
x1 MMIX-PIPE INTRODUCTION 1

1. Introduction. This program is the heart of the meta-simulator for the ultra-con�gurable MMIX

pipeline: It de�nes the MMIX run routine, which does most of the work. Another routine, MMIX init ,
is also de�ned here, and so is a header �le called mmix_pipe.h. The header �le is used by the main routine
and by other routines like MMIX con�g , which are compiled separately.
Readers of this program should be familiar with the explanation of MMIX architecture as presented in the

main program module for MMMIX.
A lot of subtle things can happen when instructions are executed in parallel. Therefore this simulator

ranks among the most interesting and instructive programs in the author's experience. The author has tried
his best to make everything correct : : : but the chances for error are great. Anyone who discovers a bug is
therefore urged to report it as soon as possible; please see http://mmix.cs.hm.edu/bugs/ for instructions.
It sort of boggles the mind when one realizes that the present program might someday be translated by a

C compiler for MMIX and used to simulate itself.

2 INTRODUCTION MMIX-PIPE x2

2. This high-performance prototype of MMIX achieves its e�ciency by means of \pipelining," a technique
of overlapping that is explained for the related DLX computer in Chapter 3 of Hennessy & Patterson's book
Computer Architecture (second edition). Other techniques such as \dynamic scheduling" and \multiple
issue," explained in Chapter 4 of that book, are used too.
One good way to visualize the procedure is to imagine that somebody has organized a high-tech car repair

shop according to similar principles. There are eight independent functional units, which we can think of as
eight groups of auto mechanics, each specializing in a particular task; each group has its own workspace with
room to deal with one car at a time. Group F (the \fetch" group) is in charge of rounding up customers and
getting them to enter the assembly-line garage in an orderly fashion. Group D (the \decode and dispatch"
group) does the initial vehicle inspection and writes up an order that explains what kind of servicing is
required. The vehicles go next to one of the four \execution" groups: Group X handles routine maintenance,
while groups XF, XM, and XD are specialists in more complex tasks that tend to take longer. (The XF
people are good at
oating the points, while the XM and XD groups are experts in multilink suspensions
and di�erentials.) When the relevant X group has �nished its work, cars drive to M station, where they send
or receive messages and possibly pay money to members of the \memory" group. Finally all necessary parts
are installed by members of group W, the \write" group, and the car leaves the shop. Everything is tightly
organized so that in most cases the cars move in synchronized fashion from station to station, at regular
100-nanocentury intervals.
In a similar way, most MMIX instructions can be handled in a �ve-stage pipeline, F{D{X{M{W, with X

replaced by XF for
oating-point addition or conversion, or by XM for multiplication, or by XD for division
or square root. Each stage ideally takes one clock cycle, although XF, XM, and (especially) XD are slower.
If the instructions enter in a suitable pattern, we might see one instruction being fetched, another being
decoded, and up to four being executed, while another is accessing memory, and yet another is �nishing
up by writing new information into registers; all this is going on simultaneously during one clock cycle.
Pipelining with eight separate stages might therefore make the machine run up to 8 times as fast as it could
if each instruction were being dealt with individually and without overlap. (Well, perfect speedup turns
out to be impossible, because of the shared M and W stages; the theory of knapsack programming, to be
discussed in Section 7.7 of The Art of Computer Programming, tells us that the maximal achievable speedup
is at most 8 � 1=p � 1=q � 1=r when XF, XM, and XD have delays bounded by p, q, and r cycles. But we
can achieve a factor of more than 7 if we are very lucky.)
Consider, for example, the ADD instruction. This instruction enters the computer's processing unit in

F stage, taking only one clock cycle if it is in the cache of instructions recently seen. Then the D stage
recognizes the command as an ADD and acquires the current values of $Y and $Z; meanwhile, of course,
another instruction is being fetched by F. On the next clock cycle, the X stage adds the values together.
This prepares the way for the M stage to watch for over
ow and to get ready for any exceptional action that
might be needed with respect to the settings of special register rA. Finally, on the �fth clock cycle, the sum
is either written into $X or the trip handler for integer over
ow is invoked. Although this process has taken
�ve clock cycles (that is, 5�), the net increase in running time has been only 1�.
Of course congestion can occur, inside a computer as in a repair shop. For example, auto parts might not

be readily available; or a car might have to sit in D station while waiting to move to XM, thereby blocking
somebody else from moving from F to D. Sometimes there won't necessarily be a steady stream of customers.
In such cases the employees in some parts of the shop will occasionally be idle. But we assume that they
always do their jobs as fast as possible, given the sequence of customers that they encounter. With a clever
person setting up appointments|translation: with a clever programmer and/or compiler arranging MMIX

instructions|the organization can often be expected to run at nearly peak capacity.
In fact, this program is designed for experiments with many kinds of pipelines, potentially using additional

functional units (such as several independent X groups), and potentially fetching, dispatching, and executing
several noncon
icting instructions simultaneously. Such complications make this program more di�cult than
a simple pipeline simulator would be, but they also make it a lot more instructive because we can get a better
understanding of the issues involved if we are required to treat them in greater generality.

x3 MMIX-PIPE INTRODUCTION 3

3. Here's the overall structure of the present program module.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "abstime.h"

hPreprocessor de�nitions i
hHeader de�nitions 6 i
hType de�nitions 11 i
hGlobal variables 20 i
hExternal variables 4 i
h Internal prototypes 13 i
hExternal prototypes 9 i
hSubroutines 14 i
hExternal routines 10 i

4. The identi�er Extern is used in MMIX-PIPE to declare variables that are accessed in other modules.
Actually all appearances of `Extern' are de�ned to be blank here, but `Extern' will become `extern' in
the header �le.

#de�ne Extern =� blank for us, extern for them �=
format Extern extern

hExternal variables 4 i �
Extern int verbose ; =� controls the level of diagnostic output �=

See also sections 29, 59, 60, 66, 69, 77, 86, 87, 98, 115, 136, 150, 168, 207, 211, 214, 242, 247, 284, and 349.

This code is used in sections 3 and 5.

5. The header �le repeats the basic de�nitions and declarations.

h mmix-pipe.h 5 i �
#de�ne Extern extern
hHeader de�nitions 6 i
hType de�nitions 11 i
hExternal variables 4 i
hExternal prototypes 9 i

6. Subroutines of this program are declared �rst with a prototype, as in ANSI C, then with an old-style
C function de�nition. The following preprocessor commands make this work correctly with both new-style
and old-style compilers.

hHeader de�nitions 6 i �
#ifdef __STDC__

#de�ne ARGS(list) list

#else
#de�ne ARGS(list) ()
#endif

See also sections 7, 8, 52, 57, 129, and 166.

This code is used in sections 3 and 5.

4 INTRODUCTION MMIX-PIPE x7

7. Some of the names that are natural for this program are in con
ict with library names on at least one
of the host computers in the author's tests. So we bypass the library names here.

hHeader de�nitions 6 i +�
#de�ne random my random

#de�ne fsqrt my fsqrt

#de�ne div my div

8. The amount of verbosity depends on the following bit codes.

hHeader de�nitions 6 i +�
#de�ne issue bit (1� 0) =� show control blocks when issued, deissued, committed �=
#de�ne pipe bit (1� 1) =� show the pipeline and locks on every cycle �=
#de�ne coroutine bit (1� 2) =� show the coroutines when started on every cycle �=
#de�ne schedule bit (1� 3) =� show the coroutines when scheduled �=
#de�ne uninit mem bit (1� 4) =� complain when reading from an uninitialized chunk of memory �=
#de�ne interactive read bit (1� 5) =� prompt user when reading from I/O location �=
#de�ne show spec bit (1� 6) =� display special read/write transactions as they happen �=
#de�ne show pred bit (1� 7) =� display branch prediction details �=
#de�ne show wholecache bit (1� 8) =� display cache blocks even when their key tag is invalid �=

9. The MMIX init () routine should be called exactly once, after MMIX con�g () has done its work but
before the simulator starts to execute any programs. Then MMIX run () can be called as often as the user
likes.
The MMIX silent () routine is a noninteractive variant of MMIX run (): It will return the value of register

g[255]:l when executing a TRAP 0,Halt,0 instruction.

hExternal prototypes 9 i �
Extern void MMIX init ARGS((void));
Extern void MMIX run ARGS((int cycs ;octa breakpoint));
Extern int MMIX silent ARGS((void));

See also sections 38, 161, 175, 178, 180, 209, 212, and 252.

This code is used in sections 3 and 5.

x10 MMIX-PIPE INTRODUCTION 5

10. hExternal routines 10 i �
void MMIX init ()
f
register int i; j;

h Initialize everything 22 i;
g
int MMIX silent ()
f
octa breakpoint ;

hLocal variables 12 i;
while (true) f
hPerform one machine cycle 64 i;
if (halted) return specval (&g[255]):o:l;
g
g
void MMIX run (cycs ; breakpoint)

int cycs ;
octa breakpoint ;

f
hLocal variables 12 i;
while (cycs) f
if (verbose & (issue bit j pipe bit j coroutine bit j schedule bit)) printf ("*** Cycle %d\n"; ticks :l);
hPerform one machine cycle 64 i;
if (verbose & pipe bit) f
print pipe (); print locks ();
g
if (breakpoint hit _ halted) f
if (breakpoint hit) printf ("Breakpoint instruction fetched at time %d\n"; ticks :l � 1);
if (halted) printf ("Halted at time %d\n"; ticks :l � 1);
break;
g
cycs��;
g
g

See also sections 39, 162, 176, 179, 181, 210, 213, and 253.

This code is used in section 3.

11. hType de�nitions 11 i �
typedef enum f
false ; true ;wow
g bool; =� slightly extended booleans �=

See also sections 17, 23, 37, 40, 44, 68, 76, 164, 167, 206, 246, and 371.

This code is used in sections 3 and 5.

12. hLocal variables 12 i �
register int i; j; m;
bool breakpoint hit = false ;
bool halted = false ;

See also sections 124 and 258.

This code is used in section 10.

6 INTRODUCTION MMIX-PIPE x13

13. Error messages that abort this program are called panic messages. The macro called confusion will
never be needed unless this program is internally inconsistent.

#de�ne errprint0 (f) fprintf (stderr ; f)
#de�ne errprint1 (f; a) fprintf (stderr ; f ; a)
#de�ne errprint2 (f; a; b) fprintf (stderr ; f ; a; b)
#de�ne panic(x) f errprint0 ("Panic: "); x; errprint0 ("!\n"); expire (); g
#de�ne confusion (m) errprint1 ("This can't happen: %s";m)

h Internal prototypes 13 i �
static void expire ARGS((void));

See also sections 18, 24, 27, 30, 32, 34, 42, 45, 55, 62, 72, 90, 92, 94, 96, 156, 158, 169, 171, 173, 182, 184, 186, 188, 190, 192,
195, 198, 200, 202, 204, 240, 250, 254, and 377.

This code is used in section 3.

14. h Subroutines 14 i �
static void expire () =� the last gasp before dying �=
f
if (ticks :h) errprint2 ("(Clock time is %dH+%d.)\n"; ticks :h; ticks :l);
else errprint1 ("(Clock time is %d.)\n"; ticks :l);
exit (�2);
g

See also sections 19, 21, 25, 28, 31, 33, 35, 43, 46, 56, 63, 73, 91, 93, 95, 97, 157, 159, 170, 172, 174, 183, 185, 187, 189, 191,
193, 196, 199, 201, 203, 205, 208, 241, 251, 255, 378, 379, 381, 384, and 387.

This code is used in section 3.

15. The data structures of this program are not precisely equivalent to logical gates that could be imple-
mented directly in silicon; we will use data structures and algorithms appropriate to the C programming
language. For example, we'll use pointers and arrays, instead of buses and ports and latches. However, the
net e�ect of our data structures and algorithms is intended to be equivalent to the net e�ect of a silicon
implementation. The methods used below are essentially equivalent to those used in real machines today,
except that diagnostic facilities are added so that we can readily watch what is happening.
Each functional unit in the MMIX pipeline is programmed here as a coroutine in C. At every clock cycle,

we will call on each active coroutine to do one phase of its operation; in terms of the repair-station analogy
described in the main program, this corresponds to getting each group of auto mechanics to do one unit of
operation on a car. The coroutines are performed sequentially, although a real pipeline would have them act
in parallel. We will not \cheat" by letting one coroutine access a value early in its cycle that another one
computes late in its cycle, unless computer hardware could \cheat" in an equivalent way.

x16 MMIX-PIPE LOW-LEVEL ROUTINES 7

16. Low-level routines. Where should we begin? It is tempting to start with a global view of the
simulator and then to break it down into component parts. But that task is too daunting, because there
are so many unknowns about what basic ingredients ought to be combined when we construct the larger
components. So let us look �rst at the primitive operations on which the superstructure will be built. Once
we have created some infrastructure, we'll be able to proceed with con�dence to the larger tasks ahead.

17. This program for the 64-bit MMIX architecture is based on 32-bit integer arithmetic, because nearly
every computer available to the author at the time of writing (1998{1999) was limited in that way. Details of
the basic arithmetic appear in a separate program module called MMIX-ARITH, because the same routines
are needed also for the assembler and for the non-pipelined simulator. The de�nition of type tetra should
be changed, if necessary, to conform with the de�nitions found there.

hType de�nitions 11 i +�
typedef unsigned int tetra; =� for systems conforming to the LP-64 data model �=
typedef struct f
tetra h; l;
g octa; =� two tetrabytes make one octabyte �=

18. h Internal prototypes 13 i +�
static void print octa ARGS((octa));

19. h Subroutines 14 i +�
static void print octa (o)

octa o;
f
if (o:h) printf ("%x%08x"; o:h; o:l); else printf ("%x"; o:l);
g

20. hGlobal variables 20 i �
extern octa zero octa ; =� zero octa :h = zero octa :l = 0 �=
extern octa neg one ; =� neg one :h = neg one :l = �1 �=
extern octa aux ; =� auxiliary output of a subroutine �=
extern bool over
ow ; =� set by certain subroutines for signed arithmetic �=
extern int exceptions ; =� bits set by
oating point operations �=
extern int cur round ; =� the current rounding mode �=

See also sections 36, 41, 48, 50, 51, 53, 54, 65, 70, 78, 83, 88, 99, 107, 127, 148, 154, 194, 230, 235, 238, 248, 285, 303, 305, 315,
374, 376, and 388.

This code is used in section 3.

8 LOW-LEVEL ROUTINES MMIX-PIPE x21

21. Most of the subroutines inMMIX-ARITH return an octabyte as a function of two octabytes; for example,
oplus (y; z) returns the sum of octabytes y and z. Multiplication returns the high half of a product in the
global variable aux ; division returns the remainder in aux .

h Subroutines 14 i +�
extern octa oplus ARGS((octa y;octa z)); =� unsigned y + z �=
extern octa ominus ARGS((octa y;octa z)); =� unsigned y � z �=
extern octa incr ARGS((octa y; int delta)); =� unsigned y + � (� is signed) �=
extern octa oand ARGS((octa y;octa z)); =� y ^ z �=
extern octa oandn ARGS((octa y;octa z)); =� y ^ �z �=
extern octa shift left ARGS((octa y; int s)); =� y � s, 0 � s � 64 �=
extern octa shift right ARGS((octa y; int s; int u)); =� y � s, signed if :u �=
extern octa omult ARGS((octa y;octa z)); =� unsigned (aux ; x) = y � z �=
extern octa signed omult ARGS((octa y;octa z)); =� signed x = y � z, setting over
ow �=
extern octa odiv ARGS((octa x;octa y;octa z)); =� unsigned (x; y)=z; aux = (x; y) mod z �=
extern octa signed odiv ARGS((octa y;octa z)); =� signed y=z, when z 6= 0; aux = y mod z �=
extern int count bits ARGS((tetra z)); =� x = �(z) �=
extern tetra byte di� ARGS((tetra y; tetra z)); =� half of BDIF �=
extern tetra wyde di� ARGS((tetra y; tetra z)); =� half of WDIF �=
extern octa bool mult ARGS((octa y;octa z;bool xor)); =� MOR or MXOR �=
extern octa load sf ARGS((tetra z)); =� load short
oat �=
extern tetra store sf ARGS((octa x)); =� store short
oat �=
extern octa fplus ARGS((octa y;octa z)); =�
oating point x = y � z �=
extern octa fmult ARGS((octa y;octa z)); =�
oating point x = y
 z �=
extern octa fdivide ARGS((octa y;octa z)); =�
oating point x = y � z �=
extern octa froot ARGS((octa; int)); =�
oating point x =

p
z �=

extern octa fremstep ARGS((octa y;octa z; int delta)); =�
oating point x rem z = y rem z �=
extern octa �ntegerize ARGS((octa z; int mode)); =�
oating point x = round(z) �=
extern int fcomp ARGS((octa y;octa z)); =� �1, 0, 1, or 2 if y < z, y = z, y > z, y k z �=
extern int fepscomp ARGS((octa y;octa z;octa eps ; int sim));
=� x = sim? [y � z (�)] : [y � z (�)] �=

extern octa
oatit ARGS((octa z; int mode ; int unsgnd ; int shrt)); =� �x to
oat �=
extern octa �xit ARGS((octa z; int mode)); =�
oat to �x �=

22. We had better check that our 32-bit assumption holds.

h Initialize everything 22 i �
if (shift left (neg one ; 1):h 6= #ffffffff)
panic(errprint0 ("Incorrect implementation of type tetra"));

See also sections 26, 61, 71, 79, 89, 116, 128, 153, 231, 236, 249, and 286.

This code is used in section 10.

x23 MMIX-PIPE COROUTINES 9

23. Coroutines. As stated earlier, this program can be regarded as a system of interacting coroutines.
Coroutines|sometimes called threads|are more or less independent processes that share and pass data and
control back and forth. They correspond to the individual workers in an organization.
We don't need the full power of recursive coroutines, in which new threads are spawned dynamically and

have independent stacks for computation; we are, after all, simulating a �xed piece of hardware. The total
number of coroutines we deal with is established once and for all by the MMIX con�g routine, and each
coroutine has a �xed amount of local data.
The simulation operates one clock tick at a time, by executing all coroutines scheduled for time t before

advancing to time t + 1. The coroutines at time t may decide to become dormant or they may reschedule
themselves and/or other coroutines for future times.
Each coroutine has a symbolic name for diagnostic purposes (e.g., ALU1); a nonnegative stage number

(e.g., 2 for the second stage of a pipeline); a pointer to the next coroutine scheduled at the same time (or
� if the coroutine is unscheduled); a pointer to a lock variable (or � if no lock is currently relevant); and a
reference to a control block containing the data to be processed.

hType de�nitions 11 i +�
typedef struct coroutine struct f
char �name ; =� symbolic identi�cation of a coroutine �=
int stage ; =� its rank �=
struct coroutine struct �next ; =� its successor �=
struct coroutine struct ��lockloc ; =� what it might be locking �=
struct control struct �ctl ; =� its data �=
g coroutine;

24. h Internal prototypes 13 i +�
static void print coroutine id ARGS((coroutine �));
static void errprint coroutine id ARGS((coroutine �));

25. h Subroutines 14 i +�
static void print coroutine id (c)

coroutine �c;
f
if (c) printf ("%s:%d"; c~name ; c~stage);
else printf ("??");
g
static void errprint coroutine id (c)

coroutine �c;
f
if (c) errprint2 ("%s:%d"; c~name ; c~stage);
else errprint0 ("??");
g

10 COROUTINES MMIX-PIPE x26

26. Coroutine control is masterminded by a ring of queues, one each for times t, t+1, : : : , t+ring size �1,
when t is the current clock time.
All scheduling is �rst-come-�rst-served, except that coroutines with higher stage numbers have priority.

We want to process the later stages of a pipeline �rst, in this sequential implementation, for the same reason
that a car must drive from M station into W station before another car can enter M station.
Each queue is a circular list of coroutine nodes, linked together by their next �elds. A list head h with

stage = max stage comes at the end and the beginning of the queue. (All stage numbers of legitimate
coroutines are less than max stage .) The queued items are h~next , h~next~next , etc., from back to front,
and we have c~stage � c~next~stage unless c = h.
Initially all queues are empty.

h Initialize everything 22 i +�
f register coroutine �p;
for (p = ring ; p < ring + ring size ; p++) p~next = p;
g

27. To schedule a coroutine c with positive delay d < ring size , we call schedule (c; d; s). (The s parameter
is used only if scheduling is being logged; it does not a�ect the computation, but we will generally set s to
the state at which the scheduled coroutine will begin.)

h Internal prototypes 13 i +�
static void schedule ARGS((coroutine �; int; int));

28. h Subroutines 14 i +�
static void schedule (c; d; s)

coroutine �c;
int d; s;

f
register int tt = (cur time + d) % ring size ;
register coroutine �p = &ring [tt]; =� start at the list head �=
if (d � 0 _ d � ring size) =� do a sanity check �=
panic(confusion ("Scheduling "); errprint coroutine id (c); errprint1 (" with delay %d"; d));

while (p~next~stage < c~stage) p = p~next ;
c~next = p~next ;
p~next = c;
if (verbose & schedule bit) f
printf (" scheduling "); print coroutine id (c);
printf (" at time %d, state %d\n"; ticks :l + d; s);

g
g

29. hExternal variables 4 i +�
Extern int ring size ; =� set by MMIX con�g , must be su�ciently large �=
Extern coroutine �ring ;
Extern int cur time ;

30. The all-important ctl �eld of a coroutine, which contains the data being manipulated, will be explained
below. One of its key components is the state �eld, which helps to specify the next actions the coroutine
will perform. When we schedule a coroutine for a new task, we often want it to begin in state 0.

h Internal prototypes 13 i +�
static void startup ARGS((coroutine �; int));

x31 MMIX-PIPE COROUTINES 11

31. h Subroutines 14 i +�
static void startup(c; d)

coroutine �c;
int d;

f
c~ctl~state = 0;
schedule (c; d; 0);
g

32. The following routine removes a coroutine from whatever queue it's in. The case c~next = c is also
permitted; such a self-loop can occur when a coroutine goes to sleep and expects to be awakened (that is,
scheduled) by another coroutine. Sleeping coroutines have important data in their ctl �eld; they are therefore
quite di�erent from unscheduled or \unemployed" coroutines, which have c~next = �. An unemployed
coroutine is not assumed to have any valid data in its ctl �eld.

h Internal prototypes 13 i +�
static void unschedule ARGS((coroutine �));

33. h Subroutines 14 i +�
static void unschedule (c)

coroutine �c;
f register coroutine �p;
if (c~next) f
for (p = c; p~next 6= c; p = p~next) ;
p~next = c~next ;
c~next = �;
if (verbose & schedule bit) f
printf (" unscheduling "); print coroutine id (c); printf ("\n");
g
g
g

34. When it is time to process all coroutines that have queued up for a particular time t, we empty the
queue called ring [t] and link its items in the opposite order (from front to back). The following subroutine
uses the well known algorithm discussed in exercise 2.2.3{7 of The Art of Computer Programming.

h Internal prototypes 13 i +�
static coroutine �queuelist ARGS((int));

35. h Subroutines 14 i +�
static coroutine �queuelist (t)

int t;
f register coroutine �p; �q = &sentinel ; �r;
for (p = ring [t]:next ; p 6= &ring [t]; p = r) f
r = p~next ;
p~next = q;
q = p;
g
ring [t]:next = &ring [t];
sentinel :next = q;
return q;
g

12 COROUTINES MMIX-PIPE x36

36. hGlobal variables 20 i +�
coroutine sentinel ; =� dummy coroutine at origin of circular list �=

37. Coroutines often start working on tasks that are speculative, in the sense that we want certain results
to be ready if they prove to be useful; we understand that speculative computations might not actually be
needed. Therefore a coroutine might need to be aborted before it has �nished its work.
All coroutines must be written in such a way that important data structures remain intact even when

the coroutine is abruptly terminated. In particular, we need to be sure that \locks" on shared resources are
restored to an unlocked state when a coroutine holding the lock is aborted.
A lockvar variable is � when it is unlocked; otherwise it points to the coroutine responsible for unlocking it.

#de�ne set lock (c; l)
f l = c; (c)~ lockloc = &(l); g

#de�ne release lock (c; l)
f l = �; (c)~ lockloc = �; g

hType de�nitions 11 i +�
typedef coroutine �lockvar;

38. hExternal prototypes 9 i +�
Extern void print locks ARGS((void));

39. hExternal routines 10 i +�
void print locks ()
f
print cache locks (ITcache);
print cache locks (DTcache);
print cache locks (Icache);
print cache locks (Dcache);
print cache locks (Scache);
if (mem lock) printf ("mem locked by %s:%d\n";mem lock~name ;mem lock~stage);
if (dispatch lock) printf ("dispatch locked by %s:%d\n"; dispatch lock~name ; dispatch lock~stage);
if (wbuf lock)
printf ("head of write buffer locked by %s:%d\n";wbuf lock~name ;wbuf lock~stage);

if (clean lock) printf ("cleaner locked by %s:%d\n"; clean lock~name ; clean lock~stage);
if (speed lock)
printf ("write buffer flush locked by %s:%d\n"; speed lock~name ; speed lock~stage);

g

x40 MMIX-PIPE COROUTINES 13

40. Many of the quantities we deal with are speculative values that might not yet have been certi�ed as
part of the \real" calculation; in fact, they might not yet have been calculated.
A spec consists of a 64-bit quantity o and a pointer p to a specnode. The value o is meaningful only if

the pointer p is �; otherwise p points to a source of further information.
A specnode is a 64-bit quantity o together with links to other specnodes that are above it or below it

in a doubly linked list. An additional known bit tells whether the o �eld has been calculated. There also is a
64-bit addr �eld, to identify the list and give further information. A specnode list keeps track of speculative
values related to a speci�c register or to all of main memory; we will discuss such lists in detail later.

hType de�nitions 11 i +�
typedef struct f
octa o;
struct specnode struct �p;
g spec;
typedef struct specnode struct f
octa o;
bool known ;
octa addr ;
struct specnode struct �up ; �down ;
g specnode;

41. hGlobal variables 20 i +�
spec zero spec ; =� zero spec :o:h = zero spec :o:l = 0 and zero spec :p = � �=

42. h Internal prototypes 13 i +�
static void print spec ARGS((spec));

43. h Subroutines 14 i +�
static void print spec(s)

spec s;
f
if (:s:p) print octa (s:o);
else f
printf (">"); print specnode id (s:p~addr);
g
g
static void print specnode (s)

specnode s;
f
if (s:known) f print octa (s:o); printf ("!"); g
else if (s:o:h _ s:o:l) f print octa (s:o); printf ("?"); g
else printf ("?");
print specnode id (s:addr);
g

14 COROUTINES MMIX-PIPE x44

44. The analog of an automobile in our simulator is a block of data called control, which represents all the
relevant facts about an MMIX instruction. We can think of it as the work order attached to a car's windshield.
Each group of employees updates the work order as the car moves through the shop.
A control record contains the original location of an instruction, and its four bytes OP X Y Z. An

instruction has up to four inputs, which are spec records called y, z, b and ra ; it also has up to three
outputs, which are specnode records called x, a, and rl . (We usually don't mention the special input ra or
the special output rl , which refer to MMIX's internal registers rA and rL.) For example, the main inputs to
a DIVU command are $Y, $Z, and rD; the outputs are the quotient $X and the remainder rR. The inputs to
a STO command are $Y, $Z, and $X; there is one \output," and the �eld x:addr will be set to the physical
address of the memory location corresponding to virtual address $Y + $Z.
Each control block also points to the coroutine that owns it, if any. And it has various other �elds that

contain other tidbits of information; for example, we have already mentioned the state �eld, which often
governs a coroutine's actions. The i �eld, which contains an internal operation code number, is generally
used together with state to switch between alternative computational steps. If, for example, the op �eld
is SUB or SUBI or NEG or NEGI, the internal opcode i will be simply sub . We shall de�ne all the �elds of
control records now and discuss them later.
An actual hardware implementation of MMIX wouldn't need all the information we are putting into a

control block. Some of that information would typically be latched between stages of a pipeline; other
portions would probably appear in so-called \rename registers." We simulate rename registers only indirectly,
by counting how many registers of that kind would be in use if we were mimicking low-level hardware details
more precisely. The go �eld is a specnode for convenience in programming, although we use only its known
and o sub�elds. It generally contains the address of the subsequent instruction.

hType de�nitions 11 i +�
hDeclare mmix opcode and internal opcode 47 i
typedef struct control struct f
octa loc ; =� virtual address where an instruction originated �=
mmix opcode op ; unsigned char xx ; yy ; zz ; =� the original instruction bytes �=
spec y; z; b; ra ; =� inputs �=
specnode x; a; go ; rl ; =� outputs �=
coroutine �owner ; =� a coroutine whose ctl this is �=
internal opcode i; =� internal opcode �=
int state ; =� internal mindset �=
bool usage ; =� should rU be increased? �=
bool need b ; =� should we stall until b:p � �? �=
bool need ra ; =� should we stall until ra :p � �? �=
bool ren x ; =� does x correspond to a rename register? �=
bool mem x ; =� does x correspond to a memory write? �=
bool ren a ; =� does a correspond to a rename register? �=
bool set l ; =� does rl correspond to a new value of rL? �=
bool interim ; =� does this instruction need to be reissued on interrupt? �=
bool stack alert ; =� is there potential for stack over
ow? �=
unsigned int arith exc ; =� arithmetic exceptions for event bits of rA �=
unsigned int hist ; =� history bits for use in branch prediction �=
int denin ; denout ; =� execution time penalties for subnormal handling �=
octa cur O ; cur S ; =� speculative rO and rS before this instruction �=
unsigned int interrupt ; =� does this instruction generate an interrupt? �=
void �ptr a ; �ptr b ; �ptr c ; =� generic pointers for miscellaneous use �=
g control;

45. h Internal prototypes 13 i +�
static void print control block ARGS((control �));

x46 MMIX-PIPE COROUTINES 15

46. h Subroutines 14 i +�
static void print control block (c)

control �c;
f
octa default go ;

if (c~ loc :h _ c~ loc :l _ c~op _ c~xx _ c~yy _ c~zz _ c~owner) f
print octa (c~ loc);
printf (": %02x%02x%02x%02x(%s)"; c~op ; c~xx ; c~yy ; c~zz ; internal op name [c~i]);
g
if (c~usage) printf ("*");
if (c~ interim) printf ("+");
if (c~y:o:h _ c~y:o:l _ c~y:p) f printf (" y="); print spec(c~y); g
if (c~z:o:h _ c~z:o:l _ c~z:p) f printf (" z="); print spec(c~z); g
if (c~b:o:h _ c~b:o:l _ c~b:p _ c~need b) f
printf (" b="); print spec(c~b);
if (c~need b) printf ("*");
g
if (c~need ra) f printf (" rA="); print spec(c~ra); g
if (c~ren x _ c~mem x) f printf (" x="); print specnode (c~x); g
else if (c~x:o:h _ c~x:o:l) f
printf (" x="); print octa (c~x:o); printf ("%c"; c~x:known ? '!' : '?');
g
if (c~ren a) f printf (" a="); print specnode (c~a); g
if (c~set l) f printf (" rL="); print specnode (c~rl); g
if (c~ interrupt) f printf (" int="); print bits (c~ interrupt); g
if (c~arith exc) f printf (" exc="); print bits (c~arith exc � 8); g
default go = incr (c~ loc ; 4);
if (c~go :o:l 6= default go :l _ c~go :o:h 6= default go :h) f
printf (" ->"); print octa (c~go :o);

g
if (verbose & show pred bit) printf (" hist=%x"; c~hist);
if (c~i � pop) f
printf (" rS=");
print octa (c~cur S);
printf (" rO=");
print octa (c~cur O);
g
printf (" state=%d"; c~state);
g

16 LISTS MMIX-PIPE x47

47. Lists. Here is a (boring) list of all the MMIX opcodes, in order.

hDeclare mmix opcode and internal opcode 47 i �
typedef enum f
TRAP; FCMP; FUN; FEQL; FADD; FIX; FSUB; FIXU;
FLOT; FLOTI; FLOTU; FLOTUI; SFLOT; SFLOTI; SFLOTU; SFLOTUI;
FMUL; FCMPE; FUNE; FEQLE; FDIV; FSQRT; FREM; FINT;
MUL; MULI; MULU; MULUI; DIV; DIVI; DIVU; DIVUI;
ADD; ADDI; ADDU; ADDUI; SUB; SUBI; SUBU; SUBUI;
IIADDU; IIADDUI; IVADDU; IVADDUI; VIIIADDU; VIIIADDUI; XVIADDU; XVIADDUI;
CMP; CMPI; CMPU; CMPUI; NEG; NEGI; NEGU; NEGUI;
SL; SLI; SLU; SLUI; SR; SRI; SRU; SRUI;
BN; BNB; BZ; BZB; BP; BPB; BOD; BODB;
BNN; BNNB; BNZ; BNZB; BNP; BNPB; BEV; BEVB;
PBN; PBNB; PBZ; PBZB; PBP; PBPB; PBOD; PBODB;
PBNN; PBNNB; PBNZ; PBNZB; PBNP; PBNPB; PBEV; PBEVB;
CSN; CSNI; CSZ; CSZI; CSP; CSPI; CSOD; CSODI;
CSNN; CSNNI; CSNZ; CSNZI; CSNP; CSNPI; CSEV; CSEVI;
ZSN; ZSNI; ZSZ; ZSZI; ZSP; ZSPI; ZSOD; ZSODI;
ZSNN; ZSNNI; ZSNZ; ZSNZI; ZSNP; ZSNPI; ZSEV; ZSEVI;
LDB; LDBI; LDBU; LDBUI; LDW; LDWI; LDWU; LDWUI;
LDT; LDTI; LDTU; LDTUI; LDO; LDOI; LDOU; LDOUI;
LDSF; LDSFI; LDHT; LDHTI; CSWAP; CSWAPI; LDUNC; LDUNCI;
LDVTS; LDVTSI; PRELD; PRELDI; PREGO; PREGOI; GO; GOI;
STB; STBI; STBU; STBUI; STW; STWI; STWU; STWUI;
STT; STTI; STTU; STTUI; STO; STOI; STOU; STOUI;
STSF; STSFI; STHT; STHTI; STCO; STCOI; STUNC; STUNCI;
SYNCD; SYNCDI; PREST; PRESTI; SYNCID; SYNCIDI; PUSHGO; PUSHGOI;
OR; ORI; ORN; ORNI; NOR; NORI; XOR; XORI;
AND; ANDI; ANDN; ANDNI; NAND; NANDI; NXOR; NXORI;
BDIF; BDIFI; WDIF; WDIFI; TDIF; TDIFI; ODIF; ODIFI;
MUX; MUXI; SADD; SADDI; MOR; MORI; MXOR; MXORI;
SETH; SETMH; SETML; SETL; INCH; INCMH; INCML; INCL;
ORH; ORMH; ORML; ORL; ANDNH; ANDNMH; ANDNML; ANDNL;
JMP; JMPB; PUSHJ; PUSHJB; GETA; GETAB; PUT; PUTI;
POP; RESUME; SAVE; UNSAVE; SYNC; SWYM; GET; TRIP
g mmix opcode;

See also section 49.

This code is used in section 44.

x48 MMIX-PIPE LISTS 17

48. hGlobal variables 20 i +�
char �opcode name [] = f

"TRAP"; "FCMP"; "FUN"; "FEQL"; "FADD"; "FIX"; "FSUB"; "FIXU";
"FLOT"; "FLOTI"; "FLOTU"; "FLOTUI"; "SFLOT"; "SFLOTI"; "SFLOTU"; "SFLOTUI";
"FMUL"; "FCMPE"; "FUNE"; "FEQLE"; "FDIV"; "FSQRT"; "FREM"; "FINT";
"MUL"; "MULI"; "MULU"; "MULUI"; "DIV"; "DIVI"; "DIVU"; "DIVUI";
"ADD"; "ADDI"; "ADDU"; "ADDUI"; "SUB"; "SUBI"; "SUBU"; "SUBUI";
"2ADDU"; "2ADDUI"; "4ADDU"; "4ADDUI"; "8ADDU"; "8ADDUI"; "16ADDU"; "16ADDUI";
"CMP"; "CMPI"; "CMPU"; "CMPUI"; "NEG"; "NEGI"; "NEGU"; "NEGUI";
"SL"; "SLI"; "SLU"; "SLUI"; "SR"; "SRI"; "SRU"; "SRUI";
"BN"; "BNB"; "BZ"; "BZB"; "BP"; "BPB"; "BOD"; "BODB";
"BNN"; "BNNB"; "BNZ"; "BNZB"; "BNP"; "BNPB"; "BEV"; "BEVB";
"PBN"; "PBNB"; "PBZ"; "PBZB"; "PBP"; "PBPB"; "PBOD"; "PBODB";
"PBNN"; "PBNNB"; "PBNZ"; "PBNZB"; "PBNP"; "PBNPB"; "PBEV"; "PBEVB";
"CSN"; "CSNI"; "CSZ"; "CSZI"; "CSP"; "CSPI"; "CSOD"; "CSODI";
"CSNN"; "CSNNI"; "CSNZ"; "CSNZI"; "CSNP"; "CSNPI"; "CSEV"; "CSEVI";
"ZSN"; "ZSNI"; "ZSZ"; "ZSZI"; "ZSP"; "ZSPI"; "ZSOD"; "ZSODI";
"ZSNN"; "ZSNNI"; "ZSNZ"; "ZSNZI"; "ZSNP"; "ZSNPI"; "ZSEV"; "ZSEVI";
"LDB"; "LDBI"; "LDBU"; "LDBUI"; "LDW"; "LDWI"; "LDWU"; "LDWUI";
"LDT"; "LDTI"; "LDTU"; "LDTUI"; "LDO"; "LDOI"; "LDOU"; "LDOUI";
"LDSF"; "LDSFI"; "LDHT"; "LDHTI"; "CSWAP"; "CSWAPI"; "LDUNC"; "LDUNCI";
"LDVTS"; "LDVTSI"; "PRELD"; "PRELDI"; "PREGO"; "PREGOI"; "GO"; "GOI";
"STB"; "STBI"; "STBU"; "STBUI"; "STW"; "STWI"; "STWU"; "STWUI";
"STT"; "STTI"; "STTU"; "STTUI"; "STO"; "STOI"; "STOU"; "STOUI";
"STSF"; "STSFI"; "STHT"; "STHTI"; "STCO"; "STCOI"; "STUNC"; "STUNCI";
"SYNCD"; "SYNCDI"; "PREST"; "PRESTI"; "SYNCID"; "SYNCIDI"; "PUSHGO"; "PUSHGOI";
"OR"; "ORI"; "ORN"; "ORNI"; "NOR"; "NORI"; "XOR"; "XORI";
"AND"; "ANDI"; "ANDN"; "ANDNI"; "NAND"; "NANDI"; "NXOR"; "NXORI";
"BDIF"; "BDIFI"; "WDIF"; "WDIFI"; "TDIF"; "TDIFI"; "ODIF"; "ODIFI";
"MUX"; "MUXI"; "SADD"; "SADDI"; "MOR"; "MORI"; "MXOR"; "MXORI";
"SETH"; "SETMH"; "SETML"; "SETL"; "INCH"; "INCMH"; "INCML"; "INCL";
"ORH"; "ORMH"; "ORML"; "ORL"; "ANDNH"; "ANDNMH"; "ANDNML"; "ANDNL";
"JMP"; "JMPB"; "PUSHJ"; "PUSHJB"; "GETA"; "GETAB"; "PUT"; "PUTI";
"POP"; "RESUME"; "SAVE"; "UNSAVE"; "SYNC"; "SWYM"; "GET"; "TRIP"g;

18 LISTS MMIX-PIPE x49

49. And here is a (likewise boring) list of all the internal opcodes. The smallest numbers, less than or
equal to max pipe op , correspond to operations for which arbitrary pipeline delays can be con�gured with
MMIX con�g . The largest numbers, greater than max real command , correspond to internally generated
operations that have no o�cial OP code; for example, there are internal operations to shift the
 pointer in
the register stack, and to compute page table entries.

hDeclare mmix opcode and internal opcode 47 i +�
#de�ne max pipe op feps

#de�ne max real command trip

typedef enum f
mul0 ; =� multiplication by zero �=
mul1 ; =� multiplication by 1{8 bits �=
mul2 ; =� multiplication by 9{16 bits �=
mul3 ; =� multiplication by 17{24 bits �=
mul4 ; =� multiplication by 25{32 bits �=
mul5 ; =� multiplication by 33{40 bits �=
mul6 ; =� multiplication by 41{48 bits �=
mul7 ; =� multiplication by 49{56 bits �=
mul8 ; =� multiplication by 57{64 bits �=
div ; =� DIV[U][I] �=
sh ; =� S[L,R][U][I] �=
mux ; =� MUX[I] �=
sadd ; =� SADD[I] �=
mor ; =� M[X]OR[I] �=
fadd ; =� FADD, FSUB �=
fmul ; =� FMUL �=
fdiv ; =� FDIV �=
fsqrt ; =� FSQRT �=
�nt ; =� FINT �=
�x ; =� FIX[U] �=

ot ; =� [S]FLOT[U][I] �=
feps ; =� FCMPE, FUNE, FEQLE �=
fcmp ; =� FCMP �=
funeq ; =� FUN, FEQL �=
fsub ; =� FSUB �=
frem ; =� FREM �=
mul ; =� MUL[I] �=
mulu ; =� MULU[I] �=
divu ; =� DIVU[I] �=
add ; =� ADD[I] �=
addu ; =� [2,4,8,16,]ADDU[I], INC[M][H,L] �=
sub ; =� SUB[I], NEG[I] �=
subu ; =� SUBU[I], NEGU[I] �=
set ; =� SET[M][H,L], GETA[B] �=
or ; =� OR[I], OR[M][H,L] �=
orn ; =� ORN[I] �=
nor ; =� NOR[I] �=
and ; =� AND[I] �=
andn ; =� ANDN[I], ANDN[M][H,L] �=
nand ; =� NAND[I] �=
xor ; =� XOR[I] �=
nxor ; =� NXOR[I] �=
shlu ; =� SLU[I] �=

x49 MMIX-PIPE LISTS 19

shru ; =� SRU[I] �=
shl ; =� SL[I] �=
shr ; =� SR[I] �=
cmp ; =� CMP[I] �=
cmpu ; =� CMPU[I] �=
bdif ; =� BDIF[I] �=
wdif ; =� WDIF[I] �=
tdif ; =� TDIF[I] �=
odif ; =� ODIF[I] �=
zset ; =� ZS[N][N,Z,P][I], ZSEV[I], ZSOD[I] �=
cset ; =� CS[N][N,Z,P][I], CSEV[I], CSOD[I] �=
get ; =� GET �=
put ; =� PUT[I] �=
ld ; =� LD[B,W,T,O][U][I], LDHT[I], LDSF[I] �=
ldptp ; =� load page table pointer �=
ldpte ; =� load page table entry �=
ldunc ; =� LDUNC[I] �=
ldvts ; =� LDVTS[I] �=
preld ; =� PRELD[I] �=
prest ; =� PREST[I] �=
st ; =� STO[U][I], STCO[I], STUNC[I] �=
syncd ; =� SYNCD[I] �=
syncid ; =� SYNCID[I] �=
pst ; =� ST[B,W,T][U][I], STHT[I] �=
stunc ; =� STUNC[I], in write bu�er �=
cswap ; =� CSWAP[I] �=
br ; =� B[N][N,Z,P][B] �=
pbr ; =� PB[N][N,Z,P][B] �=
pushj ; =� PUSHJ[B] �=
go ; =� GO[I] �=
prego ; =� PREGO[I] �=
pushgo ; =� PUSHGO[I] �=
pop ; =� POP �=
resume ; =� RESUME �=
save ; =� SAVE �=
unsave ; =� UNSAVE �=
sync ; =� SYNC �=
jmp ; =� JMP[B] �=
noop ; =� SWYM �=
trap ; =� TRAP �=
trip ; =� TRIP �=
incgamma ; =� increase
 pointer �=
decgamma ; =� decrease
 pointer �=
incrl ; =� increase rL and � �=
sav ; =� intermediate stage of SAVE �=
unsav ; =� intermediate stage of UNSAVE �=
resum =� intermediate stage of RESUME �=

g internal opcode;

20 LISTS MMIX-PIPE x50

50. hGlobal variables 20 i +�
char �internal op name [] = f"mul0"; "mul1"; "mul2"; "mul3"; "mul4"; "mul5"; "mul6"; "mul7"; "mul8";

"div"; "sh"; "mux"; "sadd"; "mor"; "fadd"; "fmul"; "fdiv"; "fsqrt"; "fint"; "fix"; "flot";
"feps"; "fcmp"; "funeq"; "fsub"; "frem"; "mul"; "mulu"; "divu"; "add"; "addu"; "sub"; "subu";
"set"; "or"; "orn"; "nor"; "and"; "andn"; "nand"; "xor"; "nxor"; "shlu"; "shru"; "shl"; "shr";
"cmp"; "cmpu"; "bdif"; "wdif"; "tdif"; "odif"; "zset"; "cset"; "get"; "put"; "ld"; "ldptp";
"ldpte"; "ldunc"; "ldvts"; "preld"; "prest"; "st"; "syncd"; "syncid"; "pst"; "stunc"; "cswap";
"br"; "pbr"; "pushj"; "go"; "prego"; "pushgo"; "pop"; "resume"; "save"; "unsave"; "sync"; "jmp";
"noop"; "trap"; "trip"; "incgamma"; "decgamma"; "incrl"; "sav"; "unsav"; "resum"g;

51. We need a table to convert the external opcodes to internal ones.

hGlobal variables 20 i +�
internal opcode internal op [256] = f

trap ; fcmp ; funeq ; funeq ; fadd ;�x ; fsub ;�x ;

ot ;
ot ;
ot ;
ot ;
ot ;
ot ;
ot ;
ot ;
fmul ; feps ; feps ; feps ; fdiv ; fsqrt ; frem ;�nt ;
mul ;mul ;mulu ;mulu ; div ; div ; divu ; divu ;
add ; add ; addu ; addu ; sub ; sub ; subu ; subu ;
addu ; addu ; addu ; addu ; addu ; addu ; addu ; addu ;
cmp ; cmp ; cmpu ; cmpu ; sub ; sub ; subu ; subu ;
shl ; shl ; shlu ; shlu ; shr ; shr ; shru ; shru ;
br ; br ; br ; br ; br ; br ; br ; br ;
br ; br ; br ; br ; br ; br ; br ; br ;
pbr ; pbr ; pbr ; pbr ; pbr ; pbr ; pbr ; pbr ;
pbr ; pbr ; pbr ; pbr ; pbr ; pbr ; pbr ; pbr ;
cset ; cset ; cset ; cset ; cset ; cset ; cset ; cset ;
cset ; cset ; cset ; cset ; cset ; cset ; cset ; cset ;
zset ; zset ; zset ; zset ; zset ; zset ; zset ; zset ;
zset ; zset ; zset ; zset ; zset ; zset ; zset ; zset ;
ld ; ld ; ld ; ld ; ld ; ld ; ld ; ld ;
ld ; ld ; ld ; ld ; ld ; ld ; ld ; ld ;
ld ; ld ; ld ; ld ; cswap ; cswap ; ldunc ; ldunc ;
ldvts ; ldvts ; preld ; preld ; prego ; prego ; go ; go ;
pst ; pst ; pst ; pst ; pst ; pst ; pst ; pst ;
pst ; pst ; pst ; pst ; st ; st ; st ; st ;
pst ; pst ; pst ; pst ; st ; st ; st ; st ;
syncd ; syncd ; prest ; prest ; syncid ; syncid ; pushgo ; pushgo ;
or ; or ; orn ; orn ;nor ;nor ; xor ; xor ;
and ; and ; andn ; andn ;nand ;nand ;nxor ;nxor ;
bdif ; bdif ;wdif ;wdif ; tdif ; tdif ; odif ; odif ;
mux ;mux ; sadd ; sadd ;mor ;mor ;mor ;mor ;
set ; set ; set ; set ; addu ; addu ; addu ; addu ;
or ; or ; or ; or ; andn ; andn ; andn ; andn ;
jmp ; jmp ; pushj ; pushj ; set ; set ; put ; put ;
pop ; resume ; save ; unsave ; sync ;noop ; get ; tripg;

x52 MMIX-PIPE LISTS 21

52. While we're into boring lists, we might as well de�ne all the special register numbers, together with an
inverse table for use in diagnostic outputs. These codes have been designed so that special registers 0{7 are
unencumbered, 9{11 can't be PUT by anybody, 8 and 12{18 can't be PUT by the user. Pipeline delays might
occur when GET is applied to special registers 21{31 or when PUT is applied to special registers 8 or 15{20.
The SAVE and UNSAVE commands store and restore special registers 0{6 and 23{27 followed by 19 and 21.

hHeader de�nitions 6 i +�
#de�ne rA 21 =� arithmetic status register �=
#de�ne rB 0 =� bootstrap register (trip) �=
#de�ne rC 8 =� continuation register �=
#de�ne rD 1 =� dividend register �=
#de�ne rE 2 =� epsilon register �=
#de�ne rF 22 =� failure location register �=
#de�ne rG 19 =� global threshold register �=
#de�ne rH 3 =� himult register �=
#de�ne rI 12 =� interval counter �=
#de�ne rJ 4 =� return-jump register �=
#de�ne rK 15 =� interrupt mask register �=
#de�ne rL 20 =� local threshold register �=
#de�ne rM 5 =� multiplex mask register �=
#de�ne rN 9 =� serial number �=
#de�ne rO 10 =� register stack o�set �=
#de�ne rP 23 =� prediction register �=
#de�ne rQ 16 =� interrupt request register �=
#de�ne rR 6 =� remainder register �=
#de�ne rS 11 =� register stack pointer �=
#de�ne rT 13 =� trap address register �=
#de�ne rU 17 =� usage counter �=
#de�ne rV 18 =� virtual translation register �=
#de�ne rW 24 =� where-interrupted register (trip) �=
#de�ne rX 25 =� execution register (trip) �=
#de�ne rY 26 =� Y operand (trip) �=
#de�ne rZ 27 =� Z operand (trip) �=
#de�ne rBB 7 =� bootstrap register (trap) �=
#de�ne rTT 14 =� dynamic trap address register �=
#de�ne rWW 28 =� where-interrupted register (trap) �=
#de�ne rXX 29 =� execution register (trap) �=
#de�ne rYY 30 =� Y operand (trap) �=
#de�ne rZZ 31 =� Z operand (trap) �=

53. hGlobal variables 20 i +�
char �special name [32] = f"rB"; "rD"; "rE"; "rH"; "rJ"; "rM"; "rR"; "rBB"; "rC"; "rN"; "rO"; "rS";

"rI"; "rT"; "rTT"; "rK"; "rQ"; "rU"; "rV"; "rG"; "rL"; "rA"; "rF"; "rP"; "rW"; "rX"; "rY"; "rZ";
"rWW"; "rXX"; "rYY"; "rZZ"g;

22 LISTS MMIX-PIPE x54

54. Here are the bit codes that a�ect trips and traps. The �rst eight cases also apply to the upper half
of rQ; the next eight apply to rA.

#de�ne P_BIT (1� 0) =� instruction in privileged location �=
#de�ne S_BIT (1� 1) =� security violation �=
#de�ne B_BIT (1� 2) =� instruction breaks the rules �=
#de�ne K_BIT (1� 3) =� instruction for kernel only �=
#de�ne N_BIT (1� 4) =� virtual translation bypassed �=
#de�ne PX_BIT (1� 5) =� permission lacking to execute from page �=
#de�ne PW_BIT (1� 6) =� permission lacking to write on page �=
#de�ne PR_BIT (1� 7) =� permission lacking to read from page �=
#de�ne PROT_OFFSET 5 =� distance from PR_BIT to protection code position �=
#de�ne X_BIT (1� 8) =�
oating inexact �=
#de�ne Z_BIT (1� 9) =�
oating division by zero �=
#de�ne U_BIT (1� 10) =�
oating under
ow �=
#de�ne O_BIT (1� 11) =�
oating over
ow �=
#de�ne I_BIT (1� 12) =�
oating invalid operation �=
#de�ne W_BIT (1� 13) =�
oat-to-�x over
ow �=
#de�ne V_BIT (1� 14) =� integer over
ow �=
#de�ne D_BIT (1� 15) =� integer divide check �=
#de�ne H_BIT (1� 16) =� trip handler bit �=
#de�ne F_BIT (1� 17) =� forced trap bit �=
#de�ne E_BIT (1� 18) =� external (dynamic) trap bit �=
hGlobal variables 20 i +�
char bit code map [] = "EFHDVWIOUZXrwxnkbsp";

55. h Internal prototypes 13 i +�
static void print bits ARGS((int));

56. h Subroutines 14 i +�
static void print bits (x)

int x;
f
register int b; j;

for (j = 0; b = E_BIT; (x& (b+ b� 1)) ^ b; j++; b�= 1)
if (x& b) printf ("%c"; bit code map [j]);

g

57. The lower half of rQ holds external interrupts of highest priority. Most of them are implementation-
dependent, but a few are de�ned in general.

hHeader de�nitions 6 i +�
#de�ne POWER_FAILURE (1� 0) =� try to shut down calmly and quickly �=
#de�ne PARITY_ERROR (1� 1) =� try to save the �le systems �=
#de�ne NONEXISTENT_MEMORY (1� 2) =� a memory address can't be used �=
#de�ne REBOOT_SIGNAL (1� 4) =� it's time to start over �=
#de�ne INTERVAL_TIMEOUT (1� 6) =� the timer register, rI, has reached zero �=
#de�ne STACK_OVERFLOW (1� 7) =� data has been stored on the rC page �=

x58 MMIX-PIPE DYNAMIC SPECULATION 23

58. Dynamic speculation. Now that we understand some basic low-level structures, we're ready to
look at the larger picture.
This simulator is based on the idea of \dynamic scheduling with register renaming," as introduced in

the 1960s by R. M. Tomasulo [IBM Journal of Research and Development 11 (1967), 25{33]. Moreover,
the dynamic scheduling method is extended here to \speculative execution," as implemented in several
processors of the 1990s and described in section 4.6 of Hennessy and Patterson's Computer Architecture,
second edition (1995). The essential idea is to keep track of the pipeline contents by recording all dependencies
between un�nished computations in a queue called the reorder bu�er. An entry in the reorder bu�er might,
for example, correspond to an instruction that adds together two numbers whose values are still being
computed; those numbers have been allocated space in earlier positions of the reorder bu�er. The addition
will take place as soon as both of its operands are known, but the sum won't be written immediately into the
destination register. It will stay in the reorder bu�er until reaching the hot seat at the front of the queue.
Finally, the addition leaves the hot seat and is said to be committed.
Some instructions in the reorder bu�er may in fact be executed only on speculation, meaning that they

won't really be called for unless a prior branch instruction has the predicted outcome. Indeed, we can say
that all instructions not yet in the hot seat are being executed speculatively, because an external interrupt
might occur at any time and change the entire course of computation. Organizing the pipeline as a reorder
bu�er allows us to look ahead and keep busy computing values that have a good chance of being needed
later, instead of waiting for slow instructions or slow memory references to be completed.
The reorder bu�er is in fact a queue of control records, conceptually forming part of a circle of such

records inside the simulator, corresponding to all instructions that have been dispatched or issued but not
yet committed, in strict program order.
The best way to get an understanding of speculative execution is perhaps to imagine that the reorder

bu�er is large enough to hold hundreds of instructions in various stages of execution, and to think of an
implementation of MMIX that has dozens of functional units|more than would ever actually be built into a
chip. Then one can readily visualize the kinds of control structures and checks that must be made to ensure
correct execution. Without such a broad viewpoint, a programmer or hardware designer will be inclined
to think only of the simple cases and to devise algorithms that lack the proper generality. Thus we have a
somewhat paradoxical situation in which a di�cult general problem turns out to be easier to solve than its
simpler special cases, because it enforces clarity of thinking.
Instructions that have completed execution and have not yet been committed are analogous to cars that

have gone through our hypothetical repair shop and are waiting for their owners to pick them up. However,
all analogies break down, and the world of automobiles does not have a natural counterpart for the notion of
speculative execution. That notion corresponds roughly to situations in which people are led to believe that
their cars need a new piece of equipment, but they suddenly change their mind once they see the price tag,
and they insist on having the equipment removed even after it has been partially or completely installed.
Speculatively executed instructions might make no sense: They might divide by zero or refer to protected

memory areas, etc. Such anomalies are not considered catastrophic or even exceptional until the instruction
reaches the hot seat.
The person who designs a computer with speculative execution is an optimist, who has faith that the vast

majority of the machine's predictions will come true. The person who designs a reliable implementation of
such a computer is a pessimist, who understands that all predictions might come to naught. The pessimist
does, however, take pains to optimize the cases that do turn out well.

24 DYNAMIC SPECULATION MMIX-PIPE x59

59. Let's consider what happens to a single instruction, say ADD $1,$2,$3, as it travels through the
pipeline in a normal situation. The �rst time this instruction is encountered, it is placed into the I-cache
(that is, the instruction cache), so that we won't have to access memory when we need to perform it again.
We will assume for simplicity in this discussion that each I-cache access takes one clock cycle, although other
possibilities are allowed by MMIX con�g .
Suppose the simulated machine fetches the example ADD instruction at time 1000. Fetching is done by a

coroutine whose stage number is 0. A cache block typically contains 8 or 16 instructions. The fetch unit of
our machine is able to fetch up to fetch max instructions on each clock cycle and place them in the fetch
bu�er, provided that there is room in the bu�er and that all the instructions belong to the same cache block.
The dispatch unit of our simulator is able to issue up to dispatch max instructions on each clock cycle and

move them from the fetch bu�er to the reorder bu�er, provided that functional units are available for those
instructions and there is room in the reorder bu�er. A functional unit that handles ADD is usually called an
ALU (arithmetic logic unit), and our simulated machine might have several of them. If they aren't all stalled
in stage 1 of their pipelines, and if the reorder bu�er isn't full, and if the machine isn't in the process of
deissuing instructions that were mispredicted, and if fewer than dispatch max instructions are ahead of the
ADD in the fetch bu�er, and if all such prior instructions can be issued without using up all the free ALUs,
our ADD instruction will be issued at time 1001. (In fact, all of these conditions are usually true.)
We assume that L > 3, so that $1, $2, and $3 are local registers. For simplicity we'll assume in fact that

the register stack is empty, so that the ADD instruction is supposed to set l[1] l[2] + l[3]. The operands l[2]
and l[3] might not be known at time 1001; they are spec values, which might point to specnode entries
in the reorder bu�er for previous instructions whose destinations are l[2] and l[3]. The dispatcher �lls the
next available control block of the reorder bu�er with information for the ADD, containing appropriate spec
values corresponding to l[2] and l[3] in its y and z �elds. The x �eld of this control block will be inserted
into a doubly linked list of specnode records, corresponding to l[1] and to all instructions in the reorder
bu�er that have l[1] as a destination. The boolean value x:known will be set to false , meaning that this
speculative value still needs to be computed. Subsequent instructions that need l[1] as a source will point
to x, if they are issued before the sum x:o has been computed. Double linking is used in the specnode list
because the ADD instruction might be cancelled before it is �nally committed; thus deletions might occur at
either end of the list for l[1].
At time 1002, the ALU handling the ADD will stall if its inputs y and z are not both known (namely if

y:p 6= � or z:p 6= �). In fact, it will also stall if its third input rA is not known; the current speculative
value of rA, except for its event bits, is represented in the ra �eld of the control block, and we must have
ra :p � �. In such a case the ALU will look to see if the spec values pointed to by y:p and/or z:p and/or
ra :p become de�ned on this clock cycle, and it will update its own input values accordingly.
But let's assume that y, z, and ra are already known at time 1002. Then x:o will be set to y:o+ z:o and

x:known will become true . This will make the result destined for l[1] available to be used in other commands
at time 1003.
If no over
ow occurs when adding y:o to z:o, the interrupt and arith exc �elds of the control block for

ADD are set to zero. But when over
ow does occur (shudder), there are two cases, based on the V-enable
bit of rA, which is found in �eld b:o of the control block. If this bit is 0, the V-bit of the arith exc �eld in
the control block is set to 1; the arith exc �eld will be ored into rA when the ADD instruction is eventually
committed. But if the V-enable bit is 1, the trip handler should be called, interrupting the normal sequence.
In such a case, the interrupt �eld of the control block is set to specify a trip, and the fetcher and dispatcher
are told to forget what they have been doing; all instructions following the ADD in the reorder bu�er must
now be deissued. The virtual starting address of the over
ow trip handler, namely location 32, is hastily
passed to the fetch routine, and instructions will be fetched from that location as soon as possible. (Of
course the over
ow and the trip handler are still speculative until the ADD instruction is committed. Other
exceptional conditions might cause the ADD itself to be terminated before it gets to the hot seat. But the
pipeline keeps charging ahead, always trying to guess the most probable outcome.)
The commission unit of this simulator is able to commit and/or deissue up to commit max instructions

on each clock cycle. With luck, fewer than commit max instructions will be ahead of our ADD instruction at
time 1003, and they will all be completed normally. Then l[1] can be set to x:o, and the event bits of rA

x59 MMIX-PIPE DYNAMIC SPECULATION 25

can be updated from arith exc , and the ADD command can pass through the hot seat and out of the reorder
bu�er.

hExternal variables 4 i +�
Extern int fetch max ; dispatch max ; peekahead ; commit max ;
=� limits on instructions that can be handled per clock cycle �=

60. The instruction currently occupying the hot seat is the only issued-but-not-yet-committed instruction
that is guaranteed to be truly essential to the machine's computation. All other instructions in the reorder
bu�er are being executed on speculation; if they prove to be needed, well and good, but we might want to
jettison them all if, say, an external interrupt occurs.
Thus all instructions that change the global state in complicated ways|like LDVTS, which changes the

virtual address translation caches|are performed only when they reach the hot seat. Fortunately the vast
majority of instructions are su�ciently simple that we can deal with them more e�ciently while other
computations are taking place.
In this implementation the reorder bu�er is simply housed in an array of control records. The �rst array

element is reorder bot , and the last is reorder top . Variable hot points to the control block in the hot seat,
and hot � 1 to its predecessor, etc. Variable cool points to the next control block that will be �lled in
the reorder bu�er. If hot � cool the reorder bu�er is empty; otherwise it contains the control records hot ,
hot � 1, : : : , cool + 1, except of course that we wrap around from reorder bot to reorder top when moving
down in the bu�er.

hExternal variables 4 i +�
Extern control �reorder bot ; �reorder top ;
=� least and greatest entries in the ring containing the reorder bu�er �=

Extern control �hot ; �cool ; =� front and rear of the reorder bu�er �=
Extern control �old hot ; =� value of hot at beginning of cycle �=
Extern int deissues ; =� the number of instructions that need to be deissued �=

61. h Initialize everything 22 i +�
hot = cool = reorder top ;
deissues = 0;

62. h Internal prototypes 13 i +�
static void print reorder bu�er ARGS((void));

26 DYNAMIC SPECULATION MMIX-PIPE x63

63. h Subroutines 14 i +�
static void print reorder bu�er ()
f
printf ("Reorder buffer");
if (hot � cool) printf (" (empty)\n");
else f register control �p;
if (deissues) printf (" (%d to be deissued)"; deissues);
if (doing interrupt) printf (" (interrupt state %d)"; doing interrupt);
printf (":\n");
for (p = hot ; p 6= cool ; p = (p � reorder bot ? reorder top : p� 1)) f
print control block (p);
if (p~owner) f
printf (" "); print coroutine id (p~owner);
g
printf ("\n");
g
g
printf (" %d available rename register%s, %d memory slot%s\n"; rename regs ;

rename regs 6= 1 ? "s" : "";mem slots ;mem slots 6= 1 ? "s" : "");
g

64. Here is an overview of what happens on each clock cycle.

hPerform one machine cycle 64 i �
f
hCheck for external interrupt 314 i;
dispatch count = 0;
old hot = hot ; =� remember the hot seat position at beginning of cycle �=
old tail = tail ; =� remember the fetch bu�er contents at beginning of cycle �=
suppress dispatch = (deissues _ dispatch lock);
if (doing interrupt) hPerform one cycle of the interrupt preparations 318 i
else hCommit and/or deissue up to commit max instructions 67 i;
hExecute all coroutines scheduled for the current time 125 i;
if (:suppress dispatch) hDispatch one cycle's worth of instructions 74 i;
ticks = incr (ticks ; 1); =� and the beat moves on �=
dispatch stat [dispatch count]++;
g

This code is used in section 10.

65. hGlobal variables 20 i +�
int dispatch count ; =� how many dispatched on this cycle �=
bool suppress dispatch ; =� should dispatching be bypassed? �=
int doing interrupt ; =� how many cycles of interrupt preparations remain �=
lockvar dispatch lock ; =� lock to prevent instruction issues �=

66. hExternal variables 4 i +�
Extern int �dispatch stat ; =� how often did we dispatch 0, 1, ... instructions? �=
Extern bool security disabled ; =� omit security checks for testing purposes? �=

x67 MMIX-PIPE DYNAMIC SPECULATION 27

67. hCommit and/or deissue up to commit max instructions 67 i �
f
for (m = commit max ; m > 0 ^ deissues > 0; m��) hDeissue the coolest instruction 145 i;
for (; m > 0; m��) f
if (hot � cool) break; =� reorder bu�er is empty �=
if (:security disabled) hCheck for security violation, break if so 149 i;
if (hot~owner) break; =� hot seat instruction isn't �nished �=
hCommit the hottest instruction, or break if it's not ready 146 i;
i = hot~i;
if (hot � reorder bot) hot = reorder top ;
else hot ��;
if (i � resum) break; =� allow the resumed instruction to see the new rK �=
g
g

This code is used in section 64.

28 THE DISPATCH STAGE MMIX-PIPE x68

68. The dispatch stage. It would be nice to present the parts of this simulator by dealing with the
fetching, dispatching, executing, and committing stages in that order. After all, instructions are �rst fetched,
then dispatched, then executed, and �nally committed. However, the fetch stage depends heavily on di�cult
questions of memory management that are best deferred until we have looked at the simpler parts of
simulation. Therefore we will take our initial plunge into the details of this program by looking �rst at
the dispatch phase, assuming that instructions have somehow appeared magically in the fetch bu�er.
The fetch bu�er, like the circular priority queue of all coroutines and the circular queue used for the

reorder bu�er, lives in an array that is best regarded as a ring of elements. The elements are structures
of type fetch, which have �ve �elds: A 32-bit inst , which is an MMIX instruction; a 64-bit loc , which is
the virtual address of that instruction; an interrupt �eld, which is nonzero if, for example, the protection
bits in the relevant page table entry for this address do not permit execution access; a boolean noted �eld,
which becomes true after the dispatch unit has peeked at the instruction to see whether it is a jump or
probable branch; and a hist �eld, which records the recent branch history. (The least signi�cant bits of hist
correspond to the most recent branches.)

hType de�nitions 11 i +�
typedef struct f
octa loc ; =� virtual address of instruction �=
tetra inst ; =� the instruction itself �=
unsigned int interrupt ; =� bit codes that might cause interruption �=
bool noted ; =� have we peeked at this instruction? �=
unsigned int hist ; =� if we peeked, this was the peek hist �=
g fetch;

69. The oldest and youngest entries in the fetch bu�er are pointed to by head and tail , just as the oldest
and youngest entries in the reorder bu�er are called hot and cool . The fetch coroutine will be adding entries
at the tail position, which starts at old tail when a cycle begins, in parallel with the actions simulated by the
dispatcher. Therefore the dispatcher is allowed to look only at instructions in head , head�1, : : : , old tail+1,
although a few more recently fetched instructions will usually be present in the fetch bu�er by the time this
part of the program is executed.

hExternal variables 4 i +�
Extern fetch �fetch bot ; �fetch top ;
=� least and greatest entries in the ring containing the fetch bu�er �=

Extern fetch �head ; �tail ; =� front and rear of the fetch bu�er �=

70. hGlobal variables 20 i +�
fetch �old tail ; =� rear of the fetch bu�er available on the current cycle �=

71. #de�ne UNKNOWN_SPEC ((specnode �) 1)
h Initialize everything 22 i +�
head = tail = fetch top ;
inst ptr :p = UNKNOWN_SPEC;

72. h Internal prototypes 13 i +�
static void print fetch bu�er ARGS((void));

x73 MMIX-PIPE THE DISPATCH STAGE 29

73. h Subroutines 14 i +�
static void print fetch bu�er ()
f
printf ("Fetch buffer");
if (head � tail) printf (" (empty)\n");
else f register fetch �p;
if (resuming) printf (" (resumption state %d)"; resuming);
printf (":\n");
for (p = head ; p 6= tail ; p = (p � fetch bot ? fetch top : p� 1)) f
print octa (p~ loc);
printf (": %08x(%s)"; p~ inst ; opcode name [p~ inst � 24]);
if (p~ interrupt) print bits (p~ interrupt);
if (p~noted) printf ("*");
printf ("\n");
g
g
printf ("Instruction pointer is ");
if (inst ptr :p � �) print octa (inst ptr :o);
else f
printf ("waiting for ");
if (inst ptr :p � UNKNOWN_SPEC) printf ("dispatch");
else if (inst ptr :p~addr :h � (tetra) �1) print coroutine id (((control �) inst ptr :p~up)~owner);
else print specnode id (inst ptr :p~addr);
g
printf ("\n");
g

74. The best way to understand the dispatching process is once again to \think big," by imagining a huge
fetch bu�er and the potential ability to issue dozens of instructions per cycle, although the actual numbers
are typically quite small.
If the fetch bu�er is not empty after dispatch max instructions have been dispatched, the dispatcher also

looks at up to peekahead further instructions to see if they are jumps or other commands that change the

ow of control. Much of this action would happen in parallel on a real machine, but our simulator works
sequentially.
In the following program, true head records the head of the fetch bu�er as instructions are actually

dispatched, while head refers to the position currently being examined (possibly peeking into the future).
If the fetch bu�er is empty at the beginning of the current clock cycle, a \dispatch bypass" allows the

dispatcher to issue the �rst instruction that enters the fetch bu�er on this cycle. Otherwise the dispatcher
is restricted to previously fetched instructions.

hDispatch one cycle's worth of instructions 74 i �
f register fetch �true head ; �new head ;

true head = head ;
if (head � old tail ^ head 6= tail) old tail = (head � fetch bot ? fetch top : head � 1);
peek hist = cool hist ;
for (j = 0; j < dispatch max + peekahead ; j++)
hLook at the head instruction, and try to dispatch it if j < dispatch max 75 i;

head = true head ;
g

This code is used in section 64.

30 THE DISPATCH STAGE MMIX-PIPE x75

75. hLook at the head instruction, and try to dispatch it if j < dispatch max 75 i �
f
register mmix opcode op ;
register int yz ; f ;
register bool freeze dispatch = false ;
register func �u = �;

if (head � old tail) break; =� fetch bu�er empty �=
if (head � fetch bot) new head = fetch top ; else new head = head � 1;
op = head~ inst � 24; yz = head~ inst &

#ffff;
hDetermine the
ags, f , and the internal opcode, i 80 i;
h Install default �elds in the cool block 100 i;
if (f & rel addr bit) hConvert relative address to absolute address 84 i;
if (head~noted) peek hist = head~hist ;
else hRedirect the fetch if control changes at this inst 85 i;
if (j � dispatch max _ dispatch lock _ nullifying) f
head = new head ; continue; =� can't dispatch, but can peek ahead �=

g
if (cool � reorder bot) new cool = reorder top ; else new cool = cool � 1;
hDispatch an instruction to the cool block if possible, otherwise goto stall 101 i;
hAssign a functional unit if available, otherwise goto stall 82 i;
hCheck for su�cient rename registers and memory slots, or goto stall 111 i;
if ((op & #e0) � #40) hRecord the result of branch prediction 152 i;
h Issue the cool instruction 81 i;
cool = new cool ; cool O = new O ; cool S = new S ;
cool hist = peek hist ; continue;

stall : hUndo data structures set prematurely in the cool block and break 123 i;
g

This code is used in section 74.

76. An instruction can be dispatched only if a functional unit is available to handle it. A functional unit
consists of a 256-bit vector that speci�es a subset of MMIX's opcodes, and an array of coroutines for the
pipeline stages. There are k coroutines in the array, where k is the maximum number of stages needed by
any of the opcodes supported.

hType de�nitions 11 i +�
typedef struct func struct f
char name [16]; =� symbolic designation �=
tetra ops [8]; =� big-endian bitmap for the opcodes supported �=
int k; =� number of pipeline stages �=
coroutine �co ; =� pointer to the �rst of k consecutive coroutines �=
g func;

77. hExternal variables 4 i +�
Extern func �funit ; =� pointer to array of functional units �=
Extern int funit count ; =� the number of functional units �=

78. It is convenient to have a 256-bit vector of all the supported opcodes, because we need to shut o� a
lot of special actions when an opcode is not supported.

hGlobal variables 20 i +�
control �new cool ; =� the reorder position following cool �=
int resuming ; =� set nonzero if resuming an interrupted instruction �=
tetra support [8]; =� big-endian bitmap for all opcodes supported �=

x79 MMIX-PIPE THE DISPATCH STAGE 31

79. h Initialize everything 22 i +�
f register func �u;
for (u = funit ; u � funit + funit count ; u++)
for (i = 0; i < 8; i++) support [i] j= u~ops [i];

g

80. #de�ne sign bit ((unsigned) #80000000)

hDetermine the
ags, f , and the internal opcode, i 80 i �
if (:(support [op � 5] & (sign bit � (op & 31)))) f

=� oops, this opcode isn't supported by any functional unit �=
f =
ags [TRAP]; i = trap ;
g else f =
ags [op]; i = internal op [op];
if (i � trip ^ (head~ loc :h& sign bit)) f = 0; i = noop ;

This code is used in section 75.

81. h Issue the cool instruction 81 i �
if (cool~ interim) f
cool~usage = false ;
if (cool~op � SAVE) hGet ready for the next step of SAVE 341 i
else if (cool~op � UNSAVE) hGet ready for the next step of UNSAVE 335 i
else if (cool~i � preld _ cool~i � prest) hGet ready for the next step of PRELD or PREST 228 i
else if (cool~i � prego) hGet ready for the next step of PREGO 229 i
g
else if (cool~i � max real command) f
if ((
ags [cool~op] & ctl change bit) _ cool~i � pbr)
if (inst ptr :p � � ^ (inst ptr :o:h& sign bit) ^ :(cool~ loc :h& sign bit) ^ cool~i 6= trap)
cool~ interrupt j= P_BIT; =� jumping from nonnegative to negative �=

true head = head = new head ; =� delete instruction from fetch bu�er �=
resuming = 0;
g
if (freeze dispatch) set lock (u~co ; dispatch lock);
cool~owner = u~co ; u~co~ctl = cool ;
startup(u~co ; 1); =� schedule execution of the new inst �=
if (verbose & issue bit) f
printf ("Issuing "); print control block (cool);
printf (" "); print coroutine id (u~co); printf ("\n");
g
dispatch count ++;

This code is used in section 75.

32 THE DISPATCH STAGE MMIX-PIPE x82

82. We assign the �rst functional unit that supports op and is totally unoccupied, if possible; otherwise
we assign the �rst functional unit that supports op and has stage 1 unoccupied.

hAssign a functional unit if available, otherwise goto stall 82 i �
f register int t = op � 5; b = sign bit � (op & 31);

if (cool~i � trap ^ op 6= TRAP) f =� opcode needs to be emulated �=
u = funit + funit count ; =� this unit supports just TRIP and TRAP �=
goto unit found ;
g
for (u = funit ; u � funit + funit count ; u++)
if (u~ops [t] & b) f
for (i = 0; i < u~k; i++)
if (u~co [i]:next) goto unit busy ;

goto unit found ;
unit busy : ;
g

for (u = funit ; u < funit + funit count ; u++)
if ((u~ops [t] & b) ^ (u~co~next � �)) goto unit found ;

goto stall ; =� all units for this op are busy �=
g
unit found :

This code is used in section 75.

x83 MMIX-PIPE THE DISPATCH STAGE 33

83. The
ags table records special properties of each operation code in binary notation: #1 means Z is an
immediate value, #2 means rZ is a source operand, #4 means Y is an immediate value, #8 means rY is a
source operand, #10 means rX is a source operand, #20 means rX is a destination, #40 means YZ is part of
a relative address, #80 means the control changes at this point.

#de�ne X is dest bit #20

#de�ne rel addr bit #40

#de�ne ctl change bit #80

hGlobal variables 20 i +�
unsigned char
ags [256] = f

#8a; #2a; #2a; #2a; #2a; #26; #2a; #26; =� TRAP, : : : �=
#26; #25; #26; #25; #26; #25; #26; #25; =� FLOT, : : : �=
#2a; #2a; #2a; #2a; #2a; #26; #2a; #26; =� FMUL, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� MUL, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� ADD, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� 2ADDU, : : : �=
#2a; #29; #2a; #29; #26; #25; #26; #25; =� CMP, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� SL, : : : �=
#50; #50; #50; #50; #50; #50; #50; #50; =� BN, : : : �=
#50; #50; #50; #50; #50; #50; #50; #50; =� BNN, : : : �=
#50; #50; #50; #50; #50; #50; #50; #50; =� PBN, : : : �=
#50; #50; #50; #50; #50; #50; #50; #50; =� PBNN, : : : �=
#3a; #39; #3a; #39; #3a; #39; #3a; #39; =� CSN, : : : �=
#3a; #39; #3a; #39; #3a; #39; #3a; #39; =� CSNN, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� ZSN, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� ZSNN, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� LDB, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� LDT, : : : �=
#2a; #29; #2a; #29; #3a; #39; #2a; #29; =� LDSF, : : : �=
#2a; #29; #0a; #09; #0a; #09; #aa; #a9; =� LDVTS, : : : �=
#1a; #19; #1a; #19; #1a; #19; #1a; #19; =� STB, : : : �=
#1a; #19; #1a; #19; #1a; #19; #1a; #19; =� STT, : : : �=
#1a; #19; #1a; #19; #0a; #09; #1a; #19; =� STSF, : : : �=
#0a; #09; #0a; #09; #0a; #09; #aa; #a9; =� SYNCD, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� OR, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� AND, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� BDIF, : : : �=
#2a; #29; #2a; #29; #2a; #29; #2a; #29; =� MUX, : : : �=
#20; #20; #20; #20; #30; #30; #30; #30; =� SETH, : : : �=
#30; #30; #30; #30; #30; #30; #30; #30; =� ORH, : : : �=
#c0; #c0; #e0; #e0; #60; #60; #02; #01; =� JMP, : : : �=
#80; #80; #00; #02; #01; #00; #20; #8ag; =� POP, : : : �=

84. hConvert relative address to absolute address 84 i �
f
if (i � jmp) yz = head~ inst &

#ffffff;
if (op & 1) yz �= (i � jmp ? #1000000 : #10000);
cool~y:o = incr (head~ loc ; 4); cool~y:p = �;
cool~z:o = incr (head~ loc ; yz � 2); cool~z:p = �;
g

This code is used in section 75.

34 THE DISPATCH STAGE MMIX-PIPE x85

85. The location of the next instruction to be fetched is in a spec variable called inst ptr . A slightly tricky
optimization of the POP instruction is made in the common case that the speculative value of rJ is known.

hRedirect the fetch if control changes at this inst 85 i �
f register int predicted = 0;

if ((op & #e0) � #40) hPredict a branch outcome 151 i;
head~noted = true ;
head~hist = peek hist ;
if (predicted _ (f & ctl change bit) _ (i � syncid ^ :(cool~ loc :h& sign bit))) f
old tail = tail = new head ; =� discard all remaining fetches �=
hRestart the fetch coroutine 287 i;
switch (i) f
case jmp : case br : case pbr : case pushj : inst ptr = cool~z; break;
case pop : if (g[rJ]:up~known ^ j < dispatch max ^ :dispatch lock ^ :nullifying) f

inst ptr :o = incr (g[rJ]:up~o; yz � 2); inst ptr :p = �; break;
g =� otherwise fall through, will wait on cool~go �=

case go : case pushgo : case trap : case resume : case syncid : inst ptr :p = UNKNOWN_SPEC; break;
case trip : inst ptr = zero spec ; break;
g
g
g

This code is used in section 75.

86. At any given time the simulated machine is in two main states, the \hot state" corresponding to
instructions that have been committed and the \cool state" corresponding to all the speculative changes
currently being considered. The dispatcher works with cool instructions and puts them into the reorder
bu�er, where they gradually get warmer and warmer. Intermediate instructions, between hot and cool , have
intermediate temperatures.
A machine register like l[101] or g[250] is represented by a specnode whose o �eld is the current hot value of

the register. If the up and down �elds of this specnode point to the node itself, the hot and cool values of the
register are identical. Otherwise up and down are pointers to the coolest and hottest ends of a doubly linked
list of specnodes, representing intermediate speculative values (sometimes called \rename registers"). The
rename registers are implemented as the x or a specnodes inside control blocks, for speculative instructions
that use this register as a destination. Speculative instructions that use the register as a source operand
point to the next-hottest specnode on the list, until the value becomes known. The doubly linked list of
specnodes is an input-restricted deque: A node is inserted at the cool end when the dispatcher issues an
instruction with this register as destination; a node is removed from the cool end if an instruction needs to
be deissued; a node is removed from the hot end when an instruction is committed.
The special registers rA, rB, : : : occupy the same array as the global registers g[32], g[33], : : : . For

example, rB is internally the same as g[0], because rB = 0.

hExternal variables 4 i +�
Extern specnode g[256]; =� global registers and special registers �=
Extern specnode �l; =� the ring of local registers �=
Extern int lring size ; =� the number of on-chip local registers (must be a power of 2) �=
Extern int max rename regs ; max mem slots ; =� capacity of reorder bu�er �=
Extern int rename regs ; mem slots ; =� currently unused capacity �=

87. Special register rC was the clock in the original de�nition of MMIX. But now the clock is just an external
variable, called ticks .

hExternal variables 4 i +�
Extern octa ticks ; =� the internal clock �=

x88 MMIX-PIPE THE DISPATCH STAGE 35

88. hGlobal variables 20 i +�
int lring mask ; =� for calculations modulo lring size �=

89. The addr �elds in the specnode lists for registers are used to identify that register in diagnostic
messages. Such addresses are negative; memory addresses are positive.
All registers are initially zero except rG, which is initially 255, and rN, which has a constant value

identifying the time of compilation. (The macro ABSTIME is de�ned externally in the �le abstime.h, which
should have just been created by ABSTIME; ABSTIME is a trivial program that computes the value of the
standard library function time (�). We assume that this number, which is the number of seconds in the
\UNIX epoch," is less than 232. Beware: Our assumption will fail in February of 2106.)

#de�ne VERSION 1 =� version of the MMIX architecture that we support �=
#de�ne SUBVERSION 0 =� secondary byte of version number �=
#de�ne SUBSUBVERSION 2 =� further quali�cation to version number �=
h Initialize everything 22 i +�
rename regs = max rename regs ;
mem slots = max mem slots ;
lring mask = lring size � 1;
for (j = 0; j < 256; j++) f
g[j]:addr :h = sign bit ; g[j]:addr :l = j; g[j]:known = true ;
g[j]:up = g[j]:down = &g[j];
g
g[rG]:o:l = 255;
g[rN]:o:h = (VERSION � 24) + (SUBVERSION � 16) + (SUBSUBVERSION � 8);
g[rN]:o:l = ABSTIME; =� see comment and warning above �=
for (j = 0; j < lring size ; j++) f
l[j]:addr :h = sign bit ; l[j]:addr :l = 256 + j; l[j]:known = true ;
l[j]:up = l[j]:down = &l[j];
g

90. h Internal prototypes 13 i +�
static void print specnode id ARGS((octa));

91. h Subroutines 14 i +�
static void print specnode id (a)

octa a;
f
if (a:h � sign bit) f
if (a:l < 32) printf ("%s"; special name [a:l]);
else if (a:l < 256) printf ("g[%d]"; a:l);
else printf ("l[%d]"; a:l � 256);
g else if (a:h 6= (tetra) �1) f
printf ("m["); print octa (a); printf ("]");
g
g

92. The specval subroutine produces a spec corresponding to the currently coolest value of a given local
or global register.

h Internal prototypes 13 i +�
static spec specval ARGS((specnode �));

36 THE DISPATCH STAGE MMIX-PIPE x93

93. h Subroutines 14 i +�
static spec specval (r)

specnode �r;
f spec res ;

if (r~up~known) res :o = r~up~o; res :p = �;
else res :p = r~up ;
return res ;
g

94. The spec install subroutine introduces a new speculative value at the cool end of a given doubly
linked list.

h Internal prototypes 13 i +�
static void spec install ARGS((specnode �; specnode �));

95. h Subroutines 14 i +�
static void spec install (r; t) =� insert t into list r �=

specnode �r; �t;
f
t~up = r~up ;
t~up~down = t;
r~up = t;
t~down = r;
t~addr = r~addr ;
g

96. Conversely, spec rem takes such a value out.

h Internal prototypes 13 i +�
static void spec rem ARGS((specnode �));

97. h Subroutines 14 i +�
static void spec rem (t) =� remove t from its list �=

specnode �t;
f register specnode �u = t~up ; �d = t~down ;

u~down = d; d~up = u;
g

98. Some special registers are so central to MMIX's operation, they are carried along with each control block
in the reorder bu�er instead of being treated as source and destination registers of each instruction. For
example, the register stack pointers rO and rS are treated in this way. The normal specnodes for rO and rS,
namely g[rO] and g[rS], are not actually used; the cool values are called cool O and cool S . (Actually cool O
and cool S correspond to the register values divided by 8, since rO and rS are always multiples of 8.)
The arithmetic status register, rA, is also treated specially. Its event bits are kept up to date only at the

\hot" end, by accumulating values of arith exc ; an instruction to GET the value of rA will be executed only
in the hot seat. The other bits of rA, which are needed to control trip handlers and
oating point rounding,
are treated in the normal way.

hExternal variables 4 i +�
Extern octa cool O ; cool S ; =� values of rO, rS before the cool instruction �=

x99 MMIX-PIPE THE DISPATCH STAGE 37

99. hGlobal variables 20 i +�
unsigned int cool L; cool G ; =� values of rL and rG before the cool instruction �=
unsigned int cool hist ; peek hist ; =� history bits for branch prediction �=
octa new O ; new S ; =� values of rO, rS after cool �=

100. h Install default �elds in the cool block 100 i �
cool~op = op ; cool~i = i;
cool~xx = (head~ inst � 16) & #ff; cool~yy = (head~ inst � 8) & #ff; cool~zz = (head~ inst) &

#ff;
cool~ loc = head~ loc ;
cool~y = cool~z = cool~b = cool~ra = zero spec ;
cool~x:o = cool~a:o = cool~rl :o = zero octa ;
cool~x:known = false ;
cool~x:up = �;
cool~a:known = false ;
cool~a:up = �;
cool~rl :known = true ;
cool~rl :up = �;
cool~need b = cool~need ra = cool~ren x = cool~mem x = cool~ren a = cool~set l = false ;
cool~arith exc = cool~denin = cool~denout = 0;
if ((head~ loc :h& sign bit) ^ :(g[rU]:o:h& #8000)) cool~usage = false ;
else cool~usage = ((op & (g[rU]:o:h� 16)) � g[rU]:o:h� 24 ? true : false);
new O = cool~cur O = cool O ; new S = cool~cur S = cool S ;
cool~ interrupt = head~ interrupt ;
cool~hist = peek hist ;
cool~go :o = incr (cool~ loc ; 4);
cool~go :known = false ; cool~go :addr :h = �1; cool~go :up = (specnode �) cool ;
cool~ interim = cool~stack alert = false ;

This code is used in section 75.

101. hDispatch an instruction to the cool block if possible, otherwise goto stall 101 i �
if (new cool � hot) goto stall ; =� reorder bu�er is full �=
hMake sure cool L and cool G are up to date 102 i;
h Install the operand �elds of the cool block 103 i;
if (f & X is dest bit) h Install register X as the destination, or insert an internal command and goto

dispatch done if X is marginal 110 i;
switch (i) f
h Special cases of instruction dispatch 117 i

default: break;
g

dispatch done :

This code is used in section 75.

102. The UNSAVE operation begins by loading register rG from memory. We don't really need to know the
value of rG until twelve other registers have been unsaved, so we aren't fussy about it here.

hMake sure cool L and cool G are up to date 102 i �
if (:g[rL]:up~known) goto stall ;
cool L = g[rL]:up~o:l;
if (:g[rG]:up~known ^ :(op � UNSAVE ^ cool~xx � 1)) goto stall ;
cool G = g[rG]:up~o:l;

This code is used in section 101.

38 THE DISPATCH STAGE MMIX-PIPE x103

103. h Install the operand �elds of the cool block 103 i �
if (resuming) h Insert special operands when resuming an interrupted operation 324 i
else f
if (f & #10) hSet cool~b from register X 106 i
if (third operand [op] ^ (cool~i 6= trap)) h Set cool~b and/or cool~ra from special register 108 i;
if (f & #1) cool~z:o:l = cool~zz ;
else if (f & #2) hSet cool~z from register Z 104 i
else if ((op & #f0) � #e0) h Set cool~z as an immediate wyde 109 i;
if (f & #4) cool~y:o:l = cool~yy ;
else if (f & #8) hSet cool~y from register Y 105 i
g

This code is used in section 101.

104. h Set cool~z from register Z 104 i �
f
if (cool~zz � cool G) cool~z = specval (&g[cool~zz]);
else if (cool~zz < cool L) cool~z = specval (&l[(cool O :l + cool~zz) & lring mask]);
g

This code is used in section 103.

105. h Set cool~y from register Y 105 i �
f
if (cool~yy � cool G) cool~y = specval (&g[cool~yy]);
else if (cool~yy < cool L) cool~y = specval (&l[(cool O :l + cool~yy) & lring mask]);
g

This code is used in section 103.

106. h Set cool~b from register X 106 i �
f
if (cool~xx � cool G) cool~b = specval (&g[cool~xx]);
else if (cool~xx < cool L) cool~b = specval (&l[(cool O :l + cool~xx) & lring mask]);
if (f & rel addr bit) cool~need b = true ; =� br , pbr �=
g

This code is used in section 103.

x107 MMIX-PIPE THE DISPATCH STAGE 39

107. If an operation requires a special register as third operand, that register is listed in the third operand

table.

hGlobal variables 20 i +�
unsigned char third operand [256] = f

0; rA; 0; 0; rA; rA; rA; rA; =� TRAP, : : : �=
rA; rA; rA; rA; rA; rA; rA; rA; =� FLOT, : : : �=
rA; rE ; rE ; rE ; rA; rA; rA; rA; =� FMUL, : : : �=
rA; rA; 0; 0; rA; rA; rD ; rD ; =� MUL, : : : �=
rA; rA; 0; 0; rA; rA; 0; 0; =� ADD, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� 2ADDU, : : : �=
0; 0; 0; 0; rA; rA; 0; 0; =� CMP, : : : �=
rA; rA; 0; 0; 0; 0; 0; 0; =� SL, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� BN, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� BNN, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� PBN, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� PBNN, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� CSN, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� CSNN, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� ZSN, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� ZSNN, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� LDB, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� LDT, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� LDSF, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� LDVTS, : : : �=
rA; rA; 0; 0; rA; rA; 0; 0; =� STB, : : : �=
rA; rA; 0; 0; 0; 0; 0; 0; =� STT, : : : �=
rA; rA; 0; 0; 0; 0; 0; 0; =� STSF, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� SYNCD, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� OR, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� AND, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� BDIF, : : : �=
rM ; rM ; 0; 0; 0; 0; 0; 0; =� MUX, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� SETH, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� ORH, : : : �=
0; 0; 0; 0; 0; 0; 0; 0; =� JMP, : : : �=
rJ ; 0; 0; 0; 0; 0; 0; 255g; =� POP, : : : �=

108. The cool~b �eld is busy in operations like STB or STSF, which need rA. So we use cool~ra instead,
when rA is needed.

h Set cool~b and/or cool~ra from special register 108 i �
f
if (third operand [op] � rA _ third operand [op] � rE) cool~need ra = true ; cool~ra = specval (&g[rA]);
if (third operand [op] 6= rA) cool~need b = true ; cool~b = specval (&g[third operand [op]]);
g

This code is used in section 103.

40 THE DISPATCH STAGE MMIX-PIPE x109

109. h Set cool~z as an immediate wyde 109 i �
f
switch (op & 3) f
case 0: cool~z:o:h = yz � 16; break;
case 1: cool~z:o:h = yz ; break;
case 2: cool~z:o:l = yz � 16; break;
case 3: cool~z:o:l = yz ; break;
g
if (i 6= set) f =� register X should also be the Y operand �=
cool~y = cool~b;
cool~b = zero spec ;
g
g

This code is used in section 103.

110. h Install register X as the destination, or insert an internal command and goto dispatch done if X is
marginal 110 i �

f
if (cool~xx � cool G) f
if (i 6= pushgo ^ i 6= pushj ^ i 6= cswap) cool~ren x = true ; spec install (&g[cool~xx];&cool~x);

g else if (cool~xx < cool L) f
if (i 6= cswap) cool~ren x = true ; spec install (&l[(cool O :l + cool~xx) & lring mask];&cool~x);
g else f =� we need to increase L before issuing head~ inst �=
increase L: if (((cool S :l � cool O :l � cool L � 1) & lring mask) � 0)

h Insert an instruction to advance gamma 113 i
else h Insert an instruction to advance beta and L 112 i;
g
g

This code is used in section 101.

111. hCheck for su�cient rename registers and memory slots, or goto stall 111 i �
if (rename regs < (cool~ren x ? 1 : 0) + (cool~ren a ? 1 : 0)) goto stall ;
if (cool~mem x) f
if (mem slots) mem slots��; else goto stall ;
g
rename regs �= (cool~ren x ? 1 : 0) + (cool~ren a ? 1 : 0);

This code is used in section 75.

x112 MMIX-PIPE THE DISPATCH STAGE 41

112. The incrl instruction advances � and rL by 1 at a time when we know that � 6=
, in the ring of
local registers.

h Insert an instruction to advance beta and L 112 i �
f
cool~i = incrl ;
spec install (&l[(cool O :l + cool L) & lring mask];&cool~x);
cool~need b = cool~need ra = false ;
cool~y = cool~z = zero spec ;
cool~x:known = true ; =� cool~x:o = zero octa �=
spec install (&g[rL];&cool~rl);
cool~rl :o:l = cool L + 1;
cool~ren x = cool~set l = true ;
op = SETH; =� this instruction to be handled by the simplest units �=
cool~ interim = true ;
goto dispatch done ;
g

This code is used in section 110.

113. The incgamma instruction advances
 and rS by storing an octabyte from the local register ring to
virtual memory location cool S � 3.

h Insert an instruction to advance gamma 113 i �
f
cool~need b = cool~need ra = false ;
cool~i = incgamma ;
new S = incr (cool S ; 1);
cool~b = specval (&l[cool S :l & lring mask]);
cool~y:p = �; cool~y:o = shift left (cool S ; 3);
cool~z = zero spec ;
cool~mem x = true ; spec install (&mem ;&cool~x);
op = STOU; =� this instruction needs to be handled by load/store unit �=
cool~ interim = true ;
cool~stack alert = :(cool~y:o:h& sign bit);
goto dispatch done ;
g

This code is used in sections 110, 119, and 337.

42 THE DISPATCH STAGE MMIX-PIPE x114

114. The decgamma instruction decreases
 and rS by loading an octabyte from virtual memory location
(cool S �1)� 3 into the local register ring. The value of � may need to be decreased too (by decreasing rL).

h Insert an instruction to decrease gamma 114 i �
f
if (cool O :l + cool L � cool S :l + lring size) f =� don't let
 pass � �=
if (cool~i � pop ^ cool~xx � cool L ^ cool L > 1) f
cool~i = or ; =� we'll preserve the main result by moving it down �=
head~ inst �= #10000; =� decrease X �eld of POP in fetch bu�er �=
op = OR;
cool~y = specval (&l[(cool O :l + cool~xx � 1) & lring mask]);
spec install (&l[(cool O :l + cool~xx � 2) & lring mask];&cool~x);

g else f =� decrease rL by 1 �=
spec install (&g[rL];&cool~rl);
cool~rl :o:l = cool L � 1;
cool~set l = true ;
g
g
if (cool~i 6= or) f
cool~i = decgamma ;
new S = incr (cool S ;�1);
cool~y:p = �; cool~y:o = shift left (new S ; 3);
spec install (&l[new S :l & lring mask];&cool~x);
op = LDOU; =� this instruction needs to be handled by load/store unit �=
cool~ptr a = (void �) mem :up ;
g
cool~z = cool~b = zero spec ;
cool~need b = false ;
cool~ren x = cool~ interim = true ;
goto dispatch done ;
g

This code is used in section 120.

115. Storing into memory requires a doubly linked data list of specnodes like the lists we use for local and
global registers. In this case the head of the list is called mem , and the addr �elds are physical addresses in
memory.

hExternal variables 4 i +�
Extern specnode mem ;

116. The addr �eld of a memory specnode is all 1s until the physical address has been computed.

h Initialize everything 22 i +�
mem :addr :h = mem :addr :l = �1;
mem :up = mem :down = &mem ;

x117 MMIX-PIPE THE DISPATCH STAGE 43

117. The CSWAP operation is treated as a partial store, with $X as a secondary output. Partial store (pst)
commands read an octabyte from memory before they write it.

h Special cases of instruction dispatch 117 i �
case cswap : cool~ren a = true ;
spec install (cool~xx � cool G ? &g[cool~xx] : &l[(cool O :l + cool~xx) & lring mask];&cool~a);
cool~i = pst ;

case st : if ((op & #fe) � STCO) cool~b:o:l = cool~xx ;
case pst : cool~mem x = true ; spec install (&mem ;&cool~x); break;
case ld : case ldunc : cool~ptr a = (void �) mem :up ; break;

See also sections 118, 119, 120, 121, 122, 227, 312, 322, 332, 337, 347, and 355.

This code is used in section 101.

118. When new data is PUT into special registers 8 or 15{20 (namely rC, rK, rQ, rU, rV, rG, or rL) it can
a�ect many things. Therefore we stop issuing further instructions until such PUTs are committed. Moreover,
we will see later that such drastic PUTs defer execution until they reach the hot seat.

h Special cases of instruction dispatch 117 i +�
case put : if (cool~yy 6= 0 _ cool~xx � 32) goto illegal inst ;
if (cool~xx � 8) f
if (cool~xx � 11 ^ cool~xx 6= 8) goto illegal inst ;
if (cool~xx � 18 ^ :(cool~ loc :h& sign bit)) goto privileged inst ;
g
if (cool~xx � 8 _ (cool~xx � 15 ^ cool~xx � 20)) freeze dispatch = true ;
cool~ren x = true ; spec install (&g[cool~xx];&cool~x); break;

case get : if (cool~yy _ cool~zz � 32) goto illegal inst ;
if (cool~zz � rO) cool~z:o = shift left (cool O ; 3);
else if (cool~zz � rS) cool~z:o = shift left (cool S ; 3);
else cool~z = specval (&g[cool~zz]); break;

illegal inst : cool~ interrupt j= B_BIT; goto noop inst ;
case ldvts : if (cool~ loc :h& sign bit) break;
privileged inst : cool~ interrupt j= K_BIT;
noop inst : cool~i = noop ; break;

44 THE DISPATCH STAGE MMIX-PIPE x119

119. A PUSHGO instruction with X � G causes L to increase momentarily by 1, even if L = G. But the
value of L will be decreased before the PUSHGO is complete, so it will never actually exceed G. Moreover, we
needn't insert an incrl command.

h Special cases of instruction dispatch 117 i +�
case pushgo : inst ptr :p = &cool~go ;
case pushj :
f register unsigned int x = cool~xx ;

if (x � cool G) f
if (((cool S :l � cool O :l � cool L � 1) & lring mask) � 0)
h Insert an instruction to advance gamma 113 i

x = cool L; cool L++;
cool~ren x = true ; spec install (&l[(cool O :l + x) & lring mask];&cool~x);
g
cool~x:known = true ; cool~x:o:h = 0; cool~x:o:l = x;
cool~ren a = true ; spec install (&g[rJ];&cool~a);
cool~a:known = true ; cool~a:o = incr (cool~ loc ; 4);
cool~set l = true ; spec install (&g[rL];&cool~rl);
cool~rl :o:l = cool L � x� 1;
new O = incr (cool O ; x+ 1);
g break;

case syncid : if (cool~ loc :h& sign bit) break;
case go : inst ptr :p = &cool~go ; break;

120. We need to know the topmost \hidden" element of the register stack when a POP instruction is
dispatched. This element is usually present in the local register ring, unless
 = �.
Once it is known, let x be its least signi�cant byte. We will be decreasing rO by x + 1, so we may have

to decrease
 repeatedly in order to maintain the condition rS � rO.

h Special cases of instruction dispatch 117 i +�
case pop : if (cool~xx ^ cool L � cool~xx) cool~y = specval (&l[(cool O :l + cool~xx � 1) & lring mask]);
pop unsave : if (cool S :l � cool O :l) h Insert an instruction to decrease gamma 114 i;
f register tetra x;
register unsigned int new L;
register specnode �p = l[(cool O :l � 1) & lring mask]:up ;

if (p~known) x = (p~o:l) &
#ff; else goto stall ;

if ((tetra)(cool O :l � cool S :l) � x) h Insert an instruction to decrease gamma 114 i;
new O = incr (cool O ;�x� 1);
if (cool~i � pop) new L = x+ (cool~xx � cool L ? cool~xx : cool L + 1);
else new L = x;
if (new L > cool G) new L = cool G ;
if (x < new L) cool~ren x = true ; spec install (&l[(cool O :l � 1) & lring mask];&cool~x);
cool~set l = true ; spec install (&g[rL];&cool~rl);
cool~rl :o:l = new L;
if (cool~i � pop) f
cool~z:o:l = yz � 2;
if (inst ptr :p � UNKNOWN_SPEC ^ new head � tail) inst ptr :p = &cool~go ;

g
break;
g

x121 MMIX-PIPE THE DISPATCH STAGE 45

121. h Special cases of instruction dispatch 117 i +�
case mulu : cool~ren a = true ; spec install (&g[rH];&cool~a); break;
case div : case divu : cool~ren a = true ; spec install (&g[rR];&cool~a); break;

122. It's tempting to say that we could avoid taking up space in the reorder bu�er when no operation
needs to be done. A JMP instruction quali�es as a no-op in this sense, because the change of control occurs
before the execution stage. However, even a no-op might have to be counted in the usage register rU, so
it might get into the execution stage for that reason. A no-op can also cause a protection interrupt, if it
appears in a negative location. Even more importantly, a program might get into a loop that consists entirely
of jumps and no-ops; then we wouldn't be able to interrupt it, because the interruption mechanism needs
to �nd the current location in the reorder bu�er! At least one functional unit therefore needs to provide
explicit support for JMP, JMPB, and SWYM.
The SWYM instruction with F_BIT set is a special case: This is a request from the fetch coroutine for an

update to the IT-cache, when the page table method isn't implemented in hardware.

h Special cases of instruction dispatch 117 i +�
case noop : if (cool~ interrupt & F_BIT) f

cool~go :o = cool~y:o = cool~ loc ;
inst ptr = specval (&g[rT]);
g
break;

123. hUndo data structures set prematurely in the cool block and break 123 i �
if (cool~ren x _ cool~mem x) spec rem (&cool~x);
if (cool~ren a) spec rem (&cool~a);
if (cool~set l) spec rem (&cool~rl);
if (inst ptr :p � &cool~go) inst ptr :p = UNKNOWN_SPEC;
break;

This code is used in section 75.

46 THE EXECUTION STAGES MMIX-PIPE x124

124. The execution stages. MMIX's raison d'être is its ability to execute instructions. So now we want
to simulate the behavior of its functional units.
Each coroutine scheduled for action at the current tick of the clock has a stage number corresponding to a

particular subset of the MMIX hardware. For example, the coroutines with stage = 2 are the second stages in
the pipelines of the functional units. A coroutine with stage = 0 works in the fetch unit. Several arti�cially
large stage numbers are used to control special coroutines that do things like write data from bu�ers into
memory.
In this program the current coroutine of interest is called self ; hence self~stage is the current stage

number of interest. Another key variable, self~ctl , is called data ; this is the control block being operated
on by the current coroutine. We typically are simulating an operation in which data~x is being computed
as a function of data~y and data~z. The data record has many �elds, as described earlier when we de�ned
control structures; for example, data~owner is the same as self , during the execution stage, if it is nonnull.
This part of the simulator is written as if each functional unit is able to handle all 256 operations. In

practice, of course, a functional unit tends to be much more specialized; the actual specialization is governed
by the dispatcher, which issues an instruction only to a functional unit that supports it. Once an instruction
has been dispatched, however, we can simulate it most easily if we imagine that its functional unit is universal.
Coroutines with higher stage numbers are processed �rst. The three most important variables that govern a

coroutine's behavior, once self~stage is given, are the external operation code data~op , the internal operation
code data~i, and the value of data~state . We typically have data~state = 0 when a coroutine is �rst �red up.

hLocal variables 12 i +�
register coroutine �self ; =� the current coroutine being executed �=
register control �data ; =� the control block of the current coroutine �=

125. When a coroutine has done all it wants to on a single cycle, it says goto done . It will not be scheduled
to do any further work unless the schedule routine has been called since it began execution. The wait macro
is a convenient way to say \Please schedule me to resume again at the current data~state" after a speci�ed
time; for example, wait (1) will restart a coroutine on the next clock tick.

#de�ne wait (t) f schedule (self ; t; data~state); goto done ; g
#de�ne pass after (t) schedule (self + 1; t; data~state)
#de�ne sleep f self~next = self ; goto done ; g =� wait forever �=
#de�ne awaken (c; t) schedule (c; t; c~ctl~state)

hExecute all coroutines scheduled for the current time 125 i �
cur time++; if (cur time � ring size) cur time = 0;
for (self = queuelist (cur time); self 6= &sentinel ; self = sentinel :next) f
sentinel :next = self~next ; self~next = �; =� unschedule this coroutine �=
data = self~ctl ;
if (verbose & coroutine bit) f
printf (" running "); print coroutine id (self); printf (" ");
print control block (data); printf ("\n");
g
switch (self~stage) f
case 0: hSimulate an action of the fetch coroutine 288 i;
case 1: hSimulate the �rst stage of an execution pipeline 130 i;
default: h Simulate later stages of an execution pipeline 135 i;
hCases for control of special coroutines 126 i;
g

terminate : if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
done : ;
g

This code is used in section 64.

x126 MMIX-PIPE THE EXECUTION STAGES 47

126. A special coroutine whose stage number is vanish simply goes away at its scheduled time.

hCases for control of special coroutines 126 i �
case vanish : goto terminate ;

See also sections 215, 217, 222, 224, 232, 237, and 257.

This code is used in section 125.

127. hGlobal variables 20 i +�
coroutine mem locker ; =� trivial coroutine that vanishes �=
coroutine Dlocker ; =� another �=
control vanish ctl ; =� such coroutines share a common control block �=

128. h Initialize everything 22 i +�
mem locker :name = "Locker";
mem locker :ctl = &vanish ctl ;
mem locker :stage = vanish ;
Dlocker :name = "Dlocker";
Dlocker :ctl = &vanish ctl ;
Dlocker :stage = vanish ;
vanish ctl :go :o:l = 4;
for (j = 0; j < DTcache~ports ; j++) DTcache~reader [j]:ctl = &vanish ctl ;
if (Dcache)
for (j = 0; j < Dcache~ports ; j++) Dcache~reader [j]:ctl = &vanish ctl ;

for (j = 0; j < ITcache~ports ; j++) ITcache~reader [j]:ctl = &vanish ctl ;
if (Icache)
for (j = 0; j < Icache~ports ; j++) Icache~reader [j]:ctl = &vanish ctl ;

129. Here is a list of the stage numbers for special coroutines to be de�ned below.

hHeader de�nitions 6 i +�
#de�ne max stage 99 =� exceeds all stage numbers �=
#de�ne vanish 98 =� special coroutine that just goes away �=
#de�ne
ush to mem 97 =� coroutine for
ushing from a cache to memory �=
#de�ne
ush to S 96 =� coroutine for
ushing from a cache to the S-cache �=
#de�ne �ll from mem 95 =� coroutine for �lling a cache from memory �=
#de�ne �ll from S 94 =� coroutine for �lling a cache from the S-cache �=
#de�ne �ll from virt 93 =� coroutine for �lling a translation cache �=
#de�ne write from wbuf 92 =� coroutine for emptying the write bu�er �=
#de�ne cleanup 91 =� coroutine for cleaning the caches �=

130. At the very beginning of stage 1, a functional unit will stall if necessary until its operands are available.
As soon as the operands are all present, the state is set nonzero and execution proper begins.

h Simulate the �rst stage of an execution pipeline 130 i �
switch1 : switch (data~state) f
case 0: hWait for input data if necessary; set state = 1 if it's there 131 i;
case 1: hBegin execution of an operation 132 i;
case 2: hPass data to the next stage of the pipeline 134 i;
case 3: hFinish execution of an operation 144 i;
h Special cases for states in the �rst stage 266 i;
g

This code is used in section 125.

48 THE EXECUTION STAGES MMIX-PIPE x131

131. If some of our input data has been computed by another coroutine on the current cycle, we grab it
now but wait for the next cycle. (An actual machine wouldn't have latched the data until then.)

hWait for input data if necessary; set state = 1 if it's there 131 i �
j = 0;
if (data~y:p) f
j++;
if (data~y:p~known) data~y:o = data~y:p~o; data~y:p = �;
else j += 10;
g
if (data~z:p) f
j++;
if (data~z:p~known) data~z:o = data~z:p~o; data~z:p = �;
else j += 10;
g
if (data~b:p) f
if (data~need b) j++;
if (data~b:p~known) data~b:o = data~b:p~o; data~b:p = �;
else if (data~need b) j += 10;
g
if (data~ra :p) f
if (data~need ra) j++;
if (data~ra :p~known) data~ra :o = data~ra :p~o; data~ra :p = �;
else if (data~need ra) j += 10;
g
if (j < 10) data~state = 1;
if (j) wait (1); =� otherwise we fall through to case 1 �=

This code is used in section 130.

132. Simple register-to-register instructions like ADD are assumed to take just one cycle, but others like
FADD almost certainly require more time. This simulator can be con�gured so that FADD might take, say,
four pipeline stages of one cycle each (1 + 1 + 1 + 1), or two pipeline stages of two cycles each (2 + 2), or a
single unpipelined stage lasting four cycles (4), etc. In any case the simulator computes the results now, for
simplicity, placing them in data~x and possibly also in data~a and/or data~ interrupt . The results will not
be o�cially made known until the proper time.

hBegin execution of an operation 132 i �
switch (data~i) f
hCases to compute the results of register-to-register operation 137 i;
hCases to compute the virtual address of a memory operation 265 i;
hCases for stage 1 execution 155 i;

default: ;
g
hSet things up so that the results become known when they should 133 i;

This code is used in section 130.

x133 MMIX-PIPE THE EXECUTION STAGES 49

133. If the internal opcode data~i is max pipe op or less, a special pipeline sequence like 1 + 1 + 1 + 1 or
2 + 2 or 15 + 10, etc., has been con�gured. Otherwise we assume that the pipeline sequence is simply 1.
Suppose the pipeline sequence is t1 + t2 + � � �+ tk. Each tj is positive and less than 256, so we represent

the sequence as a string pipe seq [data~i] of unsigned \characters," terminated by 0. Given such a string,
we want to do the following: Wait (t1 � 1) cycles and pass data to stage 2; wait t2 cycles and pass data to
stage 3; : : : ; wait tk�1 cycles and pass data to stage k; wait tk cycles and make the results known .
The value of denin is added to t1; the value of denout is added to tk.

h Set things up so that the results become known when they should 133 i �
data~state = 3;
if (data~i � max pipe op) f register unsigned char �s = pipe seq [data~i];

j = s[0] + data~denin ;
if (s[1]) data~state = 2; =� more than one stage �=
else j += data~denout ;
if (j > 1) wait (j � 1);
g
goto switch1 ;

This code is used in section 132.

134. When we're in stage j, the coroutine for stage j + 1 of the same functional unit is self + 1.

hPass data to the next stage of the pipeline 134 i �
pass data : if ((self + 1)~next) wait (1); =� stall if the next stage is occupied �=
f register unsigned char �s = pipe seq [data~i];

j = s[self~stage];
if (s[self~stage + 1] � 0) j += data~denout ; data~state = 3; =� the next stage is the last �=
pass after (j);
g

passit : (self + 1)~ctl = data ;
data~owner = self + 1;
goto done ;

This code is used in section 130.

135. h Simulate later stages of an execution pipeline 135 i �
switch2 : if (data~b:p ^ data~b:p~known) data~b:o = data~b:p~o; data~b:p = �;
switch (data~state) f
case 0: panic(confusion ("switch2"));
case 1: hBegin execution of a stage-two operation 351 i;
case 2: goto pass data ;
case 3: goto �n ex ;
h Special cases for states in later stages 272 i;
g

This code is used in section 125.

136. The default pipeline times use only one stage; they can be overridden by MMIX con�g . The total
number of stages supported by this simulator is limited to 90, since it must never interfere with the stage
numbers for special coroutines de�ned below. (The author doesn't feel guilty about making this restriction.)

hExternal variables 4 i +�
#de�ne pipe limit 90
Extern unsigned char pipe seq [max pipe op + 1][pipe limit + 1];

50 THE EXECUTION STAGES MMIX-PIPE x137

137. The simplest of all register-to-register operations is set , which occurs for commands like SETH as well
as for commands like GETA. (We might as well start with the easy cases and work our way up.)

hCases to compute the results of register-to-register operation 137 i �
case set : data~x:o = data~z:o; break;

See also sections 138, 139, 140, 141, 142, 143, 343, 344, 345, 346, 348, and 350.

This code is used in section 132.

138. Here are the basic boolean operations, which account for 24 of MMIX's 256 opcodes.

hCases to compute the results of register-to-register operation 137 i +�
case or : data~x:o:h = data~y:o:h j data~z:o:h;
data~x:o:l = data~y:o:l j data~z:o:l;
break;

case orn : data~x:o:h = data~y:o:h j �data~z:o:h;
data~x:o:l = data~y:o:l j �data~z:o:l;
break;

case nor : data~x:o:h = �(data~y:o:h j data~z:o:h);
data~x:o:l = �(data~y:o:l j data~z:o:l);
break;

case and : data~x:o:h = data~y:o:h& data~z:o:h;
data~x:o:l = data~y:o:l & data~z:o:l;
break;

case andn : data~x:o:h = data~y:o:h&�data~z:o:h;
data~x:o:l = data~y:o:l &�data~z:o:l;
break;

case nand : data~x:o:h = �(data~y:o:h& data~z:o:h);
data~x:o:l = �(data~y:o:l & data~z:o:l);
break;

case xor : data~x:o:h = data~y:o:h� data~z:o:h;
data~x:o:l = data~y:o:l � data~z:o:l;
break;

case nxor : data~x:o:h = data~y:o:h��data~z:o:h;
data~x:o:l = data~y:o:l ��data~z:o:l;
break;

139. The implementation of ADDU is only slightly more di�cult. It would be trivial except for the fact that
internal opcode addu is used not only for the ADDU[I] and INC[M][H,L] operations, in which we simply
want to add data~y:o to data~z:o, but also for operations like 4ADDU.

hCases to compute the results of register-to-register operation 137 i +�
case addu : data~x:o = oplus ((data~op & #f8) � #28 ?

shift left (data~y:o; 1 + ((data~op � 1) & #3)) : data~y:o; data~z:o);
break;

case subu : data~x:o = ominus (data~y:o; data~z:o); break;

x140 MMIX-PIPE THE EXECUTION STAGES 51

140. Signed addition and subtraction produce the same results as their unsigned counterparts, but over
ow
must also be detected. Over
ow occurs when adding y to z if and only if y and z have the same sign but
their sum has a di�erent sign. Over
ow occurs in the calculation x = y � z if and only if it occurs in the
calculation y = x+ z.

hCases to compute the results of register-to-register operation 137 i +�
case add : data~x:o = oplus (data~y:o; data~z:o);
if (((data~y:o:h� data~z:o:h) & sign bit) � 0 ^ ((data~y:o:h� data~x:o:h) & sign bit) 6= 0)
data~ interrupt j= V_BIT;

break;
case sub : data~x:o = ominus (data~y:o; data~z:o);
if (((data~x:o:h� data~z:o:h) & sign bit) � 0 ^ ((data~y:o:h� data~x:o:h) & sign bit) 6= 0)
data~ interrupt j= V_BIT;

break;

141. The shift commands might take more than one cycle, or they might even be pipelined, if the default
value of pipe seq [sh] is changed. But we compute shifts all at once here, because other parts of the simulator
will take care of the pipeline timing. (Notice that shlu is changed to sh , for this reason. Similar changes to
the internal op codes are made for other operators below.)

#de�ne shift amt (data~z:o:h _ data~z:o:l � 64 ? 64 : data~z:o:l)

hCases to compute the results of register-to-register operation 137 i +�
case shlu : data~x:o = shift left (data~y:o; shift amt); data~i = sh ; break;
case shl : data~x:o = shift left (data~y:o; shift amt); data~i = sh ;
f octa tmpo ;

tmpo = shift right (data~x:o; shift amt ; 0);
if (tmpo :h 6= data~y:o:h _ tmpo :l 6= data~y:o:l) data~ interrupt j= V_BIT;
g break;

case shru : data~x:o = shift right (data~y:o; shift amt ; 1); data~i = sh ; break;
case shr : data~x:o = shift right (data~y:o; shift amt ; 0); data~i = sh ; break;

142. The MUX operation has three operands, namely data~y, data~z, and data~b; the third operand is the
current (speculative) value of rM, the special mask register. Otherwise MUX is unexceptional.

hCases to compute the results of register-to-register operation 137 i +�
case mux : data~x:o:h = (data~y:o:h& data~b:o:h) + (data~z:o:h&�data~b:o:h);
data~x:o:l = (data~y:o:l & data~b:o:l) + (data~z:o:l &�data~b:o:l);
break;

143. Comparisons are a breeze.

hCases to compute the results of register-to-register operation 137 i +�
case cmp : if ((data~y:o:h& sign bit) > (data~z:o:h& sign bit)) goto cmp neg ;
if ((data~y:o:h& sign bit) < (data~z:o:h& sign bit)) goto cmp pos ;

case cmpu : if (data~y:o:h < data~z:o:h) goto cmp neg ;
if (data~y:o:h > data~z:o:h) goto cmp pos ;
if (data~y:o:l < data~z:o:l) goto cmp neg ;
if (data~y:o:l > data~z:o:l) goto cmp pos ;

cmp zero : break; =� data~x is zero �=
cmp pos : data~x:o:l = 1; break; =� data~x:o:h is zero �=
cmp neg : data~x:o = neg one ; break;

52 THE EXECUTION STAGES MMIX-PIPE x144

144. The other operations will be deferred until later, now that we understand the basic ideas. But one
more piece of code ought to be written before we move on, because it completes the execution stage for the
simple cases already considered.
The ren x and ren a �elds tell us whether the x and/or a �elds contain valid information that should

become o�cially known.

hFinish execution of an operation 144 i �
�n ex : if (data~ren x) data~x:known = true ;
else if (data~mem x) f
data~x:known = true ;
if (:(data~x:addr :h& #ffff0000)) data~x:addr :l &= �8;
g
if (data~ren a) data~a:known = true ;
if (data~ loc :h& sign bit) data~ra :o:l = 0; =� no trips enabled for the operating system �=
if (data~ interrupt &

#ffff) hHandle interrupt at end of execution stage 307 i;
die : data~owner = �; goto terminate ; =� this coroutine now fades away �=
This code is used in section 130.

x145 MMIX-PIPE THE COMMISSION/DEISSUE STAGE 53

145. The commission/deissue stage. Control blocks leave the reorder bu�er either at the hot end
(when they're committed) or at the cool end (when they're deissued). We hope most of them are committed,
but from time to time our speculation is incorrect and we must deissue a sequence of instructions that prove
to be unwanted. Deissuing must take priority over committing, because the dispatcher cannot do anything
until the machine's cool state has stabilized.
Deissuing changes the cool state by undoing the most recently issued instructions, in reverse order.

Committing changes the hot state by doing the least recently issued instructions, in their original order.
Both operations are similar, so we assume that they take the same time; at most commit max instructions
are deissued and/or committed on each clock cycle.

hDeissue the coolest instruction 145 i �
f
cool = (cool � reorder top ? reorder bot : cool + 1);
if (verbose & issue bit) f
printf ("Deissuing "); print control block (cool);
if (cool~owner) f printf (" "); print coroutine id (cool~owner); g
printf ("\n");
g
if (cool~ren x) rename regs++; spec rem (&cool~x);
if (cool~ren a) rename regs++; spec rem (&cool~a);
if (cool~mem x) mem slots++; spec rem (&cool~x);
if (cool~set l) spec rem (&cool~rl);
if (cool~owner) f
if (cool~owner~ lockloc) �(cool~owner~ lockloc) = �; cool~owner~ lockloc = �;
if (cool~owner~next) unschedule (cool~owner);
g
cool O = cool~cur O ; cool S = cool~cur S ;
deissues��;
g

This code is used in section 67.

54 THE COMMISSION/DEISSUE STAGE MMIX-PIPE x146

146. hCommit the hottest instruction, or break if it's not ready 146 i �
f
if (nullifying) hNullify the hottest instruction 147 i
else f
if (hot~i � get ^ hot~zz � rQ) new Q = oandn (g[rQ]:o; hot~x:o);
else if (hot~i � put ^ hot~xx � rQ) hot~x:o:h j= new Q :h; hot~x:o:l j= new Q :l;
if (hot~mem x) hCommit to memory if possible, otherwise break 256 i;
if (hot~stack alert) stack over
ow = true ;
else if (stack over
ow ^ :hot~ interim) f
g[rQ]:o:l j= STACK_OVERFLOW;new Q :l j= STACK_OVERFLOW; stack over
ow = false ;
if (verbose & issue bit) f
printf (" setting rQ="); print octa (g[rQ]:o); printf ("\n");
g
g
if (verbose & issue bit) f
printf ("Committing "); print control block (hot); printf ("\n");
g
if (hot~ren x) rename regs++; hot~x:up~o = hot~x:o; spec rem (&(hot~x));
if (hot~ren a) rename regs++; hot~a:up~o = hot~a:o; spec rem (&(hot~a));
if (hot~set l) hot~rl :up~o = hot~rl :o; spec rem (&(hot~rl));
if (hot~arith exc) g[rA]:o:l j= hot~arith exc ;
if (hot~usage) f
g[rU]:o:l++; if (g[rU]:o:l � 0) f
g[rU]:o:h++; if ((g[rU]:o:h& #7fff) � 0) g[rU]:o:h �= #8000;
g
g
g
if (hot~ interrupt � H_BIT) hBegin an interruption and break 317 i;
g

This code is used in section 67.

147. A load or store instruction is \nulli�ed" if it is about to be captured by a trap interrupt. In such
cases it will be the only item in the reorder bu�er; thus nullifying is sort of a cross between deissuing and
committing. (It is important to have stopped dispatching when nulli�cation is necessary, because instructions
such as incgamma and decgamma change rS, and we need to change it back when an unexpected interruption
occurs.)

hNullify the hottest instruction 147 i �
f
if (verbose & issue bit) f
printf ("Nullifying "); print control block (hot); printf ("\n");
g
if (hot~ren x) rename regs++; spec rem (&hot~x);
if (hot~ren a) rename regs++; spec rem (&hot~a);
if (hot~mem x) mem slots++; spec rem (&hot~x);
if (hot~set l) spec rem (&hot~rl);
cool O = hot~cur O ; cool S = hot~cur S ;
nullifying = false ;
g

This code is used in section 146.

x148 MMIX-PIPE THE COMMISSION/DEISSUE STAGE 55

148. Interrupt bits in rQ might be lost if they are set between a GET and a PUT. Therefore we don't allow
PUT to zero out bits that have become 1 since the most recently committed GET.

hGlobal variables 20 i +�
octa new Q ; =� when rQ increases in any bit position, so should this �=
bool stack over
ow ; =� stack over
ow not yet reported �=

149. An instruction will not be committed immediately if it violates the basic security rule of MMIX: An
instruction in a nonnegative location should not be performed unless all eight of the internal interrupts have
been enabled in the interrupt mask register rK. Conversely, an instruction in a negative location should not
be performed if the P_BIT is enabled in rK.
Such instructions take one extra cycle before they are committed. The nonnegative-location case turns on

the S_BIT of both rK and rQ, leading to an immediate interrupt (unless the current instruction is trap , put ,
or resume).

hCheck for security violation, break if so 149 i �
f
if (hot~ loc :h& sign bit) f
if ((g[rK]:o:h& P_BIT) ^ :(hot~ interrupt & P_BIT)) f
hot~ interrupt j= P_BIT;
g[rQ]:o:h j= P_BIT;
new Q :h j= P_BIT;
if (verbose & issue bit) f
printf (" setting rQ="); print octa (g[rQ]:o); printf ("\n");
g
break;
g
g else if ((g[rK]:o:h& #ff) 6= #ff ^ :(hot~ interrupt & S_BIT)) f
hot~ interrupt j= S_BIT;
g[rQ]:o:h j= S_BIT;
new Q :h j= S_BIT;
g[rK]:o:h j= S_BIT;
if (verbose & issue bit) f
printf (" setting rQ="); print octa (g[rQ]:o);
printf (", rK="); print octa (g[rK]:o); printf ("\n");
g
break;
g
g

This code is used in section 67.

56 BRANCH PREDICTION MMIX-PIPE x150

150. Branch prediction. An MMIX programmer distinguishes statically between \branches" and \prob-
able branches," but many modern computers attempt to do better by implementing dynamic branch pre-
diction. (See, for example, section 4.3 of Hennessy and Patterson's Computer Architecture, second edition.)
Experience has shown that dynamic branch prediction can signi�cantly improve the performance of specu-
lative execution, by reducing the number of instructions that need to be deissued.
This simulator has an optional bp table containing 2a+b+c entries of n bits each, where n is between 1

and 8. Usually n is 1 or 2 in practice, but 8 bits are allocated per entry for convenience in this program.
The bp table is consulted and updated on every branch instruction (every B or PB instruction, but not JMP),
for advice on past history of similar situations. It is indexed by the a least signi�cant bits of the address
of the instruction, the b most recent bits of global branch history, and the next c bits of both address and
history (exclusive-ored).
A bp table entry begins at zero and is regarded as a signed n-bit number. If it is nonnegative, we will follow

the prediction in the instruction, namely to predict a branch taken only in the PB case. If it is negative, we
will predict the opposite of the instruction's recommendation. The n-bit number is increased (if possible) if
the instruction's prediction was correct, decreased (if possible) if the instruction's prediction was incorrect.
(Incidentally, a large value of n is not necessarily a good idea. For example, if n = 8 the machine might

need 128 steps to recognize that a branch taken the �rst 150 times is not taken the next 150 times. And if
we modify the update criteria to avoid this problem, we obtain a scheme that is rarely better than a simple
scheme with smaller n.)
The values a, b, c, and n in this discussion are called bp a , bp b , bp c , and bp n in the program.

hExternal variables 4 i +�
Extern int bp a ; bp b ; bp c ; bp n ; =� parameters for branch prediction �=
Extern char �bp table ; =� either � or an array of 2a+b+c items �=

151. Branch prediction is made when we are either about to issue an instruction or peeking ahead. We
look at the bp table , but we don't want to update it yet.

hPredict a branch outcome 151 i �
f
predicted = op & #10; =� start with the instruction's recommendation �=
if (bp table) f register int h;

m = ((head~ loc :l & bp cmask)� bp b) + (head~ loc :l & bp amask);
m = ((cool hist & bp bcmask)� bp a)� (m� 2);
h = bp table [m];
if (h& bp npower) predicted �= #10;
g
if (predicted) peek hist = (peek hist � 1) + 1;
else peek hist �= 1;
g

This code is used in section 85.

x152 MMIX-PIPE BRANCH PREDICTION 57

152. We update the bp table when an instruction is issued. And we store the opposite table value in
cool~x:o:l, just in case our prediction turns out to be wrong.

hRecord the result of branch prediction 152 i �
if (bp table) f register int reversed ; h; h up ; h down ;

reversed = op & #10;
if (peek hist & 1) reversed �= #10;
m = ((head~ loc :l & bp cmask)� bp b) + (head~ loc :l & bp amask);
m = ((cool hist & bp bcmask)� bp a)� (m� 2);
h = bp table [m];
h up = (h+ 1) & bp nmask ; if (h up � bp npower) h up = h;
if (h � bp npower) h down = h; else h down = (h� 1) & bp nmask ;
if (reversed) f
bp table [m] = h down ; cool~x:o:l = h up ;
cool~i = pbr + br � cool~i; =� reverse the sense �=
bp rev stat ++;
g else f
bp table [m] = h up ; cool~x:o:l = h down ; =� go with the
ow �=
bp ok stat ++;
g
if (verbose & show pred bit) f
printf (" predicting "); print octa (cool~ loc);
printf (" %s; bp[%x]=%d\n"; reversed ? "NG" : "OK";m;

bp table [m]� ((bp table [m] & bp npower)� 1));
g
cool~x:o:h = m;
g

This code is used in section 75.

153. The calculations in the previous sections need several precomputed constants, depending on the
parameters a, b, c, and n.

h Initialize everything 22 i +�
bp amask = ((1� bp a)� 1)� 2; =� least a bits of instruction address �=
bp cmask = ((1� bp c)� 1)� (bp a + 2); =� the next c address bits �=
bp bcmask = (1� (bp b + bp c))� 1; =� least b+ c bits of history info �=
bp nmask = (1� bp n)� 1; =� least signi�cant n bits �=
bp npower = 1� (bp n � 1); =� 2n�1, the sign bit of an n-bit number �=

154. hGlobal variables 20 i +�
int bp amask ; bp cmask ; bp bcmask ; bp nmask ; bp npower ;
int bp rev stat ; bp ok stat ; =� how often we overrode and agreed �=
int bp bad stat ; bp good stat ; =� how often we failed and succeeded �=

58 BRANCH PREDICTION MMIX-PIPE x155

155. After a branch or probable branch instruction has been issued and the value of the relevant register
has been computed in the reorder bu�er as data~b:o, we're ready to determine if the prediction was correct
or not.

hCases for stage 1 execution 155 i �
case br : case pbr : j = register truth (data~b:o; data~op);
if (j) data~go :o = data~z:o; else data~go :o = data~y:o;
if (j � (data~i � pbr)) bp good stat ++;
else f =� oops, misprediction �=
bp bad stat ++;
hRecover from incorrect branch prediction 160 i;
g
goto �n ex ;

See also sections 313, 325, 327, 328, 329, 331, and 356.

This code is used in section 132.

156. The register truth subroutine is used by B, PB, CS, and ZS commands to decide whether an octabyte
satis�es the conditions of the opcode, data~op .

h Internal prototypes 13 i +�
static int register truth ARGS((octa;mmix opcode));

157. h Subroutines 14 i +�
static int register truth (o; op)

octa o;
mmix opcode op ;

f register int b;

switch ((op � 1) & #3) f
case 0: b = o:h� 31; break; =� negative? �=
case 1: b = (o:h � 0 ^ o:l � 0); break; =� zero? �=
case 2: b = (o:h < sign bit ^ (o:h _ o:l)); break; =� positive? �=
case 3: b = o:l & #1; break; =� odd? �=
g
if (op & #8) return b� 1;
else return b;
g

158. The issued between subroutine determines how many speculative instructions were issued between a
given control block in the reorder bu�er and the current cool pointer, when cc = cool .

h Internal prototypes 13 i +�
static int issued between ARGS((control �; control �));

159. h Subroutines 14 i +�
static int issued between (c; cc)

control �c; �cc ;
f
if (c > cc) return c� 1� cc ;
return (c� reorder bot) + (reorder top � cc);
g

x160 MMIX-PIPE BRANCH PREDICTION 59

160. If more than one functional unit is able to process branch instructions and if two of them simulta-
neously discover misprediction, or if misprediction is detected by one unit just as another unit is generating
an interrupt, we assume that an arbitration takes place so that only the hottest one actually deissues the
cooler instructions.
Changes to the bp table aren't undone when they were made on speculation in an instruction being

deissued; nor do we worry about cases where the same bp table entry is being updated by two or more
active coroutines. After all, the bp table is just a heuristic, not part of the real computation. We correct
the bp table only if we discover that a prediction was wrong, so that we will be less likely to make the same
mistake later.

hRecover from incorrect branch prediction 160 i �
i = issued between (data ; cool);
if (i < deissues) goto die ;
deissues = i;
old tail = tail = head ; resuming = 0; =� clear the fetch bu�er �=
hRestart the fetch coroutine 287 i;
inst ptr :o = data~go :o; inst ptr :p = �;
if (:(data~ loc :h& sign bit)) f
if (inst ptr :o:h& sign bit) data~ interrupt j= P_BIT;
else data~ interrupt &= �P_BIT;
g
if (bp table) f
bp table [data~x:o:h] = data~x:o:l; =� this is what we should have stored �=
if (verbose & show pred bit) f
printf (" mispredicted "); print octa (data~ loc);
printf ("; bp[%x]=%d\n"; data~x:o:h; data~x:o:l � ((data~x:o:l & bp npower)� 1));
g
g
cool hist = (j ? (data~hist � 1) + 1 : data~hist � 1);

This code is used in section 155.

161. hExternal prototypes 9 i +�
Extern void print stats ARGS((void));

162. hExternal routines 10 i +�
void print stats ()
f
register int j;

if (bp table) printf ("Predictions: %d in agreement, %d in opposition; %d good, %d bad\n";
bp ok stat ; bp rev stat ; bp good stat ; bp bad stat);

else printf ("Predictions: %d good, %d bad\n"; bp good stat ; bp bad stat);
printf ("Instructions issued per cycle:\n");
for (j = 0; j � dispatch max ; j++) printf (" %d %d\n"; j; dispatch stat [j]);
g

60 CACHE MEMORY MMIX-PIPE x163

163. Cache memory. It's time now to consider MMIX's MMU, the memory management unit. This part
of the machine deals with the critical problem of getting data to and from the computational units. In a
RISC architecture all interaction between main memory and the computer registers is speci�ed by load and
store instructions; thus memory accesses are much easier to deal with than they would be on a machine with
more complex kinds of interaction. But memory management is still di�cult, if we want to do it well, because
main memory typically operates at a much slower speed than the registers do. High-speed implementations
of MMIX introduce intermediate \caches" of storage in order to keep the most important data accessible,
and cache maintenance can be complicated when all the details are taken into account. (See, for example,
Chapter 5 of Hennessy and Patterson's Computer Architecture, second edition.)
This simulator can be con�gured to have up to three auxiliary caches between registers and memory: An

I-cache for instructions, a D-cache for data, and an S-cache for both instructions and data. The S-cache,
also called a secondary cache, is supported only if both I-cache and D-cache are present. Arbitrary access
times for each cache can be speci�ed independently; we might assume, for example, that data items in the
I-cache or D-cache can be sent to a register in one or two clock cycles, but the access time for the S-cache
might be say 5 cycles, and main memory might require 20 cycles or more. Our speculative pipeline can
have many functional units handling load and store instructions, but only one load or store instruction can
be updating the D-cache or S-cache or main memory at a time. (However, the D-cache can have several
read ports; furthermore, data might be passing between the S-cache and memory while other data is passing
between the reorder bu�er and the D-cache.)
Besides the optional I-cache, D-cache, and S-cache, there are required caches called the IT-cache and

DT-cache, for translation of virtual addresses to physical addresses. A translation cache is often called a
\translation lookaside bu�er" or TLB; but we call it a cache since it is implemented in nearly the same way
as an I-cache.

x164 MMIX-PIPE CACHE MEMORY 61

164. Consider a cache that has blocks of 2b bytes each and associativity 2a; here b � 3 and a � 0. The I-
cache, D-cache, and S-cache are addressed by 48-bit physical addresses, as if they were part of main memory;
but the IT and DT caches are addressed by 64-bit keys, obtained from a virtual address by blanking out the
lower s bits and inserting the value of n, where the page size s and the process number n are found in rV.
We will consider all caches to be addressed by 64-bit keys, so that both cases are handled with the same
basic methods.
Given a 64-bit key, we ignore the low-order b bits and use the next c bits to address the cache set ; then

the remaining 64 � b � c bits should match one of 2a tags in that set. The case a = 0 corresponds to a
so-called direct-mapped cache; the case c = 0 corresponds to a so-called fully associative cache. With 2c sets
of 2a blocks each, and 2b bytes per block, the cache contains 2a+b+c bytes of data, in addition to the space
needed for tags. Translation caches have b = 3 and they also usually have c = 0.
If a tag matches the speci�ed bits, we \hit" in the cache and can use and/or update the data found there.

Otherwise we \miss," and we probably want to replace one of the cache blocks by the block containing
the item sought. The item chosen for replacement is called a victim. The choice of victim is forced when
the cache is direct-mapped, but four strategies for victim selection are available when we must choose from
among 2a entries for a > 0:

� \Random" selection chooses the victim by extracting the least signi�cant a bits of the clock.

� \Serial" selection chooses 0, 1, : : : , 2a � 1, 0, 1, : : : , 2a � 1, 0, : : : on successive trials.

� \LRU (Least Recently Used)" selection chooses the victim that ranks last if items are ranked inversely to
the time that has elapsed since their previous use.

� \Pseudo-LRU" selection chooses the victim by a rough approximation to LRU that is simpler to implement
in hardware. It requires a bit table r1 : : : r2a�1. Whenever we use an item with binary address (i1 : : : ia)2 in
the set, we adjust the bit table as follows:

r1 1� i1; r1i1 1� i2; : : : ; r1i1:::ia�1 1� ia;

here the subscripts on r are binary numbers. (For example, when a = 3, the use of element (010)2 sets
r1 1, r10 0, r101 1, where r101 means the same as r5.) To select a victim, we start with l 1
and then repeatedly set l 2l + rl, a times; then we choose element l � 2a. When a = 1, this scheme is
equivalent to LRU. When a = 2, this scheme was implemented in the Intel 80486 chip.

hType de�nitions 11 i +�
typedef enum f
random ; serial ; pseudo lru ; lru
g replace policy;

165. A cache might also include a \victim" area, which contains the last 2v victim blocks removed from the
main cache area. The victim area can be searched in parallel with the speci�ed cache set, thereby increasing
the chance of a hit without making the search go slower. Each of the three replacement policies can be used
also in the victim cache.

62 CACHE MEMORY MMIX-PIPE x166

166. A cache also has a granularity 2g, where b � g � 3. This means that we maintain, for each cache
block, a set of 2b�g \dirty bits," which identify the 2g-byte groups that have possibly changed since they
were last read from memory. Thus if g = b, an entire cache block is either dirty or clean; if g = 3, the
dirtiness of each octabyte is maintained separately.
Two policies are available when new data is written into all or part of a cache block. We can write-through,

meaning that we send all new data to memory immediately and never mark anything dirty; or we can write-
back, meaning that we update the memory from the cache only when absolutely necessary. Furthermore we
can write-allocate, meaning that we keep the new data in the cache, even if the cache block being written
has to be fetched �rst because of a miss; or we can write-around, meaning that we keep the new data only
if it was part of an existing cache block.
(In this discussion, \memory" is shorthand for \the next level of the memory hierarchy"; if there is an

S-cache, the I-cache and D-cache write new data to the S-cache, not directly to memory. The I-cache, IT-
cache, and DT-cache are read-only, so they do not need the facilities discussed in this section. Moreover, the
D-cache and S-cache can be assumed to have the same granularity.)

hHeader de�nitions 6 i +�
#de�ne WRITE_BACK 1 =� use this if not write-through �=
#de�ne WRITE_ALLOC 2 =� use this if not write-around �=

x167 MMIX-PIPE CACHE MEMORY 63

167. We have seen that many
avors of cache can be simulated. They are represented by cache structures,
containing arrays of cacheset structures that contain arrays of cacheblock structures for the individual
blocks. We use a full byte to store each dirty bit, and we use full integer words to store rank �elds for LRU
processing, etc.; memory economy is less important than simplicity in this simulator.

hType de�nitions 11 i +�
typedef struct f
octa tag ; =� bits of key not included in the cache block address �=
char �dirty ; =� array of 2g�b dirty bits, one per granule �=
octa �data ; =� array of 2b�3 octabytes, the data in a cache block �=
int rank ; =� auxiliary information for non-random policies �=
g cacheblock;
typedef cacheblock �cacheset; =� array of 2a or 2v blocks �=
typedef struct f
int a; b; c; g; v; =� lg of associativity, blocksize, setsize, granularity, and victimsize �=
int aa ; bb ; cc ; gg ; vv ;
=� associativity, blocksize, setsize, granularity, and victimsize (all powers of 2) �=

int tagmask ; =� �2b+c �=
replace policy repl ; vrepl ; =� how to choose victims and victim-victims �=
int mode ; =� optional WRITE_BACK and/or WRITE_ALLOC �=
int access time ; =� cycles to know if there's a hit �=
int copy in time ; =� cycles to copy a new block into the cache �=
int copy out time ; =� cycles to copy an old block from the cache �=
cacheset �set ; =� array of 2c sets of arrays of cache blocks �=
cacheset victim ; =� the victim cache, if present �=
coroutine �ller ; =� a coroutine for copying new blocks into the cache �=
control �ller ctl ; =� its control block �=
coroutine
usher ; =� a coroutine for writing dirty old data from the cache �=
control
usher ctl ; =� its control block �=
cacheblock inbuf ; =� �lling comes from here �=
cacheblock outbuf ; =�
ushing goes to here �=
lockvar lock ; =� nonzero when the cache is being changed signi�cantly �=
lockvar �ll lock ; =� nonzero when �ller should pass data back �=
int ports ; =� how many coroutines can be reading the cache? �=
coroutine �reader ; =� array of coroutines that might be reading simultaneously �=
char �name ; =� "Icache", for example �=
g cache;

168. hExternal variables 4 i +�
Extern cache �Icache ; �Dcache ; �Scache ; �ITcache ; �DTcache ;

169. Now we are ready to de�ne some basic subroutines for cache maintenance. Let's begin with a trivial
routine that tests if a given cache block is dirty.

h Internal prototypes 13 i +�
static bool is dirty ARGS((cache �; cacheblock �));

64 CACHE MEMORY MMIX-PIPE x170

170. h Subroutines 14 i +�
static bool is dirty (c; p)

cache �c; =� the cache containing it �=
cacheblock �p; =� a cache block �=

f
register int j;
register char �d = p~dirty ;

for (j = 0; j < c~bb ; d++; j += c~gg)
if (�d) return true ;

return false ;
g

171. For diagnostic purposes we might want to display an entire cache block.

h Internal prototypes 13 i +�
static void print cache block ARGS((cacheblock; cache �));

172. h Subroutines 14 i +�
static void print cache block (p; c)

cacheblock p;
cache �c;

f register int i; j; b = c~bb � 3; g = c~gg � 3;

printf ("%08x%08x: "; p:tag :h; p:tag :l);
for (i = j = 0; j < b; j++; i += ((j & (g � 1)) ? 0 : 1))
printf ("%08x%08x%c"; p:data [j]:h; p:data [j]:l; p:dirty [i] ? '*' : ' ');

printf (" (%d)\n"; p:rank);
g

173. h Internal prototypes 13 i +�
static void print cache locks ARGS((cache �));

174. h Subroutines 14 i +�
static void print cache locks (c)

cache �c;
f
if (c) f
if (c~ lock) printf ("%s locked by %s:%d\n"; c~name ; c~ lock~name ; c~ lock~stage);
if (c~�ll lock) printf ("%sfill locked by %s:%d\n"; c~name ; c~�ll lock~name ; c~�ll lock~stage);
g
g

175. The print cache routine prints the entire contents of a cache. This can be a huge amount of data,
but it can be very useful when debugging. Fortunately, the task of debugging favors the use of small caches,
since interesting cases arise more often when a cache is fairly small.

hExternal prototypes 9 i +�
Extern void print cache ARGS((cache �;bool));

x176 MMIX-PIPE CACHE MEMORY 65

176. hExternal routines 10 i +�
void print cache (c; dirty only)

cache �c;
bool dirty only ;

f
if (c) f register int i; j;

printf ("%s of %s:"; dirty only ? "Dirty blocks" : "Contents"; c~name);
if (c~�ller :next) f
printf (" (filling ");
print octa (c~name [1] � 'T' ? c~�ller ctl :y:o : c~�ller ctl :z:o);
printf (")");
g
if (c~
usher :next) f
printf (" (flushing ");
print octa (c~outbuf :tag);
printf (")");
g
printf ("\n");
hPrint all of c's cache blocks 177 i;
g
g

177. We don't print the cache blocks that have an invalid tag, unless requested to be verbose.

hPrint all of c's cache blocks 177 i �
for (i = 0; i < c~cc ; i++)
for (j = 0; j < c~aa ; j++)
if ((:(c~set [i][j]:tag :h& sign bit) _ (verbose & show wholecache bit)) ^

(:dirty only _ is dirty (c;&c~set [i][j]))) f
printf ("[%d][%d] "; i; j);
print cache block (c~set [i][j]; c);
g

for (j = 0; j < c~vv ; j++)
if ((:(c~victim [j]:tag :h& sign bit) _ (verbose & show wholecache bit)) ^

(:dirty only _ is dirty (c;&c~victim [j]))) f
printf ("V[%d] "; j);
print cache block (c~victim [j]; c);
g

This code is used in section 176.

178. The clean block routine simply initializes a given cache block.

hExternal prototypes 9 i +�
Extern void clean block ARGS((cache �; cacheblock �));

66 CACHE MEMORY MMIX-PIPE x179

179. hExternal routines 10 i +�
void clean block (c; p)

cache �c;
cacheblock �p;

f
register int j;

p~ tag :h = sign bit ; p~ tag :l = 0;
for (j = 0; j < c~bb � 3; j++) p~data [j] = zero octa ;
for (j = 0; j < c~bb � c~g; j++) p~dirty [j] = false ;
g

180. The zap cache routine invalidates all tags of a given cache, e�ectively restoring it to its initial
condition.

hExternal prototypes 9 i +�
Extern void zap cache ARGS((cache �));

181. We clear the dirty entries here, just to be tidy, although they could actually be left in arbitrary
condition when the tags are invalid.

hExternal routines 10 i +�
void zap cache (c)

cache �c;
f
register int i; j;

for (i = 0; i < c~cc ; i++)
for (j = 0; j < c~aa ; j++) f
clean block (c;&(c~set [i][j]));
g

for (j = 0; j < c~vv ; j++) f
clean block (c;&(c~victim [j]));

g
g

182. The get reader subroutine �nds the index of an available reader coroutine for a given cache, or returns
a negative value if no readers are available.

h Internal prototypes 13 i +�
static int get reader ARGS((cache �));

183. h Subroutines 14 i +�
static int get reader (c)

cache �c;
f register int j;

for (j = 0; j < c~ports ; j++)
if (c~reader [j]:next � �) return j;

return �1;
g

x184 MMIX-PIPE CACHE MEMORY 67

184. The subroutine copy block (c; p; cc ; pp) copies the dirty items from block p of cache c into block pp of
cache cc , assuming that the destination cache has a su�ciently large block size. (In other words, we assume
that cc~b � c~b.) We also assume that both blocks have compatible tags, and that both caches have the
same granularity.

h Internal prototypes 13 i +�
static void copy block ARGS((cache �; cacheblock �; cache �; cacheblock �));

185. h Subroutines 14 i +�
static void copy block (c; p; cc ; pp)

cache �c; �cc ;
cacheblock �p; �pp ;

f
register int j; jj ; i; ii ; lim ;
register int o� = p~ tag :l & (cc~bb � 1);

if (c~g 6= cc~g _ p~ tag :h 6= pp~ tag :h _ p~ tag :l � o� 6= pp~ tag :l) panic(confusion ("copy block"));
for (j = 0; jj = o� � c~g; j < c~bb � c~g; j++; jj ++)
if (p~dirty [j]) f
pp~dirty [jj] = true ;
for (i = j � (c~g � 3); ii = jj � (c~g � 3); lim = (j + 1)� (c~g � 3); i < lim ; i++; ii ++)
pp~data [ii] = p~data [i];

g
g

186. The choose victim subroutine selects the victim to be replaced when we need to change a cache set.
We need only one bit of the rank �elds to implement the r table when policy = pseudo lru , and we don't
need rank at all when policy = random . Of course we use an a-bit counter to implement policy = serial . In
the other case, policy = lru , we need an a-bit rank �eld; the least recently used entry has rank 0, and the
most recently used entry has rank 2a � 1 = aa � 1.

h Internal prototypes 13 i +�
static cacheblock �choose victim ARGS((cacheset; int; replace policy));

187. h Subroutines 14 i +�
static cacheblock �choose victim (s; aa ; policy)

cacheset s;
int aa ; =� setsize �=
replace policy policy ;

f
register cacheblock �p;
register int l; m;

switch (policy) f
case random : return &s[ticks :l & (aa � 1)];
case serial : l = s[0]:rank ; s[0]:rank = (l + 1) & (aa � 1); return &s[l];
case lru :
for (p = s; p < s+ aa ; p++)
if (p~rank � 0) return p;

default: panic(confusion ("lru victim")); =� what happened? nobody has rank zero �=
case pseudo lru :
for (l = 1;m = aa � 1; m; m�= 1) l = l + l + s[l]:rank ;
return &s[l � aa];
g
g

68 CACHE MEMORY MMIX-PIPE x188

188. The note usage subroutine updates the rank entries to record the fact that a particular block in a
cache set is now being used.

h Internal prototypes 13 i +�
static void note usage ARGS((cacheblock �; cacheset; int; replace policy));

189. h Subroutines 14 i +�
static void note usage (l; s; aa ; policy)

cacheblock �l; =� a cache block that's probably worth preserving �=
cacheset s; =� the set that contains l �=
int aa ; =� setsize �=
replace policy policy ;

f
register cacheblock �p;
register int j; m; r;

if (aa � 1 _ policy � serial) return;
if (policy � lru) f
r = l~rank ;
for (p = s; p < s+ aa ; p++)
if (p~rank > r) p~rank ��;

l~rank = aa � 1;
g
else f =� policy � pseudo lru �=
r = l � s;
for (j = 1;m = aa � 1; m; m�= 1)
if (r &m) s[j]:rank = 0; j = j + j + 1;
else s[j]:rank = 1; j = j + j;

g
return;
g

190. The demote usage subroutine is sort of the opposite of note usage ; it changes the rank of a given
block to least recently used.

h Internal prototypes 13 i +�
static void demote usage ARGS((cacheblock �; cacheset; int; replace policy));

x191 MMIX-PIPE CACHE MEMORY 69

191. h Subroutines 14 i +�
static void demote usage (l; s; aa ; policy)

cacheblock �l; =� a cache block we probably don't need �=
cacheset s; =� the set that contains l �=
int aa ; =� setsize �=
replace policy policy ;

f
register cacheblock �p;
register int j; m; r;

if (aa � 1 _ policy � serial) return;
if (policy � lru) f
r = l~rank ;
for (p = s; p < s+ aa ; p++)
if (p~rank < r) p~rank ++;

l~rank = 0;
g
else f =� policy � pseudo lru �=
r = l � s;
for (j = 1;m = aa � 1; m; m�= 1)
if (r &m) s[j]:rank = 1; j = j + j + 1;
else s[j]:rank = 0; j = j + j;

g
return;
g

192. The cache search routine looks for a given key � in a given cache, and returns a cache block if there's
a hit; otherwise it returns �. If the search hits, the set in which the block was found is stored in global
variable hit set . Notice that we need to check more bits of the tag when we search in the victim area.

#de�ne cache addr (c; alf) c~set [(alf :l &�(c~ tagmask))� c~b]

h Internal prototypes 13 i +�
static cacheblock �cache search ARGS((cache �;octa));

193. h Subroutines 14 i +�
static cacheblock �cache search (c; alf)

cache �c; =� the cache to be searched �=
octa alf ; =� the key �=

f
register cacheset s;
register cacheblock �p;
s = cache addr (c; alf); =� the set corresponding to alf �=
for (p = s; p < s+ c~aa ; p++)
if (((p~ tag :l � alf :l) & c~ tagmask) � 0 ^ p~ tag :h � alf :h) goto hit ;

s = c~victim ;
if (:s) return �; =� cache miss, and no victim area �=
for (p = s; p < s+ c~vv ; p++)
if (((p~ tag :l � alf :l) & (�c~bb)) � 0 ^ p~ tag :h � alf :h) goto hit ;

return �; =� double miss �=
hit : hit set = s; return p;
g

70 CACHE MEMORY MMIX-PIPE x194

194. hGlobal variables 20 i +�
cacheset hit set ;

195. If p = cache search (c; alf) hits and if we call use and �x (c; p) immediately afterwards, cache c is
updated to record the usage of key alf . A hit in the victim area moves the cache block to the main area,
unless the �ller routine of cache c is active. A pointer to the (possibly moved) cache block is returned.

h Internal prototypes 13 i +�
static cacheblock �use and �x ARGS((cache �; cacheblock �));

196. h Subroutines 14 i +�
static cacheblock �use and �x (c; p)

cache �c;
cacheblock �p;

f
if (hit set 6= c~victim) note usage (p; hit set ; c~aa ; c~repl);
else f
note usage (p; hit set ; c~vv ; c~vrepl); =� found in victim cache �=
if (:c~�ller :next) f
register cacheset s = cache addr (c; p~ tag);
register cacheblock �q = choose victim (s; c~aa ; c~repl);

note usage (q; s; c~aa ; c~repl);
hSwap cache blocks p and q 197 i;
return q;
g
g
return p;
g

197. We can simply permute the pointers inside the cacheblock structures of a cache, instead of copying
the data, if we are careful not to let any of those pointers escape into other data structures.

h Swap cache blocks p and q 197 i �
f
octa t;
register char �d = p~dirty ;
register octa �dd = p~data ;

t = p~ tag ; p~ tag = q~ tag ; q~ tag = t;
p~dirty = q~dirty ; q~dirty = d;
p~data = q~data ; q~data = dd ;
g

This code is used in sections 196 and 205.

198. The demote and �x routine is analogous to use and �x , except that we don't want to promote the
data we found.

h Internal prototypes 13 i +�
static cacheblock �demote and �x ARGS((cache �; cacheblock �));

x199 MMIX-PIPE CACHE MEMORY 71

199. h Subroutines 14 i +�
static cacheblock �demote and �x (c; p)

cache �c;
cacheblock �p;

f
if (hit set 6= c~victim) demote usage (p; hit set ; c~aa ; c~repl);
else demote usage (p; hit set ; c~vv ; c~vrepl);
return p;
g

200. The subroutine load cache (c; p) is called at a moment when c~ lock has been set and c~ inbuf has been
�lled with clean data to be placed in the cache block p.

h Internal prototypes 13 i +�
static void load cache ARGS((cache �; cacheblock �));

201. h Subroutines 14 i +�
static void load cache (c; p)

cache �c;
cacheblock �p;

f
register int i;
register octa �d;
for (i = 0; i < c~bb � c~g; i++) p~dirty [i] = false ;
d = p~data ; p~data = c~ inbuf :data ; c~ inbuf :data = d;
p~ tag = c~ inbuf :tag ;
hit set = cache addr (c; p~ tag); use and �x (c; p); =� p not moved �=
g

202. The subroutine
ush cache (c; p; keep) is called at a \quiet" moment when c~
usher :next = �. It
puts cache block p into c~outbuf and �res up the c~
usher coroutine, which will take care of sending the
data to lower levels of the memory hierarchy. Cache block p is also marked clean.

h Internal prototypes 13 i +�
static void
ush cache ARGS((cache �; cacheblock �;bool));

203. h Subroutines 14 i +�
static void
ush cache (c; p; keep)

cache �c;
cacheblock �p; =� a block inside cache c �=
bool keep ; =� should we preserve the data in p? �=

f
register octa �d;
register char �dd ;
register int j;

c~outbuf :tag = p~ tag ;
if (keep) for (j = 0; j < c~bb � 3; j++) c~outbuf :data [j] = p~data [j];
else d = c~outbuf :data ; c~outbuf :data = p~data ; p~data = d;
dd = c~outbuf :dirty ; c~outbuf :dirty = p~dirty ; p~dirty = dd ;
for (j = 0; j < c~bb � c~g; j++) p~dirty [j] = false ;
c~outbuf :rank = c~bb ; =� this many valid bytes �=
startup(&c~
usher ; c~copy out time); =� will not be aborted �=
g

72 CACHE MEMORY MMIX-PIPE x204

204. The alloc slot routine is called when we wish to put new information into a cache after a cache miss.
It returns a pointer to a cache block in the main area where the new information should be put. The tag of
that cache block is invalidated; the calling routine should take care of �lling it and giving it a valid tag in
due time. The cache's �ller routine should not be active when alloc slot is called.
Inserting new information might also require writing old information into the next level of the memory

hierarchy, if the block being replaced is dirty. This routine returns � in such cases if the cache is
ushing a
previously discarded block. Otherwise it schedules the
usher coroutine.
This routine returns � also if the given key happens to be in the cache. Such cases are rare, but the

following scenario shows that they aren't impossible: Suppose the DT-cache access time is 5, the D-cache
access time is 1, and two processes simultaneously look for the same physical address. One process hits in
DT-cache but misses in D-cache, waiting 5 cycles before trying alloc slot in the D-cache; meanwhile the
other process missed in D-cache but didn't need to use the DT-cache, so it might have updated the D-cache.
A key value is never negative. Therefore we can invalidate the tag in the chosen slot by forcing it to be

negative.

h Internal prototypes 13 i +�
static cacheblock �alloc slot ARGS((cache �;octa));

205. h Subroutines 14 i +�
static cacheblock �alloc slot (c; alf)

cache �c;
octa alf ; =� key that probably isn't in the cache �=

f
register cacheset s;
register cacheblock �p; �q;
if (cache search (c; alf)) return �;
if (c~
usher :next ^ c~outbuf :tag :h � alf :h ^ :((c~outbuf :tag :l � alf :l) &�c~bb)) return �;
s = cache addr (c; alf); =� the set corresponding to alf �=
if (c~victim) p = choose victim (c~victim ; c~vv ; c~vrepl);
else p = choose victim (s; c~aa ; c~repl);
if (is dirty (c; p)) f
if (c~
usher :next) return �;

ush cache (c; p; false);
g
if (c~victim) f
q = choose victim (s; c~aa ; c~repl);
h Swap cache blocks p and q 197 i;
q~ tag :h j= sign bit ; =� invalidate the tag �=
return q;
g
p~ tag :h j= sign bit ; return p;
g

x206 MMIX-PIPE SIMULATED MEMORY 73

206. Simulated memory. How should we deal with the potentially gigantic memory of MMIX? We can't
simply declare an array m that has 248 bytes. (Indeed, up to 263 bytes are needed, if we consider also the
physical addresses � 248 that are reserved for memory-mapped input/output.)
We could regard memory as a special kind of cache, in which every access is required to hit. For example,

such an \M-cache" could be fully associative, with 2a blocks each having a di�erent tag; simulation could
proceed until more than 2a � 1 tags are required. But then the prede�ned value of a might well be so large
that the sequential search of our cache search routine would be too slow.
Instead, we will allocate memory in chunks of 216 bytes at a time, as needed, and we will use hashing to

search for the relevant chunk whenever a physical address is given. If the address is 248 or greater, special
routines called spec read and spec write , supplied by the user, will be called upon to do the reading or
writing. Otherwise the 48-bit address consists of a 32-bit chunk address and a 16-bit chunk o�set.
Chunk addresses that are not used take no space in this simulator. But if, say, 1000 such patterns occur,

the simulator will dynamically allocate approximately 65MB for the portions of main memory that are used.
Parameter mem chunks max speci�es the largest number of di�erent chunk addresses that are supported.
This parameter does not constrain the range of simulated physical addresses, which cover the entire 256
large-terabyte range permitted by MMIX.

hType de�nitions 11 i +�
typedef struct f
tetra tag ; =� 32-bit chunk address �=
octa �chunk ; =� either � or an array of 213 octabytes �=
g chunknode;

207. The parameter hash prime should be a prime number larger than the parameter mem chunks max ,
preferably more than twice as large but not much bigger than that. The default values mem chunks max =
1000 and hash prime = 2003 are set by MMIX con�g unless the user speci�es otherwise.

hExternal variables 4 i +�
Extern int mem chunks ; =� this many chunks are allocated so far �=
Extern int mem chunks max ; =� up to this many di�erent chunks per run �=
Extern int hash prime ; =� larger than mem chunks max , but not enormous �=
Extern chunknode �mem hash ; =� the simulated main memory �=

208. The separately compiled procedures spec read () and spec write () have the same calling conventions
as the general procedures mem read () and mem write (), but with an additional size parameter, which
speci�es that 1� size bytes should be read or written.

h Subroutines 14 i +�
extern octa spec read ARGS((octa addr ; int size)); =� for memory mapped I/O �=
extern void spec write ARGS((octa addr ;octa val ; int size)); =� likewise �=

209. If the program tries to read from a chunk that hasn't been allocated, the value zero is returned,
optionally with a comment to the user.
Chunk address 0 is always allocated �rst. Then we can assume that a matching chunk tag implies a

nonnull chunk pointer.
This routine sets last h to the chunk found, so that we can rapidly read other words that we know must

belong to the same chunk. For this purpose it is convenient to let mem hash [hash prime] be a chunk full of
zeros, representing uninitialized memory.

hExternal prototypes 9 i +�
Extern octa mem read ARGS((octa addr));

74 SIMULATED MEMORY MMIX-PIPE x210

210. hExternal routines 10 i +�
octa mem read (addr)

octa addr ;
f
register tetra o� ; key ;
register int h;

o� = (addr :l & #ffff)� 3;
key = (addr :l & #ffff0000) + addr :h;
for (h = key % hash prime ; mem hash [h]:tag 6= key ; h��) f
if (mem hash [h]:chunk � �) f
if (verbose & uninit mem bit)
errprint2 ("uninitialized memory read at %08x%08x"; addr :h; addr :l);

h = hash prime ; break; =� zero will be returned �=
g
if (h � 0) h = hash prime ;
g
last h = h;
return mem hash [h]:chunk [o�];
g

211. hExternal variables 4 i +�
Extern int last h ; =� the hash index that was most recently correct �=

212. hExternal prototypes 9 i +�
Extern void mem write ARGS((octa addr ;octa val));

213. hExternal routines 10 i +�
void mem write (addr ; val)

octa addr ; val ;
f
register tetra o� ; key ;
register int h;

o� = (addr :l & #ffff)� 3;
key = (addr :l & #ffff0000) + addr :h;
for (h = key % hash prime ; mem hash [h]:tag 6= key ; h��) f
if (mem hash [h]:chunk � �) f
if (++mem chunks > mem chunks max)
panic(errprint1 ("More than %d memory chunks are needed";mem chunks max));

mem hash [h]:chunk = (octa �) calloc(1� 13; sizeof (octa));
if (mem hash [h]:chunk � �)
panic(errprint1 ("I can't allocate memory chunk number %d";mem chunks));

mem hash [h]:tag = key ;
break;
g
if (h � 0) h = hash prime ;

g
last h = h;
mem hash [h]:chunk [o�] = val ;
g

x214 MMIX-PIPE SIMULATED MEMORY 75

214. The memory is characterized by several parameters, depending on the characteristics of the memory
bus being simulated. Let bus words be the number of octabytes read or written simultaneously (usually
bus words is 1 or 2; it must be a power of 2). The number of clock cycles needed to read or write c�bus words
octabytes that all belong to the same cache block is assumed to be mem addr time + c �mem read time or
mem addr time + c �mem write time , respectively.

hExternal variables 4 i +�
Extern int mem addr time ; =� cycles to transmit an address on memory bus �=
Extern int bus words ; =� width of memory bus, in octabytes �=
Extern int mem read time ; =� cycles to read from main memory �=
Extern int mem write time ; =� cycles to write to main memory �=
Extern lockvar mem lock ; =� is nonnull when the bus is busy �=

215. One of the principal ways to write memory is to invoke a
ush to mem coroutine, which is the
Scache~
usher if there is an S-cache, or the Dcache~
usher if there is a D-cache but no S-cache.
When such a coroutine is started, its data~ptr a will be Scache or Dcache . The data to be written will

just have been copied to the cache's outbuf .

hCases for control of special coroutines 126 i +�
case
ush to mem :
f register cache �c = (cache �) data~ptr a ;
switch (data~state) f
case 0: if (mem lock) wait (1);
data~state = 1;

case 1: set lock (self ;mem lock);
data~state = 2;
hWrite the dirty data of c~outbuf and wait for the bus 216 i;

case 2: goto terminate ; =� this frees mem lock and c~outbuf �=
g
g

76 SIMULATED MEMORY MMIX-PIPE x216

216. hWrite the dirty data of c~outbuf and wait for the bus 216 i �
f
register int o� ; last o� ; count ; �rst ; ii ;
register int del = c~gg � 3; =� octabytes per granule �=
octa addr ;

addr = c~outbuf :tag ; o� = (addr :l & #ffff)� 3;
for (i = j = 0;�rst = 1; count = 0; j < c~bb � c~g; j++) f
ii = i+ del ;
if (:c~outbuf :dirty [j]) i = ii ; o� += del ; addr :l += del � 3;
else while (i < ii) f

if (�rst) f
count ++; last o� = o� ; �rst = 0;
mem write (addr ; c~outbuf :data [i]);
g else f
if ((o� � last o�) & (�bus words)) count ++;
last o� = o� ;
mem hash [last h]:chunk [o�] = c~outbuf :data [i];
g
i++; o� ++; addr :l += 8;
g

g
wait (mem addr time + count �mem write time);
g

This code is used in section 215.

x217 MMIX-PIPE CACHE TRANSFERS 77

217. Cache transfers. We have seen that the Dcache~
usher sends data directly to the main memory
if there is no S-cache. But if both D-cache and S-cache exist, the Dcache~
usher is a more complicated
coroutine of type
ush to S . In this case we need to deal with the fact that the S-cache blocks might be
larger than the D-cache blocks; furthermore, the S-cache might have a write-around and/or write-through
policy, etc. But one simplifying fact does help us: We know that the
usher coroutine will not be aborted
until it has run to completion.
Some machines, such as the Alpha 21164, have an additional cache between the S-cache and memory,

called the B-cache (the \backup cache"). A B-cache could be simulated by extending the logic used here;
but such extensions of the present program are left to the interested reader.

hCases for control of special coroutines 126 i +�
case
ush to S :
f register cache �c = (cache �) data~ptr a ;
register int block di� = Scache~bb � c~outbuf :rank ;

p = (cacheblock �) data~ptr b ;
switch (data~state) f
case 0: if (Scache~ lock) wait (1);
data~state = 1;

case 1: set lock (self ;Scache~ lock);
data~ptr b = (void �) cache search (Scache ; c~outbuf :tag);
if (data~ptr b) data~state = 4;
else if (Scache~mode & WRITE_ALLOC) data~state = (block di� ? 2 : 3);
else data~state = 6;
wait (Scache~access time);

case 2: hFill Scache~ inbuf with clean memory data 219 i;
case 3: hAllocate a slot p in the S-cache 218 i;
if (block di�) hCopy Scache~ inbuf to slot p 220 i
else for (j = 0; j < Scache~bb � 3; j++) p~data [j] = c~outbuf :data [j];
for (j = 0; j < Scache~bb � Scache~g; j++) p~dirty [j] = false ;

case 4: copy block (c;&(c~outbuf);Scache ; p);
hit set = cache addr (Scache ; c~outbuf :tag); use and �x (Scache ; p); =� p not moved �=
data~state = 5; wait (Scache~copy in time);

case 5: if ((Scache~mode & WRITE_BACK) � 0) f =� write-through �=
if (Scache~
usher :next) wait (1);

ush cache (Scache ; p; true);
g
goto terminate ;

case 6: hHandle write-around when
ushing to the S-cache 221 i;
g
g

218. hAllocate a slot p in the S-cache 218 i �
if (Scache~�ller :next) wait (1); =� perhaps an unnecessary precaution? �=
p = alloc slot (Scache ; c~outbuf :tag);
if (:p) wait (1);
data~ptr b = (void �) p;
p~ tag = c~outbuf :tag ; p~ tag :l = c~outbuf :tag :l & (�Scache~bb);

This code is used in section 217.

78 CACHE TRANSFERS MMIX-PIPE x219

219. We only need to read block di� bytes, but it's easier to read them all and to charge only for reading
the ones we needed.

hFill Scache~ inbuf with clean memory data 219 i �
f register int count = block di� � 3;
register int o� ; delay ;
octa addr ;

if (mem lock) wait (1);
addr :h = c~outbuf :tag :h; addr :l = c~outbuf :tag :l &�Scache~bb ;
o� = (addr :l & #ffff)� 3;
for (j = 0; j < Scache~bb � 3; j++)
if (j � 0) Scache~ inbuf :data [j] = mem read (addr);
else Scache~ inbuf :data [j] = mem hash [last h]:chunk [j + o�];

set lock (&mem locker ;mem lock);
delay = mem addr time + (int)((count + bus words � 1)=(bus words)) �mem read time ;
startup(&mem locker ; delay);
data~state = 3; wait (delay);
g

This code is used in section 217.

220. hCopy Scache~ inbuf to slot p 220 i �
f
register octa �d = p~data ;

p~data = Scache~ inbuf :data ; Scache~ inbuf :data = d;
g

This code is used in section 217.

221. Here we assume that the granularity is 8.

hHandle write-around when
ushing to the S-cache 221 i �
if (Scache~
usher :next) wait (1);
Scache~outbuf :tag :h = c~outbuf :tag :h;
Scache~outbuf :tag :l = c~outbuf :tag :l & (�Scache~bb);
for (j = 0; j < Scache~bb � Scache~g; j++) Scache~outbuf :dirty [j] = false ;
copy block (c;&(c~outbuf);Scache ;&(Scache~outbuf));
startup(&Scache~
usher ;Scache~copy out time);
goto terminate ;

This code is used in section 217.

x222 MMIX-PIPE CACHE TRANSFERS 79

222. The S-cache gets new data from memory by invoking a �ll from mem coroutine; the I-cache or D-
cache may also invoke a �ll from mem coroutine, if there is no S-cache. When such a coroutine is invoked,
it holds mem lock , and its caller has gone to sleep. A physical memory address is given in data~z:o, and
data~ptr a speci�es either Icache , Dcache , or Scache . Furthermore, data~ptr b speci�es a block within that
cache, determined by the alloc slot routine. The coroutine simulates reading the contents of the speci�ed
memory location, places the result in the x:o �eld of its caller's control block, and wakes up the caller. It
proceeds to �ll the cache's inbuf and, ultimately, the speci�ed cache block, before waking the caller again.
Let c = data~ptr a . The caller is then c~�ll lock , if this variable is nonnull. However, the caller might not

wish to be awoken or to receive the data (for example, if it has been aborted). In such cases c~�ll lock will
be �; the �lling action continues without the wakeup calls. If c = Scache , the S-cache will be locked and the
caller will not have been aborted.

hCases for control of special coroutines 126 i +�
case �ll from mem :
f register cache �c = (cache �) data~ptr a ;
register coroutine �cc = c~�ll lock ;

switch (data~state) f
case 0: data~x:o = mem read (data~z:o);
if (cc) f
cc~ctl~x:o = data~x:o;
awaken (cc ;mem read time);
g
data~state = 1;
hRead data into c~ inbuf and wait for the bus 223 i;

case 1: release lock (self ;mem lock);
data~state = 2;

case 2: if (c 6= Scache) f
if (c~ lock) wait (1);
set lock (self ; c~ lock);
g
if (cc) awaken (cc ; c~copy in time); =� the second wakeup call �=
load cache (c; (cacheblock �) data~ptr b);
data~state = 3; wait (c~copy in time);

case 3: goto terminate ;
g
g

223. If c's cache size is no larger than the memory bus, we wait an extra cycle, so that there will be two
wakeup calls.

hRead data into c~ inbuf and wait for the bus 223 i �
f
register int count ; o� ;

c~ inbuf :tag = data~z:o; c~ inbuf :tag :l &= �c~bb ;
count = c~bb � 3; o� = (c~ inbuf :tag :l &

#ffff)� 3;
for (i = 0; i < count ; i++; o� ++) c~ inbuf :data [i] = mem hash [last h]:chunk [o�];
if (count � bus words) wait (1 +mem read time)
else wait ((int)(count=bus words) �mem read time);
g

This code is used in section 222.

80 CACHE TRANSFERS MMIX-PIPE x224

224. The �ll from S coroutine has the same conventions as �ll from mem , except that the data comes
directly from the S-cache if it is present there. This is the �ller coroutine for the I-cache and D-cache if an
S-cache is present.

hCases for control of special coroutines 126 i +�
case �ll from S :
f register cache �c = (cache �) data~ptr a ;
register coroutine �cc = c~�ll lock ;

p = (cacheblock �) data~ptr c ;
switch (data~state) f
case 0: p = cache search (Scache ; data~z:o);
if (p) goto S non miss ;
data~state = 1;

case 1: hStart the S-cache �ller 225 i;
data~state = 2; sleep ;

case 2: if (cc) f
cc~ctl~x:o = data~x:o; =� this data has been supplied by Scache~�ller �=
awaken (cc ;Scache~access time); =� we propagate it back �=
g
data~state = 3; sleep ; =� when we awake, the S-cache will have our data �=

S non miss : if (cc) f
cc~ctl~x:o = p~data [(data~z:o:l & (Scache~bb � 1))� 3];
awaken (cc ;Scache~access time);

g
case 3: hCopy data from p into c~ inbuf 226 i;
data~state = 4; wait (Scache~access time);

case 4: Scache~ lock = �; =� we had been holding that lock �=
data~state = 5;

case 5: if (c~ lock) wait (1);
set lock (self ; c~ lock);
load cache (c; (cacheblock �) data~ptr b);
data~state = 6; wait (c~copy in time);

case 6: if (cc) awaken (cc ; 1); =� second wakeup call �=
goto terminate ;
g
g

225. We are already holding the Scache~ lock , but we're about to take on the Scache~�ll lock too (with
the understanding that one is \stronger" than the other). For a short time the Scache~ lock will point to
us but we will point to Scache~�ll lock ; this will not cause di�culty, because the present coroutine is not
abortable.

h Start the S-cache �ller 225 i �
if (Scache~�ller :next _mem lock) wait (1);
p = alloc slot (Scache ; data~z:o);
if (:p) wait (1);
set lock (&Scache~�ller ;mem lock);
set lock (self ;Scache~�ll lock);
data~ptr c = Scache~�ller ctl :ptr b = (void �) p;
Scache~�ller ctl :z:o = data~z:o;
startup(&Scache~�ller ;mem addr time);

This code is used in section 224.

x226 MMIX-PIPE CACHE TRANSFERS 81

226. The S-cache blocks might be wider than the blocks of the I-cache or D-cache, so the copying in this
step isn't quite trivial.

hCopy data from p into c~ inbuf 226 i �
f register int o� ;

c~ inbuf :tag = data~z:o; c~ inbuf :tag :l &= �c~bb ;
for (j = 0; o� = (c~ inbuf :tag :l & (Scache~bb � 1))� 3; j < c~bb � 3; j++; o� ++)
c~ inbuf :data [j] = p~data [o�];

release lock (self ;Scache~�ll lock);
set lock (self ;Scache~ lock);
g

This code is used in section 224.

227. The instruction PRELD X,$Y,$Z generates bX=2bc commands if there are 2b bytes per block in the
D-cache. These commands will try to preload blocks $Y + $Z, $Y + $Z + 2b, : : : , into the cache if it is not
too busy.
Similar considerations apply to the instructions PREGO X,$Y,$Z and PREST X,$Y,$Z.

h Special cases of instruction dispatch 117 i +�
case preld : case prest : if (:Dcache) goto noop inst ;
if (cool~xx � Dcache~bb) cool~ interim = true ;
cool~ptr a = (void �) mem :up ; break;

case prego : if (:Icache) goto noop inst ;
if (cool~xx � Icache~bb) cool~ interim = true ;
cool~ptr a = (void �) mem :up ; break;

228. If the block size is 64, a command like PREST 200,$Y,$Z is actually issued as four commands
PREST 200,$Y,$Z; PREST 191,$Y,$Z; PREST 127,$Y,$Z; PREST 63,$Y,$Z. An interruption will then
be able to resume properly. In the pipeline, the instruction PREST 200,$Y,$Z is considered to a�ect bytes
$Y + $Z + 192 through $Y + $Z + 200, or fewer bytes if $Y + $Z is not a multiple of 64. (Remember that
these instructions are only hints; we act on them only if it is reasonably convenient to do so.)

hGet ready for the next step of PRELD or PREST 228 i �
head~ inst = (head~ inst &�((Dcache~bb � 1)� 16))� #10000;

This code is used in section 81.

229. hGet ready for the next step of PREGO 229 i �
head~ inst = (head~ inst &�((Icache~bb � 1)� 16))� #10000;

This code is used in section 81.

230. Another coroutine, called cleanup , is occasionally called into action to remove dirty data from the
D-cache and S-cache. If it is invoked by starting in state 0, with its i �eld set to sync , it will clean everything.
It can also be invoked in state 4, with its i �eld set to syncd and with a physical address in its z:o �eld; then
it simply makes sure that no D-cache or S-cache blocks associated with that address are dirty.
Field x:o:h should be set to zero if items are expected to remain in the cache after being cleaned; otherwise

�eld x:o:h should be set to sign bit .
The coroutine that invokes cleanup should hold clean lock . If that coroutine dies, because of an interrup-

tion, the cleanup coroutine will terminate prematurely.
We assume that the D-cache and S-cache have some sort of way to identify their �rst dirty block, if any,

in access time cycles.

hGlobal variables 20 i +�
coroutine clean co ;
control clean ctl ;
lockvar clean lock ;

82 CACHE TRANSFERS MMIX-PIPE x231

231. h Initialize everything 22 i +�
clean co :ctl = &clean ctl ;
clean co :name = "Clean";
clean co :stage = cleanup ;
clean ctl :go :o:l = 4;

232. hCases for control of special coroutines 126 i +�
case cleanup : p = (cacheblock �) data~ptr b ;
switch (data~state) f
hCases 0 through 4, for the D-cache 233 i;
hCases 5 through 9, for the S-cache 234 i;

case 10: goto terminate ;
g

x233 MMIX-PIPE CACHE TRANSFERS 83

233. hCases 0 through 4, for the D-cache 233 i �
case 0: if (Dcache~ lock _ (j = get reader (Dcache)) < 0) wait (1);
startup(&Dcache~reader [j];Dcache~access time);
set lock (self ;Dcache~ lock);
i = j = 0;

Dclean loop : p = (i < Dcache~cc ? &(Dcache~set [i][j]) : &(Dcache~victim [j]));
if (p~ tag :h& sign bit) goto Dclean inc ;
if (:is dirty (Dcache ; p)) f
p~ tag :h j= data~x:o:h; goto Dclean inc ;
g
data~y:o:h = i; data~y:o:l = j;

Dclean : data~state = 1; data~ptr b = (void �) p; wait (Dcache~access time);
case 1: if (Dcache~
usher :next) wait (1);

ush cache (Dcache ; p; data~x:o:h � 0);
p~ tag :h j= data~x:o:h;
release lock (self ;Dcache~ lock);
data~state = 2; wait (Dcache~copy out time);

case 2: if (:clean lock) goto done ; =� premature termination �=
if (Dcache~
usher :next) wait (1);
if (data~i 6= sync) goto Sprep ;
data~state = 3;

case 3: if (Dcache~ lock _ (j = get reader (Dcache)) < 0) wait (1);
startup(&Dcache~reader [j];Dcache~access time);
set lock (self ;Dcache~ lock);
i = data~y:o:h; j = data~y:o:l;

Dclean inc : j++;
if (i < Dcache~cc ^ j � Dcache~aa) j = 0; i++;
if (i � Dcache~cc ^ j � Dcache~vv) f
data~state = 5; wait (Dcache~access time);
g
goto Dclean loop ;

case 4: if (Dcache~ lock _ (j = get reader (Dcache)) < 0) wait (1);
startup(&Dcache~reader [j];Dcache~access time);
set lock (self ;Dcache~ lock);
p = cache search (Dcache ; data~z:o);
if (p) f
demote and �x (Dcache ; p);
if (is dirty (Dcache ; p)) goto Dclean ;
g
data~state = 9; wait (Dcache~access time);

This code is used in section 232.

84 CACHE TRANSFERS MMIX-PIPE x234

234. hCases 5 through 9, for the S-cache 234 i �
case 5: if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
if (:Scache) goto done ;
if (Scache~ lock) wait (1);
set lock (self ;Scache~ lock);
i = j = 0;

Sclean loop : p = (i < Scache~cc ? &(Scache~set [i][j]) : &(Scache~victim [j]));
if (p~ tag :h& sign bit) goto Sclean inc ;
if (:is dirty (Scache ; p)) f
p~ tag :h j= data~x:o:h; goto Sclean inc ;
g
data~y:o:h = i; data~y:o:l = j;

Sclean : data~state = 6; data~ptr b = (void �) p; wait (Scache~access time);
case 6: if (Scache~
usher :next) wait (1);

ush cache (Scache ; p; data~x:o:h � 0);
p~ tag :h j= data~x:o:h;
release lock (self ;Scache~ lock);
data~state = 7; wait (Scache~copy out time);

case 7: if (:clean lock) goto done ; =� premature termination �=
if (Scache~
usher :next) wait (1);
if (data~i 6= sync) goto done ;
data~state = 8;

case 8: if (Scache~ lock) wait (1);
set lock (self ;Scache~ lock);
i = data~y:o:h; j = data~y:o:l;

Sclean inc : j++;
if (i < Scache~cc ^ j � Scache~aa) j = 0; i++;
if (i � Scache~cc ^ j � Scache~vv) f
data~state = 10; wait (Scache~access time);
g
goto Sclean loop ;

Sprep : data~state = 9;
case 9: if (self~ lockloc) release lock (self ;Dcache~ lock);
if (:Scache) goto done ;
if (Scache~ lock) wait (1);
set lock (self ;Scache~ lock);
p = cache search (Scache ; data~z:o);
if (p) f
demote and �x (Scache ; p);
if (is dirty (Scache ; p)) goto Sclean ;
g
data~state = 10; wait (Scache~access time);

This code is used in section 232.

x235 MMIX-PIPE VIRTUAL ADDRESS TRANSLATION 85

235. Virtual address translation. Special arrays of coroutines and control blocks come into play when
we need to implement MMIX's rather complicated page table mechanism for virtual address translation. In
e�ect, we have up to ten control blocks outside of the reorder bu�er that are capable of executing instructions
just as if they were part of that bu�er. The \opcodes" of these non-abortable instructions are special internal
operations called ldptp and ldpte , for loading page table pointers and page table entries.
Suppose, for example, that we need to translate a virtual address for the DT-cache in which the virtual

page address (a4a3a2a1a0)1024 of segment i has a4 = a3 = 0 and a2 6= 0. Then the rules say that we should
�rst �nd a page table pointer p2 in physical location 213(r+ bi+2)+8a2, then another page table pointer p1
in location p2 +8a1, and �nally the page table entry p0 in location p1 +8a0. The simulator achieves this by
setting up three coroutines c0, c1, c2 whose control blocks correspond to the pseudo-instructions

LDPTP x,[263 + 213(r + bi + 2)],8a2
LDPTP x,x,8a1
LDPTE x,x,8a0

where x is a hidden internal register and the other quantities are immediate values. Slight changes to
the normal functionality of LDO give us the actions needed to implement LDPTP and LDPTE. Coroutine cj
corresponds to the instruction that involves aj and computes pj ; when c0 has computed its value p0, we
know how to translate the original virtual address.
The LDPTP and LDPTE commands return zero if their y operand is zero or if the page table does not

properly match rV.

#de�ne LDPTP PREGO =� internally this won't cause confusion �=
#de�ne LDPTE GO

hGlobal variables 20 i +�
control IPTctl [5]; DPTctl [5]; =� control blocks for I and D page translation �=
coroutine IPTco [10]; DPTco [10]; =� each coroutine is a two-stage pipeline �=
char �IPTname [5] = f"IPT0"; "IPT1"; "IPT2"; "IPT3"; "IPT4"g;
char �DPTname [5] = f"DPT0"; "DPT1"; "DPT2"; "DPT3"; "DPT4"g;

236. h Initialize everything 22 i +�
for (j = 0; j < 5; j++) f
DPTco [2 � j]:ctl = &DPTctl [j]; IPTco [2 � j]:ctl = &IPTctl [j];
if (j > 0) DPTctl [j]:op = IPTctl [j]:op = LDPTP;DPTctl [j]:i = IPTctl [j]:i = ldptp ;
else DPTctl [0]:op = IPTctl [0]:op = LDPTE;DPTctl [0]:i = IPTctl [0]:i = ldpte ;
IPTctl [j]:loc = DPTctl [j]:loc = neg one ;
IPTctl [j]:go :o = DPTctl [j]:go :o = incr (neg one ; 4);
IPTctl [j]:ptr a = DPTctl [j]:ptr a = (void �) &mem ;
IPTctl [j]:ren x = DPTctl [j]:ren x = true ;
IPTctl [j]:x:addr :h = DPTctl [j]:x:addr :h = �1;
IPTco [2 � j]:stage = DPTco [2 � j]:stage = 1;
IPTco [2 � j + 1]:stage = DPTco [2 � j + 1]:stage = 2;
IPTco [2 � j]:name = IPTco [2 � j + 1]:name = IPTname [j];
DPTco [2 � j]:name = DPTco [2 � j + 1]:name = DPTname [j];
g
ITcache~�ller ctl :ptr c = (void �) &IPTco [0]; DTcache~�ller ctl :ptr c = (void �) &DPTco [0];

86 VIRTUAL ADDRESS TRANSLATION MMIX-PIPE x237

237. Page table calculations are invoked by a coroutine of type �ll from virt , which is used to �ll the
IT-cache or DT-cache. The calling conventions of �ll from virt are analogous to those of �ll from mem

or �ll from S : A virtual address is supplied in data~y:o, and data~ptr a points to a cache (ITcache or
DTcache), while data~ptr b is a block in that cache. We wake up the caller, who holds the cache's �ll lock ,
as soon as the translation of the given address has been calculated, unless the caller has been aborted. (No
second wakeup call is necessary.)

hCases for control of special coroutines 126 i +�
case �ll from virt :
f register cache �c = (cache �) data~ptr a ;
register coroutine �cc = c~�ll lock ;
register coroutine �co = (coroutine �) data~ptr c ; =� &IPTco [0] or &DPTco [0] �=
octa aaaaa ;

switch (data~state) f
case 0: h Start up auxiliary coroutines to compute the page table entry 243 i;
data~state = 1;

case 1: if (data~b:p) f
if (data~b:p~known) data~b:o = data~b:p~o; data~b:p = �;
else wait (1);
g
hCompute the new entry for c~ inbuf and give the caller a sneak preview 245 i;
data~state = 2;

case 2: if (c~ lock) wait (1);
set lock (self ; c~ lock);
load cache (c; (cacheblock �) data~ptr b);
data~state = 3; wait (c~copy in time);

case 3: data~b:o = zero octa ; goto terminate ;
g
g

238. The current contents of rV, the special virtual translation register, are kept unpacked in several global
variables page r , page s , etc., for convenience. Whenever rV changes, we recompute all these variables.

hGlobal variables 20 i +�
unsigned int page n ; =� the 10-bit n �eld of rV, times 8 �=
int page r ; =� the 27-bit r �eld of rV �=
int page s ; =� the 8-bit s �eld of rV �=
int page f ; =� the 3-bit f �eld of rV �=
int page b [5]; =� the 4-bit b �elds of rV; page b [0] = 0 �=
octa page mask ; =� the least signi�cant s bits �=
bool page bad = true ; =� does rV violate the rules? �=

x239 MMIX-PIPE VIRTUAL ADDRESS TRANSLATION 87

239. hUpdate the page variables 239 i �
f octa rv ;

rv = data~z:o;
page f = rv :l & 7; page bad = (page f > 1);
page n = rv :l & #1ff8;
rv = shift right (rv ; 13; 1);
page r = rv :l & #7ffffff;
rv = shift right (rv ; 27; 1);
page s = rv :l & #ff;
if (page s < 13 _ page s > 48) page bad = true ;
else if (page s < 32) page mask :h = 0; page mask :l = (1� page s)� 1;
else page mask :h = (1� (page s � 32))� 1; page mask :l = #ffffffff;
page b [4] = (rv :l� 8) & #f;
page b [3] = (rv :l� 12) & #f;
page b [2] = (rv :l� 16) & #f;
page b [1] = (rv :l� 20) & #f;
g

This code is used in section 329.

240. Here's how we compute a tag of the IT-cache or DT-cache from a virtual address, and how we compute
a physical address from a translation found in the cache.

#de�ne trans key (addr) incr (oandn (addr ; page mask); page n)

h Internal prototypes 13 i +�
static octa phys addr ARGS((octa;octa));

241. h Subroutines 14 i +�
static octa phys addr (virt ; trans)

octa virt ; trans ;
f octa t;

t = oandn (trans ; page mask); =� zero out the ynp �elds of a PTE �=
return oplus (t; oand (virt ; page mask));
g

242. Cheap (and slow) versions of MMIX leave the page table calculations to software. If the global variable
no hardware PT is set true, �ll from virt begins its actions in state 1, not state 0. (See the RESUME_TRANS
operation.)

hExternal variables 4 i +�
Extern bool no hardware PT ;

88 VIRTUAL ADDRESS TRANSLATION MMIX-PIPE x243

243. Note: The operating system is supposed to ensure that changes to the page table entries do not appear
in the pipeline when a translation cache is being updated. The internal LDPTP and LDPTE instructions use
only the \hot state" of the memory system.

h Start up auxiliary coroutines to compute the page table entry 243 i �
aaaaa = data~y:o;
i = aaaaa :h� 29; =� the segment number �=
aaaaa :h &= #1fffffff; =� the address within segment i �=
aaaaa = shift right (aaaaa ; page s ; 1); =� the page address �=
for (j = 0; aaaaa :l 6= 0 _ aaaaa :h 6= 0; j++) f
co [2 � j]:ctl~z:o:h = 0; co [2 � j]:ctl~z:o:l = (aaaaa :l & #3ff)� 3;
aaaaa = shift right (aaaaa ; 10; 1);
g
if (page b [i+ 1] < page b [i] + j) =� address too large �=
; =� nothing needs to be done, since data~b:o is zero �=

else f
if (j � 0) j = 1; co [0]:ctl~z:o = zero octa ;
h Issue j pseudo-instructions to compute a page table entry 244 i;
g

This code is used in section 237.

244. The �rst stage of coroutine cj is co [2 � j]. It will pass the jth control block to the second stage,
co [2 � j + 1], which will load page table information from memory (or hopefully from the D-cache).

h Issue j pseudo-instructions to compute a page table entry 244 i �
j��;
aaaaa :l = page r + page b [i] + j;
co [2 � j]:ctl~y:p = �;
co [2 � j]:ctl~y:o = shift left (aaaaa ; 13);
co [2 � j]:ctl~y:o:h += sign bit ;
for (; ; j��) f
co [2 � j]:ctl~x:o = zero octa ; co [2 � j]:ctl~x:known = false ;
co [2 � j]:ctl~owner = &co [2 � j];
startup(&co [2 � j]; 1);
if (j � 0) break;
co [2 � (j � 1)]:ctl~y:p = &co [2 � j]:ctl~x;
g
data~b:p = &co [0]:ctl~x;

This code is used in section 243.

245. At this point the translation of the given virtual address data~y:o is the octabyte data~b:o. Its least
signi�cant three bits are the protection code p = prpwpx; its page address �eld is scaled by 2s. It is entirely
zero, including the protection bits, if there was a page table failure.
The z �eld of the caller receives this translation.

hCompute the new entry for c~ inbuf and give the caller a sneak preview 245 i �
c~ inbuf :tag = trans key (data~y:o);
c~ inbuf :data [0] = data~b:o;
if (cc) f
cc~ctl~z:o = data~b:o;
awaken (cc ; 1);
g

This code is used in section 237.

x246 MMIX-PIPE THE WRITE BUFFER 89

246. The write bu�er. The dispatcher has arranged things so that speculative stores into memory are
recorded in a doubly linked list leading upward from mem . When such instructions �nally are committed,
they enter the \write bu�er," which holds octabytes that are ready to be written into designated physical
memory addresses (or into the D-cache and/or S-cache). The \hot state" of the computation is re
ected not
only by the registers and caches but also by the instructions that are pending in the write bu�er.

hType de�nitions 11 i +�
typedef struct f
octa o; =� data to be stored �=
octa addr ; =� its physical address �=
tetra stamp ; =� when last committed (mod 232) �=
internal opcode i; =� is this write special? �=
int size ; =� parameter for spec write �=
g write node;

247. We represent the bu�er in the usual way as a circular list, with elements write tail +1, write tail +2,
: : : , write head .
The data will sit at least holding time cycles before it leaves the write bu�er. This speeds things up when

di�erent �elds of the same octabyte are being stored by di�erent instructions.

hExternal variables 4 i +�
Extern write node �wbuf bot ; �wbuf top ; =� least and greatest write bu�er nodes �=
Extern write node �write head ; �write tail ; =� front and rear of the write bu�er �=
Extern lockvar wbuf lock ; =� is the data in write head being written? �=
Extern int holding time ; =� minimum holding time �=
Extern lockvar speed lock ; =� should we ignore holding time? �=

248. hGlobal variables 20 i +�
coroutine write co ; =� coroutine that empties the write bu�er �=
control write ctl ; =� its control block �=

249. h Initialize everything 22 i +�
write co :ctl = &write ctl ;
write co :name = "Write";
write co :stage = write from wbuf ;
write ctl :ptr a = (void �) &mem ;
write ctl :go :o:l = 4;
startup(&write co ; 1);
write head = write tail = wbuf top ;

250. h Internal prototypes 13 i +�
static void print write bu�er ARGS((void));

90 THE WRITE BUFFER MMIX-PIPE x251

251. h Subroutines 14 i +�
static void print write bu�er ()
f
printf ("Write buffer");
if (write head � write tail) printf (" (empty)\n");
else f register write node �p;
printf (":\n");
for (p = write head ; p 6= write tail ; p = (p � wbuf bot ? wbuf top : p� 1)) f
printf ("m["); print octa (p~addr); printf ("]="); print octa (p~o);
if (p~i � stunc) printf (" unc");
else if (p~i � sync) printf (" sync");
printf (" (age %d)\n"; ticks :l � p~stamp);

g
g
g

252. The entire present state of the pipeline computation can be visualized by printing �rst the write
bu�er, then the reorder bu�er, then the fetch bu�er. This shows the progression of results from oldest to
youngest, from sizzling hot to ice cold.

hExternal prototypes 9 i +�
Extern void print pipe ARGS((void));

253. hExternal routines 10 i +�
void print pipe ()
f
print write bu�er ();
print reorder bu�er ();
print fetch bu�er ();
g

254. The write search routine looks to see if any instructions ahead of a given place in the mem list of the
reorder bu�er are storing into a given physical address, or if there's a pending instruction in the write bu�er
for that address. If so, it returns a pointer to the value to be written. If not, it returns �. If the answer is
currently unknown, because at least one possibly relevant physical address has not yet been computed, the
subroutine returns the special code value DUNNO.
The search starts at the x:up �eld of a control block for a store instruction, otherwise at the ptr a �eld of

the control block, unless ptr a points to a committed instruction.
The i �eld in the write bu�er is usually st or pst , inherited from a store or partial store command. It may

also be sync (from SYNC 1 or SYNC 3) or stunc (from STUNC).

#de�ne DUNNO ((octa �) 1) =� an impossible non-� pointer �=
h Internal prototypes 13 i +�
static octa �write search ARGS((control �;octa));

x255 MMIX-PIPE THE WRITE BUFFER 91

255. h Subroutines 14 i +�
static octa �write search (ctl ; addr)

control �ctl ;
octa addr ;

f register specnode �p = (ctl~mem x ? ctl~x:up : (specnode �) ctl~ptr a);
register write node �q = write tail ;

addr :l &= �8;
if (p � &mem) goto qloop ;
if (p > &hot~x ^ ctl � hot) goto qloop ; =� already committed �=
if (p < &ctl~x ^ (ctl � hot _ p > &hot~x)) goto qloop ;
for (; p 6= &mem ; p = p~up) f
if (p~addr :h � (tetra) �1) return DUNNO;
if ((p~addr :l &�8) � addr :l ^ p~addr :h � addr :h) return (p~known ? &(p~o) : DUNNO);

g
qloop : for (; ;) f

if (q � write head) return �;
if (q � wbuf top) q = wbuf bot ; else q++;
if (q~addr :l � addr :l ^ q~addr :h � addr :h) return &(q~o);
g
g

92 THE WRITE BUFFER MMIX-PIPE x256

256. When we're committing new data to memory, we can update an existing item in the write bu�er if
it has the same physical address, unless that item is already in the process of being written out. Increasing
the value of holding time will increase the chance that this economy is possible, but it will also increase the
number of bu�ered items when writes are to di�erent locations.
A store instruction that sets any of the eight interrupt bits rwxnkbsp will not a�ect memory, even if it

doesn't cause an interrupt.
When \store" is followed by \store uncached" at the same address, or vice versa, we believe the most

recent hint.

hCommit to memory if possible, otherwise break 256 i �
f register write node �q = write tail ;

if (hot~ interrupt & (F_BIT + #ff)) goto done with write ;
if (hot~x:addr :h&

#ffff0000) f
if (hot~op � STB ^ hot~op < STSF) q~size = (hot~op & #f)� 2;
else if (hot~op � STSF ^ hot~op < STCO) q~size = 2;
else q~size = 3;
g
if (hot~i 6= sync)
for (; ;) f
if (q � write head) break;
if (q � wbuf top) q = wbuf bot ; else q++;
if (q~i � sync) break;
if (q~addr :l � hot~x:addr :l ^ q~addr :h � hot~x:addr :h ^ (q 6= write head _ :wbuf lock))
goto addr found ;

g
f register write node �p = (write tail � wbuf bot ? wbuf top : write tail � 1);

if (p � write head) break; =� the write bu�er is full �=
q = write tail ; write tail = p;
q~addr = hot~x:addr ;
g

addr found : q~o = hot~x:o;
q~stamp = ticks :l;
q~i = hot~i;

done with write : spec rem (&(hot~x));
mem slots++;
g

This code is used in section 146.

x257 MMIX-PIPE THE WRITE BUFFER 93

257. A special coroutine whose duty is to empty the write bu�er is always active. It holds the wbuf lock
while it is writing the contents of write head . It holds Dcache~�ll lock while waiting for the D-cache to �ll
a block.

hCases for control of special coroutines 126 i +�
case write from wbuf : p = (cacheblock �) data~ptr b ;
switch (data~state) f
case 4: hForward the new data past the D-cache if it is write-through 263 i;
data~state = 5;

case 5: if (write head � wbuf bot) write head = wbuf top ; else write head ��;
write restart : data~state = 0;
case 0: if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
if (write head � write tail) wait (1); =� write bu�er is empty �=
if (write head~i � sync) h Ignore the item in write head 264 i;
if (write head~addr :h&

#ffff0000) goto mem direct ;
if ((int)(ticks :l � write head~stamp) < holding time ^ :speed lock) wait (1); =� data too raw �=
if (:Dcache) goto mem direct ; =� not cached �=
if (Dcache~ lock _ (j = get reader (Dcache)) < 0) wait (1); =� D-cache busy �=
startup(&Dcache~reader [j];Dcache~access time);
hWrite the data into the D-cache and set state = 4, if there's a cache hit 262 i;
data~state = ((Dcache~mode & WRITE_ALLOC) ^ write head~i 6= stunc ? 1 : 3);
wait (Dcache~access time);

case 1: hTry to put the contents of location write head~addr into the D-cache 261 i;
data~state = 2; sleep ;

case 2: data~state = 0; sleep ; =� wake up when the D-cache has the block �=
case 3: hHandle write-around when writing to the D-cache 259 i;
mem direct : hWrite directly from write head to memory 260 i;
g

258. hLocal variables 12 i +�
register cacheblock �p; �q;

259. The granularity is guaranteed to be 8 in write-around mode (see MMIX con�g). Although an
uncached store will not be stored in the D-cache (unless it hits in the D-cache), it will go into a secondary
cache.

hHandle write-around when writing to the D-cache 259 i �
if (Dcache~�ller :next) goto write restart ;
if ((Scache ^ Scache~ lock) _ (:Scache ^mem lock)) goto write restart ;
if (Dcache~
usher :next) wait (1);
Dcache~outbuf :tag :h = write head~addr :h;
Dcache~outbuf :tag :l = write head~addr :l & (�Dcache~bb);
for (j = 0; j < Dcache~bb � Dcache~g; j++) Dcache~outbuf :dirty [j] = false ;
Dcache~outbuf :data [(write head~addr :l & (Dcache~bb � 1))� 3] = write head~o;
Dcache~outbuf :dirty [(write head~addr :l & (Dcache~bb � 1))� Dcache~g] = true ;
Dcache~outbuf :rank = Dcache~gg ; =� this many valid bytes �=
set lock (self ;wbuf lock);
startup(&Dcache~
usher ;Dcache~copy out time);
data~state = 5; wait (Dcache~copy out time);

This code is used in section 257.

94 THE WRITE BUFFER MMIX-PIPE x260

260. hWrite directly from write head to memory 260 i �
if (mem lock) wait (1);
set lock (self ;wbuf lock);
set lock (&mem locker ;mem lock); =� a coroutine of type vanish �=
startup(&mem locker ;mem addr time +mem write time);
if (write head~addr :h&

#ffff0000) spec write (write head~addr ;write head~o;write head~size);
else mem write (write head~addr ;write head~o);
data~state = 5; wait (mem addr time +mem write time);

This code is used in section 257.

261. A subtlety needs to be mentioned here: While we're trying to update the D-cache, another instruction
might be �lling the same cache block (although not because of the same physical address). Therefore we
goto write restart here instead of saying wait (1).

hTry to put the contents of location write head~addr into the D-cache 261 i �
if (Dcache~�ller :next) goto write restart ;
if ((Scache ^ Scache~ lock) _ (:Scache ^mem lock)) goto write restart ;
p = alloc slot (Dcache ;write head~addr);
if (:p) goto write restart ;
if (Scache) set lock (&Dcache~�ller ;Scache~ lock)
else set lock (&Dcache~�ller ;mem lock);
set lock (self ;Dcache~�ll lock);
data~ptr b = Dcache~�ller ctl :ptr b = (void �) p;
Dcache~�ller ctl :z:o = write head~addr ;
startup(&Dcache~�ller ;Scache ? Scache~access time : mem addr time);

This code is used in section 257.

262. Here it is assumed that Dcache~access time is enough to search the D-cache and update one octabyte
in case of a hit. The D-cache is not locked, since other coroutines that might be simultaneously reading the
D-cache are not going to use the octabyte that changes. Perhaps the simulator is being too lenient here.

hWrite the data into the D-cache and set state = 4, if there's a cache hit 262 i �
p = cache search (Dcache ;write head~addr);
if (p) f
p = use and �x (Dcache ; p);
set lock (self ;wbuf lock);
data~ptr b = (void �) p;
p~data [(write head~addr :l & (Dcache~bb � 1))� 3] = write head~o;
p~dirty [(write head~addr :l & (Dcache~bb � 1))� Dcache~g] = true ;
data~state = 4; wait (Dcache~access time);
g

This code is used in section 257.

263. hForward the new data past the D-cache if it is write-through 263 i �
if ((Dcache~mode & WRITE_BACK) � 0) f =� write-through �=
if (Dcache~
usher :next) wait (1);

ush cache (Dcache ; p; true);
g

This code is used in section 257.

x264 MMIX-PIPE THE WRITE BUFFER 95

264. h Ignore the item in write head 264 i �
f
set lock (self ;wbuf lock);
data~state = 5;
wait (1);
g

This code is used in section 257.

96 LOADING AND STORING MMIX-PIPE x265

265. Loading and storing. A RISC machine is often said to have a \load/store architecture," perhaps
because loading and storing are among the most di�cult things a RISC machine is called upon to do.
We want memory accesses to be e�cient, so we try to access the D-cache at the same time as we are

translating a virtual address via the DT-cache. Usually we hit in both caches, but numerous cases must be
dealt with when we miss. Is there an elegant way to handle all the contingencies? Alas, the author of this
program was unable to think of anything better than to throw lots of code at the problem | knowing full
well that such a spaghetti-like approach is fraught with possibilities for error.
Instructions like LDO x; y; z operate in two pipeline stages. The �rst stage computes the virtual address

y + z, waiting if necessary until y and z are both known; then it starts to access the necessary caches. In
the second stage we ascertain the corresponding physical address and hopefully �nd the data in the cache
(or in the speculative mem list or the write bu�er).
An instruction like STB x; y; z shares some of the computation of LDO x; y; z, because only one byte is

being stored but the other seven bytes must be found in the cache. In this case, however, x is treated as an
input, and mem is the output. The second stage of a store command can begin even though x is not known
during the �rst stage.
Here's what we do at the beginning of stage 1.

#de�ne ld st launch 7 =� state when load/store command has its memory address �=
hCases to compute the virtual address of a memory operation 265 i �
case preld : case prest : case prego :
data~z:o = incr (data~z:o; data~xx &�(data~i � prego ? Icache : Dcache)~bb);
=� (I hope the adder is fast enough) �=

case ld : case ldunc : case ldvts : case st : case pst : case syncd : case syncid : start ld st :
data~y:o = oplus (data~y:o; data~z:o);
data~state = ld st launch ; goto switch1 ;

case ldptp : case ldpte : if (data~y:o:h) goto start ld st ;
data~x:o = zero octa ; data~x:known = true ; goto die ; =� page table fault �=

This code is used in section 132.

266. #de�ne PRW_BITS (data~i < st ? PR_BIT : data~i � pst ? PR_BIT + PW_BIT : (data~i �
syncid ^ (data~ loc :h& sign bit)) ? 0 : PW_BIT)

h Special cases for states in the �rst stage 266 i �
case ld st launch : if ((self + 1)~next) wait (1); =� second stage must be clear �=
hHandle special cases for operations like prego and ldvts 289 i;
if (data~y:o:h& sign bit) hDo load/store stage 1 with known physical address 271 i;
if (page bad) f
if (data~i < preld _ data~i � st _ data~i � pst) data~ interrupt j= PRW_BITS;
goto �n ex ;
g
if (DTcache~ lock _ (j = get reader (DTcache)) < 0) wait (1);
startup(&DTcache~reader [j];DTcache~access time);
hLook up the address in the DT-cache, and also in the D-cache if possible 267 i;
pass after (DTcache~access time); goto passit ;

See also sections 310, 326, 360, and 363.

This code is used in section 130.

x267 MMIX-PIPE LOADING AND STORING 97

267. When stage 2 of a load/store command begins, the state will depend on what transpired in stage 1.
For example, data~state will be DT miss if the virtual address key can't be found in the DT-cache; then
stage 2 will have to compute the physical address the hard way.
The data~state will be DT hit if the physical address is known via the DT-cache, but the data may or may

not be in the D-cache. The data~state will be hit and miss if the DT-cache hits and the D-cache doesn't.
And data~state will be ld ready if data~x:o is the desired octabyte (for example, if both caches hit).

#de�ne DT miss 10 =� second stage state when DT-cache doesn't hold the key �=
#de�ne DT hit 11 =� second stage state when physical address is known �=
#de�ne hit and miss 12 =� second stage state when D-cache misses �=
#de�ne ld ready 13 =� second stage state when data has been read �=
#de�ne st ready 14 =� second stage state when data needn't be read �=
#de�ne prest win 15 =� second stage state when we can �ll a block with zeroes �=
hLook up the address in the DT-cache, and also in the D-cache if possible 267 i �
p = cache search (DTcache ; trans key (data~y:o));
if (:Dcache _Dcache~ lock _ (j = get reader (Dcache)) < 0 _ (data~i � st ^ data~i � syncid))
hDo load/store stage 1 without D-cache lookup 270 i;

startup(&Dcache~reader [j];Dcache~access time);
if (p) hDo a simultaneous lookup in the D-cache 268 i
else data~state = DT miss ;

This code is used in section 266.

98 LOADING AND STORING MMIX-PIPE x268

268. We assume that it is possible to look up a virtual address in the DT-cache at the same time as
we look for a corresponding physical address in the D-cache, provided that the lower b + c bits of the two
addresses are the same. (They will always be the same if b+ c � page s ; otherwise the operating system can
try to make them the same by \page coloring" whenever possible.) If both caches hit, the physical address
is known in max(DTcache~access time ;Dcache~access time) cycles.
If the lower b + c bits of the virtual and physical addresses di�er, the machine will not know this until

the DT-cache has hit. Therefore we simulate the operation of accessing the D-cache, but we go to DT hit

instead of to hit and miss because the D-cache will experience a spurious miss.

#de�ne max (x; y) ((x) < (y) ? (y) : (x))

hDo a simultaneous lookup in the D-cache 268 i �
f octa �m;

p = use and �x (DTcache ; p); data~z:o = p~data [0];
hCheck the protection bits and get the physical address 269 i;
m = write search (data ; data~z:o);
if (m � DUNNO) data~state = DT hit ;
else if (m) data~x:o = �m; data~state = ld ready ;
else if (Dcache~b+Dcache~c > page s ^

((data~y:o:l � data~z:o:l) & ((Dcache~bb � Dcache~c)� (1� page s)))) data~state = DT hit ;
=� spurious D-cache lookup �=

else f
q = cache search (Dcache ; data~z:o);
if (q) f
if (data~i � ldunc) q = demote and �x (Dcache ; q);
else q = use and �x (Dcache ; q);
data~x:o = q~data [(data~z:o:l & (Dcache~bb � 1))� 3];
data~state = ld ready ;
g else data~state = hit and miss ;
g
pass after (max (DTcache~access time ;Dcache~access time));
goto passit ;
g

This code is used in section 267.

269. The protection bits prpwpx in a translation cache are shifted �ve positions right from the interrupt
codes PR_BIT, PW_BIT, PX_BIT. If the data is protected, we abort the load/store operation immediately;
this protects the privacy of other users.

hCheck the protection bits and get the physical address 269 i �
if (data~stack alert) f
if (data~z:o:l & (PW_BIT � PROT_OFFSET)) data~stack alert = false ;
else data~z:o = g[rC]:o; =� use the continuation page for stack over
ow �=
g
j = PRW_BITS;
if (((data~z:o:l� PROT_OFFSET) & j) 6= (unsigned int) j) f
if (data~i � syncd _ data~i � syncid) goto sync check ;
if (data~i 6= preld ^ data~i 6= prest) data~ interrupt j= j &�(data~z:o:l� PROT_OFFSET);
data~stack alert = false ;
goto �n ex ;
g
data~z:o = phys addr (data~y:o; data~z:o);

This code is used in sections 268, 270, and 272.

x270 MMIX-PIPE LOADING AND STORING 99

270. hDo load/store stage 1 without D-cache lookup 270 i �
f octa �m;

if (p) f
p = use and �x (DTcache ; p); data~z:o = p~data [0];
hCheck the protection bits and get the physical address 269 i;
if (data~i � st ^ data~i � syncid) data~state = st ready ;
else f
m = write search (data ; data~z:o);
if (m ^m 6= DUNNO) data~x:o = �m; data~state = ld ready ;
else data~state = DT hit ;
g
g else data~state = DT miss ;
pass after (DTcache~access time); goto passit ;
g

This code is used in section 267.

100 LOADING AND STORING MMIX-PIPE x271

271. hDo load/store stage 1 with known physical address 271 i �
f octa �m;

if (:(data~ loc :h& sign bit)) f
if (data~i � syncd _ data~i � syncid) goto sync check ;
if (data~i 6= preld ^ data~i 6= prest) data~ interrupt j= N_BIT;
goto �n ex ;
g
data~z:o = data~y:o; data~z:o:h �= sign bit ;
if (data~z:o:h&

#ffff0000) f
switch (data~i) f
case ldvts : case preld : case prest : case prego : case syncd : case syncid : goto �n ex ;
case ld : case ldunc : if (mem lock) wait (1);
if (data~op < LDSF) i = (data~op & #f)� 2;
else if (data~op < CSWAP) i = 2;
else i = 3;
data~x:o = spec read (data~z:o; i);
goto make ld ready ;

case pst :
if ((data~op � CSWAP) � 1) f
data~x:o = spec read (data~z:o; 3); goto make ld ready ;
g
data~x:o = zero octa ;

case st : data~state = st ready ; pass after (1); goto passit ;
default: ;
g
g else if (data~i � st ^ data~i � syncid) f
data~state = st ready ; pass after (1); goto passit ;
g
m = write search (data ; data~z:o);
if (m) f
if (m � DUNNO) data~state = DT hit ;
else data~x:o = �m; data~state = ld ready ;
pass after (1); goto passit ;
g else if (:Dcache) f
if (mem lock) wait (1);
data~x:o = mem read (data~z:o);

make ld ready : set lock (&mem locker ;mem lock);
data~state = ld ready ;
startup(&mem locker ;mem addr time +mem read time);
pass after (mem addr time +mem read time); goto passit ;

g
if (Dcache~ lock _ (j = get reader (Dcache)) < 0) f
data~state = DT hit ; pass after (1); goto passit ;
g
startup(&Dcache~reader [j];Dcache~access time);
q = cache search (Dcache ; data~z:o);
if (q) f
if (data~i � ldunc) q = demote and �x (Dcache ; q);
else q = use and �x (Dcache ; q);
data~x:o = q~data [(data~z:o:l & (Dcache~bb � 1))� 3];
data~state = ld ready ;

g else data~state = hit and miss ;

x271 MMIX-PIPE LOADING AND STORING 101

pass after (Dcache~access time); goto passit ;
g

This code is used in section 266.

272. The program for the second stage is, likewise, rather long-winded, yet quite similar to the cache
manipulations we have already seen several times.
Several instructions might be trying to �ll the DT-cache for the same page. (A similar situation faced us

in the write from wbuf coroutine.) The second stage therefore needs to do some translation cache searching
just as the �rst stage did. In this stage, however, we don't go all out for speed, because DT-cache misses
are rare.

#de�ne DT retry 8 =� second stage state when DT-cache should be searched again �=
#de�ne got DT 9 =� second stage state when DT-cache entry has been computed �=
h Special cases for states in later stages 272 i �
square one : data~state = DT retry ;
case DT retry : if (DTcache~ lock _ (j = get reader (DTcache)) < 0) wait (1);
startup(&DTcache~reader [j];DTcache~access time);
p = cache search (DTcache ; trans key (data~y:o));
if (p) f
p = use and �x (DTcache ; p); data~z:o = p~data [0];
hCheck the protection bits and get the physical address 269 i;
if (data~i � st ^ data~i � syncid) data~state = st ready ;
else data~state = DT hit ;
g else data~state = DT miss ;
wait (DTcache~access time);

case DT miss : if (DTcache~�ller :next) f
if (data~i � preld _ data~i � prest) goto �n ex ; else goto square one ; g

if (no hardware PT _ page f) f
if (data~i � preld _ data~i � prest) goto �n ex ; else goto emulate virt ; g

p = alloc slot (DTcache ; trans key (data~y:o));
if (:p) goto square one ;
data~ptr b = DTcache~�ller ctl :ptr b = (void �) p;
DTcache~�ller ctl :y:o = data~y:o;
set lock (self ;DTcache~�ll lock);
startup(&DTcache~�ller ; 1);
data~state = got DT ;
if (data~i � preld _ data~i � prest) goto �n ex ; else sleep ;

case got DT : release lock (self ;DTcache~�ll lock);
hCheck the protection bits and get the physical address 269 i;
if (data~i � st ^ data~i � syncid) goto �nish store ;

=� otherwise we fall through to ld retry below �=
See also sections 273, 276, 279, 280, 299, 311, 354, 364, and 370.

This code is used in section 135.

102 LOADING AND STORING MMIX-PIPE x273

273. The second stage might also want to �ll the D-cache (and perhaps the S-cache) as we get the data.
Several load instructions might be trying to �ll the same cache block. So we should go back and look in

the D-cache again if we miss and cannot allocate a slot immediately.
A PRELD or PREST instruction, which is just a \hint," doesn't do anything more if the caches are already

busy.

h Special cases for states in later stages 272 i +�
ld retry : data~state = DT hit ;
case DT hit : if (data~i � preld _ data~i � prest) goto �n ex ;
hCheck for a hit in pending writes 278 i;
if ((data~z:o:h&

#ffff0000) _ :Dcache) hDo load/store stage 2 without D-cache lookup 277 i;
if (Dcache~ lock _ (j = get reader (Dcache)) < 0) wait (1);
startup(&Dcache~reader [j];Dcache~access time);
q = cache search (Dcache ; data~z:o);
if (q) f
if (data~i � ldunc) q = demote and �x (Dcache ; q);
else q = use and �x (Dcache ; q);
data~x:o = q~data [(data~z:o:l & (Dcache~bb � 1))� 3];
data~state = ld ready ;
g else data~state = hit and miss ;
wait (Dcache~access time);

case hit and miss : if (data~i � ldunc) goto avoid D ;
hTry to get the contents of location data~z:o in the D-cache 274 i;

274. hTry to get the contents of location data~z:o in the D-cache 274 i �
hCheck for prest with a fully spanned cache block 275 i;
if (Dcache~�ller :next) goto ld retry ;
if ((Scache ^ Scache~ lock) _ (:Scache ^mem lock)) goto ld retry ;
q = alloc slot (Dcache ; data~z:o);
if (:q) goto ld retry ;
if (Scache) set lock (&Dcache~�ller ;Scache~ lock)
else set lock (&Dcache~�ller ;mem lock);
set lock (self ;Dcache~�ll lock);
data~ptr b = Dcache~�ller ctl :ptr b = (void �) q;
Dcache~�ller ctl :z:o = data~z:o;
startup(&Dcache~�ller ;Scache ? Scache~access time : mem addr time);
data~state = ld ready ;
if (data~i � preld _ data~i � prest) goto �n ex ; else sleep ;

This code is used in section 273.

275. If a prest instruction makes it to the hot seat, we have been assured by the user of PREST that the
current values of bytes in virtual addresses data~y:o�(data~xx &�Dcache~bb) through data~y:o+(data~xx &
(Dcache~bb � 1)) are irrelevant. Hence we can pretend that we know they are zero. This is advantageous if
it saves us from �lling a cache block from the S-cache or from memory.

hCheck for prest with a fully spanned cache block 275 i �
if (data~i � prest ^

(data~xx � Dcache~bb _ ((data~y:o:l & (Dcache~bb � 1)) � 0)) ^
((data~y:o:l + (data~xx & (Dcache~bb � 1)) + 1)� data~y:o:l) � (unsigned int) Dcache~bb)

goto prest span ;

This code is used in section 274.

x276 MMIX-PIPE LOADING AND STORING 103

276. h Special cases for states in later stages 272 i +�
prest span : data~state = prest win ;
case prest win : if (data 6= old hot _Dlocker :next) wait (1);
if (Dcache~ lock) goto �n ex ;
q = alloc slot (Dcache ; data~z:o); =� OK if Dcache~�ller is busy �=
if (q) f
clean block (Dcache ; q);
q~ tag = data~z:o; q~ tag :l &= �Dcache~bb ;
set lock (&Dlocker ;Dcache~ lock);
startup(&Dlocker ;Dcache~copy in time);
g
goto �n ex ;

277. hDo load/store stage 2 without D-cache lookup 277 i �
f
avoid D : if (mem lock) wait (1);
set lock (&mem locker ;mem lock);
startup(&mem locker ;mem addr time +mem read time);
data~x:o = mem read (data~z:o);
data~state = ld ready ; wait (mem addr time +mem read time);
g

This code is used in section 273.

278. hCheck for a hit in pending writes 278 i �
f
octa �m = write search (data ; data~z:o);

if (m � DUNNO) wait (1);
if (m) f
data~x:o = �m;
data~state = ld ready ;
wait (1);
g
g

This code is used in section 273.

104 LOADING AND STORING MMIX-PIPE x279

279. The requested octabyte will arrive sooner or later in data~x:o. Then a load instruction is almost
done, except that we might need to massage the input a little bit.

h Special cases for states in later stages 272 i +�
case ld ready : if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
if (data~i � st) goto �nish store ;
switch (data~op � 1) f
case LDB � 1: case LDBU � 1: j = (data~z:o:l &

#7)� 3; i = 56; goto �n ld ;
case LDW � 1: case LDWU � 1: j = (data~z:o:l &

#6)� 3; i = 48; goto �n ld ;
case LDT � 1: case LDTU � 1: j = (data~z:o:l &

#4)� 3; i = 32;
�n ld : data~x:o = shift right (shift left (data~x:o; j); i; data~op & #2);
default: goto �n ex ;
case LDHT � 1: if (data~z:o:l & 4) data~x:o:h = data~x:o:l;
data~x:o:l = 0; goto �n ex ;

case LDSF � 1: if (data~z:o:l & 4) data~x:o:h = data~x:o:l;
if ((data~x:o:h&

#7f800000) � 0 ^ (data~x:o:h& #7fffff)) f
data~x:o = load sf (data~x:o:h);
data~state = 3; wait (denin penalty);

g
else data~x:o = load sf (data~x:o:h); goto �n ex ;

case LDPTP � 1: if ((data~x:o:h& sign bit) � 0 _ (data~x:o:l& #1ff8) 6= page n) data~x:o = zero octa ;
else data~x:o:l &= �(1� 13);
goto �n ex ;

case LDPTE � 1: if ((data~x:o:l &
#1ff8) 6= page n) data~x:o = zero octa ;

else data~x:o = incr (oandn (data~x:o; page mask); data~x:o:l &
#7);

data~x:o:h &= #ffff; goto �n ex ;
case UNSAVE � 1: hHandle an internal UNSAVE when it's time to load 336 i;
g

280. h Special cases for states in later stages 272 i +�
�nish store : data~state = st ready ;
case st ready : switch (data~i) f
case st : case pst : hFinish a store command 281 i;
case syncd : data~b:o:l = (Dcache ? Dcache~bb : 8192); goto do syncd ;
case syncid : data~b:o:l = (Icache ? Icache~bb : 8192);
if (Dcache ^ (unsigned int) Dcache~bb < data~b:o:l) data~b:o:l = Dcache~bb ;
goto do syncid ;

default: ;
g

x281 MMIX-PIPE LOADING AND STORING 105

281. Store instructions have an extra complication, because some of them need to check for over
ow.

hFinish a store command 281 i �
data~x:addr = data~z:o;
if (data~b:p) wait (1);
switch (data~op � 1) f
case STUNC � 1: data~i = stunc ;
default: data~x:o = data~b:o; goto �n ex ;
case STSF � 1: set round ; data~b:o:h = store sf (data~b:o);
data~ interrupt j= exceptions ;
if ((data~b:o:h&

#7f800000) � 0 ^ (data~b:o:h& #7fffff)) f
if (data~z:o:l & 4) data~x:o:l = data~b:o:h;
else data~x:o:h = data~b:o:h;
data~state = 3; wait (denout penalty);
g

case STHT � 1: if (data~z:o:l & 4) data~x:o:l = data~b:o:h;
else data~x:o:h = data~b:o:h;
goto �n ex ;

case STB � 1: case STBU � 1: j = (data~z:o:l &
#7)� 3; i = 56; goto �n st ;

case STW � 1: case STWU � 1: j = (data~z:o:l &
#6)� 3; i = 48; goto �n st ;

case STT � 1: case STTU � 1: j = (data~z:o:l &
#4)� 3; i = 32;

�n st : h Insert data~b:o into the proper �eld of data~x:o, checking for arithmetic exceptions if signed 282 i;
goto �n ex ;

case CSWAP � 1: hFinish a CSWAP 283 i;
case SAVE � 1: hHandle an internal SAVE when it's time to store 342 i;
g

This code is used in section 280.

282. h Insert data~b:o into the proper �eld of data~x:o, checking for arithmetic exceptions if signed 282 i �
f
octa mask ;

if (:(data~op & 2)) f octa before ; after ;

before = data~b:o; after = shift right (shift left (data~b:o; i); i; 0);
if (before :l 6= after :l _ before :h 6= after :h) data~ interrupt j= V_BIT;

g
mask = shift right (shift left (neg one ; i); j; 1);
data~b:o = shift right (shift left (data~b:o; i); j; 1);
data~x:o:h �= mask :h& (data~x:o:h� data~b:o:h);
data~x:o:l �= mask :l & (data~x:o:l � data~b:o:l);
g

This code is used in section 281.

106 LOADING AND STORING MMIX-PIPE x283

283. The CSWAP operation has four inputs ($X; $Y; $Z; rP) as well as three outputs ($X;M8[A]; rP). To
keep from exceeding the capacity of the control blocks in our pipeline, we wait until this instruction reaches
the hot seat, thereby allowing us non-speculative access to rP.

hFinish a CSWAP 283 i �
if (data 6= old hot) wait (1);
if (data~x:o:h � g[rP]:o:h ^ data~x:o:l � g[rP]:o:l) f
data~a:o:l = 1; =� data~a:o:h is zero �=
data~x:o = data~b:o;
g else f
g[rP]:o = data~x:o; =� data~a:o is zero �=
if (verbose & issue bit) f
printf (" setting rP="); print octa (g[rP]:o); printf ("\n");
g
g
data~i = cswap ; =� cosmetic change, a�ects the trace output only �=
goto �n ex ;

This code is used in section 281.

x284 MMIX-PIPE THE FETCH STAGE 107

284. The fetch stage. Now that we've mastered the most di�cult memory operations, we can relax and
apply our knowledge to the slightly simpler task of �lling the fetch bu�er. Fetching is like loading/storing,
except that we use the I-cache instead of the D-cache. It's slightly simpler because the I-cache is read-only.
Further simpli�cations would be possible if there were no PREGO instruction, because there is only one fetch
unit. However, we want to implement PREGO with reasonable e�ciency, in order to see if that instruction
is worthwhile; so we include the complications of simultaneous I-cache and IT-cache readers, which we have
already implemented for the D-cache and DT-cache.
The fetch coroutine is always present, as the one and only coroutine with stage number zero.
In normal circumstances, the fetch coroutine accesses a cache block containing the instruction whose

virtual address is given by inst ptr (the instruction pointer), and transfers up to fetch max instructions from
that block to the fetch bu�er. Complications arise if the instruction isn't in the cache, or if we can't translate
the virtual address because of a miss in the IT-cache. Moreover, inst ptr is a spec variable whose value
might not even be known; if inst ptr :p is nonnull, we don't know what to fetch.

hExternal variables 4 i +�
Extern spec inst ptr ; =� the instruction pointer (aka program counter) �=
Extern octa �fetched ; =� bu�er for incoming instructions �=

285. The fetch coroutine usually begins a cycle in state fetch ready , with the most recently fetched
octabytes in positions fetch lo , fetch lo +1, : : : , fetch hi � 1 of a bu�er called fetched . Once that bu�er has
been exhausted, the coroutine reverts to state 0; with luck, the bu�er might have more data by the time the
next cycle rolls around.

hGlobal variables 20 i +�
int fetch lo ; fetch hi ; =� the active region of that bu�er �=
coroutine fetch co ;
control fetch ctl ;

286. h Initialize everything 22 i +�
fetch co :ctl = &fetch ctl ;
fetch co :name = "Fetch";
fetch ctl :go :o:l = 4;
startup(&fetch co ; 1);

287. hRestart the fetch coroutine 287 i �
if (fetch co :lockloc) �(fetch co :lockloc) = �; fetch co :lockloc = �;
unschedule (&fetch co);
startup(&fetch co ; 1);

This code is used in sections 85, 160, 308, 309, and 316.

108 THE FETCH STAGE MMIX-PIPE x288

288. Some of the actions here are done not only by the fetcher but also by the �rst and second stages of
a prego operation.

#de�ne wait or pass (t)
if (data~i � prego) f pass after (t); goto passit ; g
else wait (t)

h Simulate an action of the fetch coroutine 288 i �
switch0 : switch (data~state) f
new fetch : data~state = 0;
case 0: hWait, if necessary, until the instruction pointer is known 290 i;
data~y:o = inst ptr :o;
data~state = 1; data~ interrupt = 0; data~x:o = data~z:o = zero octa ;

case 1: start fetch : if (data~y:o:h& sign bit) hBegin fetch with known physical address 296 i;
if (page bad) goto bad fetch ;
if (ITcache~ lock _ (j = get reader (ITcache)) < 0) wait (1);
startup(&ITcache~reader [j]; ITcache~access time);
hLook up the address in the IT-cache, and also in the I-cache if possible 291 i;
wait or pass (ITcache~access time);
hOther cases for the fetch coroutine 298 i
g

This code is used in section 125.

289. hHandle special cases for operations like prego and ldvts 289 i �
if (data~i � prego) goto start fetch ;

See also section 352.

This code is used in section 266.

290. hWait, if necessary, until the instruction pointer is known 290 i �
if (inst ptr :p) f
if (inst ptr :p 6= UNKNOWN_SPEC ^ inst ptr :p~known) inst ptr :o = inst ptr :p~o; inst ptr :p = �;
wait (1);
g

This code is used in section 288.

291. #de�ne got IT 19 =� state when IT-cache entry has been computed �=
#de�ne IT miss 20 =� state when IT-cache doesn't hold the key �=
#de�ne IT hit 21 =� state when physical instruction address is known �=
#de�ne Ihit and miss 22 =� state when I-cache misses �=
#de�ne fetch ready 23 =� state when instructions have been read �=
#de�ne got one 24 =� state when a \preview" octabyte is ready �=
hLook up the address in the IT-cache, and also in the I-cache if possible 291 i �
p = cache search (ITcache ; trans key (data~y:o));
if (:Icache _ Icache~ lock _ (j = get reader (Icache)) < 0) hBegin fetch without I-cache lookup 295 i;
startup(&Icache~reader [j]; Icache~access time);
if (p) hDo a simultaneous lookup in the I-cache 292 i
else data~state = IT miss ;

This code is used in section 288.

x292 MMIX-PIPE THE FETCH STAGE 109

292. We assume that it is possible to look up a virtual address in the IT-cache at the same time as we look
for a corresponding physical address in the I-cache, provided that the lower b+c bits of the two addresses are
the same. (See the remarks about \page coloring," when we made similar assumptions about the DT-cache
and D-cache.)

hDo a simultaneous lookup in the I-cache 292 i �
f
hUpdate IT-cache usage and check the protection bits 293 i;
data~z:o = phys addr (data~y:o; p~data [0]);
if (Icache~b+ Icache~c > page s ^

((data~y:o:l � data~z:o:l) & ((Icache~bb � Icache~c)� (1� page s)))) data~state = IT hit ;
=� spurious I-cache lookup �=

else f
q = cache search (Icache ; data~z:o);
if (q) f
q = use and �x (Icache ; q);
hCopy the data from block q to fetched 294 i;
data~state = fetch ready ;
g else data~state = Ihit and miss ;
g
wait or pass (max (ITcache~access time ; Icache~access time));
g

This code is used in section 291.

293. hUpdate IT-cache usage and check the protection bits 293 i �
p = use and �x (ITcache ; p);
if (:(p~data [0]:l & (PX_BIT � PROT_OFFSET))) goto bad fetch ;

This code is used in sections 292 and 295.

294. At this point inst ptr :o equals data~y:o.

hCopy the data from block q to fetched 294 i �
if (data~i 6= prego) f
for (j = 0; j < Icache~bb � 3; j++) fetched [j] = q~data [j];
fetch lo = (inst ptr :o:l & (Icache~bb � 1))� 3;
fetch hi = Icache~bb � 3;
g

This code is used in sections 292 and 296.

295. hBegin fetch without I-cache lookup 295 i �
f
if (p) f
hUpdate IT-cache usage and check the protection bits 293 i;
data~z:o = phys addr (data~y:o; p~data [0]);
data~state = IT hit ;
g else data~state = IT miss ;
wait or pass (ITcache~access time);
g

This code is used in section 291.

110 THE FETCH STAGE MMIX-PIPE x296

296. hBegin fetch with known physical address 296 i �
f
if (data~i � prego ^ :(data~ loc :h& sign bit)) goto �n ex ;
data~z:o = data~y:o; data~z:o:h �= sign bit ;

known phys : if (data~z:o:h&
#ffff0000) goto bad fetch ;

if (:Icache) hRead from memory into fetched 297 i;
if (Icache~ lock _ (j = get reader (Icache)) < 0) f
data~state = IT hit ; wait or pass (1);
g
startup(&Icache~reader [j]; Icache~access time);
q = cache search (Icache ; data~z:o);
if (q) f
q = use and �x (Icache ; q);
hCopy the data from block q to fetched 294 i;
data~state = fetch ready ;
g else data~state = Ihit and miss ;
wait or pass (Icache~access time);
g

This code is used in section 288.

297. hRead from memory into fetched 297 i �
f octa addr ;

addr = data~z:o;
if (mem lock) wait (1);
set lock (&mem locker ;mem lock);
startup(&mem locker ;mem addr time +mem read time);
addr :l &= �(bus words � 3);
fetched [0] = mem read (addr);
for (j = 1; j < bus words ; j++) fetched [j] = mem hash [last h]:chunk [((addr :l & #ffff)� 3) + j];
fetch lo = (data~z:o:l� 3) & (bus words � 1); fetch hi = bus words ;
data~state = fetch ready ;
wait (mem addr time +mem read time);
g

This code is used in section 296.

x298 MMIX-PIPE THE FETCH STAGE 111

298. hOther cases for the fetch coroutine 298 i �
case IT miss : if (ITcache~�ller :next) f

if (data~i � prego) goto �n ex ; else wait (1); g
if (no hardware PT _ page f) h Insert dummy instruction for page table emulation 302 i;
p = alloc slot (ITcache ; trans key (data~y:o));
if (:p) =� hey, it was present after all �=
f
if (data~i � prego) goto �n ex ; else goto new fetch ; g

data~ptr b = ITcache~�ller ctl :ptr b = (void �) p;
ITcache~�ller ctl :y:o = data~y:o;
set lock (self ; ITcache~�ll lock);
startup(&ITcache~�ller ; 1);
data~state = got IT ;
if (data~i � prego) goto �n ex ; else sleep ;

case got IT : release lock (self ; ITcache~�ll lock);
if (:(data~z:o:l & (PX_BIT � PROT_OFFSET))) goto bad fetch ;
data~z:o = phys addr (data~y:o; data~z:o);

fetch retry : data~state = IT hit ;
case IT hit : if (data~i � prego) goto �n ex ; else goto known phys ;
case Ihit and miss : hTry to get the contents of location data~z:o in the I-cache 300 i;
See also section 301.

This code is used in section 288.

299. h Special cases for states in later stages 272 i +�
case IT miss : case Ihit and miss : case IT hit : case fetch ready : goto switch0 ;

300. hTry to get the contents of location data~z:o in the I-cache 300 i �
if (Icache~�ller :next) goto fetch retry ;
if ((Scache ^ Scache~ lock) _ (:Scache ^mem lock)) goto fetch retry ;
q = alloc slot (Icache ; data~z:o);
if (:q) goto fetch retry ;
if (Scache) set lock (&Icache~�ller ;Scache~ lock)
else set lock (&Icache~�ller ;mem lock);
set lock (self ; Icache~�ll lock);
data~ptr b = Icache~�ller ctl :ptr b = (void �) q;
Icache~�ller ctl :z:o = data~z:o;
startup(&Icache~�ller ;Scache ? Scache~access time : mem addr time);
data~state = got one ;
if (data~i � prego) goto �n ex ; else sleep ;

This code is used in section 298.

112 THE FETCH STAGE MMIX-PIPE x301

301. The I-cache �ller will wake us up with the octabyte we want, before it has �lled the entire cache
block. In that case we can fetch one or two instructions before the rest of the block has been loaded.

hOther cases for the fetch coroutine 298 i +�
bad fetch : if (data~i � prego) goto �n ex ;
data~ interrupt j= PX_BIT;

swym one : fetched [0]:h = fetched [0]:l = SWYM � 24;
goto fetch one ;

case got one : fetched [0] = data~x:o; =� a \preview" of the new cache data �=
fetch one : fetch lo = 0; fetch hi = 1;
data~state = fetch ready ;

case fetch ready : if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
if (data~i � prego) goto �n ex ;
for (j = 0; j < fetch max ; j++) f
register fetch �new tail ;

if (tail � fetch bot) new tail = fetch top ;
else new tail = tail � 1;
if (new tail � head) break; =� fetch bu�er is full �=
h Install a new instruction into the tail position 304 i;
tail = new tail ;
if (sleepy) f
sleepy = false ; sleep ;
g
inst ptr :o = incr (inst ptr :o; 4);
if (fetch lo � fetch hi) goto new fetch ;
g
wait (1);

302. h Insert dummy instruction for page table emulation 302 i �
f
if (cache search (ITcache ; trans key (inst ptr :o))) goto new fetch ;
data~ interrupt j= F_BIT;
sleepy = true ;
goto swym one ;
g

This code is used in section 298.

303. hGlobal variables 20 i +�
bool sleepy ; =� have we just emitted the page table emulation call? �=

304. At this point we check for egregiously invalid instructions. (Sometimes the dispatcher will actually
allow such instructions to occupy the fetch bu�er, for internally generated commands.)

h Install a new instruction into the tail position 304 i �
tail~ loc = inst ptr :o;
if (inst ptr :o:l & 4) tail~ inst = fetched [fetch lo++]:l;
else tail~ inst = fetched [fetch lo]:h;
tail~ interrupt = data~ interrupt ;
i = tail~ inst � 24;
if (i � RESUME ^ i � SYNC ^ (tail~ inst & bad inst mask [i� RESUME])) tail~ interrupt j= B_BIT;
tail~noted = false ;
if (inst ptr :o:l � breakpoint :l ^ inst ptr :o:h � breakpoint :h) breakpoint hit = true ;

This code is used in section 301.

x305 MMIX-PIPE THE FETCH STAGE 113

305. The commands RESUME, SAVE, UNSAVE, and SYNC should not have nonzero bits in the positions de�ned
here.

hGlobal variables 20 i +�
int bad inst mask [4] = f#fffffe; #ffff; #ffff00; #fffff8g;

114 INTERRUPTS MMIX-PIPE x306

306. Interrupts. The scariest thing about the design of a pipelined machine is the existence of inter-
rupts, which disrupt the smooth
ow of a computation in ways that are di�cult to anticipate. Fortunately,
however, the discipline of a reorder bu�er, which forces instructions to be committed in order, allows us
to deal with interrupts in a fairly natural way. Our solution to the problems of dynamic scheduling and
speculative execution therefore solves the interrupt problem as well.
MMIX has three kinds of interrupts, which show up as bit codes in the interrupt �eld when an instruction

is ready to be committed: H_BIT invokes a trip handler, for TRIP instructions and arithmetic exceptions;
F_BIT invokes a forced-trap handler, for TRAP instructions and unimplemented instructions that need to
be emulated in software; E_BIT invokes a dynamic-trap handler, for external interrupts like I/O signals or
for internal interrupts caused by improper instructions. In all three cases, the pipeline control has already
been redirected to fetch new instructions starting at the correct handler address by the time an interrupted
instruction is ready to be committed.

307. Most instructions come to the following part of the program, if they have �nished execution with
any 1s among the eight trip bits or the eight trap bits.
If the trip bits aren't all zero, we want to update the event bits of rA, or perform an enabled trip handler,

or both. If the trap bits are nonzero, we need to hold onto them until we get to the hot seat, when they
will be joined with the bits of rQ and probably cause an interrupt. A load or store instruction with nonzero
trap bits will be nulli�ed, not committed.
Under
ow that is exact and not enabled is ignored, in accordance with the IEEE standard conventions.

(This applies also to under
ow triggered by RESUME_SET.)

#de�ne is load store (i) (i � ld ^ i � cswap)

hHandle interrupt at end of execution stage 307 i �
f
if ((data~ interrupt &

#ff) ^ is load store (data~i)) goto state 5 ;
j = data~ interrupt &

#ff00;
data~ interrupt �= j;
if ((j & (U_BIT + X_BIT)) � U_BIT ^ :(data~ra :o:l & U_BIT)) j &= �U_BIT;
data~arith exc = (j &�data~ra :o:l)� 8;
if (j & data~ra :o:l) hPrepare for exceptional trip handler 308 i;
if (data~ interrupt &

#ff) goto state 5 ;
g

This code is used in section 144.

x308 MMIX-PIPE INTERRUPTS 115

308. Since execution is speculative, an exceptional condition might not be part of the \real" computation.
Indeed, the present coroutine might have already been deissued.

hPrepare for exceptional trip handler 308 i �
f
i = issued between (data ; cool);
if (i < deissues) goto die ;
deissues = i;
old tail = tail = head ; resuming = 0; =� clear the fetch bu�er �=
hRestart the fetch coroutine 287 i;
cool hist = data~hist ;
for (i = j & data~ra :o:l;m = 16; :(i& D_BIT); i�= 1;m += 16) ;
data~arith exc j= (j &�(#10000� (m� 4)))� 8; =� trips taken are not logged as events �=
data~go :o:h = 0; data~go :o:l = m;
inst ptr :o = data~go :o; inst ptr :p = �;
data~ interrupt j= H_BIT;
goto state 4 ;
g

This code is used in section 307.

309. hPrepare to emulate the page translation 309 i �
i = issued between (data ; cool);
if (i < deissues) goto die ;
deissues = i;
old tail = tail = head ; resuming = 0; =� clear the fetch bu�er �=
hRestart the fetch coroutine 287 i;
cool hist = data~hist ;
inst ptr :p = UNKNOWN_SPEC;
data~ interrupt j= F_BIT;

This code is used in section 310.

310. We need to stop dispatching when calling a trip handler from within the reorder bu�er, lest we issue
an instruction that uses g[255] or rB as an operand.

h Special cases for states in the �rst stage 266 i +�
emulate virt : hPrepare to emulate the page translation 309 i;
state 4 : data~state = 4;
case 4: if (dispatch lock) wait (1);
set lock (self ; dispatch lock);

state 5 : data~state = 5;
case 5: if (data 6= old hot) wait (1);
if ((data~ interrupt & F_BIT) ^ data~i 6= trap) f
inst ptr :o = g[rT]:o; inst ptr :p = �;
if (is load store (data~i)) nullifying = true ;
g
if (data~ interrupt &

#ff) f
g[rQ]:o:h j= data~ interrupt &

#ff;
new Q :h j= data~ interrupt &

#ff;
if (verbose & issue bit) f
printf (" setting rQ="); print octa (g[rQ]:o); printf ("\n");
g
g
goto die ;

116 INTERRUPTS MMIX-PIPE x311

311. The instructions of the previous section appear in the switch for coroutine stage 1 only. We need to
use them also in later stages.

h Special cases for states in later stages 272 i +�
case 4: goto state 4 ;
case 5: goto state 5 ;

312. h Special cases of instruction dispatch 117 i +�
case trap : if ((
ags [op] &X is dest bit) ^ cool~xx < cool G ^ cool~xx � cool L) goto increase L;
if (:g[rT]:up~known _ :g[rJ]:up~known) goto stall ;
inst ptr = specval (&g[rT]); =� traps and emulated ops �=
cool~need b = true ; cool~b = specval (&g[255]);

case trip :
if (:g[rJ]:up~known) goto stall ;
cool~ren x = true ; spec install (&g[255];&cool~x);
cool~x:known = true ; cool~x:o = g[rJ]:up~o;
if (i � trip) cool~go :o = zero octa ;
cool~ren a = true ; spec install (&g[i � trap ? rBB : rB];&cool~a); break;

313. hCases for stage 1 execution 155 i +�
case trap : data~ interrupt j= F_BIT; data~a:o = data~b:o; goto �n ex ;
case trip : data~ interrupt j= H_BIT; data~a:o = data~b:o; goto �n ex ;

314. The following check is performed at the beginning of every cycle. An instruction in the hot seat can
be externally interrupted only if it is ready to be committed and not already marked for tripping or trapping.

hCheck for external interrupt 314 i �
g[rI]:o = incr (g[rI]:o;�1);
if (g[rI]:o:l � 0 ^ g[rI]:o:h � 0) f
g[rQ]:o:l j= INTERVAL_TIMEOUT;new Q :l j= INTERVAL_TIMEOUT;
if (verbose & issue bit) f
printf (" setting rQ="); print octa (g[rQ]:o); printf ("\n");
g
g
trying to interrupt = false ;
if (((g[rQ]:o:h& g[rK]:o:h) _ (g[rQ]:o:l & g[rK]:o:l)) ^ cool 6= hot ^

:(hot~ interrupt & (E_BIT + F_BIT + H_BIT)) ^ :doing interrupt ^
:(hot~i � resum)) f

if (hot~owner) trying to interrupt = true ;
else f
hot~ interrupt j= E_BIT;
hDeissue all but the hottest command 316 i;
inst ptr :o = g[rTT]:o; inst ptr :p = �;
g
g

This code is used in section 64.

315. hGlobal variables 20 i +�
bool trying to interrupt ; =� encouraging interruptible operations to pause �=
bool nullifying ; =� stopping dispatch to nullify a load/store command �=

x316 MMIX-PIPE INTERRUPTS 117

316. It's possible that the command in the hot seat has been deissued, but only if the simulator has done
so at the user's request. Otherwise the test `i � deissues ' here will always succeed.
The value of cool hist becomes
aky here. We could try to keep it strictly up to date, but the unpredictable

nature of external interrupts suggests that we are better o� leaving it alone. (It's only a heuristic for branch
prediction, and a su�ciently strong prediction will survive one-time glitches due to interrupts.)

hDeissue all but the hottest command 316 i �
i = issued between (hot ; cool);
if (i � deissues) f
deissues = i;
tail = head ; resuming = 0; =� clear the fetch bu�er �=
hRestart the fetch coroutine 287 i;
if (is load store (hot~i)) nullifying = true ;
g

This code is used in section 314.

317. Even though an interrupted instruction has o�cially been either \committed" or \nulli�ed," it stays
in the hot seat for two or three extra cycles, while we save enough of the machine state to resume the
computation later.

hBegin an interruption and break 317 i �
f
if (:(hot~ interrupt & H_BIT)) g[rK]:o = zero octa ; =� trap �=
if (((hot~ interrupt & H_BIT) ^ hot~i 6= trip) _

((hot~ interrupt & F_BIT) ^ hot~i 6= trap) _
(hot~ interrupt & E_BIT)) doing interrupt = 3; suppress dispatch = true ;

else doing interrupt = 2; =� trip or trap started by dispatcher �=
break;
g

This code is used in section 146.

318. If a memory failure occurs, we should set rF here, either in case 2 or case 1. The simulator doesn't
do anything with rF at present.

hPerform one cycle of the interrupt preparations 318 i �
switch (doing interrupt ��) f
case 3: h Set resumption registers (rB; $255) or (rBB; $255) 319 i; break;
case 2: h Set resumption registers (rW; rX) or (rWW; rXX) 320 i; break;
case 1: h Set resumption registers (rY; rZ) or (rYY; rZZ) 321 i;
if (hot � reorder bot) hot = reorder top ; else hot ��;
break;
g

This code is used in section 64.

118 INTERRUPTS MMIX-PIPE x319

319. h Set resumption registers (rB; $255) or (rBB; $255) 319 i �
j = hot~ interrupt & H_BIT;
g[j ? rB : rBB]:o = g[255]:o;
g[255]:o = g[rJ]:o;
if (verbose & issue bit) f
if (j) f
printf (" setting rB="); print octa (g[rB]:o);

g else f
printf (" setting rBB="); print octa (g[rBB]:o);
g
printf (", $255="); print octa (g[255]:o); printf ("\n");
g

This code is used in section 318.

320. Here's where we manufacture the \ropcodes" for resumption.

#de�ne RESUME_AGAIN 0 =� repeat the command in rX as if in location rW � 4 �=
#de�ne RESUME_CONT 1 =� same, but substitute rY and rZ for operands �=
#de�ne RESUME_SET 2 =� set register $X to rZ �=
#de�ne RESUME_TRANS 3 =� install (rY; rZ) into IT-cache or DT-cache, then RESUME_AGAIN �=
#de�ne pack bytes (a; b; c; d) ((((((unsigned)(a)� 8) + (b))� 8) + (c))� 8) + (d)

h Set resumption registers (rW; rX) or (rWW; rXX) 320 i �
j = pack bytes (hot~op ; hot~xx ; hot~yy ; hot~zz);
if (hot~ interrupt & H_BIT) f =� trip �=
g[rW]:o = incr (hot~ loc ; 4);
g[rX]:o:h = sign bit ; g[rX]:o:l = j;
if (verbose & issue bit) f
printf (" setting rW="); print octa (g[rW]:o);
printf (", rX="); print octa (g[rX]:o); printf ("\n");
g
g else f =� trap �=
g[rWW]:o = hot~go :o;
g[rXX]:o:l = j;
if (hot~ interrupt & F_BIT) f =� forced �=
if (hot~i 6= trap) j = RESUME_TRANS; =� emulate page translation �=
else if (hot~op � TRAP) j = #80; =� TRAP �=
else if (
ags [hot~op] &X is dest bit) j = RESUME_SET; =� emulation �=
else j = #80; =� emulation when r[X] is not a destination �=
g else f =� dynamic �=
if (hot~ interim)
j = (hot~i � frem _ hot~i � syncd _ hot~i � syncid ? RESUME_CONT : RESUME_AGAIN);

else if (is load store (hot~i)) j = RESUME_AGAIN;
else j = #80; =� normal external interruption �=
g
g[rXX]:o:h = (j � 24) + (hot~ interrupt &

#ff);
if (verbose & issue bit) f
printf (" setting rWW="); print octa (g[rWW]:o);
printf (", rXX="); print octa (g[rXX]:o); printf ("\n");

g
g

This code is used in section 318.

x321 MMIX-PIPE INTERRUPTS 119

321. h Set resumption registers (rY; rZ) or (rYY; rZZ) 321 i �
j = hot~ interrupt & H_BIT;
if ((hot~ interrupt & F_BIT) ^ hot~op � SWYM) g[rYY]:o = hot~go :o;
else g[j ? rY : rYY]:o = hot~y:o;
if (hot~i � st _ hot~i � pst) g[j ? rZ : rZZ]:o = hot~x:o;
else g[j ? rZ : rZZ]:o = hot~z:o;
if (verbose & issue bit) f
if (j) f
printf (" setting rY="); print octa (g[rY]:o);
printf (", rZ="); print octa (g[rZ]:o); printf ("\n");
g else f
printf (" setting rYY="); print octa (g[rYY]:o);
printf (", rZZ="); print octa (g[rZZ]:o); printf ("\n");

g
g

This code is used in section 318.

322. Whew; we've successfully interrupted the computation. The remaining task is to restart it again, as
transparently as possible.
The RESUME instruction waits for the pipeline to drain, because it has to do such drastic things. For

example, an interrupt may be occurring at this very moment, changing the registers needed for resumption.

h Special cases of instruction dispatch 117 i +�
case resume : if (cool 6= old hot) goto stall ;
inst ptr = specval (&g[cool~zz ? rWW : rW]);
if (:(cool~ loc :h& sign bit)) f
if (cool~zz) cool~ interrupt j= K_BIT;
else if (inst ptr :o:h& sign bit) cool~ interrupt j= P_BIT;
g
if (cool~ interrupt) f
inst ptr :o = incr (cool~ loc ; 4); cool~i = noop ;
g else f
cool~go :o = inst ptr :o;
if (cool~zz) f
hMagically do an I/O operation, if cool~ loc is rT 372 i;
cool~ren a = true ; spec install (&g[rK];&cool~a);
cool~a:known = true ; cool~a:o = g[255]:o;
cool~ren x = true ; spec install (&g[255];&cool~x);
cool~x:known = true ; cool~x:o = g[rBB]:o;
g
cool~b = specval (&g[cool~zz ? rXX : rX]);
if (:(cool~b:o:h& sign bit)) hResume an interrupted operation 323 i;
g break;

120 INTERRUPTS MMIX-PIPE x323

323. Here we set cool~i = resum , since we want to issue another instruction after the RESUME itself.
The restrictions on inserted instructions are designed to ensure that those instructions will be the very

next ones issued. (If, for example, an incgamma instruction were necessary, it might cause a page fault and
we'd lose the operand values for RESUME_SET or RESUME_CONT.)
A subtle point arises here: If RESUME_TRANS is being used to compute the page translation of virtual

address zero, we don't want to execute the dummy SWYM instruction from virtual address �4! So we avoid
the SWYM altogether.

hResume an interrupted operation 323 i �
f
cool~xx = cool~b:o:h� 24; cool~i = resum ;
head~ loc = incr (inst ptr :o;�4);
switch (cool~xx) f
case RESUME_SET: cool~b:o:l = (SETH � 24) + (cool~b:o:l &

#ff0000);
head~ interrupt j= cool~b:o:h&

#ff00;
resuming = 2;

case RESUME_CONT: resuming += 1 + cool~zz ;
if (((cool~b:o:l� 24) & #fa) 6= #b8) f =� not syncd or syncid �=
m = cool~b:o:l� 28;
if ((1� m) & #8f30) goto bad resume ;
m = (cool~b:o:l� 16) & #ff;
if (m � cool L ^m < cool G) goto bad resume ;
g

case RESUME_AGAIN: resume again : head~ inst = cool~b:o:l;
m = head~ inst � 24;
if (m � RESUME) goto bad resume ; =� avoid uninterruptible loop �=
if (:cool~zz ^m > RESUME ^m � SYNC ^ (head~ inst & bad inst mask [m� RESUME]))
head~ interrupt j= B_BIT;

head~noted = false ; break;
case RESUME_TRANS: if (cool~zz) f

cool~y = specval (&g[rYY]); cool~z = specval (&g[rZZ]);
if ((cool~b:o:l� 24) 6= SWYM) goto resume again ;
cool~i = resume ; break; =� see \subtle point" above �=
g

default: bad resume : cool~ interrupt j= B_BIT; cool~i = noop ;
resuming = 0; break;
g
g

This code is used in section 322.

x324 MMIX-PIPE INTERRUPTS 121

324. h Insert special operands when resuming an interrupted operation 324 i �
f
if (resuming & 1) f
cool~y = specval (&g[rY]);
cool~z = specval (&g[rZ]);
g else f
cool~y = specval (&g[rYY]);
cool~z = specval (&g[rZZ]);
g
if (resuming � 3) f =� RESUME_SET �=
cool~need ra = true ; cool~ra = specval (&g[rA]);

g
cool~usage = false ;
g

This code is used in section 103.

325. #de�ne do resume trans 17 =� state for performing RESUME_TRANS actions �=
hCases for stage 1 execution 155 i +�
case resume : case resum : if (data~xx 6= RESUME_TRANS) goto �n ex ;
data~ptr a = (void �)((data~b:o:l� 24) � SWYM ? ITcache : DTcache);
data~state = do resume trans ;
data~z:o = incr (oandn (data~z:o; page mask); data~z:o:l & 7);
data~z:o:h &= #ffff;
goto resume trans ;

326. h Special cases for states in the �rst stage 266 i +�
case do resume trans : resume trans :
f register cache �c = (cache �) data~ptr a ;
if (c~ lock) wait (1);
if (c~�ller :next) wait (1);
p = alloc slot (c; trans key (data~y:o));
if (p) f
c~�ller ctl :ptr b = (void �) p;
c~�ller ctl :y:o = data~y:o;
c~�ller ctl :b:o = data~z:o;
c~�ller ctl :state = 1;
schedule (&c~�ller ; c~access time ; 1);
g
goto �n ex ;
g

122 ADMINISTRATIVE OPERATIONS MMIX-PIPE x327

327. Administrative operations. The internal instructions that handle the register stack simply
reduce to things we already know how to do. (Well, the internal instructions for saving and unsaving
do sometimes lead to special cases, based on data~op ; for the most part, though, the necessary mechanisms
are already present.)

hCases for stage 1 execution 155 i +�
case noop : if (data~ interrupt & F_BIT) goto emulate virt ;
case incrl : case unsave : goto �n ex ;
case jmp : case pushj : data~go :o = data~z:o;
goto �n ex ;

case sav : if (:(data~mem x)) goto �n ex ;
case incgamma : case save : data~i = st ;
goto switch1 ;

case decgamma : case unsav : data~i = ld ;
goto switch1 ;

328. We can GET special registers � 21 (that is, rA, rF, rP, rW{rZ, or rWW{rZZ) only in the hot seat,
because those registers are implicit outputs of many instructions.
The same applies to rK, since it is changed by TRAP and by emulated instructions.
Likewise, rQ must not be prematurely gotten.

hCases for stage 1 execution 155 i +�
case get : if (data~zz � 21 _ data~zz � rK _ data~zz � rQ) f

if (data 6= old hot) wait (1);
data~z:o = g[data~zz]:o;
g
data~x:o = data~z:o; goto �n ex ;

329. A PUT is, similarly, delayed in the cases that hold dispatch lock . This program does not restrict the
1 bits that might be PUT into rQ, although the contents of that register can have drastic implications.

hCases for stage 1 execution 155 i +�
case put : if (data~xx � 8 _ (data~xx � 15 ^ data~xx � 20)) f

if (data 6= old hot) wait (1);
switch (data~xx) f
case rV : hUpdate the page variables 239 i; break;
case rQ : new Q :h j= data~z:o:h&�g[rQ]:o:h; new Q :l j= data~z:o:l &�g[rQ]:o:l;
data~z:o:l j= new Q :l; data~z:o:h j= new Q :h; break;

case rL: if (data~z:o:h 6= 0) data~z:o:h = 0; data~z:o:l = g[rL]:o:l;
else if (data~z:o:l > g[rL]:o:l) data~z:o:l = g[rL]:o:l;

default: break;
case rG : hUpdate rG 330 i; break;
g
g else if (data~xx � rA ^ (data~z:o:h 6= 0 _ data~z:o:l � #40000))
data~ interrupt j= B_BIT; data~z:o:h = 0; data~z:o:l &=

#3ffff;
data~x:o = data~z:o; goto �n ex ;

x330 MMIX-PIPE ADMINISTRATIVE OPERATIONS 123

330. When rG decreases, we assume that up to commit max marginal registers can be zeroed during each
clock cycle. (Remember that we're currently in the hot seat, and holding dispatch lock .)

hUpdate rG 330 i �
if (data~z:o:h 6= 0 _ data~z:o:l � 256 _ data~z:o:l < g[rL]:o:l _ data~z:o:l < 32)
data~ interrupt j= B_BIT; data~z:o = g[rG]:o;

else if (data~z:o:l < g[rG]:o:l) f
data~ interim = true ; =� potentially interruptible �=
for (j = 0; j < commit max ; j++) f
g[rG]:o:l��;
g[g[rG]:o:l]:o = zero octa ;
if (data~z:o:l � g[rG]:o:l) break;
g
if (j � commit max) f
if (:trying to interrupt) wait (1);
g else data~ interim = false ;
g

This code is used in section 329.

331. Computed jumps put the desired destination address into the go �eld.

hCases for stage 1 execution 155 i +�
case go : data~x:o = data~go :o; goto add go ;
case pop : data~x:o = data~y:o;
data~y:o = data~b:o; =� move rJ to y �eld �=

case pushgo : add go : data~go :o = oplus (data~y:o; data~z:o);
if ((data~go :o:h& sign bit) ^ :(data~ loc :h& sign bit)) data~ interrupt j= P_BIT;
data~go :known = true ; goto �n ex ;

124 ADMINISTRATIVE OPERATIONS MMIX-PIPE x332

332. The instruction UNSAVE z generates a sequence of internal instructions that accomplish the actual
unsaving. This sequence is controlled by the instruction currently in the fetch bu�er, which changes its
X and Y �elds until all global registers have been loaded. The �rst instructions of the sequence are
UNSAVE 0; 0; z; UNSAVE 1; rZ; z � 8; UNSAVE 1; rY; z � 16; : : : ; UNSAVE 1; rB; z � 96; UNSAVE 2; 255; z � 104;
UNSAVE 2; 254; z � 112; etc. If an interrupt occurs before these instructions have all been committed, the
execution register will contain enough information to restart the process.
After the global registers have all been loaded, UNSAVE continues by acting rather like POP. An interrupt

occurring during this last stage will �nd rS < rO; a context switch might then take us back to restoring
the local registers again. But no information will be lost, even though the register from which we began
unsaving has long since been replaced.

h Special cases of instruction dispatch 117 i +�
case unsave : if (cool~ interrupt & B_BIT) cool~i = noop ;
else f
cool~ interim = true ;
op = LDOU; =� this instruction needs to be handled by load/store unit �=
cool~i = unsav ;
switch (cool~xx) f
case 0: if (cool~z:p) goto stall ;
h Set up the �rst phase of unsaving 334 i; break;

case 1: case 2: hGenerate an instruction to unsave g[yy] 333 i; break;
case 3: cool~i = unsave ; cool~ interim = false ; op = UNSAVE;
goto pop unsave ;

default: cool~ interim = false ; cool~i = noop ; cool~ interrupt j= B_BIT; break;
g
g
break; =� this takes us to dispatch done �=

333. hGenerate an instruction to unsave g[yy] 333 i �
cool~ren x = true ; spec install (&g[cool~yy];&cool~x);
new O = new S = incr (cool O ;�1);
cool~z:o = shift left (new O ; 3);
cool~ptr a = (void �) mem :up ;

This code is used in section 332.

334. h Set up the �rst phase of unsaving 334 i �
cool~ren x = true ; spec install (&g[rG];&cool~x);
cool~ren a = true ; spec install (&g[rA];&cool~a);
new O = new S = shift right (cool~z:o; 3; 1);
cool~set l = true ; spec install (&g[rL];&cool~rl);
cool~ptr a = (void �) mem :up ;

This code is used in section 332.

335. hGet ready for the next step of UNSAVE 335 i �
switch (cool~xx) f
case 0: head~ inst = pack bytes (UNSAVE; 1; rZ ; 0); break;
case 1: if (cool~yy � rP) head~ inst = pack bytes (UNSAVE; 1; rR ; 0);
else if (cool~yy � 0) head~ inst = pack bytes (UNSAVE; 2; 255; 0);
else head~ inst = pack bytes (UNSAVE; 1; cool~yy � 1; 0); break;

case 2: if (cool~yy � cool G) head~ inst = pack bytes (UNSAVE; 3; 0; 0);
else head~ inst = pack bytes (UNSAVE; 2; cool~yy � 1; 0); break;
g

This code is used in section 81.

x336 MMIX-PIPE ADMINISTRATIVE OPERATIONS 125

336. hHandle an internal UNSAVE when it's time to load 336 i �
if (data~xx � 0) f
data~a:o = data~x:o; data~a:o:h &= #ffffff; =� unsaved rA �=
data~x:o:l = data~x:o:h� 24; data~x:o:h = 0; =� unsaved rG �=
if (data~a:o:h _ (data~a:o:l & #fffc0000)) f
data~a:o:h = 0; data~a:o:l &=

#3ffff; data~ interrupt j= B_BIT;
g
if (data~x:o:l < 32) f
data~x:o:l = 32; data~ interrupt j= B_BIT;
g
g
goto �n ex ;

This code is used in section 279.

337. Of course SAVE is handled essentially like UNSAVE, but backwards.

h Special cases of instruction dispatch 117 i +�
case save : if (cool~xx < cool G) cool~ interrupt j= B_BIT;
if (cool~ interrupt & B_BIT) cool~i = noop ;
else if (((cool S :l � cool O :l � cool L � 1) & lring mask) � 0)
h Insert an instruction to advance gamma 113 i

else f
cool~ interim = true ;
cool~i = sav ;
switch (cool~zz) f
case 0: hSet up the �rst phase of saving 338 i; break;
case 1: if (cool O :l 6= cool S :l) h Insert an instruction to advance gamma 113 i
cool~zz = 2; cool~yy = cool G ;

case 2: case 3: hGenerate an instruction to save g[yy] 339 i; break;
default: cool~ interim = false ; cool~i = noop ; cool~ interrupt j= B_BIT; break;
g
g
break;

338. If an interrupt occurs during the �rst phase, say between two incgamma instructions, the value
cool~zz = 1 will get things restarted properly. (Indeed, if context is saved and unsaved during the interrupt,
many incgamma instructions may no longer be necessary.)

h Set up the �rst phase of saving 338 i �
cool~zz = 1;
cool~ren x = true ; spec install (&l[(cool O :l + cool L) & lring mask];&cool~x);
cool~x:known = true ; cool~x:o:h = 0; cool~x:o:l = cool L;
cool~set l = true ; spec install (&g[rL];&cool~rl);
new O = incr (cool O ; cool L + 1);

This code is used in section 337.

339. hGenerate an instruction to save g[yy] 339 i �
op = STOU; =� this instruction needs to be handled by load/store unit �=
cool~mem x = true ; spec install (&mem ;&cool~x);
cool~z:o = shift left (cool O ; 3);
new O = new S = incr (cool O ; 1);
if (cool~zz � 3 ^ cool~yy > rZ) hDo the �nal SAVE 340 i
else cool~b = specval (&g[cool~yy]);

This code is used in section 337.

126 ADMINISTRATIVE OPERATIONS MMIX-PIPE x340

340. The �nal SAVE instruction not only stores rG and rA, it also places the �nal address in global
register X.

hDo the �nal SAVE 340 i �
f
cool~i = save ;
cool~ interim = false ;
cool~ren a = true ; spec install (&g[cool~xx];&cool~a);
g

This code is used in section 339.

341. hGet ready for the next step of SAVE 341 i �
switch (cool~zz) f
case 1: head~ inst = pack bytes (SAVE; cool~xx ; 0; 1); break;
case 2: if (cool~yy � 255) head~ inst = pack bytes (SAVE; cool~xx ; 0; 3);
else head~ inst = pack bytes (SAVE; cool~xx ; cool~yy + 1; 2); break;

case 3: if (cool~yy � rR) head~ inst = pack bytes (SAVE; cool~xx ; rP ; 3);
else head~ inst = pack bytes (SAVE; cool~xx ; cool~yy + 1; 3); break;
g

This code is used in section 81.

342. hHandle an internal SAVE when it's time to store 342 i �
f
if (data~ interim) data~x:o = data~b:o;
else f
if (data 6= old hot) wait (1); =� we need the hottest value of rA �=
data~x:o:h = g[rG]:o:l� 24;
data~x:o:l = g[rA]:o:l;
data~a:o = data~y:o;
g
goto �n ex ;
g

This code is used in section 281.

x343 MMIX-PIPE MORE REGISTER-TO-REGISTER OPS 127

343. More register-to-register ops. Now that we've �nished most of the hard stu�, we can relax and
�ll in the holes that we left in the all-register parts of the execution stages.
First let's complete the �xed point arithmetic operations, by dispensing with multiplication and division.

hCases to compute the results of register-to-register operation 137 i +�
case mulu : data~x:o = omult (data~y:o; data~z:o);
data~a:o = aux ;
goto quantify mul ;

case mul : data~x:o = signed omult (data~y:o; data~z:o);
if (over
ow) data~ interrupt j= V_BIT;

quantify mul : aux = data~z:o;
for (j = mul0 ; aux :l _ aux :h; j++) aux = shift right (aux ; 8; 1);
data~i = j; break; =� j is mul0 or mul1 or : : : or mul8 �=

case divu : data~x:o = odiv (data~b:o; data~y:o; data~z:o);
data~a:o = aux ; data~i = div ; break;

case div : if (data~z:o:l � 0 ^ data~z:o:h � 0) f
data~ interrupt j= D_BIT; data~a:o = data~y:o;
data~i = set ; =� divide by zero needn't wait in the pipeline �=

g else f
data~x:o = signed odiv (data~y:o; data~z:o);
if (over
ow) data~ interrupt j= V_BIT;
data~a:o = aux ;
g break;

344. Next let's polish o� the bitwise and bytewise operations.

hCases to compute the results of register-to-register operation 137 i +�
case sadd : data~x:o:l = count bits (data~y:o:h&�data~z:o:h) + count bits (data~y:o:l &�data~z:o:l);
break;

case mor : data~x:o = bool mult (data~y:o; data~z:o; data~op & #2); break;
case bdif : data~x:o:h = byte di� (data~y:o:h; data~z:o:h);
data~x:o:l = byte di� (data~y:o:l; data~z:o:l); break;

case wdif : data~x:o:h = wyde di� (data~y:o:h; data~z:o:h);
data~x:o:l = wyde di� (data~y:o:l; data~z:o:l); break;

case tdif : if (data~y:o:h > data~z:o:h) data~x:o:h = data~y:o:h� data~z:o:h;
tdif l : if (data~y:o:l > data~z:o:l) data~x:o:l = data~y:o:l � data~z:o:l; break;
case odif : if (data~y:o:h > data~z:o:h) data~x:o = ominus (data~y:o; data~z:o);
else if (data~y:o:h � data~z:o:h) goto tdif l ;
break;

128 MORE REGISTER-TO-REGISTER OPS MMIX-PIPE x345

345. The conditional set (CS) instructions are, rather surprisingly, more di�cult to implement than the
zero set (ZS) instructions, although the ZS instructions do more. The reason is that dynamic instruction
dependencies are more complicated with CS. Consider, for example, the instructions

LDO x,a,b; FDIV y,c,d; CSZ y,x,0; INCL y,1.

If the value of x is zero, the INCL instruction need not wait for the division to be completed. (We do not,
however, abort the division in such a case; it might invoke a trip handler, or change the inexact bit, etc.
Our policy is to treat common cases e�ciently and to treat all cases correctly, but not to treat all cases with
maximum e�ciency.)

hCases to compute the results of register-to-register operation 137 i +�
case zset : if (register truth (data~y:o; data~op)) data~x:o = data~z:o;

=� otherwise data~x:o is already zero �=
goto �n ex ;

case cset : if (register truth (data~y:o; data~op)) data~x:o = data~z:o; data~b:p = �;
else if (data~b:p � �) data~x:o = data~b:o;
else f
data~state = 0; data~need b = true ; goto switch1 ;
g break;

x346 MMIX-PIPE MORE REGISTER-TO-REGISTER OPS 129

346. Floating point computations are mostly handled by the routines in MMIX-ARITH, which record
anomalous events in the global variable exceptions . But we consider the operation trivial if an input is
in�nite or NaN; and we may need to increase the execution time when subnormals are present.

#de�ne ROUND_OFF 1
#de�ne ROUND_UP 2
#de�ne ROUND_DOWN 3
#de�ne ROUND_NEAR 4
#de�ne is subnormal (x) ((x:h& #7ff00000) � 0 ^ ((x:h& #fffff) _ x:l))
#de�ne is trivial (x) ((x:h& #7ff00000) � #7ff00000)
#de�ne set round cur round = (data~ra :o:l <

#10000 ? ROUND_NEAR : data~ra :o:l� 16)

hCases to compute the results of register-to-register operation 137 i +�
case fadd : set round ; data~x:o = fplus (data~y:o; data~z:o);
�n b
ot : if (is subnormal (data~y:o)) data~denin = denin penalty ;
�n u
ot : if (is subnormal (data~x:o)) data~denout = denout penalty ;
�n
ot : if (is subnormal (data~z:o)) data~denin = denin penalty ;
data~ interrupt j= exceptions ;
if (is trivial (data~y:o) _ is trivial (data~z:o)) goto �n ex ;
if (data~i � fsqrt ^ (data~z:o:h& sign bit)) goto �n ex ;
break;

case fsub : data~a:o = data~z:o;
if (fcomp(data~z:o; zero octa) 6= 2) data~a:o:h �= sign bit ;
set round ; data~x:o = fplus (data~y:o; data~a:o);
data~i = fadd ; =� use pipeline times for addition �=
goto �n b
ot ;

case fmul : set round ; data~x:o = fmult (data~y:o; data~z:o); goto �n b
ot ;
case fdiv : set round ; data~x:o = fdivide (data~y:o; data~z:o); goto �n b
ot ;
case fsqrt : set round ; data~x:o = froot (data~z:o; data~y:o:l); goto �n u
ot ;
case �nt : set round ; data~x:o = �ntegerize (data~z:o; data~y:o:l); goto �n u
ot ;
case �x : set round ; data~x:o = �xit (data~z:o; data~y:o:l);
if (data~op & #2) exceptions &= �W_BIT; =� unsigned case doesn't over
ow �=
goto �n
ot ;

case
ot : set round ; data~x:o =
oatit (data~z:o; data~y:o:l; data~op & #2; data~op & #4);
data~ interrupt j= exceptions ; break;

347. h Special cases of instruction dispatch 117 i +�
case fsqrt : case �nt : case �x : case
ot : if (cool~y:o:l > 4) goto illegal inst ;
break;

130 MORE REGISTER-TO-REGISTER OPS MMIX-PIPE x348

348. hCases to compute the results of register-to-register operation 137 i +�
case feps : j = fepscomp(data~y:o; data~z:o; data~b:o; data~op 6= FEQLE);
if (j � 2) data~i = fcmp ;
else if (is subnormal (data~y:o) _ is subnormal (data~z:o)) data~denin = denin penalty ;
switch (data~op) f
case FUNE: if (j � 2) goto cmp pos ; else goto cmp zero ;
case FEQLE: goto cmp �n ;
case FCMPE: if (j) goto cmp zero or invalid ;
default: ;
g

case fcmp : j = fcomp(data~y:o; data~z:o);
if (j < 0) goto cmp neg ;

cmp �n : if (j � 1) goto cmp pos ;
cmp zero or invalid : if (j � 2) data~ interrupt j= I_BIT;
goto cmp zero ;

case funeq : if (fcomp(data~y:o; data~z:o) � (data~op � FUN ? 2 : 0)) goto cmp pos ;
else goto cmp zero ;

349. hExternal variables 4 i +�
Extern int frem max ;
Extern int denin penalty ; denout penalty ;

350. The
oating point remainder operation is especially interesting because it can be interrupted when
it's in the hot seat.

hCases to compute the results of register-to-register operation 137 i +�
case frem : if (is trivial (data~y:o) _ is trivial (data~z:o)) f

data~x:o = fremstep(data~y:o; data~z:o; 2500);
data~ interrupt j= exceptions ; goto �n ex ;
g
if ((self + 1)~next) wait (1);
data~ interim = true ;
j = 1;
if (is subnormal (data~y:o) _ is subnormal (data~z:o)) j += denin penalty ;
pass after (j);
goto passit ;

351. hBegin execution of a stage-two operation 351 i �
j = 1;
if (data~i � frem) f
data~x:o = fremstep(data~y:o; data~z:o; frem max);
if (exceptions & E_BIT) f
data~y:o = data~x:o;
if (trying to interrupt ^ data � old hot) goto �n ex ;
g else f
data~state = 3;
data~ interim = false ;
data~ interrupt j= exceptions ;
if (is subnormal (data~x:o)) j += denout penalty ;

g
wait (j);
g

This code is used in section 135.

x352 MMIX-PIPE SYSTEM OPERATIONS 131

352. System operations. Finally we need to implement some operations for the operating system; then
the hardware simulation will be done!
A LDVTS instruction is delayed until it reaches the hot seat, because it changes the IT and DT caches.

The operating system should use SYNC after LDVTS if the e�ects are needed immediately; the system is also
responsible for ensuring that the page table permission bits agree with the LDVTS permission bits when the
latter are nonzero. (Also, if write permission is taken away from a page, the operating system must have
previously used SYNCD to write out any dirty bytes that might have been cached from that page; SYNCD will
be inoperative after write permission goes away.)

hHandle special cases for operations like prego and ldvts 289 i +�
if (data~i � ldvts) hDo stage 1 of LDVTS 353 i;

353. hDo stage 1 of LDVTS 353 i �
f
if (data 6= old hot) wait (1);
if (DTcache~ lock _ (j = get reader (DTcache)) < 0) wait (1);
startup(&DTcache~reader [j];DTcache~access time);
data~z:o:h = 0; data~z:o:l = data~y:o:l &

#7;
p = cache search (DTcache ; data~y:o); =� N.B.: Not trans key (data~y:o) �=
if (p) f
data~x:o:l = 2;
if (data~z:o:l) f
p = use and �x (DTcache ; p);
p~data [0]:l = (p~data [0]:l &�8) + data~z:o:l;

g else f
p = demote and �x (DTcache ; p);
p~ tag :h j= sign bit ; =� invalidate the tag �=
g
g
pass after (DTcache~access time); goto passit ;
g

This code is used in section 352.

354. h Special cases for states in later stages 272 i +�
case ld st launch : if (ITcache~ lock _ (j = get reader (ITcache)) < 0) wait (1);
startup(&ITcache~reader [j]; ITcache~access time);
p = cache search (ITcache ; data~y:o); =� N.B.: Not trans key (data~y:o) �=
if (p) f
data~x:o:l j= 1;
if (data~z:o:l) f
p = use and �x (ITcache ; p);
p~data [0]:l = (p~data [0]:l &�8) + data~z:o:l;
g else f
p = demote and �x (ITcache ; p);
p~ tag :h j= sign bit ; =� invalidate the tag �=
g
g
data~state = 3; wait (ITcache~access time);

132 SYSTEM OPERATIONS MMIX-PIPE x355

355. The SYNC operation interacts with the pipeline in interesting ways. SYNC 0 and SYNC 4 are the
simplest; they just lock the dispatch and wait until they get to the hot seat, after which the pipeline has
drained. SYNC 1 and SYNC 3 put a \barrier" into the write bu�er so that subsequent store instructions will
not merge with previous stores. SYNC 2 and SYNC 3 lock the dispatch until all previous load instructions
have left the pipeline. SYNC 5, SYNC 6, and SYNC 7 remove things from caches once they get to the hot seat.

h Special cases of instruction dispatch 117 i +�
case sync : if (cool~zz > 3) f

if (:(cool~ loc :h& sign bit)) goto privileged inst ;
if (cool~zz � 4) freeze dispatch = true ;
g else f
if (cool~zz 6= 1) freeze dispatch = true ;
if (cool~zz & 1) cool~mem x = true ; spec install (&mem ;&cool~x);
g break;

356. hCases for stage 1 execution 155 i +�
case sync : switch (data~zz) f
case 0: case 4: if (data 6= old hot) wait (1);
halted = (data~zz 6= 0); goto �n ex ;

case 2: case 3: hWait if there's an un�nished load ahead of us 357 i;
release lock (self ; dispatch lock);

case 1: data~x:addr = zero octa ; goto �n ex ;
case 5: if (data 6= old hot) wait (1);
hClean the data caches 361 i;

case 6: if (data 6= old hot) wait (1);
hZap the translation caches 358 i;

case 7: if (data 6= old hot) wait (1);
hZap the instruction and data caches 359 i;
g

357. hWait if there's an un�nished load ahead of us 357 i �
f
register control �cc ;
for (cc = data ; cc 6= hot ;) f
cc = (cc � reorder top ? reorder bot : cc + 1);
if (cc~owner ^ (cc~i � ld _ cc~i � ldunc _ cc~i � pst)) wait (1);
g
g

This code is used in section 356.

358. Perhaps the delay should be longer here.

hZap the translation caches 358 i �
if (DTcache~ lock _ (j = get reader (DTcache)) < 0) wait (1);
startup(&DTcache~reader [j];DTcache~access time);
set lock (self ;DTcache~ lock);
zap cache (DTcache);
data~state = 10; wait (DTcache~access time);

This code is used in section 356.

x359 MMIX-PIPE SYSTEM OPERATIONS 133

359. hZap the instruction and data caches 359 i �
if (:Icache) f
data~state = 11; goto switch1 ;
g
if (Icache~ lock _ (j = get reader (Icache)) < 0) wait (1);
startup(&Icache~reader [j]; Icache~access time);
set lock (self ; Icache~ lock);
zap cache (Icache);
data~state = 11; wait (Icache~access time);

This code is used in section 356.

360. h Special cases for states in the �rst stage 266 i +�
case 10: if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
if (ITcache~ lock _ (j = get reader (ITcache)) < 0) wait (1);
startup(&ITcache~reader [j]; ITcache~access time);
set lock (self ; ITcache~ lock);
zap cache (ITcache);
data~state = 3; wait (ITcache~access time);

case 11: if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
if (wbuf lock) wait (1);
write head = write tail ;write ctl :state = 0; =� zap the write bu�er �=
if (:Dcache) f
data~state = 12; goto switch1 ;
g
if (Dcache~ lock _ (j = get reader (Dcache)) < 0) wait (1);
startup(&Dcache~reader [j];Dcache~access time);
set lock (self ;Dcache~ lock);
zap cache (Dcache);
data~state = 12; wait (Dcache~access time);

case 12: if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
if (:Scache) goto �n ex ;
if (Scache~ lock) wait (1);
set lock (self ;Scache~ lock);
zap cache (Scache);
data~state = 3; wait (Scache~access time);

361. hClean the data caches 361 i �
if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
hWait till write bu�er is empty 362 i;
if (clean co :next _ clean lock) wait (1);
set lock (self ; clean lock);
clean ctl :i = sync ; clean ctl :state = 0; clean ctl :x:o:h = 0;
startup(&clean co ; 1);
data~state = 13;
data~ interim = true ;
wait (1);

This code is used in section 356.

134 SYSTEM OPERATIONS MMIX-PIPE x362

362. hWait till write bu�er is empty 362 i �
if (write head 6= write tail) f
if (:speed lock) set lock (self ; speed lock);
wait (1);
g

This code is used in sections 361 and 364.

363. The cleanup process might take a huge amount of time, so we must allow it to be interrupted.
(Servicing the interruption might, of course, put more stu� into the cache.)

h Special cases for states in the �rst stage 266 i +�
case 13: if (:clean co :next) f

data~ interim = false ; goto �n ex ; =� it's done! �=
g
if (trying to interrupt) goto �n ex ; =� accept an interruption �=
wait (1);

x364 MMIX-PIPE SYSTEM OPERATIONS 135

364. Now we consider SYNCD and SYNCID. When control comes to this part of the program, data~y:o is a
virtual address and data~z:o is the corresponding physical address; data~xx + 1 is the number of bytes we
are supposed to be syncing; data~b:o:l is the number of bytes we can handle at once (either Icache~bb or
Dcache~bb or 8192).
We need a more elaborate scheme to implement SYNCD and SYNCID than we have used for the \hint"

instructions PRELD, PREGO, and PREST, because SYNCD and SYNCID are not merely hints. They cannot be
converted into a sequence of cache-block-size commands at dispatch time, because we cannot be sure that
the starting virtual address will be aligned with the beginning of a cache block. We need to realize that the
bytes speci�ed by SYNCD or SYNCID might cross a virtual page boundary|possibly with di�erent protection
bits on each page. We need to allow for interrupts. And we also need to keep the fetch bu�er empty until a
user's SYNCID has completely brought the memory up to date.

h Special cases for states in later stages 272 i +�
do syncid : data~state = 30;
case 30: if (data 6= old hot) wait (1);
if (:Icache) f
data~state = (data~ loc :h& sign bit ? 31 : 33); goto switch2 ;
g
hClean the I-cache block for data~z:o, if any 365 i;
data~state = (data~ loc :h& sign bit ? 31 : 33); wait (Icache~access time);

case 31: if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
hWait till write bu�er is empty 362 i;
if (((data~b:o:l � 1) &�data~y:o:l) < data~xx) data~ interim = true ;
if (:Dcache) goto next sync ;
hClean the D-cache block for data~z:o, if any 366 i;
data~state = 32; wait (Dcache~access time);

case 32: if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
if (:Scache) goto next sync ;
hClean the S-cache block for data~z:o, if any 367 i;
data~state = 35; wait (Scache~access time);

do syncd : data~state = 33;
case 33: if (data 6= old hot) wait (1);
if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
hWait till write bu�er is empty 362 i;
if (((data~b:o:l � 1) &�data~y:o:l) < data~xx) data~ interim = true ;
if (:Dcache) f
if (data~i � syncd) goto �n ex ; else goto next sync ; g
hUse cleanup on the cache blocks for data~z:o, if any 368 i;
data~state = 34;

case 34: if (:clean co :next) goto next sync ;
if (trying to interrupt ^ data~ interim ^ data � old hot) f
data~z:o = zero octa ; =� anticipate RESUME_CONT �=
goto �n ex ; =� accept an interruption �=
g
wait (1);

next sync : data~state = 35;
case 35: if (self~ lockloc) �(self~ lockloc) = �; self~ lockloc = �;
if (data~ interim) hContinue this command on the next cache block 369 i;
data~go :known = true ;
goto �n ex ;

136 SYSTEM OPERATIONS MMIX-PIPE x365

365. hClean the I-cache block for data~z:o, if any 365 i �
if (Icache~ lock _ (j = get reader (Icache)) < 0) wait (1);
startup(&Icache~reader [j]; Icache~access time);
set lock (self ; Icache~ lock);
p = cache search (Icache ; data~z:o);
if (p) f
demote and �x (Icache ; p);
clean block (Icache ; p);
g

This code is used in section 364.

366. hClean the D-cache block for data~z:o, if any 366 i �
if (Dcache~ lock _ (j = get reader (Dcache)) < 0) wait (1);
startup(&Dcache~reader [j];Dcache~access time);
set lock (self ;Dcache~ lock);
p = cache search (Dcache ; data~z:o);
if (p) f
demote and �x (Dcache ; p);
clean block (Dcache ; p);
g

This code is used in section 364.

367. hClean the S-cache block for data~z:o, if any 367 i �
if (Scache~ lock) wait (1);
set lock (self ;Scache~ lock);
p = cache search (Scache ; data~z:o);
if (p) f
demote and �x (Scache ; p);
clean block (Scache ; p);
g

This code is used in section 364.

368. hUse cleanup on the cache blocks for data~z:o, if any 368 i �
if (clean co :next _ clean lock) wait (1);
set lock (self ; clean lock);
clean ctl :i = syncd ;
clean ctl :state = 4;
clean ctl :x:o:h = data~ loc :h& sign bit ;
clean ctl :z:o = data~z:o;
schedule (&clean co ; 1; 4);

This code is used in section 364.

x369 MMIX-PIPE SYSTEM OPERATIONS 137

369. We use the fact that cache block sizes are divisors of 8192.

hContinue this command on the next cache block 369 i �
f
data~ interim = false ;
data~xx �= ((data~b:o:l � 1) &�data~y:o:l) + 1;
data~y:o = incr (data~y:o; data~b:o:l);
data~y:o:l &= �data~b:o:l;
data~z:o:l = (data~z:o:l &�8192) + (data~y:o:l & 8191);
if ((data~y:o:l & 8191) � 0) goto square one ; =� maybe crossed a page boundary �=
if (data~i � syncd) goto do syncd ; else goto do syncid ;
g

This code is used in section 364.

370. If the �rst page lacks proper protection, we still must try the second, in the rare case that a page
boundary is spanned.

h Special cases for states in later stages 272 i +�
sync check : if ((data~y:o:l � (data~y:o:l + data~xx)) � 8192) f

data~xx �= (8191 &�data~y:o:l) + 1;
data~y:o = incr (data~y:o; 8192);
data~y:o:l &= �8192;
goto square one ;
g
goto �n ex ;

138 INPUT AND OUTPUT MMIX-PIPE x371

371. Input and output. We're done implementing the hardware, but there's still a small matter of
software remaining, because we sometimes want to pretend that a real operating system is present without
actually having one loaded. This simulator therefore implements a special feature: If RESUME 1 is issued in
location rT, the ten special I/O traps of MMIX-SIM are performed instantaneously behind the scenes.
Of course all claims of accurate simulation go out the door when this feature is used.

#de�ne max sys call Ftell

hType de�nitions 11 i +�
typedef enum f
Halt ;Fopen ;Fclose ;Fread ;Fgets ;Fgetws ;Fwrite ;Fputs ;Fputws ;Fseek ;Ftell
g sys call;

372. hMagically do an I/O operation, if cool~ loc is rT 372 i �
if (cool~ loc :l � g[rT]:o:l ^ cool~ loc :h � g[rT]:o:h) f
register unsigned char yy ; zz ;
octa ma ; mb ;

if (g[rXX]:o:l & #ffff0000) goto magic done ;
yy = g[rXX]:o:l� 8; zz = g[rXX]:o:l & #ff;
if (yy > max sys call) goto magic done ;
hPrepare memory arguments ma = M[a] and mb = M[b] if needed 380 i;
switch (yy) f
case Halt : hEither halt or print warning 373 i; break;
case Fopen : g[rBB]:o = mmix fopen (zz ;mb ;ma); break;
case Fclose : g[rBB]:o = mmix fclose (zz); break;
case Fread : g[rBB]:o = mmix fread (zz ;mb ;ma); break;
case Fgets : g[rBB]:o = mmix fgets (zz ;mb ;ma); break;
case Fgetws : g[rBB]:o = mmix fgetws (zz ;mb ;ma); break;
case Fwrite : g[rBB]:o = mmix fwrite (zz ;mb ;ma); break;
case Fputs : g[rBB]:o = mmix fputs (zz ; g[rBB]:o); break;
case Fputws : g[rBB]:o = mmix fputws (zz ; g[rBB]:o); break;
case Fseek : g[rBB]:o = mmix fseek (zz ; g[rBB]:o); break;
case Ftell : g[rBB]:o = mmix ftell (zz); break;
g

magic done : g[255]:o = neg one ; =� this will enable interrupts �=
g

This code is used in section 322.

373. hEither halt or print warning 373 i �
if (:zz) halted = true ;
else if (zz � 1) f
octa trap loc ;

trap loc = incr (g[rWW]:o;�4);
if (:(trap loc :h _ trap loc :l � #f0)) print trip warning (trap loc :l� 4; incr (g[rW]:o;�4));
g

This code is used in section 372.

374. hGlobal variables 20 i +�
char arg count [] = f1; 3; 1; 3; 3; 3; 3; 2; 2; 2; 1g;

375. The input/output operations invoked by TRAPs are done by subroutines in an auxiliary program
module called MMIX-IO. Here we need only declare those subroutines, and write three primitive interfaces
on which they depend.

x376 MMIX-PIPE INPUT AND OUTPUT 139

376. hGlobal variables 20 i +�
extern octa mmix fopen ARGS((unsigned char;octa;octa));
extern octa mmix fclose ARGS((unsigned char));
extern octa mmix fread ARGS((unsigned char;octa;octa));
extern octa mmix fgets ARGS((unsigned char;octa;octa));
extern octa mmix fgetws ARGS((unsigned char;octa;octa));
extern octa mmix fwrite ARGS((unsigned char;octa;octa));
extern octa mmix fputs ARGS((unsigned char;octa));
extern octa mmix fputws ARGS((unsigned char;octa));
extern octa mmix fseek ARGS((unsigned char;octa));
extern octa mmix ftell ARGS((unsigned char));
extern void print trip warning ARGS((int;octa));

377. h Internal prototypes 13 i +�
int mmgetchars ARGS((char �; int;octa; int));
void mmputchars ARGS((unsigned char �; int;octa));
char stdin chr ARGS((void));
octa magic read ARGS((octa));
void magic write ARGS((octa;octa));

378. We need to cut through all the complications of bu�ers and caches in order to do magical I/O. The
magic read routine �nds the current octabyte in a given physical address by looking at the write bu�er,
D-cache, S-cache, and memory until �nding it.

h Subroutines 14 i +�
octa magic read (addr)

octa addr ;
f
register write node �q;
register cacheblock �p;
for (q = write tail ; ;) f
if (q � write head) break;
if (q � wbuf top) q = wbuf bot ; else q++;
if ((q~addr :l &�8) � (addr :l &�8) ^ q~addr :h � addr :h) return q~o;

g
if (Dcache) f
p = cache search (Dcache ; addr);
if (p) return p~data [(addr :l & (Dcache~bb � 1))� 3];
if (((Dcache~outbuf :tag :l � addr :l) &�Dcache~bb) � 0 ^Dcache~outbuf :tag :h � addr :h)
return Dcache~outbuf :data [(addr :l & (Dcache~bb � 1))� 3];

if (Scache) f
p = cache search (Scache ; addr);
if (p) return p~data [(addr :l & (Scache~bb � 1))� 3];
if (((Scache~outbuf :tag :l � addr :l) &�Scache~bb) � 0 ^ Scache~outbuf :tag :h � addr :h)
return Scache~outbuf :data [(addr :l & (Scache~bb � 1))� 3];

g
g
return mem read (addr);
g

140 INPUT AND OUTPUT MMIX-PIPE x379

379. The magic write routine changes the octabyte in a given physical address by changing it wherever it
appears in a bu�er or cache. Any \dirty" or \least recently used" status remains unchanged. (Yes, this is
magic.)

h Subroutines 14 i +�
void magic write (addr ; val)

octa addr ; val ;
f
register write node �q;
register cacheblock �p;
for (q = write tail ; ;) f
if (q � write head) break;
if (q � wbuf top) q = wbuf bot ; else q++;
if ((q~addr :l &�8) � (addr :l &�8) ^ q~addr :h � addr :h) q~o = val ;

g
if (Dcache) f
p = cache search (Dcache ; addr);
if (p) p~data [(addr :l & (Dcache~bb � 1))� 3] = val ;
if (((Dcache~ inbuf :tag :l � addr :l) &�Dcache~bb) � 0 ^Dcache~ inbuf :tag :h � addr :h)
Dcache~ inbuf :data [(addr :l & (Dcache~bb � 1))� 3] = val ;

if (((Dcache~outbuf :tag :l � addr :l) &�Dcache~bb) � 0 ^Dcache~outbuf :tag :h � addr :h)
Dcache~outbuf :data [(addr :l & (Dcache~bb � 1))� 3] = val ;

if (Scache) f
p = cache search (Scache ; addr);
if (p) p~data [(addr :l & (Scache~bb � 1))� 3] = val ;
if (((Scache~ inbuf :tag :l � addr :l) &�Scache~bb) � 0 ^ Scache~ inbuf :tag :h � addr :h)
Scache~ inbuf :data [(addr :l & (Scache~bb � 1))� 3] = val ;

if (((Scache~outbuf :tag :l � addr :l) &�Scache~bb) � 0 ^ Scache~outbuf :tag :h � addr :h)
Scache~outbuf :data [(addr :l & (Scache~bb � 1))� 3] = val ;

g
g
mem write (addr ; val);
g

380. The conventions of our imaginary operating system require us to apply the trivial memory mapping
in which segment i appears in a 232-byte page of physical addresses starting at 232i.

hPrepare memory arguments ma = M[a] and mb = M[b] if needed 380 i �
if (arg count [yy] � 3) f
octa arg loc ;

arg loc = g[rBB]:o;
if (arg loc :h& #9fffffff) mb = zero octa ;
else arg loc :h�= 29;mb = magic read (arg loc);
arg loc = incr (g[rBB]:o; 8);
if (arg loc :h& #9fffffff) ma = zero octa ;
else arg loc :h�= 29;ma = magic read (arg loc);
g

This code is used in section 372.

x381 MMIX-PIPE INPUT AND OUTPUT 141

381. The subroutine mmgetchars (buf ; size ; addr ; stop) reads characters starting at address addr in the
simulated memory and stores them in buf , continuing until size characters have been read or some other
stopping criterion has been met. If stop < 0 there is no other criterion; if stop = 0 a null character will also
terminate the process; otherwise addr is even, and two consecutive null bytes starting at an even address
will terminate the process. The number of bytes read and stored, exclusive of terminating nulls, is returned.

h Subroutines 14 i +�
int mmgetchars (buf ; size ; addr ; stop)

char �buf ;
int size ;
octa addr ;
int stop ;

f
register char �p;
register int m;
octa a; x;

if (((addr :h& #9fffffff) _ (incr (addr ; size � 1):h& #9fffffff)) ^ size) f
fprintf (stderr ; "Attempt to get characters from off the page!\n");
return 0;
g
for (p = buf ;m = 0; a = addr ; a:h�= 29; m < size ;) f
x = magic read (a);
if ((a:l & #7) _m > size � 8) hRead and store one byte; return if done 382 i
else hRead and store up to eight bytes; return if done 383 i
g
return size ;
g

382. hRead and store one byte; return if done 382 i �
f
if (a:l & #4) �p = (x:l� (8 � ((�a:l) & #3))) & #ff;
else �p = (x:h� (8 � ((�a:l) & #3))) & #ff;
if (:�p ^ stop � 0) f
if (stop � 0) return m;
if ((a:l & #1) ^ �(p� 1) � '\0') return m� 1;
g
p++;m++; a = incr (a; 1);
g

This code is used in section 381.

142 INPUT AND OUTPUT MMIX-PIPE x383

383. hRead and store up to eight bytes; return if done 383 i �
f
�p = x:h� 24;
if (:�p ^ (stop � 0 _ (stop > 0 ^ x:h < #10000))) return m;
�(p+ 1) = (x:h� 16) & #ff;
if (:�(p+ 1) ^ stop � 0) return m+ 1;
�(p+ 2) = (x:h� 8) & #ff;
if (:�(p+ 2) ^ (stop � 0 _ (stop > 0 ^ (x:h& #ffff) � 0))) return m+ 2;
�(p+ 3) = x:h& #ff;
if (:�(p+ 3) ^ stop � 0) return m+ 3;
�(p+ 4) = x:l� 24;
if (:�(p+ 4) ^ (stop � 0 _ (stop > 0 ^ x:l < #10000))) return m+ 4;
�(p+ 5) = (x:l� 16) & #ff;
if (:�(p+ 5) ^ stop � 0) return m+ 5;
�(p+ 6) = (x:l� 8) & #ff;
if (:�(p+ 6) ^ (stop � 0 _ (stop > 0 ^ (x:l & #ffff) � 0))) return m+ 6;
�(p+ 7) = x:l & #ff;
if (:�(p+ 7) ^ stop � 0) return m+ 7;
p += 8;m += 8; a = incr (a; 8);
g

This code is used in section 381.

384. The subroutine mmputchars (buf ; size ; addr) puts size characters into the simulated memory starting
at address addr .

h Subroutines 14 i +�
void mmputchars (buf ; size ; addr)

unsigned char �buf ;
int size ;
octa addr ;

f
register unsigned char �p;
register int m;
octa a; x;

if (((addr :h& #9fffffff) _ (incr (addr ; size � 1):h& #9fffffff)) ^ size) f
fprintf (stderr ; "Attempt to put characters off the page!\n");
return;
g
for (p = buf ;m = 0; a = addr ; a:h�= 29; m < size ;) f
if ((a:l & #7) _m > size � 8) hLoad and write one byte 385 i
else hLoad and write eight bytes 386 i;
g
g

x385 MMIX-PIPE INPUT AND OUTPUT 143

385. hLoad and write one byte 385 i �
f
register int s = 8 � ((�a:l) & #3);

x = magic read (a);
if (a:l & #4) x:l �= (((x:l� s)� �p) & #ff)� s;
else x:h �= (((x:h� s)� �p) & #ff)� s;
magic write (a; x);
p++;m++; a = incr (a; 1);
g

This code is used in section 384.

386. hLoad and write eight bytes 386 i �
f
x:h = (�p� 24) + (�(p+ 1)� 16) + (�(p+ 2)� 8) + �(p+ 3);
x:l = (�(p+ 4)� 24) + (�(p+ 5)� 16) + (�(p+ 6)� 8) + �(p+ 7);
magic write (a; x);
p += 8;m += 8; a = incr (a; 8);
g

This code is used in section 384.

387. When standard input is being read by the simulated program at the same time as it is being used for
interaction, we try to keep the two uses separate by maintaining a private bu�er for the simulated program's
StdIn. Online input is usually transmitted from the keyboard to a C program a line at a time; therefore
an fgets operation works much better than fread when we prompt for new input. But there is a slight
complication, because fgets might read a null character before coming to a newline character. We cannot
deduce the number of characters read by fgets simply by looking at strlen (stdin buf).

h Subroutines 14 i +�
char stdin chr ()
f
register char �p;
while (stdin buf start � stdin buf end) f
printf ("StdIn> "); �ush (stdout);
fgets (stdin buf ; 256; stdin);
stdin buf start = stdin buf ;
for (p = stdin buf ; p < stdin buf + 254; p++)
if (�p � '\n') break;

stdin buf end = p+ 1;
g
return �stdin buf start ++;
g

388. hGlobal variables 20 i +�
char stdin buf [256]; =� standard input to the simulated program �=
char �stdin buf start ; =� current position in that bu�er �=
char �stdin buf end ; =� current end of that bu�er �=

144 INDEX MMIX-PIPE x389

389. Index.

??: 25.
__STDC__: 6.
a: 44, 91, 167, 381, 384.
aa : 167, 177, 181, 186, 187, 189, 191, 193, 196,

199, 205, 233, 234.
aaaaa : 237, 243, 244.
ABSTIME: 89.
access time : 167, 217, 224, 230, 233, 234, 257,

261, 262, 266, 267, 268, 270, 271, 272, 273,
274, 288, 291, 292, 295, 296, 300, 326, 353,
354, 358, 359, 360, 364, 365, 366.

ADD: 47.
add : 49, 51, 140.
add go : 331.
ADDI: 47.
addr : 40, 43, 44, 73, 89, 95, 100, 115, 116, 144,

208, 209, 210, 212, 213, 216, 219, 236, 240,
246, 251, 255, 256, 257, 259, 260, 261, 262,
281, 297, 356, 378, 379, 381, 384.

addr found : 256.
addu : 49, 51, 139.
ADDU: 47.
ADDUI: 47.
after : 282.
alf : 192, 193, 195, 205.
alloc slot : 204, 205, 218, 222, 225, 261, 272, 274,

276, 298, 300, 326.
Alpha computers: 217.
AND: 47.
and : 49, 51, 138.
ANDI: 47.
andn : 49, 51, 138.
ANDN: 47.
ANDNH: 47.
ANDNI: 47.
ANDNL: 47.
ANDNMH: 47.
ANDNML: 47.
arg count : 374, 380.
arg loc : 380.
ARGS: 6, 9, 13, 18, 21, 24, 27, 30, 32, 34, 38, 42,

45, 55, 62, 72, 90, 92, 94, 96, 156, 158, 161,
169, 171, 173, 175, 178, 180, 182, 184, 186, 188,
190, 192, 195, 198, 200, 202, 204, 208, 209,
212, 240, 250, 252, 254, 376, 377.

arith exc : 44, 46, 59, 98, 100, 146, 307, 308.
Attempt to get characters...: 381.
Attempt to put characters...: 384.
aux : 20, 21, 343.
avoid D : 273, 277.
awaken : 125, 222, 224, 245.

b: 44, 56, 82, 157, 167, 172.
B_BIT: 54, 118, 304, 323, 329, 330, 332, 336, 337.
bad fetch : 288, 293, 296, 298, 301.
bad inst mask : 304, 305, 323.
bad resume : 323.
bb : 167, 170, 172, 179, 185, 193, 201, 203, 205,

216, 217, 218, 219, 221, 223, 224, 226, 227,
228, 229, 259, 262, 265, 268, 271, 273, 275,
276, 280, 292, 294, 364, 378, 379.

bdif : 49, 51, 344.
BDIF: 47.
BDIFI: 47.
before : 282.
BEV: 47.
BEVB: 47.
big-endian versus little-endian: 304.
bit code map : 54, 56.
block di� : 217, 219.
BN: 47.
BNB: 47.
BNN: 47.
BNNB: 47.
BNP: 47.
BNPB: 47.
BNZ: 47.
BNZB: 47.
BOD: 47.
BODB: 47.
bool: 11, 12, 20, 21, 40, 44, 65, 66, 68, 75, 148,

169, 170, 175, 176, 202, 203, 238, 242, 303, 315.
bool mult : 21, 344.
BP: 47.
bp a : 150, 151, 152, 153.
bp amask : 151, 152, 153, 154.
bp b : 150, 151, 152, 153.
bp bad stat : 154, 155, 162.
bp bcmask : 151, 152, 153, 154.
bp c : 150, 153.
bp cmask : 151, 152, 153, 154.
bp good stat : 154, 155, 162.
bp n : 150, 153.
bp nmask : 152, 153, 154.
bp npower : 151, 152, 153, 154, 160.
bp ok stat : 152, 154, 162.
bp rev stat : 152, 154, 162.
bp table : 150, 151, 152, 160, 162.
BPB: 47.
br : 49, 51, 85, 106, 152, 155.
breakpoint : 9, 10, 304.
breakpoint hit : 10, 12, 304.
buf : 381, 384.

x389 MMIX-PIPE INDEX 145

bus words : 214, 216, 219, 223, 297.

byte di� : 21, 344.

BZ: 47.

BZB: 47.

c: 25, 28, 31, 33, 46, 159, 167, 170, 172, 174, 176,
179, 181, 183, 185, 193, 196, 199, 201, 203,
205, 215, 217, 222, 224, 237, 326.

cache: 167, 168, 169, 170, 171, 172, 173, 174, 175,
176, 178, 179, 180, 181, 182, 183, 184, 185, 192,
193, 195, 196, 198, 199, 200, 201, 202, 203, 204,
205, 215, 217, 222, 224, 237, 326.

cache addr : 192, 193, 196, 201, 205, 217.

cache search : 192, 193, 195, 205, 206, 217, 224,
233, 234, 262, 267, 268, 271, 272, 273, 291, 292,
296, 302, 353, 354, 365, 366, 367, 378, 379.

cacheblock: 167, 169, 170, 171, 172, 178, 179,
184, 185, 186, 187, 188, 189, 190, 191, 192, 193,
195, 196, 198, 199, 200, 201, 202, 203, 204, 205,
217, 222, 224, 232, 237, 257, 258, 378, 379.

caches: 163.

cacheset: 167, 186, 187, 188, 189, 190, 191,
193, 194, 196, 205.

calloc : 213.

cc : 158, 159, 167, 177, 181, 184, 185, 222, 224,
233, 234, 237, 245, 357.

choose victim : 186, 187, 196, 205.

chunk : 206, 209, 210, 213, 216, 219, 223, 297.

chunknode: 206, 207.

clean block : 178, 179, 181, 276, 365, 366, 367.

clean co : 230, 231, 361, 363, 364, 368.

clean ctl : 230, 231, 361, 368.

clean lock : 39, 230, 233, 234, 361, 368.

cleanup : 129, 230, 231, 232.

Clock time is...: 14.

CMP: 47.

cmp : 49, 51, 143.

cmp �n : 348.

cmp neg : 143, 348.

cmp pos : 143, 348.

cmp zero : 143, 348.

cmp zero or invalid : 348.

CMPI: 47.

cmpu : 49, 51, 143.

CMPU: 47.

CMPUI: 47.

co : 76, 81, 82, 237, 243, 244.

commit max : 59, 67, 145, 330.

confusion : 13, 28, 135, 185, 187.

control: 44, 45, 46, 60, 63, 73, 78, 124, 127, 158,
159, 167, 230, 235, 248, 254, 255, 285, 357.

control struct: 23, 44.

cool : 60, 61, 63, 67, 69, 75, 78, 81, 82, 84, 85, 86,
98, 99, 100, 102, 103, 104, 105, 106, 108, 109,
110, 111, 112, 113, 114, 117, 118, 119, 120, 121,
122, 123, 145, 152, 158, 160, 227, 308, 309, 312,
314, 316, 322, 323, 324, 332, 333, 334, 335, 337,
338, 339, 340, 341, 347, 355, 372.

cool G : 99, 102, 104, 105, 106, 110, 117, 119,
120, 312, 323, 335, 337.

cool hist : 74, 75, 99, 151, 152, 160, 308, 309, 316.
cool L: 99, 102, 104, 105, 106, 110, 112, 114, 119,

120, 312, 323, 337, 338.
cool O : 75, 98, 100, 104, 105, 106, 110, 112, 114,

117, 118, 119, 120, 145, 147, 333, 337, 338, 339.
cool S : 75, 98, 100, 110, 113, 114, 118, 119,

120, 145, 147, 337.
copy block : 184, 185, 217, 221.
copy in time : 167, 217, 222, 224, 237, 276.
copy out time : 167, 203, 221, 233, 234, 259.
coroutine: 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 44, 76, 124, 127, 167, 222,
224, 230, 235, 237, 248, 285.

coroutine bit : 8, 10, 125.
coroutine struct: 23.
count : 216, 219, 223.
count bits : 21, 344.
cset : 49, 51, 345.
CSEV: 47.
CSEVI: 47.
CSN: 47.
CSNI: 47.
CSNN: 47.
CSNNI: 47.
CSNP: 47.
CSNPI: 47.
CSNZ: 47.
CSNZI: 47.
CSOD: 47.
CSODI: 47.
CSP: 47.
CSPI: 47.
CSWAP: 47, 271, 281.
cswap : 49, 51, 110, 117, 283, 307.
CSWAPI: 47.
CSZ: 47.
CSZI: 47.
ctl : 23, 30, 31, 32, 44, 81, 124, 125, 128, 134, 222,

224, 231, 236, 243, 244, 245, 249, 255, 286.
ctl change bit : 81, 83, 85.
cur O : 44, 46, 100, 145, 147.
cur round : 20, 346.
cur S : 44, 46, 100, 145, 147.
cur time : 28, 29, 125.

146 INDEX MMIX-PIPE x389

cycs : 9, 10.
d: 28, 31, 97, 170, 197, 201, 203, 220.
D_BIT: 54, 308, 343.
data : 124, 125, 130, 131, 132, 133, 134, 135, 137,

138, 139, 140, 141, 142, 143, 144, 155, 156, 160,
167, 172, 179, 185, 197, 201, 203, 215, 216, 217,
218, 219, 220, 222, 223, 224, 225, 226, 232, 233,
234, 237, 239, 243, 244, 245, 257, 259, 260, 261,
262, 264, 265, 266, 267, 268, 269, 270, 271, 272,
273, 274, 275, 276, 277, 278, 279, 280, 281, 282,
283, 288, 289, 291, 292, 293, 294, 295, 296, 297,
298, 300, 301, 302, 304, 307, 308, 309, 310, 313,
325, 326, 327, 328, 329, 330, 331, 336, 342, 343,
344, 345, 346, 348, 350, 351, 352, 353, 354,
356, 357, 358, 359, 360, 361, 363, 364, 365,
366, 367, 368, 369, 370, 378, 379.

Dcache : 39, 128, 168, 215, 217, 222, 227, 228, 233,
234, 257, 259, 261, 262, 263, 265, 267, 268, 271,
273, 274, 275, 276, 280, 360, 364, 366, 378, 379.

Dclean : 233.
Dclean inc : 233.
Dclean loop : 233.
dd : 197, 203.
decgamma : 49, 114, 147, 327.
default go : 46.
deissues : 60, 61, 63, 64, 67, 145, 160, 308, 309, 316.
del : 216.
delay : 219.
delta : 21.
demote and �x : 198, 199, 233, 234, 268, 271, 273,

353, 354, 365, 366, 367.
demote usage : 190, 191, 199.
denin : 44, 100, 133, 346, 348.
denin penalty : 279, 346, 348, 349, 350.
denout : 44, 100, 133, 134, 346.
denout penalty : 281, 346, 349, 351.
die : 144, 160, 265, 308, 309, 310.
dirty : 167, 170, 172, 179, 181, 185, 197, 201, 203,

216, 217, 221, 259, 262.
dirty only : 176, 177.
dispatch count : 64, 65, 81.
dispatch done : 101, 112, 113, 114, 332.
dispatch lock : 39, 64, 65, 75, 81, 85, 310, 329,

330, 356.
dispatch max : 59, 74, 75, 85, 162.
dispatch stat : 64, 66, 162.
DIV: 47.
div : 7, 49, 51, 121, 343.
DIVI: 47.
divu : 49, 51, 121, 343.
DIVU: 47.
DIVUI: 47.

Dlocker : 127, 128, 276.
do resume trans : 325, 326.
do syncd : 280, 364, 369.
do syncid : 280, 364, 369.
doing interrupt : 63, 64, 65, 314, 317, 318.
done : 125, 134, 233, 234.
done with write : 256.
down : 40, 86, 89, 95, 97, 116.
DPTco : 235, 236, 237.
DPTctl : 235, 236.
DPTname : 235, 236.
DT hit : 267, 268, 270, 271, 272, 273.
DT miss : 267, 270, 272.
DT retry : 272.
DTcache : 39, 128, 168, 236, 237, 266, 267, 268,

270, 272, 325, 353, 358.
DUNNO: 254, 255, 268, 270, 271, 278.
E_BIT: 54, 56, 306, 314, 317, 351.
emulate virt : 272, 310, 327.
eps : 21.
errprint coroutine id : 24, 25, 28.
errprint0 : 13, 22, 25.
errprint1 : 13, 14, 28, 213.
errprint2 : 13, 14, 25, 210.
exceptions : 20, 281, 346, 350, 351.
exit : 14.
expire : 13, 14.
Extern: 4, 5, 9, 29, 38, 59, 60, 66, 69, 77, 86, 87,

98, 115, 136, 150, 161, 168, 175, 178, 180, 207,
209, 211, 212, 214, 242, 247, 252, 284, 349.

f : 75.
F_BIT: 54, 122, 256, 302, 306, 309, 310, 313,

314, 317, 320, 321, 327.
fadd : 49, 51, 346.
FADD: 47.
false : 11, 12, 59, 75, 81, 100, 112, 113, 114, 146,

147, 170, 179, 201, 203, 205, 217, 221, 244,
259, 269, 301, 304, 314, 323, 324, 330, 332,
337, 340, 351, 363, 369.

Fclose : 371, 372.
fcmp : 49, 51, 348.
FCMP: 47.
FCMPE: 47, 348.
fcomp : 21, 346, 348.
fdiv : 49, 51, 346.
FDIV: 47.
fdivide : 21, 346.
feps : 49, 51, 348.
fepscomp : 21, 348.
FEQL: 47.
FEQLE: 47, 348.
fetch: 68, 69, 70, 73, 74, 301.

x389 MMIX-PIPE INDEX 147

fetch bot : 69, 73, 74, 75, 301.
fetch co : 285, 286, 287.
fetch ctl : 285, 286.
fetch hi : 285, 294, 297, 301.
fetch lo : 285, 294, 297, 301, 304.
fetch max : 59, 284, 301.
fetch one : 301.
fetch ready : 285, 291, 292, 296, 297, 299, 301.
fetch retry : 298, 300.
fetch top : 69, 71, 73, 74, 75, 301.
fetched : 284, 285, 294, 297, 301, 304.
�ush : 387.
Fgets : 371, 372.
fgets : 387.
Fgetws : 371, 372.
�ll from mem : 129, 222, 224, 237.
�ll from S : 129, 224, 237.
�ll from virt : 129, 237, 242.
�ll lock : 167, 174, 222, 224, 225, 226, 237, 257,

261, 272, 274, 298, 300.
�ller : 167, 176, 195, 196, 204, 218, 224, 225, 259,

261, 272, 274, 276, 298, 300, 326.
�ller ctl : 167, 176, 225, 236, 261, 272, 274,

298, 300, 326.
�n b
ot : 346.
�n ex : 135, 144, 155, 266, 269, 271, 272, 273, 274,

276, 279, 281, 283, 296, 298, 300, 301, 313, 325,
326, 327, 328, 329, 331, 336, 342, 345, 346,
350, 351, 356, 360, 363, 364, 370.

�n
ot : 346.
�n ld : 279.
�n st : 281.
�n u
ot : 346.
�nish store : 272, 279, 280.
�nt : 49, 51, 346, 347.
FINT: 47.
�ntegerize : 21, 346.
�rst : 216.
FIX: 47.
�x : 49, 51, 346, 347.
�xit : 21, 346.
FIXU: 47.

ags : 80, 81, 83, 312, 320.

oatit : 21, 346.

ot : 49, 51, 346, 347.
FLOT: 47.
FLOTI: 47.
FLOTU: 47.
FLOTUI: 47.

ush cache : 202, 203, 205, 217, 233, 234, 263.

ush to mem : 129, 215.

ush to S : 129, 217.

usher : 167, 176, 202, 203, 204, 205, 215, 217,
221, 233, 234, 259, 263.

usher ctl : 167.
fmul : 49, 51, 346.
FMUL: 47.
fmult : 21, 346.
Fopen : 371, 372.
fplus : 21, 346.
fprintf : 13, 381, 384.
Fputs : 371, 372.
Fputws : 371, 372.
Fread : 371, 372.
fread : 387.
freeze dispatch : 75, 81, 118, 355.
frem : 49, 51, 320, 350, 351.
FREM: 47.
frem max : 349, 351.
fremstep : 21, 350, 351.
froot : 21, 346.
Fseek : 371, 372.
FSQRT: 47.
fsqrt : 7, 49, 51, 346, 347.
fsub : 49, 51, 346.
FSUB: 47.
Ftell : 371, 372.
FUN: 47, 348.
func: 75, 76, 77, 79.
func struct: 76.
FUNE: 47, 348.
funeq : 49, 51, 348.
funit : 77, 79, 82.
funit count : 77, 79, 82.
Fwrite : 371, 372.
g: 86, 167, 172.
GET: 47.
get : 49, 51, 118, 146, 328.
get reader : 182, 183, 233, 257, 266, 267, 271,

272, 273, 288, 291, 296, 353, 354, 358, 359,
360, 365, 366.

GETA: 47.
GETAB: 47.
gg : 167, 170, 172, 216, 259.
go : 44, 46, 49, 51, 85, 100, 119, 120, 122, 123,

128, 155, 160, 231, 236, 249, 286, 308, 312,
320, 321, 322, 327, 331, 364.

GO: 47, 235.
GOI: 47.
got DT : 272.
got IT : 291, 298.
got one : 291, 300, 301.
h: 17, 151, 152, 210, 213.

148 INDEX MMIX-PIPE x389

H_BIT: 54, 146, 306, 308, 313, 314, 317, 319,
320, 321.

h down : 152.
h up : 152.
Halt : 371, 372.
halted : 10, 12, 356, 373.
hash prime : 207, 209, 210, 213.
head : 69, 71, 73, 74, 75, 80, 81, 84, 85, 100,

110, 114, 151, 152, 160, 228, 229, 301, 308,
309, 316, 323, 335, 341.

Hennessy, John LeRoy: 2, 58, 150, 163.
hist : 44, 46, 68, 75, 85, 100, 160, 308, 309.
hit : 193.
hit and miss : 267, 268, 271, 273.
hit set : 192, 193, 194, 196, 199, 201, 217.
holding time : 247, 256, 257.
hot : 60, 61, 63, 64, 67, 69, 86, 101, 146, 147, 149,

255, 256, 314, 316, 317, 318, 319, 320, 321, 357.
i: 10, 12, 44, 172, 176, 181, 185, 201, 246.
I can't allocate...: 213.
I_BIT: 54, 348.
Icache : 39, 128, 168, 222, 227, 229, 265, 280, 291,

292, 294, 296, 300, 359, 364, 365.
Ihit and miss : 291, 292, 296, 298, 299.
ii : 185, 216.
IIADDU: 47.
IIADDUI: 47.
illegal inst : 118, 347.
inbuf : 167, 200, 201, 219, 220, 222, 223, 226,

245, 379.
incgamma : 49, 113, 147, 323, 327, 338.
INCH: 47.
INCL: 47.
INCMH: 47.
INCML: 47.
Incorrect implementation...: 22.
incr : 21, 46, 64, 84, 85, 100, 113, 114, 119, 120,

236, 240, 265, 279, 301, 314, 320, 322, 323,
325, 333, 338, 339, 369, 370, 373, 380, 381,
382, 383, 384, 385, 386.

increase L: 110, 312.
incrl : 49, 112, 119, 327.
inst : 68, 73, 75, 84, 100, 110, 114, 228, 229,

304, 323, 335, 341.
inst ptr : 71, 73, 81, 85, 119, 120, 122, 123, 160,

284, 288, 290, 294, 301, 302, 304, 308, 309,
310, 312, 314, 322, 323.

interactive read bit : 8.
interim : 44, 46, 81, 100, 112, 113, 114, 146,

227, 320, 330, 332, 337, 340, 342, 350, 351,
361, 363, 364, 369.

internal op : 51, 80.

internal op name : 46, 50.
internal opcode: 44, 49, 51, 246.
interrupt : 44, 46, 59, 68, 73, 81, 100, 118, 122,

132, 140, 141, 144, 146, 149, 160, 256, 266,
269, 271, 281, 282, 288, 301, 302, 304, 306,
307, 308, 309, 310, 313, 314, 317, 319, 320,
321, 322, 323, 327, 329, 330, 331, 332, 336,
337, 343, 346, 348, 350, 351.

interrupts: 306.
INTERVAL_TIMEOUT: 57, 314.
IPTco : 235, 236, 237.
IPTctl : 235, 236.
IPTname : 235, 236.
is dirty : 169, 170, 177, 205, 233, 234.
is load store : 307, 310, 316, 320.
is subnormal : 346, 348, 350, 351.
is trivial : 346, 350.
issue bit : 8, 10, 81, 145, 146, 147, 149, 283, 310,

314, 319, 320, 321.
issued between : 158, 159, 160, 308, 309, 316.
IT hit : 291, 292, 295, 296, 298, 299.
IT miss : 291, 295, 298, 299.
ITcache : 39, 128, 168, 236, 237, 288, 291, 292,

293, 295, 298, 302, 325, 354, 360.
IVADDU: 47.
IVADDUI: 47.
j: 10, 12, 56, 162, 170, 172, 176, 179, 181, 183,

185, 189, 191, 203.
jj : 185.
JMP: 47.
jmp : 49, 51, 84, 85, 327.
JMPB: 47.
k: 76.
K_BIT: 54, 118, 322.
keep : 202, 203.
key : 210, 213.
known : 40, 43, 44, 46, 59, 85, 89, 93, 100, 102,

112, 119, 120, 131, 132, 133, 135, 144, 237, 244,
255, 265, 290, 312, 322, 331, 338, 364.

known phys : 296, 298.
l: 17, 86, 187, 189, 191.
last h : 209, 210, 211, 213, 216, 219, 223, 297.
last o� : 216.
ld : 49, 51, 117, 265, 271, 307, 327, 357.
ld ready : 267, 268, 270, 271, 273, 274, 277,

278, 279.
ld retry : 272, 273, 274.
ld st launch : 265, 266, 354.
LDB: 47, 279.
LDBI: 47.
LDBU: 47, 279.
LDBUI: 47.

x389 MMIX-PIPE INDEX 149

LDHT: 47, 279.
LDHTI: 47.
LDO: 47.
LDOI: 47.
LDOU: 47, 114, 332.
LDOUI: 47.
LDPTE: 235, 236, 279.
ldpte : 49, 235, 236, 265.
LDPTP: 235, 236, 279.
ldptp : 49, 235, 236, 265.
LDSF: 47, 271, 279.
LDSFI: 47.
LDT: 47, 279.
LDTI: 47.
LDTU: 47, 279.
LDTUI: 47.
LDUNC: 47.
ldunc : 49, 51, 117, 265, 268, 271, 273, 357.
LDUNCI: 47.
LDVTS: 47.
ldvts : 49, 51, 118, 265, 271, 352.
LDVTSI: 47.
LDW: 47, 279.
LDWI: 47.
LDWU: 47, 279.
LDWUI: 47.
lim : 185.
list : 6.
little-endian versus big-endian: 304.
load cache : 200, 201, 222, 224, 237.
load sf : 21, 279.
loc : 44, 46, 68, 73, 80, 81, 84, 85, 100, 118, 119,

122, 144, 149, 151, 152, 160, 236, 266, 271, 296,
304, 320, 322, 323, 331, 355, 364, 368, 372.

lock : 167, 174, 200, 217, 222, 224, 225, 226, 233,
234, 237, 257, 259, 261, 266, 267, 271, 272,
273, 274, 276, 288, 291, 296, 300, 326, 353,
354, 358, 359, 360, 365, 366, 367.

lockloc : 23, 37, 125, 145, 234, 257, 279, 287,
301, 360, 361, 364.

lockvar: 37, 65, 167, 214, 230, 247.
lring mask : 88, 89, 104, 105, 106, 110, 112, 113,

114, 117, 119, 120, 337, 338.
lring size : 86, 88, 89, 114.
lru : 164, 186, 187, 189, 191.
m: 12, 187, 189, 191, 268, 270, 271, 278, 381, 384.
ma : 372, 380.
magic done : 372.
magic read : 377, 378, 380, 381, 385.
magic write : 377, 379, 385, 386.
make ld ready : 271.
mask : 282.

max : 268, 292.
max mem slots : 86, 89.
max pipe op : 49, 133, 136.
max real command : 49, 81.
max rename regs : 86, 89.
max stage : 26, 129.
max sys call : 371, 372.
mb : 372, 380.
mem : 113, 114, 115, 116, 117, 227, 236, 246, 249,

254, 255, 265, 333, 334, 339, 355.
mem addr time : 214, 216, 219, 225, 260, 261,

271, 274, 277, 297, 300.
mem chunks : 207, 213.
mem chunks max : 206, 207, 213.
mem direct : 257.
mem hash : 207, 209, 210, 213, 216, 219, 223, 297.
mem lock : 39, 214, 215, 219, 222, 225, 259, 260,

261, 271, 274, 277, 297, 300.
mem locker : 127, 128, 219, 260, 271, 277, 297.
mem read : 208, 209, 210, 219, 222, 271, 277,

297, 378.
mem read time : 214, 219, 222, 223, 271, 277, 297.
mem slots : 63, 86, 89, 111, 145, 147, 256.
mem write : 208, 212, 213, 216, 260, 379.
mem write time : 214, 216, 260.
mem x : 44, 46, 100, 111, 113, 117, 123, 144, 145,

146, 147, 255, 327, 339, 355.
mmgetchars : 377, 381.
MMIX con�g : 1, 9, 23, 29, 49, 59, 136, 207, 259.
mmix fclose : 372, 376.
mmix fgets : 372, 376.
mmix fgetws : 372, 376.
mmix fopen : 372, 376.
mmix fputs : 372, 376.
mmix fputws : 372, 376.
mmix fread : 372, 376.
mmix fseek : 372, 376.
mmix ftell : 372, 376.
mmix fwrite : 372, 376.
MMIX init : 1, 9, 10.
mmix opcode: 44, 47, 75, 156, 157.
MMIX run : 1, 9, 10.
MMIX silent : 9, 10.
mmputchars : 377, 384.
mode : 21, 167, 217, 257, 263.
MOR: 47.
mor : 49, 51, 344.
More...chunks are needed: 213.
MORI: 47.
MUL: 47.
mul : 49, 51, 343.
MULI: 47.

150 INDEX MMIX-PIPE x389

mulu : 49, 51, 121, 343.
MULU: 47.
MULUI: 47.
mul0 : 49, 343.
mul1 : 49, 343.
mul2 : 49.
mul3 : 49.
mul4 : 49.
mul5 : 49.
mul6 : 49.
mul7 : 49.
mul8 : 49, 343.
MUX: 47.
mux : 49, 51, 142.
MUXI: 47.
MXOR: 47.
MXORI: 47.
my div : 7.
my fsqrt : 7.
my random : 7.
N_BIT: 54, 271.
name : 23, 25, 39, 76, 128, 167, 174, 176, 231,

236, 249, 286.
nand : 49, 51, 138.
NAND: 47.
NANDI: 47.
need b : 44, 46, 100, 106, 108, 112, 113, 114,

131, 312, 345.
need ra : 44, 46, 100, 108, 112, 113, 131, 324.
NEG: 47.
neg one : 20, 22, 143, 236, 282, 372.
NEGI: 47.
NEGU: 47.
NEGUI: 47.
new cool : 75, 78, 101.
new fetch : 288, 298, 301, 302.
new head : 74, 75, 81, 85, 120.
new L: 120.
new O : 75, 99, 100, 119, 120, 333, 334, 338, 339.
new Q : 146, 148, 149, 310, 314, 329.
new S : 75, 99, 100, 113, 114, 333, 334, 339.
new tail : 301.
next : 23, 26, 28, 32, 33, 35, 82, 125, 134, 145, 176,

183, 196, 202, 205, 217, 218, 221, 225, 233,
234, 259, 261, 263, 266, 272, 274, 276, 298,
300, 326, 350, 361, 363, 364, 368.

next sync : 364.
no hardware PT : 242, 272, 298.
NONEXISTENT_MEMORY: 57.
noop : 49, 51, 80, 118, 122, 322, 323, 327, 332, 337.
noop inst : 118, 227.
NOR: 47.

nor : 49, 51, 138.
NORI: 47.
note usage : 188, 189, 190, 196.
noted : 68, 73, 75, 85, 304, 323.
nullifying : 75, 85, 146, 147, 310, 315, 316.
nxor : 49, 51, 138.
NXOR: 47.
NXORI: 47.
o: 19, 40, 157, 246.
O_BIT: 54.
oand : 21, 241.
oandn : 21, 146, 240, 241, 279, 325.
octa: 9, 10, 17, 18, 19, 20, 21, 40, 44, 46, 68, 87,

90, 91, 98, 99, 141, 148, 156, 157, 167, 192,
193, 197, 201, 203, 204, 205, 206, 208, 209, 210,
212, 213, 216, 219, 220, 237, 238, 239, 240, 241,
246, 254, 255, 268, 270, 271, 278, 282, 284, 297,
372, 373, 376, 377, 378, 379, 380, 381, 384.

odif : 49, 51, 344.
ODIF: 47.
ODIFI: 47.
odiv : 21, 343.
o� : 185, 210, 213, 216, 219, 223, 226.
old hot : 60, 64, 276, 283, 310, 322, 328, 329,

342, 351, 353, 356, 364.
old tail : 64, 69, 70, 74, 75, 85, 160, 308, 309.
ominus : 21, 139, 140, 344.
omult : 21, 343.
op : 44, 46, 75, 80, 81, 82, 84, 85, 100, 102, 103,

108, 109, 112, 113, 114, 117, 124, 139, 151, 152,
155, 156, 157, 236, 256, 271, 279, 281, 282, 312,
320, 321, 327, 332, 339, 344, 345, 346, 348.

opcode name : 48, 73.
operating system: 243.
oplus : 21, 139, 140, 241, 265, 331.
ops : 76, 79, 82.
or : 49, 51, 114, 138.
OR: 47, 114.
ORH: 47.
ORI: 47.
ORL: 47.
ORMH: 47.
ORML: 47.
ORN: 47.
orn : 49, 51, 138.
ORNI: 47.
outbuf : 167, 176, 202, 203, 205, 215, 216, 217,

218, 219, 221, 259, 378, 379.
over
ow : 20, 21, 343.
owner : 44, 46, 63, 67, 73, 81, 124, 134, 144,

145, 244, 314, 357.

x389 MMIX-PIPE INDEX 151

p: 26, 28, 33, 35, 40, 63, 73, 120, 170, 172, 179,
185, 187, 189, 191, 193, 196, 199, 201, 203, 205,
251, 255, 256, 258, 378, 379, 381, 384, 387.

P_BIT: 54, 81, 149, 160, 322, 331.
pack bytes : 320, 335, 341.
page coloring: 268, 292.
page b : 238, 239, 243, 244.
page bad : 238, 239, 266, 288.
page f : 238, 239, 272, 298.
page mask : 238, 239, 240, 241, 279, 325.
page n : 238, 239, 240, 279.
page r : 238, 239, 244.
page s : 238, 239, 243, 268, 292.
panic : 13, 22, 28, 135, 185, 187, 213.
PARITY_ERROR: 57.
pass after : 125, 134, 266, 268, 270, 271, 288,

350, 353.
pass data : 134, 135.
passit : 134, 266, 268, 270, 271, 288, 350, 353.
Patterson, David Andrew: 2, 58, 150, 163.
PBEV: 47.
PBEVB: 47.
PBN: 47.
PBNB: 47.
PBNN: 47.
PBNNB: 47.
PBNP: 47.
PBNPB: 47.
PBNZ: 47.
PBNZB: 47.
PBOD: 47.
PBODB: 47.
PBP: 47.
PBPB: 47.
pbr : 49, 51, 81, 85, 106, 152, 155.
PBZ: 47.
PBZB: 47.
peek hist : 68, 74, 75, 85, 99, 100, 151, 152.
peekahead : 59, 74.
phys addr : 240, 241, 269, 292, 295, 298.
pipe bit : 8, 10.
pipe limit : 136.
pipe seq : 133, 134, 136, 141.
policy : 186, 187, 189, 191.
POP: 47.
pop : 46, 49, 51, 85, 114, 120, 331.
pop unsave : 120, 332.
ports : 128, 167, 183.
POWER_FAILURE: 57.
pp : 184, 185.
PR_BIT: 54, 266, 269.
predicted : 85, 151.

PREGO: 47, 235.
prego : 49, 51, 81, 227, 265, 271, 288, 289, 294,

296, 298, 300, 301.
PREGOI: 47.
PRELD: 47.
preld : 49, 51, 81, 227, 265, 266, 269, 271,

272, 273, 274.
PRELDI: 47.
PREST: 47.
prest : 49, 51, 81, 227, 265, 269, 271, 272,

273, 274, 275.
prest span : 275, 276.
prest win : 267, 276.
PRESTI: 47.
print bits : 46, 55, 56, 73.
print cache : 175, 176.
print cache block : 171, 172, 177.
print cache locks : 39, 173, 174.
print control block : 45, 46, 63, 81, 125, 145,

146, 147.
print coroutine id : 24, 25, 28, 33, 63, 73, 81,

125, 145.
print fetch bu�er : 72, 73, 253.
print locks : 10, 38, 39.
print octa : 18, 19, 43, 46, 73, 91, 146, 149, 152,

160, 176, 251, 283, 310, 314, 319, 320, 321.
print pipe : 10, 252, 253.
print reorder bu�er : 62, 63, 253.
print spec : 42, 43, 46.
print specnode : 43, 46.
print specnode id : 43, 73, 90, 91.
print stats : 161, 162.
print trip warning : 373, 376.
print write bu�er : 250, 251, 253.
printf : 10, 19, 25, 28, 33, 39, 43, 46, 56, 63,

73, 81, 91, 125, 145, 146, 147, 149, 152, 160,
162, 172, 174, 176, 177, 251, 283, 310, 314,
319, 320, 321, 387.

privileged inst : 118, 355.
program counter: 284.
PROT_OFFSET: 54, 269, 293, 298.
prototypes for functions: 6.
PRW_BITS: 266, 269.
pseudo lru : 164, 186, 187, 189, 191.
pst : 49, 51, 117, 254, 265, 266, 271, 280, 321, 357.
ptr a : 44, 114, 117, 215, 217, 222, 224, 227, 236,

237, 249, 254, 255, 325, 326, 333, 334.
ptr b : 44, 217, 218, 222, 224, 225, 232, 233, 234,

237, 257, 261, 262, 272, 274, 298, 300, 326.
ptr c : 44, 224, 225, 236, 237.
pushgo : 49, 51, 85, 110, 119, 331.
PUSHGO: 47.

152 INDEX MMIX-PIPE x389

PUSHGOI: 47.
PUSHJ: 47.
pushj : 49, 51, 85, 110, 119, 327.
PUSHJB: 47.
PUT: 47.
put : 49, 51, 118, 146, 149, 329.
PUTI: 47.
PW_BIT: 54, 266, 269.
PX_BIT: 54, 269, 293, 298, 301.
q: 35, 196, 205, 255, 256, 258, 378, 379.
qloop : 255.
quantify mul : 343.
queuelist : 34, 35, 125.
r: 35, 93, 95, 189, 191.
ra : 44, 46, 59, 100, 108, 131, 144, 307, 308,

324, 346.
rA: 52, 107, 108, 146, 324, 329, 334, 342.
random : 7, 164, 167, 186, 187.
rank : 167, 172, 186, 187, 188, 189, 191, 203,

217, 259.
rB : 52, 86, 310, 312, 319.
rBB : 52, 312, 319, 322, 372, 380.
rC : 52, 269.
rD : 52, 107.
rE : 52, 107, 108.
reader : 128, 167, 183, 233, 257, 266, 267, 271,

272, 273, 288, 291, 296, 353, 354, 358, 359,
360, 365, 366.

REBOOT_SIGNAL: 57.
register truth : 155, 156, 157, 345.
rel addr bit : 75, 83, 106.
release lock : 37, 222, 226, 233, 234, 272, 298, 356.
ren a : 44, 46, 100, 111, 117, 119, 121, 123, 144,

145, 146, 147, 312, 322, 334, 340.
ren x : 44, 46, 100, 110, 111, 112, 114, 118, 119,

120, 123, 144, 145, 146, 147, 236, 312, 322,
333, 334, 338.

rename registers: 44, 86.
rename regs : 63, 86, 89, 111, 145, 146, 147.
reorder bot : 60, 63, 67, 75, 145, 159, 318, 357.
reorder top : 60, 61, 63, 67, 75, 145, 159, 318, 357.
repl : 167, 196, 199, 205.
replace policy: 164, 167, 186, 187, 188, 189,

190, 191.
res : 93.
resum : 49, 67, 314, 323, 325.
resume : 49, 51, 85, 149, 322, 323, 325.
RESUME: 47, 304, 323.
RESUME_AGAIN: 320, 323.
resume again : 323.
RESUME_CONT: 320, 323, 364.
RESUME_SET: 307, 320, 323, 324.

RESUME_TRANS: 242, 320, 323, 325.
resume trans : 325, 326.
resuming : 73, 78, 81, 103, 160, 308, 309, 316,

323, 324.
reversed : 152.
rF : 52.
rG : 52, 89, 102, 329, 330, 334, 342.
rH : 52, 121.
rI : 52, 314.
ring : 26, 28, 29, 34, 35.
ring size : 26, 27, 28, 29, 125.
rJ : 52, 85, 107, 119, 312, 319.
rK : 52, 149, 314, 317, 322, 328.
rl : 44, 46, 100, 112, 114, 119, 120, 123, 145,

146, 147, 334, 338.
rL: 52, 102, 112, 114, 119, 120, 329, 330, 334, 338.
rM : 52, 107.
rN : 52, 89.
rO : 52, 98, 118.
ROUND_DOWN: 346.
ROUND_NEAR: 346.
ROUND_OFF: 346.
ROUND_UP: 346.
rP : 52, 283, 335, 341.
rQ : 52, 146, 149, 310, 314, 328, 329.
rR : 52, 121, 335, 341.
rS : 52, 98, 118.
rT : 52, 122, 310, 312, 372.
rTT : 52, 314.
rU : 52, 100, 146.
rv : 239.
rV : 52, 329.
rW : 52, 320, 322, 373.
rWW : 52, 320, 322, 373.
rX : 52, 320, 322.
rXX : 52, 320, 322, 372.
rY : 52, 321, 324.
rYY : 52, 321, 323, 324.
rZ : 52, 321, 324, 335, 339.
rZZ : 52, 321, 323, 324.
s: 21, 28, 43, 133, 134, 187, 189, 191, 193,

196, 205, 385.
S_BIT: 54, 149.
S non miss : 224.
sadd : 49, 51, 344.
SADD: 47.
SADDI: 47.
sav : 49, 327, 337.
save : 49, 51, 327, 337, 340.
SAVE: 47, 81, 281, 341.
Scache : 39, 168, 215, 217, 218, 219, 220, 221,

222, 224, 225, 226, 234, 259, 261, 274, 300,

x389 MMIX-PIPE INDEX 153

360, 364, 367, 378, 379.
schedule : 27, 28, 31, 125, 326, 368.
schedule bit : 8, 10, 28, 33.
Sclean : 234.
Sclean inc : 234.
Sclean loop : 234.
security disabled : 66, 67.
self : 124, 125, 134, 215, 217, 222, 224, 225, 226,

233, 234, 237, 257, 259, 260, 261, 262, 264, 266,
272, 274, 279, 298, 300, 301, 310, 350, 356, 358,
359, 360, 361, 362, 364, 365, 366, 367, 368.

sentinel : 35, 36, 125.
serial : 164, 186, 187, 189, 191.
set : 49, 51, 109, 137, 167, 177, 181, 192, 233,

234, 343.
set l : 44, 46, 100, 112, 114, 119, 120, 123, 145,

146, 147, 334, 338.
set lock : 37, 81, 215, 217, 219, 222, 224, 225, 226,

233, 234, 237, 259, 260, 261, 262, 264, 271, 272,
274, 276, 277, 297, 298, 300, 310, 358, 359,
360, 361, 362, 365, 366, 367, 368.

set round : 281, 346.
SETH: 47, 112, 323.
SETL: 47.
SETMH: 47.
SETML: 47.
SFLOT: 47.
SFLOTI: 47.
SFLOTU: 47.
SFLOTUI: 47.
sh : 49, 141.
shift amt : 141.
shift left : 21, 22, 113, 114, 118, 139, 141, 244,

279, 282, 333, 339.
shift right : 21, 141, 239, 243, 279, 282, 334, 343.
shl : 49, 51, 141.
shlu : 49, 51, 141.
show pred bit : 8, 46, 152, 160.
show spec bit : 8.
show wholecache bit : 8, 177.
shr : 49, 51, 141.
shrt : 21.
shru : 49, 51, 141.
sign bit : 80, 81, 82, 85, 89, 91, 100, 113, 118, 119,

140, 143, 144, 149, 157, 160, 177, 179, 205, 230,
233, 234, 244, 266, 271, 279, 288, 296, 320, 322,
331, 346, 353, 354, 355, 364, 368.

signed odiv : 21, 343.
signed omult : 21, 343.
sim : 21.
size : 208, 246, 256, 260, 381, 384.
SL: 47.

sleep : 125, 224, 257, 272, 274, 298, 300, 301.
sleepy : 301, 302, 303.
SLI: 47.
SLU: 47.
SLUI: 47.
spec: 40, 41, 42, 43, 44, 92, 93, 284.
spec install : 94, 95, 110, 112, 113, 114, 117,

118, 119, 120, 121, 312, 322, 333, 334, 338,
339, 340, 355.

spec read : 206, 208, 271.
spec rem : 96, 97, 123, 145, 146, 147, 256.
spec write : 206, 208, 246, 260.
special name : 53, 91.
specnode: 40, 43, 44, 71, 86, 92, 93, 94, 95, 96,

97, 100, 115, 120, 255.
specnode struct: 40.
specval : 10, 92, 93, 104, 105, 106, 108, 113, 114,

118, 120, 122, 312, 322, 323, 324, 339.
speed lock : 39, 247, 257, 362.
Sprep : 233, 234.
square one : 272, 369, 370.
SR: 47.
SRI: 47.
SRU: 47.
SRUI: 47.
st : 49, 51, 117, 254, 265, 266, 267, 270, 271,

272, 279, 280, 321, 327.
st ready : 267, 270, 271, 272, 280.
stack alert : 44, 100, 113, 146, 269.
STACK_OVERFLOW: 57, 146.
stack over
ow : 146, 148.
stage : 23, 25, 26, 28, 39, 59, 124, 125, 126, 128,

129, 134, 136, 174, 231, 236, 249, 284.
stall : 75, 82, 101, 102, 111, 120, 312, 322, 332.
stamp : 246, 251, 256, 257.
start fetch : 288, 289.
start ld st : 265.
startup : 30, 31, 81, 203, 219, 221, 225, 233, 244,

249, 257, 259, 260, 261, 266, 267, 271, 272, 273,
274, 276, 277, 286, 287, 288, 291, 296, 297, 298,
300, 353, 354, 358, 359, 360, 361, 365, 366.

state : 30, 31, 44, 46, 124, 125, 130, 131, 133, 134,
135, 215, 217, 219, 222, 224, 232, 233, 234, 237,
257, 259, 260, 262, 264, 265, 267, 268, 270, 271,
272, 273, 274, 276, 277, 278, 279, 280, 281, 288,
291, 292, 295, 296, 297, 298, 300, 301, 310, 325,
326, 345, 351, 354, 358, 359, 360, 361, 364, 368.

state 4 : 308, 310, 311.
state 5 : 307, 310, 311.
STB: 47, 256, 281.
STBI: 47.
STBU: 47, 281.

154 INDEX MMIX-PIPE x389

STBUI: 47.
STCO: 47, 117, 256.
STCOI: 47.
stderr : 13, 381, 384.
stdin : 387.
StdIn>: 387.
stdin buf : 387, 388.
stdin buf end : 387, 388.
stdin buf start : 387, 388.
stdin chr : 377, 387.
stdout : 387.
STHT: 47, 281.
STHTI: 47.
STO: 47.
STOI: 47.
stop : 381, 382, 383.
store sf : 21, 281.
STOU: 47, 113, 339.
STOUI: 47.
strlen : 387.
STSF: 47, 256, 281.
STSFI: 47.
STT: 47, 281.
STTI: 47.
STTU: 47, 281.
STTUI: 47.
STUNC: 47, 281.
stunc : 49, 251, 254, 257, 281.
STUNCI: 47.
STW: 47, 281.
STWI: 47.
STWU: 47, 281.
STWUI: 47.
SUB: 47.
sub : 44, 49, 51, 140.
SUBI: 47.
SUBSUBVERSION: 89.
subu : 49, 51, 139.
SUBU: 47.
SUBUI: 47.
SUBVERSION: 89.
support : 78, 79, 80.
suppress dispatch : 64, 65, 317.
switch0 : 288, 299.
switch1 : 130, 133, 265, 327, 345, 359, 360.
switch2 : 135, 364.
SWYM: 47, 301, 321, 323, 325.
swym one : 301, 302.
sync : 49, 51, 230, 233, 234, 251, 254, 256, 257,

355, 356, 361.
SYNC: 47, 304, 323.
sync check : 269, 271, 370.

SYNCD: 47.
syncd : 49, 51, 230, 265, 269, 271, 280, 320,

323, 364, 368, 369.
SYNCDI: 47.
syncid : 49, 51, 85, 119, 265, 266, 267, 269, 270,

271, 272, 280, 320, 323.
SYNCID: 47.
SYNCIDI: 47.
sys call: 371.
system dependencies: 17, 89.
t: 35, 82, 95, 97, 197, 241.
tag : 167, 172, 176, 177, 179, 185, 193, 196, 197,

201, 203, 205, 206, 210, 213, 216, 217, 218,
219, 221, 223, 226, 233, 234, 245, 259, 276,
353, 354, 378, 379.

tagmask : 167, 192, 193.
tail : 64, 69, 71, 73, 74, 85, 120, 160, 301, 304,

308, 309, 316.
tdif : 49, 51, 344.
TDIF: 47.
tdif l : 344.
TDIFI: 47.
terminate : 125, 126, 144, 215, 217, 221, 222,

224, 232, 237.
tetra: 17, 21, 68, 73, 76, 78, 91, 120, 206, 210,

213, 246, 255.
thinking big: 58, 74.
third operand : 103, 107, 108.
This can't happen: 13.
ticks : 10, 14, 28, 64, 87, 187, 251, 256, 257.
time : 89.
TLB: 163.
tmpo : 141.
Tomasulo, Robert Marco: 58.
trans : 241.
trans key : 240, 245, 267, 272, 291, 298, 302,

326, 353, 354.
translation caches: 163.
trap : 49, 51, 80, 81, 82, 85, 103, 149, 310, 312,

313, 317, 320.
TRAP: 47, 80, 82, 320.
trap loc : 373.
trip : 49, 51, 80, 85, 312, 313, 317.
TRIP: 47.
true : 10, 11, 59, 68, 85, 89, 100, 106, 108, 110,

112, 113, 114, 117, 118, 119, 120, 121, 144, 146,
170, 185, 217, 227, 236, 238, 239, 259, 262, 263,
265, 302, 304, 310, 312, 314, 316, 317, 322,
324, 330, 331, 332, 333, 334, 337, 338, 339,
340, 345, 350, 355, 361, 364, 373.

true head : 74, 81.
trying to interrupt : 314, 315, 330, 351, 363, 364.

x389 MMIX-PIPE INDEX 155

tt : 28.
u: 21, 75, 79, 97.
U_BIT: 54, 307.
uninit mem bit : 8, 210.
uninitialized memory...: 210.
unit busy : 82.
unit found : 82.
UNKNOWN_SPEC: 71, 73, 85, 120, 123, 290, 309.
unsav : 49, 327, 332.
unsave : 49, 51, 327, 332.
UNSAVE: 47, 81, 102, 279, 332, 335.
unschedule : 32, 33, 145, 287.
unsgnd : 21.
up : 40, 73, 85, 86, 89, 93, 95, 97, 100, 102, 114,

116, 117, 120, 146, 227, 254, 255, 312, 333, 334.
usage : 44, 46, 81, 100, 146, 324.
use and �x : 195, 196, 198, 201, 217, 262, 268, 270,

271, 272, 273, 292, 293, 296, 353, 354.
v: 167.
V_BIT: 54, 140, 141, 282, 343.
val : 208, 212, 213, 379.
vanish : 126, 128, 129, 260.
vanish ctl : 127, 128.
verbose : 4, 10, 28, 33, 46, 81, 125, 145, 146,

147, 149, 152, 160, 177, 210, 283, 310, 314,
319, 320, 321.

VERSION: 89.
victim : 167, 177, 181, 193, 196, 199, 205, 233, 234.
VIIIADDU: 47.
VIIIADDUI: 47.
virt : 241.
vrepl : 167, 196, 199, 205.
vv : 167, 177, 181, 193, 196, 199, 205, 233, 234.
W_BIT: 54, 346.
wait : 125, 131, 133, 134, 215, 216, 217, 218, 219,

221, 222, 223, 224, 225, 233, 234, 237, 257, 259,
260, 261, 262, 263, 264, 266, 271, 272, 273,
276, 277, 278, 279, 281, 283, 288, 290, 297,
298, 301, 310, 326, 328, 329, 330, 342, 350,
351, 353, 354, 356, 357, 358, 359, 360, 361,
362, 363, 364, 365, 366, 367, 368.

wait or pass : 288, 292, 295, 296.
wbuf bot : 247, 251, 255, 256, 257, 378, 379.
wbuf lock : 39, 247, 256, 257, 259, 260, 262,

264, 360.
wbuf top : 247, 249, 251, 255, 256, 257, 378, 379.
wdif : 49, 51, 344.
WDIF: 47.
WDIFI: 47.
wow : 11.
WRITE_ALLOC: 166, 167, 217, 257.
WRITE_BACK: 166, 167, 217, 263.

write co : 248, 249.
write ctl : 248, 249, 360.
write from wbuf : 129, 249, 257, 272.
write head : 247, 249, 251, 255, 256, 257, 259, 260,

261, 262, 360, 362, 378, 379.
write node: 246, 247, 251, 255, 256, 378, 379.
write restart : 257, 259, 261.
write search : 254, 255, 268, 270, 271, 278.
write tail : 247, 249, 251, 255, 256, 257, 360,

362, 378, 379.
wyde di� : 21, 344.
x: 21, 44, 56, 119, 120, 381, 384.
X_BIT: 54, 307.
X is dest bit : 83, 101, 312, 320.
XOR: 47.
xor : 21, 49, 51, 138.
XORI: 47.
XVIADDU: 47.
XVIADDUI: 47.
xx : 44, 46, 100, 102, 106, 110, 114, 117, 118, 119,

120, 146, 227, 265, 275, 312, 320, 323, 325, 329,
332, 335, 336, 337, 340, 341, 364, 369, 370.

y: 21, 44.
yy : 44, 46, 100, 103, 105, 118, 320, 333, 335,

337, 339, 341, 372, 380.
yz : 75, 84, 85, 109, 120.
z: 21, 44.
Z_BIT: 54.
zap cache : 180, 181, 358, 359, 360.
zero octa : 20, 100, 112, 179, 237, 243, 244, 265,

271, 279, 288, 312, 317, 330, 346, 356, 364, 380.
zero spec : 41, 85, 100, 109, 112, 113, 114.
zset : 49, 51, 345.
ZSEV: 47.
ZSEVI: 47.
ZSN: 47.
ZSNI: 47.
ZSNN: 47.
ZSNNI: 47.
ZSNP: 47.
ZSNPI: 47.
ZSNZ: 47.
ZSNZI: 47.
ZSOD: 47.
ZSODI: 47.
ZSP: 47.
ZSPI: 47.
ZSZ: 47.
ZSZI: 47.
zz : 44, 46, 100, 103, 104, 118, 146, 320, 322, 323,

328, 337, 338, 339, 341, 355, 356, 372, 373.

156 NAMES OF THE SECTIONS MMIX-PIPE

hAllocate a slot p in the S-cache 218 i Used in section 217.

hAssign a functional unit if available, otherwise goto stall 82 i Used in section 75.

hBegin an interruption and break 317 i Used in section 146.

hBegin execution of a stage-two operation 351 i Used in section 135.

hBegin execution of an operation 132 i Used in section 130.

hBegin fetch with known physical address 296 i Used in section 288.

hBegin fetch without I-cache lookup 295 i Used in section 291.

hCases 0 through 4, for the D-cache 233 i Used in section 232.

hCases 5 through 9, for the S-cache 234 i Used in section 232.

hCases for control of special coroutines 126, 215, 217, 222, 224, 232, 237, 257 i Used in section 125.

hCases for stage 1 execution 155, 313, 325, 327, 328, 329, 331, 356 i Used in section 132.

hCases to compute the results of register-to-register operation 137, 138, 139, 140, 141, 142, 143, 343, 344, 345, 346,

348, 350 i Used in section 132.

hCases to compute the virtual address of a memory operation 265 i Used in section 132.

hCheck for a hit in pending writes 278 i Used in section 273.

hCheck for external interrupt 314 i Used in section 64.

hCheck for security violation, break if so 149 i Used in section 67.

hCheck for su�cient rename registers and memory slots, or goto stall 111 i Used in section 75.

hCheck for prest with a fully spanned cache block 275 i Used in section 274.

hCheck the protection bits and get the physical address 269 i Used in sections 268, 270, and 272.

hClean the D-cache block for data~z:o, if any 366 i Used in section 364.

hClean the I-cache block for data~z:o, if any 365 i Used in section 364.

hClean the S-cache block for data~z:o, if any 367 i Used in section 364.

hClean the data caches 361 i Used in section 356.

hCommit and/or deissue up to commit max instructions 67 i Used in section 64.

hCommit the hottest instruction, or break if it's not ready 146 i Used in section 67.

hCommit to memory if possible, otherwise break 256 i Used in section 146.

hCompute the new entry for c~ inbuf and give the caller a sneak preview 245 i Used in section 237.

hContinue this command on the next cache block 369 i Used in section 364.

hConvert relative address to absolute address 84 i Used in section 75.

hCopy data from p into c~ inbuf 226 i Used in section 224.

hCopy the data from block q to fetched 294 i Used in sections 292 and 296.

hCopy Scache~ inbuf to slot p 220 i Used in section 217.

hDeclare mmix opcode and internal opcode 47, 49 i Used in section 44.

hDeissue all but the hottest command 316 i Used in section 314.

hDeissue the coolest instruction 145 i Used in section 67.

hDetermine the
ags, f , and the internal opcode, i 80 i Used in section 75.

hDispatch an instruction to the cool block if possible, otherwise goto stall 101 i Used in section 75.

hDispatch one cycle's worth of instructions 74 i Used in section 64.

hDo a simultaneous lookup in the D-cache 268 i Used in section 267.

hDo a simultaneous lookup in the I-cache 292 i Used in section 291.

hDo load/store stage 1 without D-cache lookup 270 i Used in section 267.

hDo load/store stage 2 without D-cache lookup 277 i Used in section 273.

hDo load/store stage 1 with known physical address 271 i Used in section 266.

hDo stage 1 of LDVTS 353 i Used in section 352.

hDo the �nal SAVE 340 i Used in section 339.

hEither halt or print warning 373 i Used in section 372.

hExecute all coroutines scheduled for the current time 125 i Used in section 64.

hExternal prototypes 9, 38, 161, 175, 178, 180, 209, 212, 252 i Used in sections 3 and 5.

hExternal routines 10, 39, 162, 176, 179, 181, 210, 213, 253 i Used in section 3.

hExternal variables 4, 29, 59, 60, 66, 69, 77, 86, 87, 98, 115, 136, 150, 168, 207, 211, 214, 242, 247, 284, 349 i Used in

sections 3 and 5.

MMIX-PIPE NAMES OF THE SECTIONS 157

hFill Scache~ inbuf with clean memory data 219 i Used in section 217.

hFinish a CSWAP 283 i Used in section 281.

hFinish a store command 281 i Used in section 280.

hFinish execution of an operation 144 i Used in section 130.

hForward the new data past the D-cache if it is write-through 263 i Used in section 257.

hGenerate an instruction to save g[yy] 339 i Used in section 337.

hGenerate an instruction to unsave g[yy] 333 i Used in section 332.

hGet ready for the next step of PREGO 229 i Used in section 81.

hGet ready for the next step of PRELD or PREST 228 i Used in section 81.

hGet ready for the next step of SAVE 341 i Used in section 81.

hGet ready for the next step of UNSAVE 335 i Used in section 81.

hGlobal variables 20, 36, 41, 48, 50, 51, 53, 54, 65, 70, 78, 83, 88, 99, 107, 127, 148, 154, 194, 230, 235, 238, 248, 285, 303,

305, 315, 374, 376, 388 i Used in section 3.

hHandle an internal SAVE when it's time to store 342 i Used in section 281.

hHandle an internal UNSAVE when it's time to load 336 i Used in section 279.

hHandle interrupt at end of execution stage 307 i Used in section 144.

hHandle special cases for operations like prego and ldvts 289, 352 i Used in section 266.

hHandle write-around when
ushing to the S-cache 221 i Used in section 217.

hHandle write-around when writing to the D-cache 259 i Used in section 257.

hHeader de�nitions 6, 7, 8, 52, 57, 129, 166 i Used in sections 3 and 5.

h Ignore the item in write head 264 i Used in section 257.

h Initialize everything 22, 26, 61, 71, 79, 89, 116, 128, 153, 231, 236, 249, 286 i Used in section 10.

h Insert an instruction to advance beta and L 112 i Used in section 110.

h Insert an instruction to advance gamma 113 i Used in sections 110, 119, and 337.

h Insert an instruction to decrease gamma 114 i Used in section 120.

h Insert dummy instruction for page table emulation 302 i Used in section 298.

h Insert special operands when resuming an interrupted operation 324 i Used in section 103.

h Insert data~b:o into the proper �eld of data~x:o, checking for arithmetic exceptions if signed 282 i Used in

section 281.

h Install a new instruction into the tail position 304 i Used in section 301.

h Install default �elds in the cool block 100 i Used in section 75.

h Install register X as the destination, or insert an internal command and goto dispatch done if X is
marginal 110 i Used in section 101.

h Install the operand �elds of the cool block 103 i Used in section 101.

h Internal prototypes 13, 18, 24, 27, 30, 32, 34, 42, 45, 55, 62, 72, 90, 92, 94, 96, 156, 158, 169, 171, 173, 182, 184, 186, 188,

190, 192, 195, 198, 200, 202, 204, 240, 250, 254, 377 i Used in section 3.

h Issue j pseudo-instructions to compute a page table entry 244 i Used in section 243.

h Issue the cool instruction 81 i Used in section 75.

hLoad and write eight bytes 386 i Used in section 384.

hLoad and write one byte 385 i Used in section 384.

hLocal variables 12, 124, 258 i Used in section 10.

hLook at the head instruction, and try to dispatch it if j < dispatch max 75 i Used in section 74.

hLook up the address in the DT-cache, and also in the D-cache if possible 267 i Used in section 266.

hLook up the address in the IT-cache, and also in the I-cache if possible 291 i Used in section 288.

hMagically do an I/O operation, if cool~ loc is rT 372 i Used in section 322.

hMake sure cool L and cool G are up to date 102 i Used in section 101.

hNullify the hottest instruction 147 i Used in section 146.

hOther cases for the fetch coroutine 298, 301 i Used in section 288.

hPass data to the next stage of the pipeline 134 i Used in section 130.

hPerform one cycle of the interrupt preparations 318 i Used in section 64.

hPerform one machine cycle 64 i Used in section 10.

hPredict a branch outcome 151 i Used in section 85.

158 NAMES OF THE SECTIONS MMIX-PIPE

hPrepare for exceptional trip handler 308 i Used in section 307.

hPrepare memory arguments ma = M[a] and mb = M[b] if needed 380 i Used in section 372.

hPrepare to emulate the page translation 309 i Used in section 310.

hPrint all of c's cache blocks 177 i Used in section 176.

hRead and store one byte; return if done 382 i Used in section 381.

hRead and store up to eight bytes; return if done 383 i Used in section 381.

hRead data into c~ inbuf and wait for the bus 223 i Used in section 222.

hRead from memory into fetched 297 i Used in section 296.

hRecord the result of branch prediction 152 i Used in section 75.

hRecover from incorrect branch prediction 160 i Used in section 155.

hRedirect the fetch if control changes at this inst 85 i Used in section 75.

hRestart the fetch coroutine 287 i Used in sections 85, 160, 308, 309, and 316.

hResume an interrupted operation 323 i Used in section 322.

h Set resumption registers (rB; $255) or (rBB; $255) 319 i Used in section 318.

h Set resumption registers (rW; rX) or (rWW; rXX) 320 i Used in section 318.

h Set resumption registers (rY; rZ) or (rYY; rZZ) 321 i Used in section 318.

h Set things up so that the results become known when they should 133 i Used in section 132.

h Set up the �rst phase of saving 338 i Used in section 337.

h Set up the �rst phase of unsaving 334 i Used in section 332.

h Set cool~b and/or cool~ra from special register 108 i Used in section 103.

h Set cool~b from register X 106 i Used in section 103.

h Set cool~y from register Y 105 i Used in section 103.

h Set cool~z as an immediate wyde 109 i Used in section 103.

h Set cool~z from register Z 104 i Used in section 103.

h Simulate an action of the fetch coroutine 288 i Used in section 125.

h Simulate later stages of an execution pipeline 135 i Used in section 125.

h Simulate the �rst stage of an execution pipeline 130 i Used in section 125.

h Special cases for states in later stages 272, 273, 276, 279, 280, 299, 311, 354, 364, 370 i Used in section 135.

h Special cases for states in the �rst stage 266, 310, 326, 360, 363 i Used in section 130.

h Special cases of instruction dispatch 117, 118, 119, 120, 121, 122, 227, 312, 322, 332, 337, 347, 355 i Used in

section 101.

h Start the S-cache �ller 225 i Used in section 224.

h Start up auxiliary coroutines to compute the page table entry 243 i Used in section 237.

h Subroutines 14, 19, 21, 25, 28, 31, 33, 35, 43, 46, 56, 63, 73, 91, 93, 95, 97, 157, 159, 170, 172, 174, 183, 185, 187, 189, 191,

193, 196, 199, 201, 203, 205, 208, 241, 251, 255, 378, 379, 381, 384, 387 i Used in section 3.

h Swap cache blocks p and q 197 i Used in sections 196 and 205.

hTry to get the contents of location data~z:o in the D-cache 274 i Used in section 273.

hTry to get the contents of location data~z:o in the I-cache 300 i Used in section 298.

hTry to put the contents of location write head~addr into the D-cache 261 i Used in section 257.

hType de�nitions 11, 17, 23, 37, 40, 44, 68, 76, 164, 167, 206, 246, 371 i Used in sections 3 and 5.

hUndo data structures set prematurely in the cool block and break 123 i Used in section 75.

hUpdate IT-cache usage and check the protection bits 293 i Used in sections 292 and 295.

hUpdate rG 330 i Used in section 329.

hUpdate the page variables 239 i Used in section 329.

hUse cleanup on the cache blocks for data~z:o, if any 368 i Used in section 364.

hWait for input data if necessary; set state = 1 if it's there 131 i Used in section 130.

hWait if there's an un�nished load ahead of us 357 i Used in section 356.

hWait till write bu�er is empty 362 i Used in sections 361 and 364.

hWait, if necessary, until the instruction pointer is known 290 i Used in section 288.

hWrite directly from write head to memory 260 i Used in section 257.

hWrite the data into the D-cache and set state = 4, if there's a cache hit 262 i Used in section 257.

hWrite the dirty data of c~outbuf and wait for the bus 216 i Used in section 215.

MMIX-PIPE NAMES OF THE SECTIONS 159

hZap the instruction and data caches 359 i Used in section 356.

hZap the translation caches 358 i Used in section 356.

h mmix-pipe.h 5 i

November 7, 2022 at 05:30

MMIX-PIPE
Section Page

Introduction . 1 1
Low-level routines . 16 7
Coroutines . 23 9
Lists . 47 16
Dynamic speculation . 58 23
The dispatch stage . 68 28
The execution stages . 124 46
The commission/deissue stage . 145 53
Branch prediction . 150 56
Cache memory . 163 60
Simulated memory . 206 73
Cache transfers . 217 77
Virtual address translation . 235 85
The write bu�er . 246 89
Loading and storing . 265 96
The fetch stage . 284 107
Interrupts . 306 114
Administrative operations . 327 122
More register-to-register ops . 343 127
System operations . 352 131
Input and output . 371 138
Index . 389 144

c
 1999 Donald E. Knuth

This �le may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked to
help keep the MMIXware �les consistent and \uncorrupted," identical everywhere in the world. Changes are permissible
only if the modi�ed �le is given a new name, di�erent from the names of existing �les in the MMIXware package, and
only if the modi�ed �le is clearly identi�ed as not being part of that package. (The CWEB system has a \change
�le" facility by which users can easily make minor alterations without modifying the master source �les in any way.
Everybody is supposed to use change �les instead of changing the �les.) The author has tried his best to produce
correct and useful programs, in order to help promote computer science research, but no warranty of any kind should
be assumed.

	Introduction
	Low-level routines
	Coroutines
	Lists
	Dynamic speculation
	The dispatch stage
	The execution stages
	The commission/deissue stage
	Branch prediction
	Cache memory
	Simulated memory
	Cache transfers
	Virtual address translation
	The write buffer
	Loading and storing
	The fetch stage
	Interrupts
	Administrative operations
	More register-to-register ops
	System operations
	Input and output
	Index
	Names of the sections
	Allocate a slot p in the S-cache
	Assign a functional unit if available, otherwise goto stall
	Begin an interruption and break
	Begin execution of a stage-two operation
	Begin execution of an operation
	Begin fetch with known physical address
	Begin fetch without I-cache lookup
	Cases 0 through 4, for the D-cache
	Cases 5 through 9, for the S-cache
	Cases for control of special coroutines
	Cases for stage 1 execution
	Cases to compute the results of register-to-register operation
	Cases to compute the virtual address of a memory operation
	Check for a hit in pending writes
	Check for external interrupt
	Check for security violation, break if so
	Check for sufficient rename registers and memory slots, or goto stall
	Check for prest with a fully spanned cache block
	Check the protection bits and get the physical address
	Clean the D-cache block for data->z.o, if any
	Clean the I-cache block for data->z.o, if any
	Clean the S-cache block for data->z.o, if any
	Clean the data caches
	Commit and/or deissue up to commit_max instructions
	Commit the hottest instruction, or break if it's not ready
	Commit to memory if possible, otherwise break
	Compute the new entry for c->inbuf and give the caller a sneak preview
	Continue this command on the next cache block
	Convert relative address to absolute address
	Copy data from p into c->inbuf
	Copy the data from block q to fetched
	Copy Scache->inbuf to slot p
	Declare mmix_opcode and internal_opcode
	Deissue all but the hottest command
	Deissue the coolest instruction
	Determine the flags, f, and the internal opcode, i
	Dispatch an instruction to the cool block if possible, otherwise goto stall
	Dispatch one cycle's worth of instructions
	Do a simultaneous lookup in the D-cache
	Do a simultaneous lookup in the I-cache
	Do load/store stage 1 without D-cache lookup
	Do load/store stage 2 without D-cache lookup
	Do load/store stage 1 with known physical address
	Do stage 1 of LDVTS
	Do the final SAVE
	Either halt or print warning
	Execute all coroutines scheduled for the current time
	External prototypes
	External routines
	External variables
	Fill Scache->inbuf with clean memory data
	Finish a CSWAP
	Finish a store command
	Finish execution of an operation
	Forward the new data past the D-cache if it is write-through
	Generate an instruction to save g[yy]
	Generate an instruction to unsave g[yy]
	Get ready for the next step of PREGO
	Get ready for the next step of PRELD or PREST
	Get ready for the next step of SAVE
	Get ready for the next step of UNSAVE
	Global variables
	Handle an internal SAVE when it's time to store
	Handle an internal UNSAVE when it's time to load
	Handle interrupt at end of execution stage
	Handle special cases for operations like prego and ldvts
	Handle write-around when flushing to the S-cache
	Handle write-around when writing to the D-cache
	Header definitions
	Ignore the item in write_head
	Initialize everything
	Insert an instruction to advance beta and L
	Insert an instruction to advance gamma
	Insert an instruction to decrease gamma
	Insert dummy instruction for page table emulation
	Insert special operands when resuming an interrupted operation
	Insert data->b.o into the proper field of data->x.o, checking for arithmetic exceptions if signed
	Install a new instruction into the tail position
	Install default fields in the cool block
	Install register X as the destination, or insert an internal command and goto dispatch_done if X is marginal
	Install the operand fields of the cool block
	Internal prototypes
	Issue j pseudo-instructions to compute a page table entry
	Issue the cool instruction
	Load and write eight bytes
	Load and write one byte
	Local variables
	Look at the head instruction, and try to dispatch it if j<dispatch_max
	Look up the address in the DT-cache, and also in the D-cache if possible
	Look up the address in the IT-cache, and also in the I-cache if possible
	Magically do an I/O operation, if cool->loc is rT
	Make sure cool_L and cool_G are up to date
	Nullify the hottest instruction
	Other cases for the fetch coroutine
	Pass data to the next stage of the pipeline
	Perform one cycle of the interrupt preparations
	Perform one machine cycle
	Predict a branch outcome
	Prepare for exceptional trip handler
	Prepare memory arguments ma=M[a] and mb=M[b] if needed
	Prepare to emulate the page translation
	Print all of c's cache blocks
	Read and store one byte; return if done
	Read and store up to eight bytes; return if done
	Read data into c->inbuf and wait for the bus
	Read from memory into fetched
	Record the result of branch prediction
	Recover from incorrect branch prediction
	Redirect the fetch if control changes at this inst
	Restart the fetch coroutine
	Resume an interrupted operation
	Set resumption registers (rB,$255) or (rBB,$255)
	Set resumption registers (rW,rX) or (rWW,rXX)
	Set resumption registers (rY,rZ) or (rYY,rZZ)
	Set things up so that the results become known when they should
	Set up the first phase of saving
	Set up the first phase of unsaving
	Set cool->b and/or cool->ra from special register
	Set cool->b from register X
	Set cool->y from register Y
	Set cool->z as an immediate wyde
	Set cool->z from register Z
	Simulate an action of the fetch coroutine
	Simulate later stages of an execution pipeline
	Simulate the first stage of an execution pipeline
	Special cases for states in later stages
	Special cases for states in the first stage
	Special cases of instruction dispatch
	Start the S-cache filler
	Start up auxiliary coroutines to compute the page table entry
	Subroutines
	Swap cache blocks p and q
	Try to get the contents of location data->z.o in the D-cache
	Try to get the contents of location data->z.o in the I-cache
	Try to put the contents of location write_head->addr into the D-cache
	Type definitions
	Undo data structures set prematurely in the cool block and break
	Update IT-cache usage and check the protection bits
	Update rG
	Update the page variables
	Use cleanup on the cache blocks for data->z.o, if any
	Wait for input data if necessary; set state=1 if it's there
	Wait if there's an unfinished load ahead of us
	Wait till write buffer is empty
	Wait, if necessary, until the instruction pointer is known
	Write directly from write_head to memory
	Write the data into the D-cache and set state=4, if there's a cache hit
	Write the dirty data of c->outbuf and wait for the bus
	Zap the instruction and data caches
	Zap the translation caches
	mmix-pipe.h

