recursive traversal pattern.

h Subroutines 28 i +�
void out stab ARGS((trie node �));
void out stab(t)

trie node �t;
f
register int m = 0; j;
register sym node �pp ;

if (t~ch > #ff) m += #80;
if (t~ left) m += #40;
if (t~mid) m += #20;
if (t~right) m += #10;
if (t~sym) f
if (t~sym~ link � REGISTER) m += #f;
else if (t~sym~ link � DEFINED) hEncode the length of t~sym~equiv 79 i
else if (t~sym~ link _ t~sym~serial � 1) hReport an unde�ned symbol 82 i;

g
mmo byte (m);
if (t~ left) out stab(t~ left);
if (m& #2f) hVisit t and traverse t~mid 78 i;
if (t~right) out stab(t~right);

g

36 THE SYMBOL TABLE MMIXAL x78

78. A global variable called sym buf holds all characters on middle branches to the current trie node;
sym ptr is the �rst currently unused character in sym buf .

hVisit t and traverse t~mid 78 i �
f
if (m& #80) mmo byte (t~ch � 8);
mmo byte (t~ch & #ff);
�sym ptr ++ = (m& #80 ? '?' : t~ch); =� Unicode? not yet �=
m &= #f; if (m ^ t~sym~ link) f
if (listing �le) hPrint symbol sym buf and its equivalent 81* i;
if (m � 15) m = 1;
else if (m > 8) m �= 8;
for (; m > 0; m��)
if (m > 4) mmo byte ((t~sym~equiv :h� (8 � (m� 5))) & #ff);
else mmo byte ((t~sym~equiv :l � (8 � (m� 1))) & #ff);

for (m = 0; m < 4; m++)
if (t~sym~serial < (1� (7 � (m+ 1)))) break;

for (; m � 0; m��) mmo byte (((t~sym~serial � (7 �m)) & #7f) + (m ? 0 : #80));
g
if (t~mid) out stab(t~mid);
sym ptr ��;

g

This code is used in section 77.

79. hEncode the length of t~sym~equiv 79 i �
f register tetra x;

if ((t~sym~equiv :h&
#ffff0000) � #20000000) m += 8; x = t~sym~equiv :h�

#20000000;
=� data segment �=

else x = t~sym~equiv :h;
if (x) m += 4; else x = t~sym~equiv :l;
for (j = 1; j < 4; j++)
if (x < (unsigned int)(1� (8 � j))) break;

m += j;
g

This code is used in section 77.

80. We make room for symbols up to 999 bytes long. Strictly speaking, the program should check if this
limit is exceeded; but really!

hGlobal variables 27 i +�
Char sym buf [1000];
Char �sym ptr ;

x81 MMIXAL THE SYMBOL TABLE 37

81*. The initial `:' of each fully quali�ed symbol is omitted here, since most users of MMIXAL will probably
not need the PREFIX feature. One consequence of this omission is that the one-character symbol `:' itself,
which is allowed by the rules of MMIXAL, is printed as the null string.

hPrint symbol sym buf and its equivalent 81* i �
f
�sym ptr = '\0';
fprintf (listing �le ; " %s = "; sym buf + 1);
pp = t~sym ;
if (pp~ link � DEFINED) fprintf (listing �le ; "#%08x%08x"; pp~equiv :h; pp~equiv :l);
else if (pp~ link � REGISTER) fprintf (listing �le ; "$%03d"; pp~equiv :l);
else fprintf (listing �le ; "?");
fprintf (listing �le ; " (%d)\n"; pp~serial);
if (tex �le) fprintf (tex �le ; "%s%s%s: %s%d%s %s\n"; tex startop ; toTex (sym buf + 1); tex endop ;

tex startlinenr ; pp~ linenr ; tex endlinenr ; tex nl);
g

This code is used in section 78.

82. hReport an unde�ned symbol 82 i �
f
�sym ptr = (m& #80 ? '?' : t~ch); =� Unicode? not yet �=
�(sym ptr + 1) = '\0';
fprintf (stderr ; "undefined symbol: %s\n"; sym buf + 1);
err count ++;
m += 2;

g

This code is used in section 77.

83. hCheck and output the trie 83 i �
op root~mid = �; =� annihilate all the opcodes �=
prune (trie root);
sym ptr = sym buf ;
if (listing �le) fprintf (listing �le ; "\nSymbol table:\n");
mmo lop(lop stab ; 0; 0);
out stab(trie root);
while (mmo ptr & 3) mmo byte (0);
mmo lopp(lop end ;mmo ptr � 2);

This code is used in section 145.

38 EXPRESSIONS MMIXAL x84

84. Expressions. The most intricate part of the assembly process is the task of scanning and evaluating
expressions in the operand �eld. Fortunately, MMIXAL's expressions have a simple structure that can be
handled easily with a stack-based approach.
Two stacks hold pending data as the operand �eld is scanned and evaluated. The op stack contains

operators that have not yet been performed; the val stack contains values that have not yet been used.
After an entire operand list has been scanned, the op stack will be empty and the val stack will hold the
operand values needed to assemble the current instruction.

85. Entries on op stack have one of the constant values de�ned here, and they have one of the precedence
levels de�ned here.
Entries on val stack have equiv , link , and status �elds; the link points to a trie node if the expression is

a symbol that has not yet been subjected to any operations.

hType de�nitions 26 i +�
typedef enum f

negate ; serialize ; complement ; registerize ; inner lp ;
plus ;minus ; times ; over ; frac ;mod ; shl ; shr ; and ; or ; xor ;
outer lp ; outer rp ; inner rp

g stack op;
typedef enum f

zero ;weak ; strong ; unary
g prec;
typedef enum f

pure ; reg val ; unde�ned
g stat;
typedef struct f
octa equiv ; =� current value �=
trie node �link ; =� trie reference for symbol �=
stat status ; =� pure , reg val , or unde�ned �=

g val node;

86. #de�ne top op op stack [op ptr � 1] =� top entry on the operator stack �=
#de�ne top val val stack [val ptr � 1] =� top entry on the value stack �=
#de�ne next val val stack [val ptr � 2] =� next-to-top entry of the value stack �=

hGlobal variables 27 i +�
stack op �op stack ; =� stack for pending operators �=
int op ptr ; =� number of items on op stack �=
val node �val stack ; =� stack for pending operands �=
int val ptr ; =� number of items on val stack �=
prec precedence [] = funary ; unary ; unary ; unary ; zero ;

weak ;weak ; strong ; strong ; strong ; strong ; strong ; strong ; strong ;weak ;weak ;
zero ; zero ; zerog; =� precedences of the respective stack op values �=

stack op rt op ; =� newly scanned operator �=
octa acc ; =� temporary accumulator �=

87. h Initialize everything 29 i +�
op stack = (stack op �) calloc(buf size ; sizeof (stack op));
val stack = (val node �) calloc(buf size ; sizeof (val node));
if (:op stack _ :val stack) panic("No room for the stacks");

x88 MMIXAL EXPRESSIONS 39

88. The operand �eld of an instruction will have been copied into a separateChar array called operand list

when we reach this part of the program.

h Scan the operand �eld 88 i �
p = operand list ;
val ptr = 0; =� val stack is empty �=
op stack [0] = outer lp ; op ptr = 1; =� op stack contains an \outer left parenthesis" �=
while (1) f
h Scan opening tokens until putting something on val stack 89 i;

scan close : h Scan a binary operator or closing token, rt op 100 i;
while (precedence [top op] � precedence [rt op]) hPerform the top operation on op stack 101 i;

hold op : op stack [op ptr ++] = rt op ;
g

operands done :

This code is used in section 105.

89. A comment that follows an empty operand list needs to be detected here.

h Scan opening tokens until putting something on val stack 89 i �
scan open : if (isletter (�p)) hScan a symbol 90 i
else if (isdigit (�p)) f
if (�(p+ 1) � 'F') h Scan a forward local 91 i
else if (�(p+ 1) � 'B') h Scan a backward local 92 i
else h Scan a decimal constant 97 i;

g else switch (�p++) f
case '#': h Scan a hexadecimal constant 98 i; break;
case '\'': h Scan a character constant 95 i; break;
case '\"': h Scan a string constant 96 i; break;
case '@': h Scan the current location 99 i; break;
case '-': op stack [op ptr ++] = negate ;
case '+': goto scan open ;
case '&': op stack [op ptr ++] = serialize ; goto scan open ;
case '~': op stack [op ptr ++] = complement ; goto scan open ;
case '$': op stack [op ptr ++] = registerize ; goto scan open ;
case '(': op stack [op ptr ++] = inner lp ; goto scan open ;
default:
if (p � operand list + 1) f =� treat operand list as empty �=

operand list [0] = '0'; operand list [1] = '\0'; p = operand list ;
goto scan open ;

g
if (�(p� 1)) derr ("syntax error at character `%c'"; �(p� 1));
derr ("syntax error after character `%c'"; �(p� 2));

g

This code is used in section 88.

40 EXPRESSIONS MMIXAL x90

90. h Scan a symbol 90 i �
f
if (�p � ':') tt = trie search (trie root ; p+ 1);
else tt = trie search (cur pre�x ; p);
p = terminator ;

symbol found : val ptr ++;
pp = tt~sym ;
if (:pp) pp = tt~sym = new sym node (true);
top val :link = tt ; top val :equiv = pp~equiv ;
if (pp~ link � PREDEFINED) pp~ link = DEFINED;
top val :status = (pp~ link � DEFINED ? pure : pp~ link � REGISTER ? reg val : unde�ned);

g

This code is used in section 89.

91. h Scan a forward local 91 i �
f

tt = &forward local host [�p� '0']; p += 2; goto symbol found ;
g

This code is used in section 89.

92. h Scan a backward local 92 i �
f

tt = &backward local host [�p� '0']; p += 2; goto symbol found ;
g

This code is used in section 89.

93. Statically allocated variables forward local host [j] and backward local host [j] masquerade as nodes of
the trie.

hGlobal variables 27 i +�
trie node forward local host [10]; backward local host [10];
sym node forward local [10]; backward local [10];

94. Initially 0H, 1H, : : : , 9H are de�ned to be zero.

h Initialize everything 29 i +�
for (j = 0; j < 10; j++) f

forward local host [j]:sym = &forward local [j];
backward local host [j]:sym = &backward local [j];
backward local [j]:link = DEFINED;

g

95. We have already checked to make sure that the character constant is legal.

h Scan a character constant 95 i �
acc :h = 0; acc :l = (unsigned char) �p;
p += 2;
goto constant found ;

This code is used in section 89.

x96 MMIXAL EXPRESSIONS 41

96. h Scan a string constant 96 i �
acc :h = 0; acc :l = (unsigned char) �p;
if (�p � '\"') f

p++;
acc :l = 0;
err ("*null string is treated as zero");

g else if (�(p+ 1) � '\"') p += 2;
else �p = '\"'; ���p = ',';
goto constant found ;

This code is used in section 89.

97. h Scan a decimal constant 97 i �
acc :h = 0; acc :l = �p� '0';
for (p++; isdigit (�p); p++) f

acc = oplus (acc ; shift left (acc ; 2));
acc = incr (shift left (acc ; 1); �p� '0');

g
constant found : val ptr ++;

top val :link = �;
top val :equiv = acc ;
top val :status = pure ;

This code is used in section 89.

98. h Scan a hexadecimal constant 98 i �
if (:isxdigit (�p)) err ("illegal hexadecimal constant");
acc :h = acc :l = 0;
for (; isxdigit (�p); p++) f

acc = incr (shift left (acc ; 4); �p� '0');
if (�p � 'a') acc = incr (acc ; '0' � 'a' + 10);
else if (�p � 'A') acc = incr (acc ; '0' � 'A' + 10);

g
goto constant found ;

This code is used in section 89.

99. h Scan the current location 99 i �
acc = cur loc ;
goto constant found ;

This code is used in section 89.

42 EXPRESSIONS MMIXAL x100

100. h Scan a binary operator or closing token, rt op 100 i �
switch (�p++) f
case '+': rt op = plus ; break;
case '-': rt op = minus ; break;
case '*': rt op = times ; break;
case '/': if (�p 6= '/') rt op = over ;
else p++; rt op = frac ; break;

case '%': rt op = mod ; break;
case '<': rt op = shl ; goto sh check ;
case '>': rt op = shr ;
sh check : p++; if (�(p� 1) � �(p� 2)) break;

derr ("syntax error at `%c'"; �(p� 2));
case '&': rt op = and ; break;
case '|': rt op = or ; break;
case '^': rt op = xor ; break;
case ')': rt op = inner rp ; break;
case '\0': case ',': rt op = outer rp ; break;
default: derr ("syntax error at `%c'"; �(p� 1));
g

This code is used in section 88.

101. hPerform the top operation on op stack 101 i �
switch (op stack [��op ptr]) f
case outer rp : case inner rp : goto scan close ; =� should not happen �=
case inner lp : if (rt op � inner rp) goto scan close ;

err ("*missing right parenthesis"); break;
case outer lp : if (rt op � outer rp) f

if (top val :status � reg val ^ (top val :equiv :l > #ff _ top val :equiv :h)) f
err ("*register number too large, will be reduced mod 256");
top val :equiv :h = 0; top val :equiv :l &= #ff;

g
if (:�(p� 1)) goto operands done ;
else rt op = outer lp ; goto hold op ; =� comma �=

g else f
op ptr ++;
err ("*missing left parenthesis");
goto scan close ;

g
hCases for unary operators 103 i
hCases for binary operators 102 i
g

This code is used in section 88.

x102 MMIXAL EXPRESSIONS 43

102. Now we come to the part where equivalents are changed by unary or binary operators found in the
expression being scanned.
The most typical operator, and in some ways the fussiest one to deal with, is binary addition. Once we've

written the code for this case, the other cases almost take care of themselves.

hCases for binary operators 102 i �
case plus : if (top val :status � unde�ned) err ("cannot add an undefined quantity");
if (next val :status � unde�ned) err ("cannot add to an undefined quantity");
if (top val :status � reg val ^ next val :status � reg val) err ("cannot add two register numbers");
next val :equiv = oplus (next val :equiv ; top val :equiv);

�n bin : next val :status = (top val :status � next val :status ? pure : reg val);
val ptr ��;

delink : top val :link = �; break;

See also section 104.

This code is used in section 101.

103. #de�ne unary check (verb) if (top val :status 6= pure) derr ("can %s pure values only"; verb)

hCases for unary operators 103 i �
case negate : unary check ("negate");

top val :equiv = ominus (zero octa ; top val :equiv); goto delink ;
case complement : unary check ("complement");

top val :equiv :h = �top val :equiv :h; top val :equiv :l = �top val :equiv :l;
goto delink ;

case registerize : unary check ("registerize");
top val :status = reg val ; goto delink ;

case serialize : if (:top val :link) err ("can take serial number of symbol only");
top val :equiv :h = 0; top val :equiv :l = top val :link~sym~serial ;
top val :status = pure ; goto delink ;

This code is used in section 101.

44 EXPRESSIONS MMIXAL x104

104. #de�ne binary check (verb)
if (top val :status 6= pure _ next val :status 6= pure) derr ("can %s pure values only"; verb)

hCases for binary operators 102 i +�
case minus : if (top val :status � unde�ned) err ("cannot subtract an undefined quantity");
if (next val :status � unde�ned) err ("cannot subtract from an undefined quantity");
if (top val :status � reg val ^ next val :status 6= reg val)

err ("cannot subtract register number from pure value");
next val :equiv = ominus (next val :equiv ; top val :equiv); goto �n bin ;

case times : binary check ("multiply");
next val :equiv = omult (next val :equiv ; top val :equiv); goto �n bin ;

case over : case mod : binary check ("divide");
if (top val :equiv :l � 0 ^ top val :equiv :h � 0) err ("*division by zero");
next val :equiv = odiv (zero octa ;next val :equiv ; top val :equiv);
if (op stack [op ptr] � mod) next val :equiv = aux ;
goto �n bin ;

case frac : binary check ("compute a ratio of");
if (next val :equiv :h � top val :equiv :h ^ (next val :equiv :l � top val :equiv :l _ next val :equiv :h >

top val :equiv :h)) err ("*illegal fraction");
next val :equiv = odiv (next val :equiv ; zero octa ; top val :equiv); goto �n bin ;

case shl : case shr : binary check ("compute a bitwise shift of");
if (top val :equiv :h _ top val :equiv :l > 63) next val :equiv = zero octa ;
else if (op stack [op ptr] � shl) next val :equiv = shift left (next val :equiv ; top val :equiv :l);
else next val :equiv = shift right (next val :equiv ; top val :equiv :l; 1);
goto �n bin ;

case and : binary check ("compute bitwise and of");
next val :equiv :h &= top val :equiv :h;next val :equiv :l &= top val :equiv :l;
goto �n bin ;

case or : binary check ("compute bitwise or of");
next val :equiv :h j= top val :equiv :h;next val :equiv :l j= top val :equiv :l;
goto �n bin ;

case xor : binary check ("compute bitwise xor of");
next val :equiv :h �= top val :equiv :h;next val :equiv :l �= top val :equiv :l;
goto �n bin ;

x105 MMIXAL ASSEMBLING AN INSTRUCTION 45

105. Assembling an instruction. Now let's move up from the expression level to the instruction level.
We get to this part of the program at the beginning of a line, or after a semicolon at the end of an instruction
earlier on the current line. Our current position in the bu�er is the value of buf ptr .

hProcess the next MMIXAL instruction or comment 105 i �
p = buf ptr ; buf ptr = "";
hScan the label �eld; goto bypass if there is none 106* i;
hScan the opcode �eld; goto bypass if there is none 107* i;
hCopy the operand �eld 109* i;
buf ptr = p;
if (spec mode ^ :(op bits & spec bit)) derr ("cannot use `%s' in special mode"; op �eld);
if ((op bits & no label bit) ^ lab �eld [0]) f

derr ("*label field of `%s' instruction is ignored"; op �eld);
lab �eld [0] = '\0';

g
if (op bits & align bits) hAlign the location pointer 110 i;
hScan the operand �eld 88 i;
if (opcode � GREG) hAllocate a global register 111 i;
if (lab �eld [0]) hDe�ne the label 112* i;
hDo the operation 119 i;

bypass :

This code is used in section 139*.

106*. h Scan the label �eld; goto bypass if there is none 106* i �
if (:�p) f
if (tex �le) fprintf (tex �le ; "%s%s"; tex nolabel ; tex nl);
goto bypass ;

g
q = lab �eld ;
if (:isspace (�p)) f
if (:isdigit (�p) ^ :isletter (�p)) f =� comment �=

=� use p+1 to suppress the comment starting character! �=
if (tex �le ^ �p)
if (�p � '#') =� treat preprocessor commands separately as ops �=

fprintf (tex �le ; "\\relax %s%s%s\\hidewidth%s"; tex startop ; toTex (p); tex endop ; tex nl);
else fprintf (tex �le ; "%s%s%s\n"; tex startcomment ; p; tex endcomment);

goto bypass ;
g
for (�q++ = �p++; isdigit (�p) _ isletter (�p); p++; q++) �q = �p;
if (�p ^ :isspace (�p)) derr ("label syntax error at `%c'"; �p);

g
�q = '\0';
if (isdigit (lab �eld [0]) ^ (lab �eld [1] 6= 'H' _ lab �eld [2]))

derr ("improper local label `%s'"; lab �eld);
if (tex �le) fprintf (tex �le ; "%s %s %s"; tex labelstart ; toTex (lab �eld); tex labelend);
for (p++; isspace (�p); p++) ;

This code is used in section 105.

46 ASSEMBLING AN INSTRUCTION MMIXAL x107

107*. We copy the opcode �eld to a special bu�er because we might want to refer to the symbolic opcode
in error messages.

h Scan the opcode �eld; goto bypass if there is none 107* i �
q = op �eld ; while (isletter (�p) _ isdigit (�p)) �q++ = �p++;
�q = '\0';
if (:isspace (�p) ^ �p ^ op �eld [0]) f =� not a nice �x to get macros to TeX �=
if (tex �le ^ op �eld) fprintf (tex �le ; "%s%s%s%s"; op �eld ; tex tab ; p; tex nl);
derr ("opcode syntax error at `%c'"; �p);

g
pp = trie search (op root ; op �eld)~sym ;
if (:pp) f
if (tex �le) fprintf (tex �le ; tex nl);
if (op �eld [0]) derr ("unknown operation code `%s'"; op �eld);
if (lab �eld [0]) derr ("*no opcode; label `%s' will be ignored"; lab �eld);
goto bypass ;

g
opcode = pp~equiv :h; op bits = pp~equiv :l;
if (tex �le) fprintf (tex �le ; "%s %s %s"; tex opcodestart ; toTex (op �eld); tex opcodeend);
while (isspace (�p)) p++;

This code is used in section 105.

108. hGlobal variables 27 i +�
tetra opcode ; =� numeric code for MMIX operation or MMIXAL pseudo-op �=
tetra op bits ; =�
ags describing an operator's special characteristics �=

109*. We copy the operand �eld to a special bu�er so that we can change string constants while scanning
them later.

hCopy the operand �eld 109* i �
q = operand list ;
while (�p) f
if (�p � ';') break;
if (�p � '\'') f
�q++ = �p++;
if (:�p) err ("incomplete character constant");
�q++ = �p++;
if (�p 6= '\'') err ("illegal character constant");

g else if (�p � '\"') f
for (�q++ = �p++; �p ^ �p 6= '\"'; p++; q++) �q = �p;
if (:�p) err ("incomplete string constant");

g
�q++ = �p++;
if (isspace (�p)) break;

g
while (isspace (�p)) p++;
if (�p � ';') p++;
else start comment = p; p = ""; =� if not followed by semicolon, rest of the line is a comment �=
if (q � operand list) �q++ = '0'; =� change empty operand �eld to `0' �=
�q = '\0';
if (tex �le) fprintf (tex �le ; "%s%s%s"; tex startop ; toTex (operand list); tex endop);

This code is used in section 105.

x110 MMIXAL ASSEMBLING AN INSTRUCTION 47

110. It is important to do the alignment in this step before de�ning the label or evaluating the operand
�eld.

hAlign the location pointer 110 i �
f

j = (op bits & align bits)� 16;
acc :h = �1; acc :l = �(1� j);
cur loc = oand (incr (cur loc ; (1� j)� 1); acc);

g

This code is used in section 105.

111. hAllocate a global register 111 i �
f
if (val stack [0]:equiv :l _ val stack [0]:equiv :h) f
for (j = greg ; j < 255; j++)
if (greg val [j]:l � val stack [0]:equiv :l ^ greg val [j]:h � val stack [0]:equiv :h) f

cur greg = j;
goto got greg ;

g
g
if (greg � 32) err ("too many global registers");
greg ��;
greg val [greg] = val stack [0]:equiv ; cur greg = greg ;

got greg : ;
g

This code is used in section 105.

48 ASSEMBLING AN INSTRUCTION MMIXAL x112

112*. If the label is, say 2H, we will already have used the old value of 2B when evaluating the operands.
Furthermore, an operand of 2F will have been treated as unde�ned, which it still is.
Symbols can be de�ned more than once, but only if each de�nition gives them the same equivalent value.
A warning message is given when a prede�ned symbol is being rede�ned, if its prede�ned value has already

been used.

hDe�ne the label 112* i �
f
sym node �new link = DEFINED;

acc = cur loc ;
if (opcode � IS) f
if (val stack [0]:status � unde�ned) err ("the operand is undefined");
cur loc = val stack [0]:equiv ;
if (val stack [0]:status � reg val) new link = REGISTER;

g else if (opcode � GREG) cur loc :h = 0; cur loc :l = cur greg ;new link = REGISTER;
hFind the symbol table node, pp 114 i;
if (pp~ link � DEFINED _ pp~ link � REGISTER) f
if (pp~equiv :l 6= cur loc :l _ pp~equiv :h 6= cur loc :h _ pp~ link 6= new link) f
if (pp~serial) derr ("symbol `%s' is already defined"; lab �eld);
pp~serial = ++serial number ;
derr ("*redefinition of predefined symbol `%s'"; lab �eld);

g
g else if (pp~ link � PREDEFINED) pp~serial = ++serial number ;
else if (pp~ link) f
if (new link � REGISTER) err ("future reference cannot be to a register");
do hFix prior references to this label 115 i while (pp~ link);

g
if (isdigit (lab �eld [0])) pp = &backward local [lab �eld [0]� '0'];
pp~equiv = cur loc ; pp~ link = new link ; pp~ linenr = line no ;
hFix references that might be in the val stack 113 i;
if (listing �le ^ (opcode � IS _ opcode � LOC)) hMake special listing to show the label equivalent 118 i;
cur loc = acc ;

g

This code is used in section 105.

113. hFix references that might be in the val stack 113 i �
if (:isdigit (lab �eld [0]))
for (j = 0; j < val ptr ; j++)
if (val stack [j]:status � unde�ned ^ val stack [j]:link~sym � pp) f

val stack [j]:status = (new link � REGISTER ? reg val : pure);
val stack [j]:equiv = cur loc ;

g

This code is used in section 112*.

x114 MMIXAL ASSEMBLING AN INSTRUCTION 49

114. hFind the symbol table node, pp 114 i �
if (isdigit (lab �eld [0])) pp = &forward local [lab �eld [0]� '0'];
else f
if (lab �eld [0] � ':') tt = trie search (trie root ; lab �eld + 1);
else tt = trie search (cur pre�x ; lab �eld);
pp = tt~sym ;
if (:pp) pp = tt~sym = new sym node (true);

g

This code is used in section 112*.

115. hFix prior references to this label 115 i �
f

qq = pp~ link ;
pp~ link = qq~ link ;
mmo loc();
if (qq~serial � �x o) hFix a future reference from an octabyte 116 i
else hFix a future reference from a relative address 117 i;
recycle �xup(qq);

g

This code is used in section 112*.

116. hFix a future reference from an octabyte 116 i �
f
if (qq~equiv :h&

#ffffff) f
mmo lop(lop �xo ; 0; 2);
mmo tetra (qq~equiv :h);

g else mmo lop(lop �xo ; qq~equiv :h� 24; 1);
mmo tetra (qq~equiv :l);

g

This code is used in section 115.

50 ASSEMBLING AN INSTRUCTION MMIXAL x117

117. hFix a future reference from a relative address 117 i �
f
octa o;

o = ominus (cur loc ; qq~equiv);
if (o:l& 3) dderr ("*relative address in location #%08x%08x not divisible by 4"; qq~equiv :h;

qq~equiv :l);
o = shift right (o; 2; 0); k = 0;
if (o:h � 0)
if (o:l < #10000) mmo lopp(lop �xr ; o:l);
else if (qq~serial � �x xyz ^ o:l < #1000000) f

mmo lop(lop �xrx ; 0; 24); mmo tetra (o:l);
g else k = 1;

else if (o:h � #ffffffff)
if (qq~serial � �x xyz ^ o:l � #ff000000) f

mmo lop(lop �xrx ; 0; 24); mmo tetra (o:l & #1ffffff);
g else if (qq~serial � �x yz ^ o:l � #ffff0000) f

mmo lop(lop �xrx ; 0; 16); mmo tetra (o:l & #100ffff);
g else k = 1;

else k = 1;
if (k)

dderr ("relative address in location #%08x%08x is too far away"; qq~equiv :h; qq~equiv :l);
g

This code is used in section 115.

118. hMake special listing to show the label equivalent 118 i �
f
if (new link � DEFINED) f

fprintf (listing �le ; "(%08x%08x)"; cur loc :h; cur loc :l);

ush listing line (" ");

g else f
fprintf (listing �le ; "($%03d)"; cur loc :l & #ff);

ush listing line (" ");

g
g

This code is used in section 112*.

x119 MMIXAL ASSEMBLING AN INSTRUCTION 51

119. hDo the operation 119 i �
future bits = 0;
if (op bits &many arg bit) hDo a many-operand operation 120 i
else switch (val ptr) f
case 1: if (:(op bits & one arg bit)) derr ("opcode `%s' needs more than one operand"; op �eld);
hDo a one-operand operation 132 i;

case 2: if (:(op bits & two arg bit)) f
if (op bits & one arg bit) derr ("opcode `%s' must not have two operands"; op �eld)
else derr ("opcode `%s' must have more than two operands"; op �eld); g

if ((op bits & (three arg bit +mem bit)) � three arg bit) goto make two three ;
hDo a two-operand operation 127 i;

make two three : val stack [2] = val stack [1]; val ptr = 3;
val stack [1]:equiv = zero octa ; val stack [1]:link = �; val stack [1]:status = pure ;

=� insert 0 as the second operand �=
case 3: if (:(op bits & three arg bit))

derr ("opcode `%s' must not have three operands"; op �eld);
hDo a three-operand operation 122 i;

default: derr ("too many operands for opcode `%s'"; op �eld);
g

This code is used in section 105.

120. The many-operand operators are BYTE, WYDE, TETRA, and OCTA.

hDo a many-operand operation 120 i �
for (j = 0; j < val ptr ; j++) f
hDeal with cases where val stack [j] is impure 121 i;
k = 1� (opcode � BYTE);
if ((val stack [j]:equiv :h ^ opcode < OCTA) _

(val stack [j]:equiv :l > #ffff ^ opcode < TETRA) _
(val stack [j]:equiv :l > #ff ^ opcode < WYDE)) f

if (k � 1) err ("*constant doesn't fit in one byte")
else derr ("*constant doesn't fit in %d bytes"; k); g

if (k < 8) assemble (k; val stack [j]:equiv :l; 0);
else if (val stack [j]:status � unde�ned) assemble (4; 0; #f0); assemble (4; 0; #f0);
else assemble (4; val stack [j]:equiv :h; 0); assemble (4; val stack [j]:equiv :l; 0);

g

This code is used in section 119.

121. hDeal with cases where val stack [j] is impure 121 i �
if (val stack [j]:status � reg val) err ("*register number used as a constant")
else if (val stack [j]:status � unde�ned) f
if (opcode 6= OCTA) err ("undefined constant");
pp = val stack [j]:link~sym ;
qq = new sym node (false);
qq~ link = pp~ link ;
pp~ link = qq ;
qq~serial = �x o ;
qq~equiv = cur loc ;

g

This code is used in section 120.

52 ASSEMBLING AN INSTRUCTION MMIXAL x122

122. hDo a three-operand operation 122 i �
hDo the Z �eld 124 i;
hDo the Y �eld 125 i;

assemble X : hDo the X �eld 126 i;
assemble inst : assemble (4; (opcode � 24) + xyz ; future bits);
break;

This code is used in section 119.

123. Individual �elds of an instruction are placed into global variables z, y, x, yz , and/or xyz .

hGlobal variables 27 i +�
tetra z; y; x; yz ; xyz ; =� pieces for assembly �=
int future bits ; =� places where there are future references �=

124. hDo the Z �eld 124 i �
if (val stack [2]:status � unde�ned) err ("Z field is undefined");
if (val stack [2]:status � reg val) f
if (:(op bits & (immed bit + zr bit + zar bit)))

derr ("*Z field of `%s' should not be a register number"; op �eld);
g else if (op bits & immed bit) opcode++; =� immediate �=
else if (op bits & zr bit) derr ("*Z field of `%s' should be a register number"; op �eld);
if (val stack [2]:equiv :h _ val stack [2]:equiv :l > #ff) err ("*Z field doesn't fit in one byte");
z = val stack [2]:equiv :l & #ff;

This code is used in section 122.

125. hDo the Y �eld 125 i �
if (val stack [1]:status � unde�ned) err ("Y field is undefined");
if (val stack [1]:status � reg val) f
if (:(op bits & (yr bit + yar bit)))

derr ("*Y field of `%s' should not be a register number"; op �eld);
g else if (op bits & yr bit) derr ("*Y field of `%s' should be a register number"; op �eld);
if (val stack [1]:equiv :h _ val stack [1]:equiv :l > #ff) err ("*Y field doesn't fit in one byte");
y = val stack [1]:equiv :l & #ff; yz = (y � 8) + z;

This code is used in section 122.

126. hDo the X �eld 126 i �
if (val stack [0]:status � unde�ned) err ("X field is undefined");
if (val stack [0]:status � reg val) f
if (:(op bits & (xr bit + xar bit)))

derr ("*X field of `%s' should not be a register number"; op �eld);
g else if (op bits & xr bit) derr ("*X field of `%s' should be a register number"; op �eld);
if (val stack [0]:equiv :h _ val stack [0]:equiv :l > #ff) err ("*X field doesn't fit in one byte");
x = val stack [0]:equiv :l & #ff; xyz = (x� 16) + yz ;

This code is used in section 122.

x127 MMIXAL ASSEMBLING AN INSTRUCTION 53

127. hDo a two-operand operation 127 i �
if (val stack [1]:status � unde�ned) f
if (op bits & rel addr bit) hAssemble YZ as a future reference and goto assemble X 128 i
else err ("YZ field is undefined");

g else if (val stack [1]:status � reg val) f
if (:(op bits & (immed bit + yzr bit + yzar bit)))

derr ("*YZ field of `%s' should not be a register number"; op �eld);
if (opcode � SET) val stack [1]:equiv :l �= 8; opcode = #c1; =� change to OR �=
else if (op bits &mem bit) val stack [1]:equiv :l �= 8; opcode++; =� silently append ,0 �=

g else f =� val stack [1]:status � pure �=
if (op bits &mem bit) hAssemble YZ as a memory address and goto assemble X 130 i;
if (opcode � SET) opcode = #e3; =� change to SETL �=
else if (op bits & immed bit) opcode++; =� immediate �=
else if (op bits & yzr bit) f

derr ("*YZ field of `%s' should be a register number"; op �eld);
g
if (op bits & rel addr bit) hAssemble YZ as a relative address and goto assemble X 129 i;

g
if (val stack [1]:equiv :h _ val stack [1]:equiv :l > #ffff) err ("*YZ field doesn't fit in two bytes");
yz = val stack [1]:equiv :l & #ffff;
goto assemble X ;

This code is used in section 119.

128. hAssemble YZ as a future reference and goto assemble X 128 i �
f

pp = val stack [1]:link~sym ;
qq = new sym node (false);
qq~ link = pp~ link ;
pp~ link = qq ;
qq~serial = �x yz ;
qq~equiv = cur loc ;
yz = 0;
future bits = #c0;
goto assemble X ;

g

This code is used in section 127.

54 ASSEMBLING AN INSTRUCTION MMIXAL x129

129. hAssemble YZ as a relative address and goto assemble X 129 i �
f
octa source ; dest ;

if (val stack [1]:equiv :l & 3) err ("*relative address is not divisible by 4");
source = shift right (cur loc ; 2; 0);
dest = shift right (val stack [1]:equiv ; 2; 0);
acc = ominus (dest ; source);
if (:(acc :h& #80000000)) f
if (acc :l > #ffff _ acc :h) err ("relative address is more than #ffff tetrabytes forward");

g else f
acc = incr (acc ; #10000);
opcode++;
if (acc :l > #ffff _ acc :h)

err ("relative address is more than #10000 tetrabytes backward");
g
yz = acc :l;
goto assemble X ;

g

This code is used in section 127.

130. hAssemble YZ as a memory address and goto assemble X 130 i �
f
octa o;

o = val stack [1]:equiv ; k = 0;
for (j = greg ; j < 255; j++)
if (greg val [j]:h _ greg val [j]:l) f

acc = ominus (val stack [1]:equiv ; greg val [j]);
if (acc :h � o:h ^ (acc :l � o:l _ acc :h < o:h)) o = acc ; k = j;

g
if (o:l � #ff ^ :o:h ^ k) yz = (k � 8) + o:l; opcode++;
else if (:expanding) err ("no base address is close enough to the address A")
else hAssemble instructions to put supplementary data in $255 131 i;
goto assemble X ;

g

This code is used in section 127.

x131 MMIXAL ASSEMBLING AN INSTRUCTION 55

131. #de�ne SETH #e0

#de�ne SETL #e3

#de�ne ORH #e8

#de�ne ORL #eb

hAssemble instructions to put supplementary data in $255 131 i �
f
for (j = SETH; j � ORL; j++) f
switch (j & 3) f
case 0: yz = o:h� 16; break; =� SETH �=
case 1: yz = o:h& #ffff; break; =� SETMH or ORMH �=
case 2: yz = o:l � 16; break; =� SETML or ORML �=
case 3: yz = o:l & #ffff; break; =� SETL or ORL �=
g
if (yz _ j � SETL) f

assemble (4; (j � 24) + (255� 16) + yz ; 0);
j j= ORH;

g
g
if (k) yz = (k � 8) + 255; =� Y = $k, Z = $255 �=
else yz = 255� 8; opcode++; =� Y = $255, Z = 0 �=

g

This code is used in section 130.

132. hDo a one-operand operation 132 i �
if (val stack [0]:status � unde�ned) f
if (op bits & rel addr bit) hAssemble XYZ as a future reference and goto assemble inst 133 i
else if (opcode 6= PREFIX) err ("the operand is undefined");

g else if (val stack [0]:status � reg val) f
if (:(op bits & (xyzr bit + xyzar bit)))

derr ("*operand of `%s' should not be a register number"; op �eld);
g else f =� val stack [0]:status � pure �=
if (op bits & xyzr bit) derr ("*operand of `%s' should be a register number"; op �eld);
if (op bits & rel addr bit) hAssemble XYZ as a relative address and goto assemble inst 134 i;

g
if (opcode > #ff) hDo a pseudo-operation and goto bypass 135 i;
if (val stack [0]:equiv :h _ val stack [0]:equiv :l > #ffffff)

err ("*XYZ field doesn't fit in three bytes");
xyz = val stack [0]:equiv :l & #ffffff;
goto assemble inst ;

This code is used in section 119.

56 ASSEMBLING AN INSTRUCTION MMIXAL x133

133. hAssemble XYZ as a future reference and goto assemble inst 133 i �
f

pp = val stack [0]:link~sym ;
qq = new sym node (false);
qq~ link = pp~ link ;
pp~ link = qq ;
qq~serial = �x xyz ;
qq~equiv = cur loc ;
xyz = 0;
future bits = #e0;
goto assemble inst ;

g

This code is used in section 132.

134. hAssemble XYZ as a relative address and goto assemble inst 134 i �
f
octa source ; dest ;

if (val stack [0]:equiv :l & 3) err ("*relative address is not divisible by 4");
source = shift right (cur loc ; 2; 0);
dest = shift right (val stack [0]:equiv ; 2; 0);
acc = ominus (dest ; source);
if (:(acc :h& #80000000)) f
if (acc :l > #ffffff _ acc :h)

err ("relative address is more than #ffffff tetrabytes forward");
g else f

acc = incr (acc ; #1000000);
opcode++;
if (acc :l > #ffffff _ acc :h)

err ("relative address is more than #1000000 tetrabytes backward");
g
xyz = acc :l;
goto assemble inst ;

g

This code is used in section 132.

x135 MMIXAL ASSEMBLING AN INSTRUCTION 57

135. hDo a pseudo-operation and goto bypass 135 i �
switch (opcode) f
case LOC: cur loc = val stack [0]:equiv ;
case IS: goto bypass ;
case PREFIX: if (:val stack [0]:link) err ("not a valid prefix");

cur pre�x = val stack [0]:link ; goto bypass ;
case GREG: if (listing �le) hMake listing for GREG 137 i;
goto bypass ;

case LOCAL: if (val stack [0]:equiv :l > (unsigned int) lreg) lreg = val stack [0]:equiv :l;
if (listing �le) f

fprintf (listing �le ; "($%03d)"; val stack [0]:equiv :l);

ush listing line (" ");

g
goto bypass ;

case BSPEC: if (val stack [0]:equiv :l > #ffff _ val stack [0]:equiv :h)
err ("*operand of `BSPEC' doesn't fit in two bytes");

mmo loc(); mmo sync();
mmo lopp(lop spec ; val stack [0]:equiv :l);
spec mode = true ; spec mode loc = 0; goto bypass ;

case ESPEC: spec mode = false ; goto bypass ;
g

This code is used in section 132.

136. hGlobal variables 27 i +�
octa greg val [256]; =� initial values of global registers �=

137. hMake listing for GREG 137 i �
f
if (val stack [0]:equiv :l _ val stack [0]:equiv :h) f

fprintf (listing �le ; "($%03d=#%08x"; cur greg ; val stack [0]:equiv :h);

ush listing line (" ");
fprintf (listing �le ; " %08x)"; val stack [0]:equiv :l);

ush listing line (" ");

g else f
fprintf (listing �le ; "($%03d)"; cur greg);

ush listing line (" ");

g
g

This code is used in section 135.

58 RUNNING THE PROGRAM MMIXAL x138

138*. Running the program. On a UNIX-like system, the command

mmixal [options] sourcefilename

will assemble the MMIXAL program in �le sourcefilename, writing any error messages on the standard error
�le. (Nothing is written to the standard output.) The options, which may appear in any order, are:

� -o objectfilename Send the output to a binary �le called objectfilename. If no -o speci�cation is
given, the object �le name is obtained from the input �le name by changing the �nal letter from `s' to `o',
or by appending `.mmo' if sourcefilename doesn't end with s.

� -l listingname Output a listing of the assembled input and output to a text �le called listingname.

� -t TeXfilename Output a TEXformatted version of the assembled input and output to a text �le called
texfilename.

� -x Expand memory-oriented commands that cannot be assembled as single instructions, by assembling
auxiliary instructions that make temporary use of global register $255.

� -b bufsize Allow up to bufsize characters per line of input.

x139 MMIXAL RUNNING THE PROGRAM 59

139*. Here, �nally, is the overall structure of this program.

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <string.h>

#include <time.h>

hPreprocessor de�nitions 31 i
hType de�nitions 26 i
hGlobal variables 27 i
hSubroutines 28 i

int main (argc ; argv)
int argc ; char �argv [];

f
register int j; k; =� all-purpose integers �=

hLocal variables 40 i;
hProcess the command line 140* i;
h Initialize everything 29 i;
while (1) f
hGet the next line of input text, or break if the input has ended 34 i;
if (tex �le) fprintf (tex �le ; "%s%d %s"; tex startlinenr ; line no ; tex endlinenr);
while (1) f
hProcess the next MMIXAL instruction or comment 105 i;
if (:�buf ptr) break;

g
if (tex �le ^ start comment) f
if (�start comment) =� start comment might also point to a null character �=

fprintf (tex �le ; "%s%s%s\n"; tex startlcomment ; start comment ; tex nl);
else fprintf (tex �le ; "%s%s\n"; tex line wo comment ; tex nl);
start comment = �;

g
if (listing �le) f
if (listing bits) listing clear ();
else if (:line listed)
ush listing line (" ");

g
g
hFinish the assembly 145 i;

g

60 RUNNING THE PROGRAM MMIXAL x140

140*. The space after "-b" is optional, because MMIX-SIM does not use a space in this context.

hProcess the command line 140* i �
for (j = 1; j < argc � 1 ^ argv [j][0] � '-'; j++)
if (:argv [j][2]) f
if (argv [j][1] � 'x') expanding = 1;
else if (argv [j][1] � 'o') j++; strcpy (obj �le name ; argv [j]);
else if (argv [j][1] � 't') j++; strcpy (tex �le name ; argv [j]);
else if (argv [j][1] � 'l') j++; strcpy (listing name ; argv [j]);
else if (argv [j][1] � 'b' ^ sscanf (argv [j + 1]; "%d";&buf size) � 1) j++;
else break;

g else if (argv [j][1] 6= 'b' _ sscanf (argv [j] + 2; "%d";&buf size) 6= 1) break;
if (j 6= argc � 1) f

fprintf (stderr ; "Usage: %s %s sourcefilename\n"; argv [0];
"[-x] [-l listingname] [-t TeXfilename] [-b buffersize] [-o objectfilename]");

exit (�1);
g
src �le name = argv [j];

This code is used in section 139*.

141*. hOpen the �les 141* i �
src �le = fopen (src �le name ; "r");
if (:src �le) dpanic("Can't open the source file %s"; src �le name);
if (:obj �le name [0]) f

j = (int) strlen (src �le name);
if (src �le name [j � 1] � 's') f

strcpy (obj �le name ; src �le name); obj �le name [j � 1] = 'o';
g
else sprintf (obj �le name ; "%s.mmo"; src �le name);

g
obj �le = fopen (obj �le name ; "wb");
if (:obj �le) dpanic("Can't open the object file %s"; obj �le name);
if (tex �le name [0]) f

tex �le = fopen (tex �le name ; "w");
if (:tex �le) dpanic("Can't open the TeX file %s"; tex �le name);

g
if (listing name [0]) f

listing �le = fopen (listing name ; "w");
if (:listing �le) dpanic("Can't open the listing file %s"; listing name);

g

This code is used in section 143.

142*. hGlobal variables 27 i +�
char �src �le name ; =� name of the MMIXAL input �le �=
char obj �le name [FILENAME_MAX + 1]; =� name of the binary output �le �=
char listing name [FILENAME_MAX + 1]; =� name of the optional listing �le �=
char tex �le name [FILENAME_MAX + 1]; =� name of the TEXoutput �le �=
FILE �src �le ; �obj �le ; �listing �le ; �tex �le ;
int expanding ; =� are we expanding instructions when base address fail? �=
int buf size ; =� maximum number of characters per line of input �=

x143 MMIXAL RUNNING THE PROGRAM 61

143. h Initialize everything 29 i +�
hOpen the �les 141* i;
�lename [0] = src �le name ;
�lename count = 1;
hOutput the preamble 144 i;

144. hOutput the preamble 144 i �
mmo lop(lop pre ; 1; 1);
mmo tetra (time (�));
mmo cur �le = �1;

This code is used in section 143.

145. hFinish the assembly 145 i �
if (lreg � greg) dpanic("Danger: Must reduce the number of GREGs by %d"; lreg � greg + 1);
hOutput the postamble 147 i;
hCheck and output the trie 83 i;
hReport any unde�ned local symbols 148 i;
if (err count) f
if (err count > 1) fprintf (stderr ; "(%d errors were found.)\n"; err count);
else fprintf (stderr ; "(One error was found.)\n");

g
exit (err count);

This code is used in section 139*.

146. hGlobal variables 27 i +�
int greg = 255; =� global register allocator �=
int cur greg ; =� global register just allocated �=
int lreg = 32; =� local register allocator �=

147. hOutput the postamble 147 i �
mmo lop(lop post ; 0; greg);
greg val [255] = trie search (trie root ; "Main")~sym~equiv ;
for (j = greg ; j < 256; j++) f

mmo tetra (greg val [j]:h);
mmo tetra (greg val [j]:l);

g

This code is used in section 145.

148. hReport any unde�ned local symbols 148 i �
for (j = 0; j < 10; j++)
if (forward local [j]:link) err count ++; fprintf (stderr ; "undefined local symbol %dF\n"; j);

This code is used in section 145.

62 INDEX MMIXAL x149

149*. Index.

The following sections were changed by the change �le: 53, 54, 55, 56, 61, 81, 106, 107, 109, 112, 138, 139, 140, 141, 142, 149.

__STDC__: 31.
acc : 29, 86, 95, 96, 97, 98, 99, 110, 112*, 129,

130, 134.
ADD: 66.
ADDU: 66.
align bits : 65, 105, 110.
AND: 66.
and : 85, 100, 104.
ANDN: 66.
ANDNH: 66.
ANDNL: 66.
ANDNMH: 66.
ANDNML: 66.
argc : 139*, 140*.
ARGS: 28, 31, 41, 42, 44, 45, 47, 48, 49, 50, 52,

58, 60, 62, 76, 77.
argv : 139*, 140*.
assemble : 52, 120, 122, 131.
assemble inst : 122, 132, 133, 134.
assemble X : 122, 127, 128, 129, 130.
assembly language: 1.
aux : 27, 28, 104.
b: 48.
backward local : 93, 94, 112*.
backward local host : 92, 93, 94.
BDIF: 66.
Bentley, Jon Louis: 57.
BEV: 66.
big-endian versus little-endian: 47.
binary check : 104.
BinaryRead: 72.
BinaryReadWrite: 72.
BinaryWrite: 72.
bits : 65, 67.
BN: 66.
BNN: 66.
BNP: 66.
BNZ: 66.
BOD: 66.
bool: 26.
BP: 66.
BSPEC: 43, 65, 66, 135.
BSPEC: 20, 66.
buf : 47.
buf ptr : 33, 34, 105, 139*.
buf size : 32, 34, 87, 140*, 142*.
bu�er : 32, 33, 34, 38, 41.
bypass : 45, 105, 106*, 107*, 135.
BYTE: 17, 66.
BYTE: 65, 66, 120.

BZ: 66.
C preprocessor: 3.
calloc : 32, 38, 58, 62, 87.
can complement...: 103.
can compute...: 104.
can divide...: 104.
can multiply...: 104.
can negate...: 103.
can registerize...: 103.
can take serial number...: 103.
Can't open...: 141*.
Can't write...: 47.
cannot add...: 102.
cannot subtract...: 104.
cannot use...: 105.
Capacity exceeded...: 38, 58, 62.
ch : 57, 60, 64, 77, 78, 82.
Char: 30, 32, 33, 37, 38, 40, 50, 55*, 56*, 60,

65, 70, 71, 80.
CMP: 66.
CMPU: 66.
code : 65, 67.
complement : 85, 89, 103.
constant doesn't fit...: 120.
constant found : 95, 96, 97, 98, 99.
CSEV: 66.
CSN: 66.
CSNN: 66.
CSNP: 66.
CSNZ: 66.
CSOD: 66.
CSP: 66.
CSWAP: 66.
CSZ: 66.
cur �le : 36, 38, 45, 50.
cur greg : 111, 112*, 137, 146.
cur loc : 42, 43, 49, 52, 53*, 99, 110, 112*, 113, 117,

118, 121, 128, 129, 133, 134, 135.
cur pre�x : 59, 64, 90, 114, 135.
D_BIT: 72.
D_Handler: 72.
Danger: 145.
dat : 52.
Data_Segment: 72.
dderr : 45, 117.
DEFINED: 61*, 77, 81*, 90, 94, 112*, 118.
delink : 102, 103.
delta : 28.
derr : 45, 89, 100, 103, 104, 105, 106*, 107*, 112*,

119, 120, 124, 125, 126, 127, 132.

x149 MMIXAL INDEX 63

dest : 129, 134.
DIV: 66.
division by zero: 104.
DIVU: 66.
dpanic : 45, 47, 141*, 145.
EOF: 34, 35.
equiv : 61*, 62, 67, 69, 73, 78, 79, 81*, 85, 90, 97,

101, 102, 103, 104, 107*, 111, 112*, 113, 116, 117,
119, 120, 121, 124, 125, 126, 127, 128, 129,
130, 132, 133, 134, 135, 137, 147.

err : 35, 45, 96, 98, 101, 102, 103, 104, 109*,
111, 112*, 120, 121, 124, 125, 126, 127, 129,
130, 132, 134, 135.

err buf : 32, 33, 45.
err count : 45, 46, 82, 145, 148.
ESPEC: 43, 65, 66, 135.
ESPEC: 20, 66.
exit : 45, 140*, 145.
expanding : 130, 140*, 142*.
FADD: 66.
false : 26, 34, 67, 69, 73, 121, 128, 133, 135.
Fclose: 72.
FCMP: 66.
FCMPE: 66.
FDIV: 66.
FEQL: 66.
FEQLE: 66.
fgetc : 34, 35.
Fgets: 72.
fgets : 34.
Fgetws: 72.
�lename : 36, 37, 38, 45, 50, 143.
�lename count : 37, 38, 143.
FILENAME_MAX: 38, 39, 142*.
�lename passed : 50, 51.
�n bin : 102, 104.
FINT: 66.
FIX: 66.
�x o : 61*, 115, 121.
�x xyz : 61*, 117, 133.
�x yz : 61*, 117, 128.
FIXU: 66.
FLOT: 66.
FLOTU: 66.

ush listing line : 41, 42, 44, 45, 118, 135, 137, 139*.
FMUL: 66.
Fopen: 72.
fopen : 141*.
forward local : 93, 94, 114, 148.
forward local host : 91, 93, 94.
fprintf : 30, 35, 41, 42, 44, 45, 81*, 82, 83, 106*, 107*,

109*, 118, 135, 137, 139*, 140*, 145, 148.

Fputs: 72.
Fputws: 72.
frac : 85, 100, 104.
frame pointer: 18.
Fread: 72.
FREM: 66.
Fseek: 72.
FSQRT: 66.
FSUB: 66.
Ftell: 72.
FUN: 66.
FUNE: 66.
future reference cannot...: 112*.
future bits : 119, 122, 123, 128, 133.
fwprintf : 30.
fwrite : 47.
Fwrite: 72.
GET: 66.
GETA: 66.
GO: 66.
got greg : 111.
greg : 111, 130, 145, 146, 147.
GREG: 18, 66.
GREG: 65, 66, 105, 112*, 135.
greg val : 111, 130, 136, 147.
h: 26, 71.
Halt: 72.
held bits : 43, 44, 47, 49, 52.
hold buf : 43, 44, 47, 52.
hold op : 88, 101.
i: 56*.
I can't deal with...: 50.
I_BIT: 72.
I_Handler: 72.
illegal character constant: 109*.
illegal fraction: 104.
illegal hexadecimal constant: 98.
immed bit : 65, 124, 127.
improper local label...: 106*.
INCH: 66.
INCL: 66.
INCMH: 66.
INCML: 66.
incomplete...constant: 109*.
incr : 28, 47, 52, 97, 98, 110, 129, 134.
Inf: 72.
inner lp : 85, 89, 101.
inner rp : 85, 100, 101.
IS: 16, 66.
IS: 65, 66, 112*, 135.
isalpha : 60.
isdigit : 38, 60, 89, 97, 106*, 107*, 112*, 113, 114.

64 INDEX MMIXAL x149

isletter : 60, 89, 106*, 107*.
isspace : 38, 106*, 107*, 109*.
isxdigit : 98.
j: 44, 50, 52, 56*, 77, 139*.
jj : 52.
JMP: 66.
k: 42, 44, 52, 139*.
l: 26, 52, 71.
lab �eld : 32, 33, 105, 106*, 107*, 112*, 113, 114.
label field...ignored: 105.
label syntax error...: 106*.
last sym node : 62, 63.
last trie node : 58, 59.
LDA: 13, 18, 66.
LDB: 66.
LDBU: 66.
LDHT: 66.
LDO: 66.
LDOU: 66.
LDSF: 66.
LDT: 66.
LDTU: 66.
LDUNC: 66.
LDVTS: 66.
LDW: 66.
LDWU: 66.
left : 57, 60, 75, 76, 77.
line directives: 3.
line listed : 34, 36, 41, 45, 139*.
line no : 34, 36, 38, 45, 50, 112*, 139*.
linenr : 61*, 81*, 112*.
link : 61*, 62, 67, 69, 73, 77, 78, 81*, 85, 90, 94,

97, 102, 103, 112*, 113, 115, 119, 121, 128,
133, 135, 148.

list : 31.
listing bits : 43, 44, 47, 52, 139*.
listing clear : 44, 47, 52, 139*.
listing �le : 41, 42, 44, 45, 47, 52, 78, 81*, 83, 112*,

118, 135, 137, 139*, 141*, 142*.
listing loc : 42, 43, 44.
listing name : 140*, 141*, 142*.
literate programming: 3.
little-endian versus big-endian: 47.
LOC: 65, 66, 112*, 135.
LOC: 16, 66.
LOCAL: 65, 66, 135.
LOCAL: 19, 66.
long warning given : 35, 36.
lop end : 23, 24, 83.
lop �le : 23, 24, 50.
lop �xo : 23, 24, 116.
lop �xr : 23, 24, 117.

lop �xrx : 23, 24, 117.
lop line : 23, 24, 50.
lop loc : 23, 24, 49.
lop post : 23, 24, 147.
lop pre : 23, 24, 144.
lop quote : 23, 24, 47.
lop quote command : 47.
lop skip : 23, 24, 49.
lop spec : 23, 24, 135.
lop stab : 23, 24, 83.
lopcodes: 22.
lreg : 135, 145, 146.
m: 77.
main : 139*.
Main: 21, 74.
make two three : 119.
many arg bit : 65, 119.
mem bit : 65, 119, 127.
message : 45.
mid : 57, 60, 64, 75, 76, 77, 78, 83.
minus : 85, 100, 104.
missing left parenthesis: 101.
missing right parenthesis: 101.
mm : 22, 47, 48.
mmo buf : 47, 48, 50.
mmo byte : 48, 77, 78, 83.
mmo clear : 47, 49, 52.
mmo cur �le : 50, 51, 144.
mmo cur loc : 47, 49, 51, 53*.
mmo line no : 47, 50, 51.
mmo loc : 49, 53*, 115, 135.
mmo lop : 48, 49, 50, 83, 116, 117, 144, 147.
mmo lopp : 48, 49, 50, 83, 117, 135.
mmo out : 47, 48, 50.
mmo ptr : 47, 48, 83.
mmo sync : 50, 52, 135.
mmo tetra : 48, 49, 116, 117, 144, 147.
mmo write : 47.
mod : 85, 100, 104.
MOR: 66.
MUL: 66.
MULU: 66.
MUX: 66.
MXOR: 66.
name : 65, 67, 71, 73.
NAND: 66.
NEG: 66.
neg one : 27, 29.
negate : 85, 89, 103.
NEGU: 66.
new link : 112*, 113, 118.

x149 MMIXAL INDEX 65

new sym node : 62, 67, 69, 73, 74, 90, 114,
121, 128, 133.

new trie node : 58, 60, 64.
next sym node : 62, 63.
next trie node : 58, 59.
next val : 86, 102, 104.
no base address...: 130.
no opcode...: 107*.
No room...: 32, 87.
no label bit : 65, 105.
NOR: 66.
not a valid prefix: 135.
null string...: 96.
NXOR: 66.
o: 49, 117, 130.
O_BIT: 72.
O_Handler: 72.
oand : 28, 110.
obj �le : 47, 141*, 142*.
obj �le name : 47, 140*, 141*, 142*.
object �les: 22.
octa: 26, 27, 28, 43, 49, 51, 61*, 85, 86, 117,

129, 130, 134, 136.
OCTA: 17, 66.
OCTA: 65, 66, 120, 121.
ODIF: 66.
odiv : 28, 104.
ominus : 28, 49, 103, 104, 117, 129, 130, 134.
omult : 28, 104.
one arg bit : 65, 119.
op bits : 105, 107*, 108, 110, 119, 124, 125,

126, 127, 132.
op �eld : 32, 33, 105, 107*, 119, 124, 125, 126,

127, 132.
op init size : 66, 67.
op init table : 66, 67.
op ptr : 86, 88, 89, 101, 104.
op root : 59, 64, 67, 83, 107*.
op spec: 65, 66, 67.
op stack : 84, 85, 86, 87, 88, 89, 101, 104.
opcode : 105, 107*, 108, 112*, 120, 121, 122, 124,

127, 129, 130, 131, 132, 134, 135.
opcode syntax error...: 107*.
opcode...operand(s): 119.
operand of `BSPEC'...: 135.
operand...register number: 132.
operand list : 32, 33, 88, 89, 109*.
operands done : 88, 101.
oplus : 28, 97, 102.
or : 85, 100, 104.
OR: 66.
ORH: 131.

ORH: 66.
ORL: 131.
ORL: 66.
ORMH: 66.
ORML: 66.
ORN: 66.
out stab : 77, 78, 83.
outer lp : 85, 88, 101.
outer rp : 85, 100, 101.
over : 85, 100, 104.
over
ow : 27.
p: 40, 50, 60, 62.
panic : 29, 32, 38, 45, 50, 58, 62, 87.
PBEV: 66.
PBN: 66.
PBNN: 66.
PBNP: 66.
PBNZ: 66.
PBOD: 66.
PBP: 66.
PBZ: 66.
plus : 85, 100, 102.
Pool_Segment: 72.
POP: 66.
pp : 62, 67, 68, 69, 73, 77, 81*, 90, 107*, 112*, 113,

114, 115, 121, 128, 133.
prec: 85, 86.
precedence : 86, 88.
predef size : 72, 73.
predef spec: 71, 72, 73.
PREDEFINED: 61*, 67, 69, 73, 90, 112*.
prede�ned symbols: 10, 70, 72.
predefs : 72, 73.
PREFIX: 16, 66.
PREFIX: 65, 66, 132, 135.
PREGO: 66.
PRELD: 66.
PREST: 66.
prune : 76, 83.
pseudo op: 65.
pure : 85, 90, 97, 102, 103, 104, 113, 119, 127, 132.
PUSHGO: 66.
PUSHJ: 66.
PUT: 66.
q: 40.
qq : 68, 115, 116, 117, 121, 128, 133.
recycle �xup : 62, 115.
redefinition...: 112*.
reg val : 85, 90, 101, 102, 103, 104, 112*, 113, 121,

124, 125, 126, 127, 132.
REGISTER: 61*, 77, 81*, 90, 112*, 113.
register number...: 101, 121.

66 INDEX MMIXAL x149

registerize : 85, 89, 103.
rel addr bit : 65, 127, 132.
relative address...: 117, 129, 134.
report error : 45.
RESUME: 66.
right : 57, 60, 75, 76, 77.
ROUND_CURRENT: 14, 72.
ROUND_DOWN: 14, 72.
ROUND_NEAR: 14, 72.
ROUND_OFF: 14, 72.
ROUND_UP: 14, 72.
rt op : 86, 88, 100, 101.
s: 28, 41, 60.
SADD: 66.
SAVE: 66.
scan close : 88, 101.
scan open : 89.
Sedgewick, Robert: 57.
serial : 61*, 62, 76, 77, 78, 81*, 103, 112*, 115,

117, 121, 128, 133.
serial number: 11, 21.
serial number : 62, 63, 112*.
serialize : 62, 85, 89, 103.
SET: 65, 66, 127.
SET: 13, 66.
SETH: 66.
SETH: 131.
SETL: 66.
SETL: 131.
SETMH: 66.
SETML: 66.
SFLOT: 66.
SFLOTU: 66.
sh check : 100.
shift left : 28, 29, 97, 98, 104.
shift right : 28, 104, 117, 129, 134.
shl : 85, 100, 104.
shr : 85, 100, 104.
SL: 66.
SLU: 66.
source : 129, 134.
spec bit : 65, 105.
spec mode : 43, 44, 52, 105, 135.
spec mode loc : 43, 52, 135.
special name : 69, 70.
sprintf : 45, 141*.
SR: 66.
src �le : 34, 35, 141*, 142*.
src �le name : 140*, 141*, 142*, 143.
SRU: 66.
sscanf : 140*.
stack pointer: 18.

stack op: 85, 86, 87.
Stack_Segment: 72.
start comment : 55*, 109*, 139*.
stat: 85.
status : 85, 90, 97, 101, 102, 103, 104, 112*, 113,

119, 120, 121, 124, 125, 126, 127, 132.
STB: 66.
STBU: 66.
STCO: 66.
stderr : 35, 45, 82, 140*, 145, 148.
StdErr: 72.
StdIn: 72.
StdOut: 72.
STHT: 66.
STO: 66.
store new char : 60.
STOU: 66.
strcat : 56*.
strcmp : 38.
strcpy : 140*, 141*.
string mode : 55*, 56*.
strlen : 34, 50, 56*, 141*.
strong : 85, 86.
STSF: 66.
STT: 66.
STTU: 66.
STUNC: 66.
STW: 66.
STWU: 66.
SUB: 66.
SUBU: 66.
SWYM: 66.
sym : 57, 67, 69, 73, 74, 75, 76, 77, 78, 79, 81*, 90,

94, 103, 107*, 113, 114, 121, 128, 133, 147.
sym avail : 62, 63.
sym buf : 78, 80, 81*, 82, 83.
sym node: 61*, 62, 63, 68, 77, 93, 112*.
sym ptr : 78, 80, 81*, 82, 83.
sym root : 63.
sym tab struct: 57, 61*.
symbol : 56*.
symbol...already defined: 112*.
symbol found : 90, 91, 92.
SYNC: 66.
SYNCD: 66.
SYNCID: 66.
syntax error...: 89, 100.
system dependencies: 26.
t: 48, 58, 60, 76, 77.
TDIF: 66.
terminator : 60, 90.
ternary trie struct: 57.

x149 MMIXAL INDEX 67

TETRA: 65, 66, 120.
TETRA: 17, 66.
tetra: 26, 43, 48, 52, 71, 79, 108, 123.
tex blank : 54*, 56*.
tex braceclose : 54*, 56*.
tex braceopen : 54*, 56*.
tex endcomment : 54*, 106*.
tex endlinenr : 54*, 81*, 139*.
tex endop : 54*, 81*, 106*, 109*.
tex endstring : 54*, 56*.
tex �le : 81*, 106*, 107*, 109*, 139*, 141*, 142*.
tex �le name : 140*, 141*, 142*.
tex gg : 54*, 56*.
tex hat : 54*, 56*.
tex labelend : 54*, 106*.
tex labelstart : 54*, 106*.
tex line wo comment : 54*, 139*.
tex ll : 54*, 56*.
TEX_MAXSYM_LEN: 54*, 55*, 56*.
tex nl : 54*, 81*, 106*, 107*, 139*.
tex nolabel : 54*, 106*.
tex opcodeend : 54*, 107*.
tex opcodestart : 54*, 107*.
tex pipe : 54*, 56*.
tex res : 55*, 56*.
tex startcomment : 54*, 106*.
tex startlcomment : 54*, 139*.
tex startlinenr : 54*, 81*, 139*.
tex startop : 54*, 81*, 106*, 109*.
tex startstring : 54*, 56*.
tex tab : 54*, 107*.
TextRead: 72.
TextWrite: 72.
the operand is undefined: 112*, 132.
three arg bit : 65, 119.
time : 144.
times : 85, 100, 104.
too many global registers: 111.
too many operands...: 119.
top op : 86, 88.
top val : 86, 90, 97, 101, 102, 103, 104.
toTex : 56*, 81*, 106*, 107*, 109*.
trailing characters...: 35.
TRAP: 66.
trie node: 57, 58, 59, 60, 68, 76, 77, 85, 93.
trie root : 59, 64, 69, 73, 74, 83, 90, 114, 147.
trie search : 60, 67, 69, 73, 74, 90, 107*, 114, 147.
TRIP: 66.
true : 26, 35, 41, 74, 90, 114, 135.
tt : 60, 67, 68, 69, 73, 90, 91, 92, 114.
two arg bit : 65, 119.
Type tetra...: 29.

u: 28.
U_BIT: 72.
U_Handler: 72.
unary : 85, 86.
unary check : 103.
unde�ned : 85, 90, 102, 104, 112*, 113, 120, 121,

124, 125, 126, 127, 132.
undefined constant: 121.
undefined local symbol: 148.
undefined symbol: 82.
Unicode: 5, 6, 7, 30, 78.
unknown operation code: 107*.
UNSAVE: 66.
update listing loc : 42, 44.
Usage: ...: 140*.
useful : 76.
V_BIT: 72.
V_Handler: 72.
val node: 85, 86, 87.
val ptr : 86, 88, 90, 97, 102, 113, 119, 120.
val stack : 84, 85, 86, 87, 88, 111, 112*, 113, 119,

120, 121, 124, 125, 126, 127, 128, 129, 130,
132, 133, 134, 135, 137.

verb : 103, 104.
W_BIT: 72.
W_Handler: 72.
WDIF: 66.
weak : 85, 86.
WYDE: 17, 66.
WYDE: 65, 66, 120.
x: 28, 48, 79, 123.
X field doesn't fit...: 126.
X field is undefined: 126.
X field...register number: 126.
X_BIT: 72.
x bits : 52.
X_Handler: 72.
xar bit : 65, 126.
XOR: 66.
xor : 85, 100, 104.
xr bit : 65, 126.
xyz : 122, 123, 126, 132, 133, 134.
XYZ field doesn't fit...: 132.
xyzar bit : 65, 132.
xyzr bit : 65, 132.
y: 28, 48, 123.
Y field doesn't fit...: 125.
Y field is undefined: 125.
Y field...register number: 125.
yar bit : 65, 125.
yr bit : 65, 125.
yz : 48, 123, 125, 126, 127, 128, 129, 130, 131.

68 INDEX MMIXAL x149

YZ field doesn't fit...: 127.
YZ field is undefined: 127.
YZ field...register number: 127.
yzar bit : 65, 127.
yzr bit : 65, 127.
z: 28, 48, 123.
Z field doesn't fit...: 124.
Z field is undefined: 124.
Z field...register number: 124.
Z_BIT: 72.
Z_Handler: 72.
zar bit : 65, 124.
zero : 85, 86.
zero octa : 27, 62, 103, 104, 119.
zr bit : 65, 124.
ZSEV: 66.
ZSN: 66.
ZSNN: 66.
ZSNP: 66.
ZSNZ: 66.
ZSOD: 66.
ZSP: 66.
ZSZ: 66.
16ADDU: 66.
2ADDU: 66.
4ADDU: 66.
8ADDU: 66.

MMIXAL NAMES OF THE SECTIONS 69

hAlign the location pointer 110 i Used in section 105.

hAllocate a global register 111 i Used in section 105.

hAssemble XYZ as a future reference and goto assemble inst 133 i Used in section 132.

hAssemble XYZ as a relative address and goto assemble inst 134 i Used in section 132.

hAssemble YZ as a future reference and goto assemble X 128 i Used in section 127.

hAssemble YZ as a memory address and goto assemble X 130 i Used in section 127.

hAssemble YZ as a relative address and goto assemble X 129 i Used in section 127.

hAssemble instructions to put supplementary data in $255 131 i Used in section 130.

hCases for binary operators 102, 104 i Used in section 101.

hCases for unary operators 103 i Used in section 101.

hCheck and output the trie 83 i Used in section 145.

hCheck for a line directive 38 i Used in section 34.

hCopy the operand �eld 109* i Used in section 105.

hDeal with cases where val stack [j] is impure 121 i Used in section 120.

hDe�ne the label 112* i Used in section 105.

hDo a many-operand operation 120 i Used in section 119.

hDo a one-operand operation 132 i Used in section 119.

hDo a pseudo-operation and goto bypass 135 i Used in section 132.

hDo a three-operand operation 122 i Used in section 119.

hDo a two-operand operation 127 i Used in section 119.

hDo the X �eld 126 i Used in section 122.

hDo the Y �eld 125 i Used in section 122.

hDo the Z �eld 124 i Used in section 122.

hDo the operation 119 i Used in section 105.

hEncode the length of t~sym~equiv 79 i Used in section 77.

hFind the symbol table node, pp 114 i Used in section 112*.

hFinish the assembly 145 i Used in section 139*.

hFix a future reference from a relative address 117 i Used in section 115.

hFix a future reference from an octabyte 116 i Used in section 115.

hFix prior references to this label 115 i Used in section 112*.

hFix references that might be in the val stack 113 i Used in section 112*.

hFlush the excess part of an overlong line 35 i Used in section 34.

hGet the next line of input text, or break if the input has ended 34 i Used in section 139*.

hGlobal variables 27, 33, 36, 37, 43, 46, 51, 55*, 59, 63, 66, 70, 72, 80, 86, 93, 108, 123, 136, 142*, 146 i Used in

section 139*.

h Initialize everything 29, 32, 64, 74, 87, 94, 143 i Used in section 139*.

hLocal variables 40, 68 i Used in section 139*.

hMake listing for GREG 137 i Used in section 135.

hMake special listing to show the label equivalent 118 i Used in section 112*.

hMake sure cur loc and mmo cur loc refer to the same tetrabyte 53* i Used in section 52.

hOpen the �les 141* i Used in section 143.

hOutput the postamble 147 i Used in section 145.

hOutput the preamble 144 i Used in section 143.

hPerform the top operation on op stack 101 i Used in section 88.

hPreprocessor de�nitions 31, 39 i Used in section 139*.

hPrint symbol sym buf and its equivalent 81* i Used in section 78.

hProcess the command line 140* i Used in section 139*.

hProcess the next MMIXAL instruction or comment 105 i Used in section 139*.

hPut other prede�ned symbols into the trie 73 i Used in section 64.

hPut the MMIX opcodes and MMIXAL pseudo-ops into the trie 67 i Used in section 64.

hPut the special register names into the trie 69 i Used in section 64.

hReport an unde�ned symbol 82 i Used in section 77.

70 NAMES OF THE SECTIONS MMIXAL

hReport any unde�ned local symbols 148 i Used in section 145.

h Scan a backward local 92 i Used in section 89.

h Scan a binary operator or closing token, rt op 100 i Used in section 88.

h Scan a character constant 95 i Used in section 89.

h Scan a decimal constant 97 i Used in section 89.

h Scan a forward local 91 i Used in section 89.

h Scan a hexadecimal constant 98 i Used in section 89.

h Scan a string constant 96 i Used in section 89.

h Scan a symbol 90 i Used in section 89.

h Scan opening tokens until putting something on val stack 89 i Used in section 88.

h Scan the current location 99 i Used in section 89.

h Scan the label �eld; goto bypass if there is none 106* i Used in section 105.

h Scan the opcode �eld; goto bypass if there is none 107* i Used in section 105.

h Scan the operand �eld 88 i Used in section 105.

h Subroutines 28, 41, 42, 44, 45, 47, 48, 49, 50, 52, 56*, 58, 60, 62, 76, 77 i Used in section 139*.

hType de�nitions 26, 30, 57, 61*, 65, 71, 85 i Used in section 139*.

hVisit t and traverse t~mid 78 i Used in section 77.

November 7, 2022 at 05:30

MMIXAL
Section Page

De�nition of MMIXAL . 1 1
Binary MMO output . 22 10
Basic data types . 26 14
Basic input and output . 32 16
The symbol table . 57 28
Expressions . 84 38
Assembling an instruction . 105 45
Running the program . 138 58
Index . 149 62

c
 1999 Donald E. Knuth

This �le may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked to
help keep the MMIXware �les consistent and \uncorrupted," identical everywhere in the world. Changes are permissible
only if the modi�ed �le is given a new name, di�erent from the names of existing �les in the MMIXware package, and
only if the modi�ed �le is clearly identi�ed as not being part of that package. (The CWEB system has a \change
�le" facility by which users can easily make minor alterations without modifying the master source �les in any way.
Everybody is supposed to use change �les instead of changing the �les.) The author has tried his best to produce
correct and useful programs, in order to help promote computer science research, but no warranty of any kind should
be assumed.

	Definition of MMIXAL
	Binary MMO output
	Basic data types
	Basic input and output
	The symbol table
	Expressions
	Assembling an instruction
	Running the program
	Index
	Names of the sections
	Align the location pointer
	Allocate a global register
	Assemble XYZ as a future reference and goto assemble_inst
	Assemble XYZ as a relative address and goto assemble_inst
	Assemble YZ as a future reference and goto assemble_X
	Assemble YZ as a memory address and goto assemble_X
	Assemble YZ as a relative address and goto assemble_X
	Assemble instructions to put supplementary data in $255
	Cases for binary operators
	Cases for unary operators
	Check and output the trie
	Check for a line directive
	Copy the operand field
	Deal with cases where val_stack[j] is impure
	Define the label
	Do a many-operand operation
	Do a one-operand operation
	Do a pseudo-operation and goto bypass
	Do a three-operand operation
	Do a two-operand operation
	Do the X field
	Do the Y field
	Do the Z field
	Do the operation
	Encode the length of t->sym->equiv
	Find the symbol table node, pp
	Finish the assembly
	Fix a future reference from a relative address
	Fix a future reference from an octabyte
	Fix prior references to this label
	Fix references that might be in the val_stack
	Flush the excess part of an overlong line
	Get the next line of input text, or break if the input has ended
	Global variables
	Initialize everything
	Local variables
	Make listing for GREG
	Make special listing to show the label equivalent
	Make sure cur_loc and mmo_cur_loc refer to the same tetrabyte
	Open the files
	Output the postamble
	Output the preamble
	Perform the top operation on op_stack
	Preprocessor definitions
	Print symbol sym_buf and its equivalent
	Process the command line
	Process the next instruction or comment
	Put other predefined symbols into the trie
	Put the opcodes and pseudo-ops into the trie
	Put the special register names into the trie
	Report an undefined symbol
	Report any undefined local symbols
	Scan a backward local
	Scan a binary operator or closing token, rt_op
	Scan a character constant
	Scan a decimal constant
	Scan a forward local
	Scan a hexadecimal constant
	Scan a string constant
	Scan a symbol
	Scan opening tokens until putting something on val_stack
	Scan the current location
	Scan the label field; goto bypass if there is none
	Scan the opcode field; goto bypass if there is none
	Scan the operand field
	Subroutines
	Type definitions
	Visit t and traverse t->mid

